
On the Safe IOCOS relation for Testing Safety PLC Code

Downloaded from: https://research.chalmers.se, 2025-07-02 18:34 UTC

Citation for the original published paper (version of record):
Khan, A., Fabian, M. (2019). On the Safe IOCOS relation for Testing Safety PLC Code. IEEE
International Conference on Emerging Technologies and Factory Automation, ETFA,
2019-September: 1449-1452. http://dx.doi.org/10.1109/ETFA.2019.8869487

N.B. When citing this work, cite the original published paper.

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, or reuse of any copyrighted component of this work in other
works.

(article starts on next page)

On the Safe IOCOS relation for Testing Safety PLC Code

Adnan Khan∗, Martin Fabian∗
∗ Department of Electrical Engineering

Chalmers University of Technology, Göteborg, Sweden
Email: {adnan.khan, fabian}@chalmers.se

Abstract—In this paper, limitations of the IOCOS testing
relation in regard to testing safety PLC code is examined and a
modification of the current IOCOS relation, called safe-IOCOS
is proposed. In the IOCOS testing relation, an implementation is
IOCOS with respect to a specification, if it emits a subset of the
specified outputs and a super-set of the specified inputs after the
execution of each trace in the specification. However, for testing
safety PLC code, the IOCOS relation is not detailed enough as
the subset requirement on the respective inputs and outputs could
allow some safety behaviors to go untested. These limitations of
the IOCOS relation may thus pose threats to humans. So the
notion of safe-IOCOS is defined, which strengthens IOCOS to
require equality between the implementation and the specification
in relation to the inputs and outputs, respectively. An example
shows these shortcomings of IOCOS and how the proposed safe-
IOCOS relation is better suited for testing safety PLC code.

Index Terms—Safety, PLC , Input-output conformance

I. INTRODUCTION

In the manufacturing and production arena, different ma-
chines and robots are controlled in such a manner that they
interact with each other to produce the desired goods. Many of
the behaviours exhibited by these machines are event based,
thus of a discrete nature. Typically, sensor events are regarded
as output events and the actuator events are regarded as
input events. The internal events related to internal transitions
between states are not visible and remains unaffected from the
outside.

Due to this event based behavior, manufacturing systems
behaviour can be modelled as discrete event systems [1].
Discrete event systems evolve with respect to occurring events,
while occupying a specific state at each time instant, where
certain conditions are valid. Many formal approaches and
methods can be used to specify, implement and verify the
behaviour of such systems. One of such approach is model-
based testing [2].

Model-based-testing [2] is a formal approach to uncover
errors that subjects a model of an implementation to various
tests based on a specification. A variant of this approach is
called input-output conformance testing (IOCO) [3]. In the
IOCO approach, the model of an implementation is subjected
to scrutiny based on a specification. The status of the executed
test is assessed based on the emitted outputs by the imple-
mentation after the execution of each trace possible in the
specification. When the outputs emitted by the implementation
is a subset of the specified outputs, the implementation is said
to be IOCO with respect to the specification, else it is non-
IOCO and requires amendment.

The IOCO has a requirement on the emitted outputs but
not on the inputs, this allows the implementation with few or
no specified inputs to be IOCO. To counter this, the input-
output conformance simulation (IOCOS) [4] is introduced,
which puts a requirement on the inputs, in addition to the
requirement posed on the outputs by the IOCO relation. The
implementation is considered IOCOS, if it emits a subset
of the specified outputs and a super-set of inputs after the
execution of each trace possible in the specification. If the
implementation fails to satisfy either the input requirement
or the output requirement, it is non-IOCOS and needs to be
amended.

In industrial settings, programmable logic controllers
(PLCs) are used to control the installed machines. The PLCs
are of two types. One type is the standard PLCs that control
the nominal behavior of a production system, e.g. welding.
The second type are safety PLCs, which control the machines
in safety critical scenarios to prevent human accidents and
machine damage.

To uncover errors in the PLC code related to the nominal
behaviour, virtual commissioning [5]–[10] is typically used,
which has been integrated in the engineering tool chain by
many companies. For virtual commissioning, the PLC code
developed for the nominal behaviour is tested on a simulation
model of a physical system. If the simulation model exhibits
behaviour contrary to the specification, manual inspection of
the PLC code is carried out. Upon inspection, if the PLC code
is found to be erroneous then it is manually amended.

Both the IOCO and IOCOS testing relation have been used
to test safety PLC logic [11] and legacy system’s simulation
model [12]. However, the IOCOS relation has a subset re-
quirement on both inputs and outputs, which may allow some
safety behaviour in the implementation to be overlooked; due
to this, human accidents may happen.

A. Contribution

In this paper, a new relation called the safe-IOCOS (see
Def. 8) is proposed, after examining limitations of the IOCOS
relation. The safe-IOCOS relation allows all the inputs and
outputs in the specification to be tested in the implementation
due to an equality relation, which makes it more suitable for
testing safety PLC code. Finally, the viability of the proposed
safe-IOCOS relation is shown using an example.

B. Outline

This paper is structured in the following way. In Section II,
the IOCO and IOCOS testing relations are reminded. In
Section IV, an overview of some limitations in the existing
IOCOS relation for testing safety PLC code along with the
proposed modification is detailed with an example. Section V
concludes the paper with future work direction.

II. INPUT-OUTPUT CONFORMANCE RELATION

The input-output conformance testing relation [3] assesses
a model of an implementation based on a specification. This
assessment of the IOCO relation is carried out by executing
all possible traces of the specification on the implementation.

To give the formal definition of IOCO, consider two disjoint
sets of input actions I and output actions O. The output actions
are the actions initiated by the system under test and are
expressed with an exclamation mark, such as !a ∈ O. The
input actions are commands to the system and are expressed
with a question mark such as a? ∈ I . Now, we consider
a labelled transition system in this section to elaborate the
concept of IOCO and give the formal definition.

Definition 1: An I/O labelled transition system (LTS) is a
4-tuple 〈S, s0, L,→〉 where:
• S is a non-empty set of states;
• s0 ∈ S is the initial state;
• L is a countable set of labels. These represent observable

actions of a system i.e. L = I ∪ O where I and O are
as above. Consider also a quiescence symbol δ 6∈ L, and
define the sets Lδ = L ∪ {δ} and Oδ = O ∪ {δ};

• →⊆ S × Lδ × S is a transition relation such that, p a−→q
implies 〈p, a, q〉 ∈→ and p a−→ for a ∈ Lδ , if there exists
q ∈ S such that p a−→q. Similarly, p6 a−→, for a ∈ Lδ , if
there exist no q such that p a−→q. In addition, only coherent
quiescent systems are allowed, so → should also satisfy
the following:

– if p δ−→p′, then p = p′ i.e. a quiescent transition is
always reflexive.

– if p 6 !o−→ for all !o ∈ O, then p δ−→p, i.e. a state with no
outputs is quiescent.

– if p !o−→ for some !o ∈ O, then p 6 δ−→, i.e. a state with
some output is not quiescent.

Furthermore, a trace t is a finite sequence of symbols of Lδ
i.e. t ∈ L∗δ , including the empty trace ε.

When the transition relation is restricted to be a function,
and thus for p a−→q and p a−→q′ it holds that q = q′, the resulting
LTS is said to be deterministic.

Additional definitions needed to express the IOCO relation
in Definition 6 are as follows.

Definition 2: The set of traces from a state p in an LTS is

traces(p) = {t ∈ L∗δ | p
t−→}. (1)

For an LTS A = 〈S, s0, L,→〉, its set of traces are the ones
defined from its initial state

traces(A) = traces(s0). (2)

Definition 3: The set of states reached after a trace t from
a state p is

after(p, t) = {p′ ∈ S | p t−→ p′}. (3)

For an LTS A = 〈S, s0, L,→〉, the set of states reached after
a trace t is

after(A, t) = {p′ ∈ S | s0
t−→ p′}. (4)

For a deterministic LTS, after(·, ·) always returns a single-
ton set. Then we write after(p, t) = p′.

Definition 4: The set of outputs from a state p is

outs(p) = {!x ∈ Oδ | p
!x−→}. (5)

Definition 5: The set of inputs for a state p is

ins(p) = {x? ∈ I | p x?−→}. (6)

The formal definition of the IOCO testing relation [4] can
now be stated.

Definition 6: For two deterministic LTSs A and B with
equal sets of labels, A is said to be IOCO with respect to B
if

∀t ∈ traces(B) : outs(after(A, t)) ⊆ outs(after(B, t)) (7)

The formal IOCO definition (Def. 6) is interpreted as an
implementation A conforms to a specification B, if for all
the traces in the specification the outputs possible from the
state reached by the implementation after a trace form a
subset of the possible output events from the state reached by
the specification after the same trace. Whenever this subset
relation between the respective sets of output events exist,
the implementation is said to be IOCO with respect to the
specification, for that particular trace. If the implementation
is IOCO with respect to the specification for all the traces
defined by the specification, then the implementation is said
to be IOCO with respect to the whole specification.

This paper uses the modified definition of IOCO given
by [4], which relaxes the original assumption of the implemen-
tation being input enabled [3]. In addition, the original version
of IOCO considers suspension traces, which are the traces
containing quiescent behavior (states without any output). But
the modified definition takes all the traces into account, since
the quiescent behavior is included in the modified definition
by introducing a special symbol for it.

The formal definition of IOCO has a requirement on the
emitted outputs but not on the inputs, this allows the im-
plementation with few or no specified inputs to be IOCO.
To deal with this issue, [4] proposes a modified relation
called the input-output conformance simulation (IOCOS). The
IOCOS relation puts, in addition to IOCO, a requirement on
the implementation that it must conform to at least one of
the specified input behaviours, as formally defined in Def. 7.
In addition to the IOCO requirements on the implementation
having a subset of the specified outputs, IOCOS requires the
implementation also to have a super-set of the specified inputs.

The formal definition of the IOCOS simulation relation can
now be given.

Definition 7: For two deterministic LTSs A and B with
equal sets of labels, A is said to be IOCOS with respect to B
if in addition to (7), it also holds that

∀t ∈ traces(B) : ins(after(B, t)) ⊆ ins(after(A, t)) (8)

The formal IOCOS definition (Def. 6 + Def. 7) states that
the implementation A conforms to a specification B, if for
all the traces in the specification the inputs possible from
the state reached by the implementation after a trace form
a super-set of the possible input events from the state reached
by the specification after the same trace. If this super-set
relation between the respective sets of inputs, and the subset
relation between the outputs expressed in Def. 6 exist, the
implementation is IOCOS with respect to the specification
for the executed trace. If the implementation is IOCOS with
respect to the specification for all the traces defined by the
specification, then the implementation is said to be IOCOS
with respect to the whole specification.

III. EXAMPLE

To highlight shortcomings of the IOCOS testing relation
for safety systems, a true industrial example, which inspired
the work presented in this paper is given. This concerns
a machining cell, consisting of a robot and a laser, which
can be accessed by the operator via the cell doors. The
cell also has multiple emergency shutdown buttons located
at different points to activate emergency shutdown. There
are two possible safety scenarios, one related to the in-
put event Emergency shutdown, and one related to the
Operator Door input event. In both cases, both the robot
and the laser should shut down in any order, i.e. either the
robot shuts down first or the laser.

Two alternative implementations, G1 and G2, are tested
individually with respect to the specification K. Fig. 1 il-
lustrates the models of the implementations G1, G2, and the
specification K.

First, the validity of the IOCOS relation is checked for the
implementation G1 with respect to the specification K. In G1,
when the emergency shutdown button is pushed, only the laser
shuts down. However, according to the specification K, when
the emergency shutdown button is pushed, both the laser and
robot should have shut down. In practice, the missing output
!robot shutdown in G1 would go untested using the IOCOS
testing relation, which could lead to human accident due to
being hit by the moving robot.

Now, the implementation G2 is tested with respect to the
specification K. When, the emergency shutdown button is
pushed, both the robot and the laser are shut down per the
specification K. However, when the operator opens the door,
only the robot stops while the laser remains operational as the
output !Laser shutdown is absent in G2, see Fig. 1. Thus,
the operator door opening scenario has gone untested due to

Fig. 1. Example of IOCOS shortcomings.

the missing input Operator Door in K and could damage
either the operator’s skin or eyes.

The IOCOS testing relation is valid for both G1 and G2 as
it fulfills the IOCOS definition (Def. 6 + Def. 7). However, in
practice both these implementations are unsafe and can lead
to human accidents due to missing input Operator Door in
the specification K and the missing output !robot shutdown
in the implementation G1. Hence, the IOCOS relation in its
current form is not rich enough for testing safety PLC logic.

IV. SAFE-IOCOS FOR TESTING SAFETY PLC CODE

From the IOCOS perspective, the control loop of the safety
PLC S and the physical plant G conceptually represents
an implementation G||S, which is tested with respect to a
specification K. The implementation G||S is a synchronous
composition [1], which models the closed-loop interaction
between the uncontrolled plant G and the safety PLC S, where
an event can occur only if it is simultaneously enabled in both.

The example presented in Section III highlighted two short-
comings that may hinder the IOCOS relation to uncover errors
in the safety PLC code. The first shortcoming is due to the
subset requirement on the outputs. The second shortcoming
is due to the superset requirement on the inputs. Due to
this, some unspecified safety behaviours in the implementation
could go untested.

To counter these shortcomings in the IOCOS relation, two
modifications are proposed to the existing definition of the
IOCOS. The first modification is related to the outputs emitted
by the implementation that after an executed trace must be
exactly the same as the outputs specified by the specification.
The second modification is related to the inputs possible in
the specification from the state reached that after the executed
trace must be exactly the same as the inputs in the state reached
in the implementation. These requirements on the inputs and
outputs requires the traces of the specification to be exactly
the same as the traces of the implementation.

Based on the equality requirement, the formal definition for
the safe-IOCOS relation can now be given.

Definition 8:
For two deterministic LTSs G||S and K with equal sets of

labels, G||S is said to be safe-IOCOS with respect to K if.

∀t ∈traces(K) : (9)
outs(after(G||S, t) = outs(after(K, t)) ∧
ins(after(G||S, t) = ins(after(K, t))

The safe-IOCOS definition (Def. 8) is interpreted as the
implementation G||S conforms to a specification K, if for
all the traces in the specification, the inputs and the outputs
possible from the state reached by the implementation after
a trace are equal to the possible input and output events
from the state reached by the specification after the same
trace. If this equality relation between the respective sets
of inputs and the outputs exist, the implementation is safe-
IOCOS with respect to the specification for the executed
trace. If the implementation is safe-IOCOS with respect to
the specification for all the traces defined by the specification,
then the implementation is said to be safe-IOCOS with respect
to the whole specification.

These modifications in the IOCOS relation requires the
language of the implementation G||S and the specification K
to be exactly equal i.e. L(G||S) = L(K).

A. Applying safe-IOCOS for Safety PLC Testing

Now, we apply the proposed safe-IOCOS relation to test the
implementations G1 and G2 with respect to the specification
K to uncover errors that were missed during testing by the
IOCOS testing relation.

First, for G1, when the proposed safe-IOCOS is used,
the error related to the missing output !robot shutdown is
uncovered due to the equality relation on the outputs. Because
the implementation G1 would have to emit the exact outputs
i.e. !Laser shutdown, and !robot shutdown, after the input
event Emergency shutdown per definition (Def. 8). Hence,
according to the proposed safe-IOCOS relation the implemen-
tation is non-safe-IOCOS and requires amendment.

Similarly, for the implementation G2, the proposed safe-
IOCOS relation would be able to uncover the missing input
event Operator Door in the specification K due to the
equality requirement on the inputs and also the missing output
associated with it i.e. !Laser shutdown in G2 per definition
(Def. 8). Hence, making the proposed safe-IOCOS relation
more appropriate for safety PLC code testing.

V. CONCLUSION

In this paper, limitations of the input-output conformance
simulation relation, IOCOS, for testing safety PLC code
is highlighted and a modification called the safe-IOCOS is
proposed. The implementation is safe-IOCOS with respect to
the specification, if for all possible traces in the specification,
the inputs and outputs possible from the state reached in
the implementation after the executed trace are equal to the

possible inputs and outputs from the state reached in the
specification. To show the viability of the proposed safe-
IOCOS relation, an example is presented, which shows how
the equality relation rather than subset is better suited to test
and validate the safety PLC code. The safe-IOCOS relation
allows the absent inputs and outputs in the implementation to
be uncovered based on the specification, which could prevent
human accidents.

This is work in progress and in the future the proposed
safe-IOCOS relation will be elaborated and corroborated
with relevant proofs. Furthermore, a comparison between the
safe-IOCOS relation and other formal approaches e.g. bi-
simulation, testing based on formal verification and etc. will be
made. Also, the safe-IOCOS relation will be examined from
the perspective of supervisory control theory [13] based on the
notion of controllability.

ACKNOWLEDGEMENTS

This work has been carried out at the Wingquist Laboratory
VINN Excellence Centre within the Chalmers Production Area
of Advance. It has been supported by VR SyTeC (ref 2016-
06204).

REFERENCES

[1] C. Cassandras and S. Lafortune, Introduction to Discrete Event Systems,
ser. SpringerLink Engineering. Springer US, 2009.

[2] M. Utting and B. Legeard, Practical Model-Based Testing: A Tools
Approach. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2007.

[3] G. Tretmans, “Test generation with inputs, outputs and repetitive quies-
cence, 1996,” URL http://doc. utwente. nl/65463, vol. 46, 1996.

[4] C. Gregorio-Rodrı́guez, L. Llana, and R. Martı́nez-Torres, “Input-output
conformance simulation (iocos) for model based testing,” in Formal
Techniques for Distributed Systems. Springer, 2013, pp. 114–129.

[5] Z. Liu, C. Diedrich, and N. Suchold, Virtual Commissioning of Auto-
mated Systems. INTECH Open Access Publisher, 2012.

[6] P. Hoffmann, R. Schumann, T. M. Maksoud, and G. C. Premier, “Virtual
commissioning of manufacturing systems a review and new approaches
for simplification.” in 24th European Conference on Modelling and
Simulation (ECMS 2010), 2010, pp. 175–181.

[7] A. Jain, D. Vera, and R. Harrison, “Virtual commissioning of modular
automation systems,” IFAC Proceedings Volumes, vol. 43, no. 4, pp.
72–77, 2010.

[8] C. G. Lee and S. C. Park, “Survey on the virtual commissioning of man-
ufacturing systems,” Journal of Computational Design and Engineering,
vol. 1, no. 3, pp. 213–222, 2014.

[9] S. Süß, S. Magnus, M. Thron, H. Zipper, U. Odefey, V. Fäßler,
A. Strahilov, A. Kłodowski, T. Bär, and C. Diedrich, “Test methodology
for virtual commissioning based on behaviour simulation of production
systems,” in Emerging Technologies and Factory Automation (ETFA),
2016 IEEE 21st International Conference on. IEEE, 2016, pp. 1–9.

[10] M. Oppelt and L. Urbas, “Integrated virtual commissioning an essential
activity in the automation engineering process: From virtual commis-
sioning to simulation supported engineering,” in IECON 2014-40th
Annual Conference of the IEEE Industrial Electronics Society. IEEE,
2014, pp. 2564–2570.

[11] A. Khan, D. Thönnessen, and M. Fabian, “On-the-fly conformance
testing of safety plc code using quickcheck,” in 2019 IEEE 17th
Transactions on Industrial Informatics (INDIN’19). IEEE, 2019, “in
press”.

[12] A. Khan, P. Falkman, and M. Fabian, “Digital twin for legacy systems:
Simulation model testing and validation,” in Automation Science and
Engineering (CASE), 2018 14th IEEE Conference. IEEE, 2018.

[13] P. J. Ramadge and W. M. Wonham, “Supervisory control of a class of
discrete event processes,” SIAM Journal on Control and Optimization,
vol. 25, no. 1, pp. 206–230, 1987.

