
Control components for Collaborative and Intelligent Automation Systems

Downloaded from: https://research.chalmers.se, 2025-06-18 03:55 UTC

Citation for the original published paper (version of record):
Dahl, M., Erös, E., Hanna, A. et al (2019). Control components for Collaborative and Intelligent
Automation Systems. IEEE International Conference on Emerging Technologies and Factory
Automation, ETFA, 2019-September: 378-384. http://dx.doi.org/10.1109/ETFA.2019.8869112

N.B. When citing this work, cite the original published paper.

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, or reuse of any copyrighted component of this work in other
works.

(article starts on next page)

Control components for Collaborative and
Intelligent Automation Systems

Martin Dahl
Department of Electrical Engineering

Chalmers University of Technology
Gothenburg, Sweden

martin.dahl@chalmers.se

Endre Erős
Department of Electrical Engineering

Chalmers University of Technology
Gothenburg, Sweden
endree@chalmers.se

Atieh Hanna
Research & Technology Development

Volvo Group Trucks Operation
Gothenburg, Sweden

atieh.hanna@volvo.com

Kristofer Bengtsson
Department of Electrical Engineering

Chalmers University of Technology
Gothenburg, Sweden

kristofer.bengtsson@chalmers.se

Martin Fabian
Department of Electrical Engineering

Chalmers University of Technology
Gothenburg, Sweden
fabian@chalmers.se

Petter Falkman
Department of Electrical Engineering

Chalmers University of Technology
Gothenburg, Sweden

petter.falkman@chalmers.se

Abstract—Collaborative and intelligent automation systems
need intelligent control systems. Some of this intelligence exist
on a per-component basis in the form of vision, sensing, motion,
and path planning algorithms. To fully take advantage of this
intelligence, also the coordination of subsystems need to exhibit
intelligence. While there exist middleware solutions that eases
communication, development, and reuse of such subsystems, for
example the Robot Operating System (ROS), good coordination
also requires knowledge about how control is supposed to be
performed, as well as expected behavior of the subsystems. This
paper introduces lightweight components that wraps ROS2 nodes
into composable control components from which an intelligent
control system can be built. The ideas are implemented on a use
case involving collaborative robots with on-line path planning,
intelligent tools, and human operators.

Index Terms—Control Architectures and Programming; Fac-
tory Automation; Planning, Scheduling and Coordination

I. INTRODUCTION

Production systems are quickly getting increasingly com-
plex, with manual off-line programming of robot tasks rapidly
being replaced by online algorithms that dynamically performs
tasks based on the state of the environment [1], [2]. This
complexity will be pushed even further when collaborative
robots [3] together with other intelligent and autonomous
machines and human operators, replaces more traditional
automation solutions. To fully benefit from these collaborative
and intelligent automation systems, also the control system
needs to be more intelligent – it needs to react to and
anticipate what the environment and each subsystem will do.
Combined with the traditional challenges of automation soft-
ware development, such as safety, reliability, and efficiency,
this increased intelligence adds additional complexity that
needs to be handled by the control system.

Intelligent and collaborative automation systems often com-
prise of several robots, machines, smart tools, human-machine

*This work has been supported by UNIFICATION, Vinnova, Produktion
2030 and UNICORN, Vinnova, Effektiva och uppkopplade transportsystem.

interfaces, cameras, safety sensors, etc. Distributed large-scale
automation systems require a communication architecture that
enable reliable messaging, well-defined communication, good
monitoring, and robust task planning and discrete control. In
order to ease integration and development of different types
of online algorithms for sensing, planning, and control of
the hardware, various platforms have emerged as middle-ware
solutions, one of which stands out is the Robot Operating
System (ROS) [4].

Fig. 1. Collaborative robot assembly station controlled by a network of ROS2
nodes.

At the same time, traditional automation software has started
a move away from field bus protocols towards Ethernet based
communication platforms [5]. One such platform is the Data
Distribution Service (DDS) [6], which, based on real world
usage and performance [7], [8], enables implementation of
large scale of industrial automation use cases.

The next version of ROS, ROS2 [9] is currently being
developed on top of DDS. With ROS2 on DDS, the benefits of
ROS to development and integration can be taken advantage

of for implementation of large scale industrial automation use
cases [10].

This paper deals with a use case from a truck engine
manufacturing facility. The challenge involves a collaborative
robot and a human operator performing assembly operations
on a diesel engine in a collaborative or coactive fashion. The
assembly system can be seen in Fig. 1. In order to achieve
this, a wide variety of hardware as well an extensive library
of software including intelligent algorithms has to be used. The
physical setup consists of a six degree of freedom collaborative
robot (a UR10), an autonomous mobile platform, two different
specialized end-effectors with connected docking stations, a
smart nutrunner tool, a lifting system and docking station for
the nutrunner, a camera and RFID reader system, as well as
eight computers dedicated to different tasks. The system is
run solely on ROS2, with a number of nodes having their
own dedicated ROS1 master behind a bridge.

Intelligent and collaborative automation systems combine
the challenges of high level intelligent task and motion plan-
ning for the robots with I/O based control on the level of
sensors and actuators seen in more traditional automation
systems. The automation system needs to keep track of the
state of all resources and products, as well as the environment.
The control system also needs means of restarting production
should something go wrong. In [10], a control architecture
with simultaneous support for both the low-level (sensors
and actuators) and the high level (task and motion planning)
control and decision taking was introduced. This paper aims
to extend that work by providing the concept of lightweight
control components that can be used to quickly compose a
control system.

In Section II, the control architecture in which these control
components operate is described. To give further context,
the implementation of the architecture is discussed in III.
Section IV shows how the described control components have
been used for control of the automation system for the use case
described above. Finally, Section V contains some concluding
remarks.

II. DISCRETE CONTROL ARCHITECTURE

ROS2 systems are composed of a set of nodes communi-
cating by sending typed messages over named topics using a
publish/subscribe mechanism. This enables a quick and semi-
standardized way to introduce new drivers and algorithms to a
system. When composing a system of heterogeneous ROS2
nodes, care needs to be taken to understand the behavior
of each node. While the interfaces are clearly separated into
message types on named topics, knowledge about the workings
of each node is not readily available. This is especially true
when nodes have internal state that is not visible to the outside
world. In order to be able to coordinate different ROS2 nodes,
the control system needs to know both how to control the
node, as well as how the nodes behave. In this work the how
is referred to as control actions and the behavior is referred to
as effects. The aim is to create reusable companion components
that describe the interface and behavior of the ROS2 nodes to

Fig. 2. The layers of the hierarchical control architecture used in this work.

allow quick composition for coordinated control. But first let’s
take a look at the context of the overall control architecture.
An overview of the architecture, first introduced in [10], can
be seen in Fig. 2.

In this figure the automation system is divided into four
layers. Layer 0, ROS2 nodes and pipelines, concerns individual
device drivers and ROS2 nodes in the system. Transformation
pipelines are defined in this layer to map ROS2 messages
coming from and going out to the nodes in the system to
variables within the control system that is based on state rather
than messages. State is divided into measured state - coming
from the ROS2 network, estimated state - inferred from
previous actions of the control system, and command state - to
be sent out on the ROS2 network. Layer 1, System state and
behavior, concerns modeling the different resources and their
ability operations that define the low-level tasks the resources
can perform. Depending on the system state, ability operations
can perform actions which trigger changes to the command
state variables that is eventually transformed by the pipelines
in layer 0 to ROS2 messages. Resources and their abilities
are modeled in two steps: first individually, then the system
specific interactions are modeled as global specifications.

Specifications in layer 1 are generally safety oriented: ensuring
that nothing “bad” can happen. Layer 2, Control intent, define
the desired behavior of the automation system by defining
planning operations. Planning operations are generally defined
on a higher abstraction level (e.g. “assemble part A and part
B”) to define intent rather than “how”. Planning operations
are dynamically matched to sequences of suitable abilities (the
how) during run-time using on-line planning. Finally, layer 3,
High level planning and optimization represents a high level
planning, optimization, or scheduling system that decides in
which order to execute the planning operations of layer 2.

The remainder of this section will describe the control ar-
chitecture in more detail, starting with definitions of resources
and operations from which a state transition system can be
constructed both for planning and formal verification.

A. Resources

Devices in the system are modeled as resources, which
groups the device’s local state and discrete descriptions of the
tasks the device can perform. The system state is encoded into
variables of three kinds: measured state, command state, and
estimated state. Messages on the ROS2 network are mapped
into corresponding variables using transformation pipelines,
see [10].

Definition 1. A resource i is defined as ri =
〈V M

i , V C
i , V E

i , Oi, Ci〉, ri ∈ R where V M
i is a set of

measured state variables, V C
i is a set of command state

variables, V E
i is a set of estimated state variables, and Oi is a

set of generalized operations defining the resource’s abilities.
Variables are of finite domain. The set Vi = V M

i ∪ V C
i ∪ V E

i

define all state variables of a resource. The control state of
the resource i is a set of tuples Ci, containing a valuation of
each variable within that variable’s domain. R is the set of
all resources in the system.

One of the tasks for the system depicted in Fig. 1 is to bolt
down a cover plate onto the engine using a smart nutrunner
tool. The smart nutrunner tool publishes its current state on a
“state” topic and receives instructions on a “command” topic.
Based on the messages received it will start or stop driving
the tool. The strictly typed messages of ROS2 make it possible
to automatically generate a mapping that transforms this into
control state of the correct type. To ease notation in the coming
sections, a shorter variable name is introduced in the comments
of Listing 1, where measured state variables are denoted with
a subscript “?” and command state variables are denoted with
a subscript “!”.

The resource nr defining the smart nutrunner can then be
defined as rnr = 〈{ti?, tr?, ttr?}, {ti!, tr!}, ∅, Onr〉. Notice
that V e

nr = ∅. This is the ideal case, because it means all
local state of this resource can be measured.

B. Generalized operations

Control of an automation system can be abstracted into
performing operations. By constructing a transition system
modeling how operations modify the state of the resources

ROS2 topic: /smart_nutrunner/state
bool tool_is_idle # => ti?
bool tool_is_running_forward # => tr?
bool programmed_torque_reached # => ttr?

ROS2 topic: /smart_nutrunner/command
bool set_tool_idle # => ti!
bool run_tool_forward # => tr!

Listing 1: ROS2 message definitions for messages on the
topics from and to the smart tool.

in a system, formal techniques for verification and planning
can be applied. To do this in a manner suitable to express both
low-level ability operations and later on planning operations,
we define the generalized operation.

Definition 2. A generalized operation j operating on the state
of a resource i is defined as oj = 〈Pj , Gj , T

d
j , T

a
j , T

E
j 〉, oj ∈

Oi. Pj is a set of named predicates over the state of the
resource variables Vi. Gj is a set of un-named guard predicates
over the state of Vi. The sets T d and T a define control
transitions that update Vi, where T d define transitions that
require (external from the ability) deliberation and T a define
transitions that are automatically applied whenever possible.
TE
j is a set of effect transitions describing the possible

consequences to V M
i of being in certain states. A transition

ti ∈ {T d∪T a∪TE} has a guard predicate which can contain
elements from Pj and Gj and a set of actions that update the
current state if and only if the corresponding guard predicate
evaluates to true.

T d
j , T a

j , and TE
j have the same formal semantics, but are

separated due to their different uses. The effect transitions
TE
j define how the measured state is updated, and as such

they are not used during actual low-level control like the
control transitions T d

j and T a
j . They are important to keep

track of however, as they are needed for on-line planning and
formal verification algorithms, as well as for simulation based
validation.

It is natural to define when to take certain actions in terms of
what state the resource is currently in. To ease both modeling,
planning algorithms and later on online monitoring, the guard
predicates of the generalized operations are separated into one
set of named (Pj) and one set of un-named (Gj) predicates.
The named predicates can be used to define in what state the
operation currently is in, in terms of the set of local resource
states defined by this predicate. The un-named predicates are
used later in Section II-E where the name of the state does
not matter.

C. Ability operations

The behavior of the resources in the system is modeled by
ability operations (abilities for short). While it is possible to
define transitions using only the un-named guard predicates
in G (from Definition 2), it is useful to define a number
of “standard” predicate names for an ability to ease model-
ing, reuse, and support for online monitoring. In this work
common meaning is introduced for the following predicates:

enabled (ability can start), starting (ability is starting, e.g. a
handshaking state), executing (ability is executing, e.g. waiting
to be finished), finished (ability has finished), and resetting
(transitioning from finished back to enabled). In the general
case, the transition between enabled and starting has an action
in T d, while the transition from finished has an action in T a.
In other types of systems other “standard” names could be
used (e.g. request and receive).

Let’s exemplify again with the smart nutrunner. Table I
shows the transitions of a typical ability, where each line
makes up one transition of the ability. The ability models the
task of running a nut, by starting to run the motors forward
until a pre-programmed torque (ttr?) has been reached. Notice
that for this ability, G = ∅.

TABLE I

pred. name predicate control actions effects

enabled ti? ∧ ¬tr? ∧ ti! ∧ ¬tr! ti! = F , tr! = TF -
starting ¬ti! ∧ tr! ∧ ¬tr? - ti? = F , tr? = T
executing ¬ti! ∧ tr! ∧ tr? - ttr? = T
finished ¬ti! ∧ tr! ∧ ttr? ti! = T , tr! = F -
resetting ti! ∧ ¬tr! ∧ tr? - ti? = T , tr? = F

Table I: The named predicates and action functions making up the transitions
of the “Run nut” ability.

The resource and ability defined, combined with its ROS2
node and the pipelines, makes for a well isolated and reusable
control component, spanning layer 0 and the resource half
of layer 1 in Fig. 2. However, at this point it cannot do
anything useful other than being used for manual or open
loop control. One also need to be able to model interaction
between resources, for example the robot and the nutrunner,
or the human operator and the nutrunner.

D. Modeling resource interaction

Layer 1 of Fig. 2 illustrates two types of interaction between
resources: safety specification and adding additional effects
which springs from the interaction between resources. As it
might not be possible to outright measure these effects, many
of them will be modeled as control actions updating estimated
state variables.

The generalized operations defined in Definition 2 can be
instantiated into a global resource rG (rG 6∈ R) with its state
defined as the current valuation of VG =

⋃
Vi,∀i s.t. ri ∈ R.

An instantiation with an additional guard ur.pos = bp1 con-
juncted with the ability’s finished predicate, and an additional
action on the transition possible when the finished predicate
is satisfied b̂1 = tightened, where ur.pos (a variable in VG)
references a named pose (bp1, in the domain of ur.pos) of the
robot and b̂1 ∈ (empty, placed, tightened) is an estimated
state variable in VG introduced to keep track of the bolt pairs.
The changes compared to Table I are highlighted in Table II.
Instantiations such as this can be generated for all bolt pairs
in the system.

Formal specifications are used to ensure that the resources
can never do something “bad”. In order to be able to work
with individual devices, as well as isolating the complexities

TABLE II

pred. name predicate control actions effects

finished ¬ti! ∧ tr! ∧ ttr? ∧ ur.pos = bp1 ti! = T , tr! = F, b̂1 = t -

Table II: The instantiated ability “Run nut bolt pair one”.

that arise from their different interactions, modeling should
rely on using global specifications. The abilities defined so
far, together with a set of global specifications can be used to
formulate a supervisor synthesis problem from the variables
and transitions in rG. Using the method described in [11], the
solution to this synthesis problem can be obtained as additional
guard predicates on the deliberate transitions in T d. Examples
of this modeling technique can be found in [12], [13].

E. Planning operations

While ability operations define the low-level tasks different
devices can perform, planning operations model how to make
the system do something useful (in this case, produce en-
gines). The planning operation k is defined as the generalized
operation Ok defined in rG and the estimated state variable
OE

k ∈ VG with the domain {i, e, f}. For the operation k, Pk =
{< init, OE

k = i >,< executing, OE
k = e,< finished, OE

k =
f >}, T d

k = init∧gj/OE
k := e, T a

k = executing∧gk/OE
k := f ,

TE
k = ∅ (where / is used to separate the guard predicate

and action function making up the transition). gj ∈ Gk is a
predicate defining the precondition of Ok and gk ∈ Gk is a
predicate defining the postcondition of Ok.

Consider the tightening of a bolt in our example. A
natural way to model this as an operation (let’s call it
TightenBolt), is to start in the pre-state defined by the
precondition p ∈ Gk defined by b̂ = placed and end in the
post-state defined by the postcondition p2 ∈ Gk defined by
b̂ = tightened.

Modeling operations in this way does two things. First, it
makes it possible to add and remove resources from the system
more easily - as long as the desired goals can be reached, the
upper layers of the control system does not need to be changed.
Second, it makes it easier to model on a high level, eliminating
the need to care about specific sequences of abilities. As
will be shown in Section IV, the operation TightenBolt
involves sequencing several abilities controlling the robot and
the tool to achieve the goal state of the operation.

III. CONTROL IMPLEMENTATION

The components defined thus far are used for running the
system by executing the operations to reach some kind of goal.
At the same time the control must also react to external inputs
like state changes or events from machines, operators, sensors
or cameras. The control therefore continuously deliberate the
best execution sequence of abilities to reach the current goal
defined by the planning operations.

A. The runner

The control system keeps track of the current state of all
variables, the planning operations, the ability operations, and

two deliberation plans. When the state is updated by any of
the pipelines that continuously transforms ROS2 messages into
state changes, the runner is triggered. The runner consists of
two stages, the first evaluates and triggers planning operation
transitions and the second evaluates and triggers ability oper-
ation transitions. When a transition is evaluated to true in the
current state and is enabled, the transition is triggered and the
state is updated. After the two steps have been executed, the
outgoing pipelines are triggered and transforms the updated
state into ROS2 messages.

Each stage includes both deliberation transitions and auto-
matic transitions. The automatic transitions will always trigger
when their guard predicate is true in the current state, but the
deliberation transitions must also be enabled by the deliber-
ation plan. The deliberation plan is a sequence of transitions
defining the execution order of the deliberation transitions.
The plan for the planning operation stage is defined either by
a manual sequence or by a planner or optimizer in level 3.
For the ability stage, the deliberation plan is continuously
refined by an automated planner that finds the best sequence
of abilities to reach a goal defined by the planning operations.

B. Automated planning

The approach to planning taken in this work in based
on finding counter examples using bounded model checking
(BMC) [14]. Modern SAT-based model checkers are very
efficient in finding counter examples, even for systems with
hundreds of variables. BMC also has the useful property
that counter examples have minimal length due to how the
problem is unfolded into SAT problems iteratively. As such,
a counter-example (or deliberation plan) is always minimal in
the number of transitions taken. Additionally, well-known and
powerful specification languages like Linear Temporal Logic
(LTL) [15] can be used. For the implementation done in Sec-
tion IV, the SAT based bounded model checking capabilities
of the nuXmv symbolic model checker [16] was used.

C. From planning operations to a goal

The planning operations define the current high-level pur-
pose of the system as well as the general execution sequence.
These operations normally define the nominal behavior of the
system, for example defining the sequence of assembling the
parts on the engine in the use case, but can also be manual
operations defining other types of goals.

The postcondition gik of each planning operation with their
exeucting predicate OE

i satisfied are conjuncted to form a LTL
specification s =

∧
Oi∈O

(OE
i =⇒ ♦gik), where ♦ is the LTL

operator specifying that the predicate eventually becomes true.
The automated planner then looks for counter-examples that
disprove the negation of s. Such a counter-example (if found)
will contain the fewest possible number of transitions that take
the system to a state where all gik have been reached.

During error handling it is possible to create temporary
planning operations, for instance creating operations which
has other operations precondition as their postcondition, ef-
fectively allowing the control system attempt to go back to a

previous state to perform some planning operation again. An
example of this is given in Section IV-D.

IV. USE CASE - CONTROL OF A COLLABORATIVE
INTELLIGENT AUTOMATION SYSTEM

In this section we describe how modeling and control of
a collaborative intelligent automation system is performed
by composing the control components described. For clarity,
this section focuses on a small part of the system: moving
an engine cover plate from a kitting wagon onto the engine
and bolting it down. This involves several components; the
UR10 robot, the connector, an end-effector for lifting the plate,
the smart nutrunner already described, as well as the human
operator. The aim is to show how the different components
are modeled and used for control. Note that the components
described are simplified to illustrate the concepts while fitting
the paper format.

1) Robot end-effector connector component: A node sim-
ilar to the one for the smart tool exist for the connector
attached to the robot end-effector, the message types of which
is described below.

ROS2 topic: /connector/state
bool connected # => c?
bool not_connected # => nc?
bool connection_failure # => cf?

ROS2 topic: /connector/command
bool lock_rsp # => l!
bool unlock_rsp # => u!

This component define two abilities, lock and unlock. The
lock ability is defined by Table III.

TABLE III

pred. name predicate control actions effects

enabled nc? ∧ ¬c? ∧ u! ∧ ¬l! u! = F , l! = TF -
executing ¬u! ∧ l! ∧ ¬c? - c? = T
finished ¬u! ∧ l! ∧ c? - -

Table III: The named predicates and action functions making up the transitions
of the “lock” ability.

2) UR10 component: The UR10 component defines a re-
source which has state relating ROS2 nodes for both path plan-
ning using MoveIt! [17] and a lower level UR driver for script
execution. Part of its state is defined below. Discretization of
the robot poses is done in the pipelines [10]; the domain of
p? and r! is an enumeration type based on this discretization.

ROS2 topic: /ur10/state
bool moving # => m?

string act_pos # => p?

ROS2 topic: /ur10/command
string ref_pos # => r!

An ability is defined for the robot: goto which takes a
(discrete, i.e. named) goal position (r!) as an input.

Notice that the ability defined in Table IV does not define
any control action. This is added when the ability is instan-
tiated, effectively creating one ability per target pose (e.g.
gotoHome).

TABLE IV

pred. name predicate control actions effects

enabled ¬m? ∧ p? 6= u ∧ r! = p? - -
starting ¬m? ∧ r! 6= p? - m? = T , p? = u
executing m? ∧ r! 6= p? - m? = F , p? = r!
finished ¬m? ∧ p? = r! - -

Table IV: The named predicates and action functions making up the transitions
of the goto ability.

3) Human operator: The human operator is also a control
component. Like the previous components, this component
wraps a ROS2 node, pipelines for transformations to and from
its resource state and a number of abilities. The difference is
that the ROS2 node only instructs the human what to do next
via an interface on a smart watch, as well as registers when
the task is done. The detailed resource state and abilities are
omitted for brevity.

A. Resource interaction

An estimated state variable r̂t ∈ {none, nr, lf} is intro-
duced defining what tool the robot is holding. Similarly to the
instantiation of the run nut ability detailed in Table II, two
instantiations of the connector ability lock are created with
an additional action that updates this state depending on the
robot position (the pose names of the tool docking positions).
The UR10 goto ability is also instantiated with additional
guards referencing variables about which tool (or no tool)
needs to be connected at different poses. See Table V for
an example where the robot is required to be connected to
a certain tool in order to be allowed to move to the pose bp1.
Recall that b̂1 ∈ (empty, placed, tightened) was introduced

TABLE V

pred. name predicate control actions effects

enabled ... ∧ r̂t = nr r! = bp1 -

Table V: The instantiated ability “Goto bolt pair one”.

in Section II-D. The human instruction ability is instantiated
to create a number of placeBolt abilities, which updates
b̂n, n ∈ {1, .., 6} from empty to placed.

B. Planning operations

Table VI shows one possible way to define the planning
operations required in order to perform the tasks described in
Section IV. In essence these describe in a declarative way what
the desired goal states are. Nothing has to be defined about
which resource(s) are eventually utilized to reach these states,
allowing the system great flexibility to operate in a reactive
manner. Note that the “size” of the chosen operations need
to be considered, making sure the planning system has goals
that can be expected to be solved for in a reasonably short
time period. See Section IV-C for a notion of how long this
time period can be. Consider the TightenBolt operations
in Table VI; having r̂t = nr in the precondition is not strictly
necessary – if omitted the planner would still make sure to
get the correct tool before moving into position. However, the

TABLE VI

operation precondition postcondition

GetLFTool r̂t 6= lf r̂t = lf
GetNRTool r̂t 6= nr r̂t = nr

LFToEngine r̂t = lf ∧ l̂f = onMir l̂f = onEngine

PlaceBolt_i l̂f = onEngine ∧ bpi = empty bpi = placed
TightenBolt_i l̂f = onEngine ∧ bpi = placed ∧ r̂t = nr bpi = tightened

Table VI: The planning operations in the described use case. The operations
suffixed with _i exist in multiple versions with i ∈ 1..6.

resulting plan would potentially be much longer (if r̂t = lf ,
first the other tool would have to be put back), which affects
planning time negatively.

Fig. 3 shows an illustration of a possible execution of
this example. To the left is shown three planning operations,
with their respective preconditions above their name, and their
respective postcondition below it. To the right is shown one
possible set of sequences of ability operations generated by
the on-line planning system. Note that these sequences will
naturally change depending on the state of the system. It is also
possible for multiple operations to execute simultaneously,
which in the example mean that both GetNRTool and
PlaceBolt1 can run at the same time.

Fig. 3. Three planning operations each matched to a sequence of ability
operations by the on-line planning system.

C. Planning performance

The system described in this work has 242, 295 reachable
states. To give an overview of the planning performance,
Table VII show the planning times for n transitions into the
future. Measurements were made on a consumer grade laptop
computer.

The table suggest that planning operations can comfortably
search around 20 steps into the future while keeping on-line
performance. This roughly correspond to executing ten ability
operations in sequence.

TABLE VII

n time (ms)

10 776
20 1652
30 3836
40 6259
50 34576

Table VII: Time consumed by the planning system for plans which need n
transitions to reach the goal state.

D. Handling a restart situation

Consider the case where the nutrunning for the first bolt
fails (i.e. the TightenBolt1 planning operation). In this
section we consider how the control system can handle two
different scenarios in which this can occur.

1) Robot error: The robot could stop moving during execu-
tion of its goto ability operation for example if the operator
pushes the robot out of his or her way. The discretization of the
robot’s positions makes the system unaware of exactly where
the robot is located. By temporarily adding a restart ability
operation to the runner that allow the robot to go back to
its previous position (using motion planning) the state of the
control system and the robot resource can be synchronized,
after which the nominal behavior can continue.

2) Operator error: Another reason for this to occur is that
the operator had not in fact put the bolts in correctly. Hence the
estimated state of our system is out of sync with reality. The
operator can now manually synchronize the estimated state in
a frond-end, setting b̂1 = empty. If a temporary planning op-
eration is now added, which has the precondition of the failed
TightenBolt1 planning operation as its postcondition, this
will result in a plan that includes telling the operator to place
the bolts again.

V. CONCLUSION

This paper has described a lightweight type of reusable
control component for modeling and control of ROS2 based
systems. The components can be composed into a global
system that allows using formal methods to ensure various
properties as well as enabling on-line planning during execu-
tion.

The described components have been applied in the mod-
eling and control of an industrial assembly station. Based
on our experience from this implementation, the high-level
modeling of the planning operations was found to be easy
to understand and work with. Turning the ROS2 nodes into
control components required some work, but while this could
be tedious, it was not very difficult. This work is also intended
to be reusable. The more challenging engineering effort has
instead been moved to correctly specifying the interactions
which arises between the components. Future work should
involve generating both the effects and safety-oriented speci-
fications required in a generalized way. Due to the difficulties
in anticipating what the planning system will do, virtual
validation is key during development of these interactions.

Work is ongoing to include virtual simulation nodes in the
control components [18], to make it simple to switch between
the logical effects described in this paper and simulation which
may also include continuous dynamics.

REFERENCES

[1] R. Alterovitz, S. Koenig, and M. Likhachev, “Robot planning in the real
world: Research challenges and opportunities,” AI Magazine, vol. 37,
no. 2, pp. 76–84, Summer 2016.

[2] L. Perez, E. Rodriguez, N. Rodriguez, R. Usamentiaga, and D. F.
Garcia, “Robot guidance using machine vision techniques in industrial
environments: A comparative review,” Sensors, vol. 16, no. 3, 2016.
[Online]. Available: http://www.mdpi.com/1424-8220/16/3/335

[3] A. Bauer, D. Wollherr, and M. Buss, “Human-robot collaboration:
A survey,” International Journal of Humanoid Robotics, vol. 05,
no. 01, pp. 47–66, 2008. [Online]. Available: https://doi.org/10.1142/
S0219843608001303

[4] “ROS,” http://www.ros.org, 2019, [Online; accessed 25-Feb-2019].
[5] J.-D. Decotignie, “Ethernet-based real-time and industrial communica-

tions,” Proceedings of the IEEE, vol. 93, no. 6, pp. 1102–1117, 2005.
[6] G. Pardo-Castellote, “Omg data-distribution service: architectural

overview,” in 23rd International Conference on Distributed Computing
Systems Workshops, 2003. Proceedings., May 2003, pp. 200–206.

[7] P. Bellavista, A. Corradi, L. Foschini, and A. Pernafini, “Data dis-
tribution service (dds): A performance comparison of opensplice and
rti implementations,” in 2013 IEEE Symposium on Computers and
Communications (ISCC), July 2013, pp. 000 377–000 383.

[8] S. Profanter, A. Tekat, K. Dorofeev, M. Rickert, and A. Knoll, “Opc
ua versus ros, dds, and mqtt: Performance evaluation of industry 4.0
protocols,” in IEEE International Conference on Industrial Technology
(ICIT), Melbourne, Australia, 02 2019.

[9] “ROS 2,” https://index.ros.org/doc/ros2/, 2019, [Online; accessed 25-
Feb-2019].

[10] M. Dahl, E. Erös, A. Hanna, K. Bengtsson, and P. Falkman, “Sequence
planner - automated planning and control for ros2-based collaborative
and intelligent automation systems,” https://arxiv.org/abs/1903.05850,
2019.

[11] S. Miremadi, B. Lennartson, and K. Åkesson, “A BDD-based approach
for modeling plant and supervisor by extended finite automata,” Control
Syst. Technol. IEEE Trans., vol. 20, no. 6, pp. 1421–1435, 2012.

[12] P. Bergagård, P. Falkman, and M. Fabian, “Modeling and automatic
calculation of restart states for an industrial windscreen mounting
station,” IFAC-PapersOnLine, vol. 48, no. 3, pp. 1030–1036, 2015.

[13] M. Dahl, K. Bengtsson, M. Fabian, and P. Falkman, “Automatic mod-
eling and simulation of robot program behavior in integrated virtual
preparation and commissioning,” Procedia Manufacturing, vol. 11, pp.
284–291, 2017.

[14] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, “Symbolic model checking
without bdds,” in International conference on tools and algorithms for
the construction and analysis of systems. Springer, 1999, pp. 193–207.

[15] A. Pnueli, “The temporal logic of programs,” in 18th Annual Symposium
on Foundations of Computer Science (sfcs 1977). IEEE, 1977, pp. 46–
57.

[16] R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A. Mariotti, A. Micheli,
S. Mover, M. Roveri, and S. Tonetta, “The nuxmv symbolic model
checker,” in CAV, 2014, pp. 334–342.

[17] I. A. Sucan and S. Chitta, “MoveIt!” http://moveit.ros.org, 2018, [Online;
accessed 26-Feb-2019].

[18] E. Endre, M. Dahl, A. Albo, H. Atieh, P. Falkman, and K. Bengtsson,
“Integrated virtual commissioning of a ros2-based collaborative and in-
telligent automation system,” in Submitted to the 24th IEEE Conference
on Emerging Technologies and Factory Automation (ETFA2019), May
2019.

http://www.mdpi.com/1424-8220/16/3/335
https://doi.org/10.1142/S0219843608001303
https://doi.org/10.1142/S0219843608001303
http://www.ros.org
https://index.ros.org/doc/ros2/
https://arxiv.org/abs/1903.05850
http://moveit.ros.org

	Introduction
	Discrete control architecture
	Resources
	Generalized operations
	Ability operations
	Modeling resource interaction
	Planning operations

	Control implementation
	The runner
	Automated planning
	From planning operations to a goal

	Use case - control of a collaborative intelligent automation system
	Robot end-effector connector component
	UR10 component
	Human operator

	Resource interaction
	Planning operations
	Planning performance
	Handling a restart situation
	Robot error
	Operator error

	Conclusion
	References

