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Abstract: Plaque deposits composed of amyloid-β (Aβ) fibrils are pathological hallmarks of
Alzheimer’s disease (AD). Although copper ion dyshomeostasis is apparent in AD brains and copper
ions are found co-deposited with Aβ peptides in patients’ plaques, the molecular effects of copper ion
interactions and redox-state dependence on Aβ aggregation remain elusive. By combining biophysical
and theoretical approaches, we here show that Cu2+ (oxidized) and Cu+ (reduced) ions have opposite
effects on the assembly kinetics of recombinant Aβ(1-42) into amyloid fibrils in vitro. Cu2+ inhibits
both the unseeded and seeded aggregation of Aβ(1-42) at pH 8.0. Using mathematical models to fit
the kinetic data, we find that Cu2+ prevents fibril elongation. The Cu2+-mediated inhibition of Aβ
aggregation shows the largest effect around pH 6.0 but is lost at pH 5.0, which corresponds to the pH
in lysosomes. In contrast to Cu2+, Cu+ ion binding mildly catalyzes the Aβ(1-42) aggregation via
a mechanism that accelerates primary nucleation, possibly via the formation of Cu+-bridged Aβ(1-42)
dimers. Taken together, our study emphasizes redox-dependent copper ion effects on Aβ(1-42)
aggregation and thereby provides further knowledge of putative copper-dependent mechanisms
resulting in AD.
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1. Introduction

Alzheimer’s disease (AD) is an incurable and fatal neurodegenerative condition resulting from the
progressive death of neurons in the brain and the concomitant loss of cognitive functions, and which
is associated with protein aggregation and deposition [1]. AD is the most common form of adult
dementia, mainly afflicting people over the age of 65 [2]. The prevalence of the disease is expected
to rise worldwide due to population ageing, and unless there are new disease-modifying treatments,
a projected 130 million people may be affected by 2050 [3].

AD is pathologically, genetically, and biochemically strongly linked to amyloid formation and
the deposition of amyloid-β (Aβ) peptides into extracellular senile plaques [1,4,5]. Aβ peptides
are generated by the proteolytic cleavage of the so-called amyloid precursor protein (APP) by
β- and γ-secretases [6]. This occurs in the acidic environment of endosomes [7], where Aβ can also
aggregate [8] and accumulate during early neuronal dysfunction and prior to the deposition of
extracellular plaques [9]. Aβ peptides can differ in size. Even though the 40 amino acid Aβ(1-40)
variant is most abundant, the two residues longer Aβ(1-42) variant is more aggregation-prone [10] and
also the main protein constituent of extracellular amyloid plaques [11]. Probing Aβ(1-42) self-assembly
mechanisms and the influence of biological as well as pharmacological extrinsic aggregation modifiers
is therefore important. Recent progress in the development of models that mechanistically describe
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how amyloid fibrils are formed [12,13] has enabled the determination of rate constants for different
microscopic reaction steps (Figure 1a) through the analysis of amyloid kinetics data. In the case of
Aβ(1-42), this analysis has revealed that secondary nucleation is the dominant mechanism of new
aggregate formation [14]. The same methods have also been used to rationalize the inhibitory effects of
chaperones [15] and antibodies [16], and the catalytic effect of small molecules [17] and lipids [18].

Metal ions and imbalances in metal ion homeostasis are considered to play pivotal roles in
neurodegeneration [19–21], contributing to oxidative stress responses [22,23] as well as directly to
protein aggregation [24–27]. Along this line, metal ions—including iron, zinc, and copper (Cu)—are
found to co-deposit with Aβ fibrils in the core of plaques [28–30], and interactions between Aβ and
redox-active metal ions (e.g., Fe and Cu) can drive the production of hydrogen peroxide [31–33],
superoxide anions [34], and hydroxyl radicals [35], thus potentially contributing directly to the oxidative
stress that is observed in AD [36]. Based on this type of data, metal chelators have been proposed
as future AD therapeutics [37], and favorable effects on Aβ accumulation and toxicity both in vitro
and in vivo have been reported [38]. However, the literature on how metal ions affect Aβ peptide
aggregation is inconclusive in many respects, with reports on both enhancing and inhibitory effects.

Dysregulated Cu homeostasis has been associated with AD [19,39–42] and is manifested as
elevated Cu levels in plasma [19,41] but diminished levels of Cu in the brain, especially in the amygdala
and hippocampal regions [40]. The concentrations of total Cu in amyloid plaques (400 µM) and the
synaptic cleft (15 µM) are higher than the extracellular concentration in the brain (0.2–1.7 µM) [21];
the former may contribute to the reported imbalances. The redox ability of Cu enables it to cycle
between Cu+ and Cu2+ states, underlying its function in many enzymes. The Cu2+ form is predominant
under oxidizing conditions which also prevail in many locations where Aβ is abundant, such as the
extracellular space and the oxidizing and low pH environment of endosomes and lysosomes [43].
In the context of AD, Cu2+ is therefore the most frequently studied redox form. Cu+, which is mainly
bound to proteins in the cytosol where the environment is highly reducing, has been less explored, but
the high reduction potential found for Cu when bound to Aβ suggests that Cu+:Aβmay be present at
oxidative stress and/or pathological conditions. Probing the effects of both the redox states of Cu on
Aβ aggregation is therefore important.

There are several biophysical studies on the effect of Cu2+ on Aβ aggregation, but the results
are divergent. The majority of papers suggest that Cu2+ inhibits Aβ aggregation [44–50], a property
shared with, for example, Zn2+ [51]. However, accelerating effects have also been suggested [52–54],
for example under mildly acidic conditions [24]. Cu2+ has also been reported to selectively induce the
formation of cytotoxic Aβ(1-42) oligomers under conditions where Zn2+ did not [55], thereby putatively
contributing specifically to toxicity. In addition, Cu2+ have been reported to modulate Aβ integrity, for
example by inducing the aggregation-inhibitory dityrosine dimerization in the presence of H2O2 or
ascorbate [52], or by mediating hydrolytic cleavage in presence of large excess of antioxidants [56],
emphasizing that this metal has multiple effects. The role of Cu+ in Aβ(1-42) aggregation has been less
studied, but one report suggested, based on transmission electron microscopy, that both Cu+ and Cu2+

could prevent Aβ fibril formation [57].
Aβ peptides coordinate both Cu2+ and Cu+ ions via N-terminal residues (Figure 1a), but there is

significant disparity in their binding affinities and exact coordination geometries. For Cu2+, dissociation
constants are reportedly in the picomolar to low nanomolar range [58], and both 1:1 and 2:1 binding
stoichiometries have been reported, albeit with significantly weaker binding of the second Cu2+

ion [59–62]. Aβ binds Cu2+ primarily via 3N1O coordination, resulting in the formation of an N-terminal
loop via the engagement of the N-terminus, the carboxyl group on Asp1, and two imidazole nitrogens
(on His6, His13, or His 14) or Asp1 and all three histidines (Figure 1b,c) [60,63–66]. The binding
affinity [67], coordination geometry [64,66,68,69], and stoichiometry [70] of Cu2+ is sensitive to pH.
A loss of coordination or weak affinity at pH 5.0 has been reported [67], as well as the successive
transition towards 4N coordination above pH 8.0 [66]. Probing how Aβ aggregation proceeds as
a function of pH is therefore important, particularly in light of the pathological aggregation of Aβ(1-42)
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in endolysosomes [8,9] where metals, including Cu, are conspicuously abundant [71]. Cu2+ can bind
monomeric, oligomeric, and fibrillar Aβ states with comparable affinity [63,64], and it was reported that
the level of Cu2+ bound to Aβ(1-40) did not change during aggregation [63]. This is consistent with the
fact that residues 1-14 of Aβ(1-42) (to which Cu coordinates) remain flexible and are not incorporated
in the amyloid fibril core (Figure 1b). Cu+ binds Aβ in a bidentate linear 2N coordination engaging
two N-imidazoles (Figure 1d), most likely His13 and His14 [65]. Thus, Cu+ binding can occur without
loop formation, rendering the N-terminus more flexible compared to when binding Cu2+. The affinity
of Cu+ is reported to be in the femtomolar range, suggesting that Cu+ binds tighter than Cu2+ to
Aβ [65,72]. Notably, there are no reports on the interactions of Cu+ with Aβ oligomers or fibrils.
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(d) Cu+, with respective ligation partners [65]. 
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gift from Dr. Henrik Biverstål, Karolinska Institute) was transfected into E. coli (BL21) cells and 
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Figure 1. Amyloid formation and copper coordination by amyloid-β (Aβ)(1-42). (a) Schematic
illustration of the reaction steps involved in nucleated amyloid fibril formation, including primary
nucleation, elongation, secondary nucleation, and fragmentation. The kinetics of the aggregation
of Aβ(1-42) alone is dominated by the generation of new aggregates through secondary nucleation
(bold text), whereas fragmentation (shadowed) plays no significant role. (b) Aβ(1-42) primary structure
with proposed amyloid fibril core β-sheets, according to recent high-resolution structural models
indicated by blue boxes [73,74]. Note that one model reports β-sheet formation also at the N-terminus,
albeit without participation in the formation of the core. Coordination sites for Cu2+ and Cu+ are
indicated by red and yellow dots, respectively. (c,d) Consensus coordination mode of (c) Cu2+ and (d)
Cu+, with respective ligation partners [65].

In this study, we revisit the question of how Cu influences Aβ(1-42) amyloid formation, using
Thioflavin-T assays with monomeric recombinant peptides as the starting material [75], a procedure
that we [18] and others [14] have shown to result in highly reproducible aggregation kinetics. Moreover,
by taking advantage of recent theoretical developments to model protein aggregation kinetics [14],
enabling detailed molecular and mechanistic understanding of amyloid formation catalysis and
inhibition as mentioned above, this study reveals new quantitative information on how Cu2+ and Cu+

affect discrete microscopic events during Aβ(1-42) self-assembly, resulting in different macroscopic
effects on aggregation by the two forms of Cu. We also explore the pH-dependent effects of Cu2+

ions on Aβ(1-42) aggregation, addressing the pathological consequences of alterations in pH during
endolysosomal processing, which may relate to the earliest Aβ aggregation events [73,74]. Our main
finding is that Cu2+ and Cu+ have opposite effects on Aβ(1-42) aggregation. Cu2+ primarily interferes
with fibril elongation, whereas Cu+ instead catalyzes primary nucleation. We discuss the results in
relation to the Cu coordination geometries and the putative effects of Cu on Aβ-mediated neurotoxicity
in the context of AD.

2. Materials and Methods

2.1. Protein Expression and Purification

Recombinant Aβ(1-42) was expressed as a fusion protein with the solubility tag NT* and purified
as described in [76,77], but with some modification. The plasmid encoding for NT-Aβ(1-42) (a kind gift
from Dr. Henrik Biverstål, Karolinska Institute) was transfected into E. coli (BL21) cells and expressed
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overnight using 0.5 mM IPTG induction at OD600~0.7. Bacterial cells were harvested by centrifugation
and lysed in 20 mM Tris-HCl, 8 M urea, pH 8.0, by sonication. The sonicated lysate was filtered through
a 0.22 µM syringe filter (VWR, Radnor, US) and loaded onto a HisPrep FF 16/10 column (GE Healthcare,
Chicago, US) equilibrated with 20 mM Tris-HCl, 8 M urea, pH 8.0. The NT-Aβ(1-42) was eluted with
300 mM imidazole in the same buffer and then dialyzed against 5 L 20 mM sodium phosphate at 4 ◦C,
with 1.5 mM 1,4-dithiothreitol (DTT) and 0.5 mM EDTA, pH 8.0. After 2 hrs of dialysis, 1:20 molar
equivalents of tobacco etch virus (TEV) protease (produced as previously described [78]) was added to
the NT-Aβ(1-42), followed by quiescent incubation over night at 4 ◦C. Following the TEV digestion,
the solution was injected onto a HiLoad 16/600 Superdex 30 pg (GE Healthcare, Chicago, US) size
exclusion column equilibrated with 20 mM sodium phosphate, pH 8.0, and monomeric Aβ(1-42) was
isolated as a single peak. The monomeric peptides were immediately aliquoted, freeze dried, and
stored at −20 ◦C until further use.

2.2. Aβ(1-42) Aggregation Assays

The Aβ(1-42) aggregation was monitored by thioflavin-T (ThT) fluorescence. Prior to each kinetic
experiment, lyophilized Aβ(1-42) was dissolved in 6 M guanidine hydrochloride (GuHCl), followed
by incubation on ice for 20 min. The monomeric Aβ(1-42) solution was purified by size-exclusion
chromatography using a 10/300 Superdex 75 (GE Healthcare, Chicago, IL, US) column and equilibrated
with 20 mM sodium phosphate, pH 8.0, to minimize isoelectric precipitation and reduce the aggregation
rate so that the samples could be transferred to microtiter plates without significant aggregation
occurring, following a common experimental protocol [14,79,80]. The Aβ(1-42) concentration was
determined from the integrated peak area using an extinction coefficient of ε280 = 1280 M−1cm−1.
The monomeric Aβ(1-42) solution was immediately transferred to ice to prevent any aggregation
before starting the experiments. The Aβ(1-42) monomers were diluted in phosphate buffers or
citrate-phosphate buffers to obtain a specific solution pH, as indicated in the text and figure legends
(see Table S1 for detailed buffer compositions). 5 µM thioflavin-T (ThT, Sigma, St. Louis, MO, US)
(three times recrystallized in tetrahydrofuran (THF) to remove impurities) was added from a 0.5 mM
stock solution. The Aβ(1-42) solutions were supplemented with CuCl2 (to obtain Cu2+) or CuCl2
pre-mixed with a 5x molar excess of freshly prepared 1,4-dithiothreitol (DTT, Sigma, St. Louis, MO, US)
to generate Cu+, according to a previously established protocol [81–83]. The peptide solutions were
thereafter added to the wells of 96-well black half-area, low binding, transparent bottom microtiter
plates (Corning, #3881, Corning, NY, US). The total volume in each well was always 70 µL. The plates
were sealed with adhesive film (BIO-RAD, Hercules, US) to prevent sample evaporation and the ThT
emission was measured from the bottom of the plate using a Fluostar Optima or Fluostar Omega
plate reader (BMG Labtech, Ortenberg, Germany ) with a 440 ± 10 nm bandpass filter for excitation,
and a 490 ± 10 nm bandpass filter for emission. All measurements were performed in triplicate (n = 3)
and under strictly quiescent conditions (no shaking) at 37 ◦C and were repeated at least 3 times.

2.3. Seeds Preparation

Fibril seeds for seeded aggregation experiments were formed by setting up the above-described
kinetic experiment with 2.6 µM Aβ(1-42) in 20 mM sodium phosphate buffer, pH 8.0, and 5 µM
ThT. All seeds were prepared in the absence of Cu. The seeds were collected from the wells after
the completion of the experiment and transferred into low-binding 1.5 mL tubes and then added to
samples based on the monomer-equivalent concentration.

2.4. Analysis and Fitting of ThT Kinetic Curves

Kinetic data acquired in the presence of increasing amounts of Cu+ and Cu2+ were analyzed based
on the previously described integrated rate laws for Aβ(1-42) amyloid formation and using a model
including secondary nucleation [14,84]. The theoretical curves of the kinetic evolution of aggregates
were globally fitted to the experimental ThT data (see Section 2.2) using the AmyloFit web interface [85]
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to obtain quantitative estimates of the rate constants. For Cu2+, we used a seeded model to determine
individually the rate constants for primary nucleation (kn), elongation (k+), and secondary nucleation
(k2), keeping one parameter at a time variable (i.e., dependent on the Cu2+ concentration) and the
others as global constants (i.e., independent of the Cu2+ concentration). All the fits were conducted
using a 10-basin hop algorithm with errors and using normalized ThT kinetics data, as described by
Meisl et al. [85]. For Cu+, we used a non-seeded model to determine the convoluted rate constants
k+kn and k+k2.

2.5. Dot-Blot Assay

Dot-blot assays were performed using the anti-amyloid fibril antibody LOC (Millipore, Burlington,
MA, US, [86]), specific for amyloid fibrils. 20 µL of each sample containing Aβ(1-42) with or without
Cu2+ or Cu+ was taken directly from the aggregation reactions and added to a 96-well dot-blot
hybridization manifold (Scie-plas Ltd., Cambridge, UK). Vacuum pressure was applied to deposit the
samples onto an LF-PVDF membrane (Trans-Blot, BIO-RAD, Hercules, CA, US). The membrane was
dried and blocked with 30 mL of 5% skimmed milk in phosphate buffer saline with Tween-20 (PBS-T)
and incubated for 1 h at room temperature. The membrane was then incubated for 30 min at room
temperature with 30 mL of a primary antibody (1:100,000) dissolved in BSA/PBS-T. After three washes
(5 min each time) with PBS-T, the membrane was incubated with a 1:20,000 dilution HRP-conjugated
goat anti-rabbit secondary antibody (Sigma, St. Louis, MO, US). Thereafter, the membrane was washed
three times with PBS-T (15 min × 1, 5 min × 2). The resulting dots were developed using an enhanced
chemiluminescence solution (ECL, GE healthcare, Chicago, IL, US) together with the chemiluminescence
detection system of a ChemiDocTM gel scanner (BIO-RAD, Hercules, CA, US). The densiometric analysis
was performed using the instrument’s built-in software and the region-of-interest function.

2.6. Transmission Electron Microscopy (TEM)

TEM images were taken to examine the morphological appearance of Aβ(1-42) amyloid aggregates
in the absence and presence of Cu. 10 µL of the sample taken at the end-point of the kinetic aggregation
experiment was deposited onto glow-charged, formvar-coated, carbon-stabilized copper EM grids
(Agar scientific, S138, Essex, UK) and allowed to settle for 10 min. The grids were thereafter stained with
aqueous phosphotungstate (1% PTA), blotted with filter paper (Whatman, Grade 40, GE Healthcare,
Chicago, IL, US), and allowed to dry before imaging [87]. High-contrast images were obtained with
a TALOS L120C TEM (Thermo Fisher Scientific, Waltham, MA, US) at an accelerating voltage of 120 kV
using a 4 × 4 k CMOS Ceta camera (Thermo Fisher Scientific, Waltham, MA, US). The magnification
was set to 17,500x–300,000x.

3. Results and Discussion

3.1. Cu2+ Inhibits Aβ(1-42) Amyloid Formation

To explore the effect of Cu2+ ions on the aggregation of Aβ(1-42) into fibrils, we used Thioflavin-T
(ThT) fluorescence to measure the amyloid formation kinetics. ThT binds to the regular β-sheet
structure of amyloid fibrils (but does not associate with unstructured oligomers), and this increases
dramatically its fluorescence quantum yield [88]. At stoichiometric amounts, ThT has been shown
to have a negligible effect on the aggregation kinetics [14], and it is therefore a good in situ
reporter of amyloid fibril formation. Recombinant Aβ(1-42) was monomerized by size exclusion
chromatography (SEC) (Figure S1) immediately prior to each experiment to avoid the presence of
pre-formed aggregates [75,85]. The purified peptides were allowed to aggregate under quiescent
conditions in the absence or presence of CuCl2, such that the experiment probed the Cu2+:Aβ ratios
of 0.5:1, 1:1, 1.5:1 and 2:1. The results (Figure 2a, Figure S2a) show that presence of Cu2+ inhibits the
aggregation of Aβ(1-42) in a dose-dependent manner, resulting in both longer aggregation half-times
and reduced maximum levels of ThT emission. We confirmed that the inhibitory effect is specific
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to Cu2+ by demonstrating that another divalent metal ion (Mg2+) had no, or a very marginal effect,
even when added in 30x molar excess (Figure S3).
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of 2.6 µM Aβ(1-42) measured by thioflavin-T (ThT) (5 µM) fluorescence in the presence of indicated
concentrations of CuCl2. Data are shown as representative curves; the full set of replicates (n = 3)
are shown in Figure S2a. (b) Dot blot showing LOC-positive Aβ(1-42) species at the endpoint of the
kinetic experiments shown in (a). The full, uncropped image of the dot-blot membrane is shown in
Figure S4. (c,d) TEM images of 2.6 µM Aβ(1-42) amyloid fibrils formed in the presence of (c) 1.3 µM
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Using the conformation-sensitive anti-amyloid fibril antibody LOC [86] to detect fibrils, the dot-blot
analysis reveals that the fibril yield decreases with increasing Cu2+ concentration (Figure 2b, Figure S4).
A densiometric analysis suggests a ~90% reduction in fibrils at the highest Cu2+ concentration
(Figure S5a). This confirms that the decrease in ThT intensity reflects inhibition and is not merely
an effect of Cu2+-mediated fluorescence quenching [89]. Control experiments showed, however,
that some Cu-mediated quenching also occurs; 34% of the ThT emission in a sample with pre-formed
Aβ(1-42) fibrils was lost at an Cu2+:Aβ ratio of 1:1, but the effect was reversible upon the addition of
EDTA (Figure S6). This is consistent with the result that the ThT emission at a 1:1 ratio decreased more
than expected from the reduction in the LOC-detected fibril yield (Figure S5a).

Our findings are in good qualitative agreement with several other biophysical studies [44,47–50],
and thus add to the growing consensus that Cu2+ ions inhibit Aβ(1-42) aggregation. Whilst a few studies
report that Cu2+ ions induce the formation of amorphous aggregates of Aβ(1-42) [48,90], the TEM
analysis revealed the formation of mature amyloid fibrils at both sub- and super-stoichiometric Cu2+

concentrations (Figure 2c,d) in our case.

3.2. pH and Salt Dependence of the Cu2+-Mediated Inhibition of Aβ(1-42) Amyloid Formation

Next, we explored the effect of Cu2+ on Aβ(1-42) aggregation at different pHs to mimic the
biological conditions that prevail in the endolysosomal pathway, where early accumulation of Aβ
aggregates may occur [9]. By successively reducing the pH from 8.0 to 5.0, we also explored the effect
of protonation of Cu-coordinating histidines (pKa ~ 6) in the Aβ(1-42) N-terminus. To cover this
pH range, a citrate-phosphate buffer was used, which required an increase in the ionic strength to
200 mM compared to the data presented in Figure 2 in order to obtain sufficient buffering capacity at
pH 5.0. This in itself decreased the half-time of Aβ(1-42) aggregation from 0.82 ± 0.03 h (20 mM) to
0.20 ± 0.01 h (200 mM) (Figure 3a), consistent with previous observations of salt effects [91,92] and
a recent study demonstrating that increased electrostatic screening enhances several mechanistic steps
in the self-assembly of Aβ(1-42) [93]. We found that Cu2+ slows down Aβ(1-42) aggregation also in
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200 mM salt, pH 8.0, (Figure 3b), but the effect is weaker (1.4 times increase in the half-time at 5.2 µM of
Cu2+ (Figure 3c) compared to a 4.6 times increase at 20 mM of salt (Figure 2a)). This suggests that the
catalyzing effects of electrostatic screening on Aβ(1-42) aggregation may to some extent outcompete
Cu2+-mediated inhibitory actions.
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profiles of 2.6 µM Aβ(1-42) at various pHs. (b) Normalized kinetic profiles of 2.6 µM Aβ(1-42) in
a 200 mM sodium phosphate buffer, pH 8.0, and in the presence of Cu2+. (c) Half-times of the
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Cu2+, recorded in 200 mM citrate-phosphate buffers adjusted to (d) pH 7.0, (e) pH 6.0, and (f) pH 5.0.

The effects of pH on the intrinsic aggregation kinetics of Aβ(1-42) are shown in Figure 3a, revealing
no or very modest changes above Aβ(1-42)’s isoelectric point (pI = 5.3, [94]), whereas at pH 5.0
the aggregation rate increases, which is also reflected by the change in the aggregation halftimes
(0.32 ± 0.05 h in pH 5.0, compared to 0.2 ± 0.01 h at pH 8.0) (Figure 3c). Upon lowering the pH from
8.0 (Figure 3b) to 7.0 or 6.0 (Figure 3d,e), we observed that the Cu2+-mediated inhibition became
increasingly potent; the aggregation curves display extended lag phases and significantly increased
half-times (Figure 3c), particularly at Cu2+:Aβ ratios equal to or exceeding 1:1. This behavior could
relate to differences in the coordination mode and binding stoichiometry of the Cu2+:Aβ complex,
which has been shown to be pH-dependent in several studies [64,66,68,69]. Particularly, the binding
of a second Cu2+ ion appears more prominent in mildly acidic (pH 6.6) conditions [70], which could
explain the sudden increase in the degree of inhibition of aggregation that we observe at a Cu2+:Aβ
ratio of 1:1 and above at pH 7.0 and 6.0, but not at pH 8.0. The lack of effect of Cu2+ additions at pH 5.0
(Figure 3f) is most likely due to a loss of binding, related to the full protonation of His residues [67],
even if one report suggests a weak Cu2+ binding to Aβmonomers at this pH [66]. This result further
implies that Aβ(1-42) may release Cu2+ during endolysosomal acidification following endocytic
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uptake [95], and that this in turn could lead to both aggravated aggregation of Aβ and putative toxicity
due to free Cu2+ ions.

3.3. Cu2+-Mediated Inhibition of Aβ(1-42) Aggregation Affects the Fibril Elongation Step

It has been shown in several independent studies that the rate-limiting step in unseeded aggregation
of Aβ(1-42) is secondary nucleation [14,18,51]. Aggregation modulators can, however, act on different
mechanistic steps [96]. To investigate how Cu2+ affects the mechanism of Aβ(1-42) aggregation,
we returned to pH 8.0 and low ionic strength conditions and explored how the aggregation kinetics of
Aβ(1-42) were affected by the addition of pre-formed fibril seeds (prepared in the absence of Cu2+).
Figure 4a shows the kinetic profiles of 2.6 µM Aβ(1-42) with increasing Cu2+ and no added seeds
(the normalized data from Figure S2a). Figure 4b,c shows the same experiment in the presence of
5 mol% or 25 mol% Aβ(1-42) fibril seeds (mol% on a monomer basis). It is clear that even at strongly
seeded conditions (25%), the aggregation of Aβ(1-42) is reduced in a dose-dependent manner by Cu2+.
This is further visualized by the half-time dependence on the Cu2+ concentration, as shown in Figure 4d
and Figure S7. The distinct concentration-dependent increase in half-time with 5% and 25% seeds
strongly suggests that Cu2+-mediated inhibition is not due to a reduction in the primary nucleation
rate, since the addition of seeds bypasses this reaction step [97]. Instead, the retardation of Aβ(1-42)
aggregation by Cu2+ appears to be associated with inhibition of secondary processes and/or elongation.
It has been shown that elongation can be distinguished from secondary nucleation at strongly seeded
conditions where fibril elongation dominates over all nucleation processes [17].
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Figure 4. Effect of Cu2+ on seeded Aβ(1-42) amyloid formation at pH 8.0 (a–c) Normalized kinetic
profiles of 2.6 µM Aβ(1-42) in presence of indicated concentrations of Cu2+ in reactions with (a) no
seeds, (b) 5% seeds, and (c) 25% seeds. (d) Half-times of Aβ(1-42) aggregation, extracted from the
data in (a–c). Error bars represent the standard deviation (n = 3). (e) Relative elongation rate of 2.6
µM Aβ(1–42) in presence of 25% seeds as a function of Cu2+ concentration, as estimated using a linear
approximation of the kinetic slope up until a fibril mass fraction of 0.5. All the rate constants are relative
to that of 2.6 µM of Aβ(1-42) in absence of Cu2+.

Since our data show that a significant effect of Cu2+ on the aggregation half-times remains with
25% seeds, we proceeded to estimate the elongation rates by fitting a linear curve to the initial growth
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phase (up to 50% fibril mass fraction) under strongly (25%) seeded conditions (Figure S8a), as described
by Abelein et al. [51]. This analysis revealed a Cu2+ concentration-dependent decrease in the relative
elongation rate (Figure 4e), supporting the notion that Cu2+ inhibition acts on fibril elongation. Similar
observations have been made in studies on the effect of Zn2+ on the aggregation of Aβ(1-40) [51].

To quantitatively determine the elongation rate constants together with the rates for other steps
in the reaction, we performed a global fitting to the combined data sets of unseeded and seeded
ThT emission kinetics in the Amylofit web interface, using a secondary nucleation model for seeded
amyloid growth [85]. This allowed us to independently determine the microscopic rate constants
for primary nucleation (kn), elongation (k+), and secondary nucleation (k2). The elongation rate
constant (k+) was probed as a fitting parameter, (allowed to vary with the Cu2+ concentration, but kept
constant across seeding concentrations), and the two other rate constants were fitted as fixed global
parameters. The resulting fits are shown in Figure 5a–c, and the associated rate constants are given
in Table 1. We repeated the analysis with, respectively, kn and k2 as fitting parameters (Figure S9),
further substantiating that Cu2+ cannot inhibit the primary nucleation step of the Aβ(1-42) aggregation
reaction (Figure S9a–c).
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Figure 5. Fitting of the Aβ(1-42) aggregation kinetics in the presence of Cu2+ at pH 8.0 to mathematical
models of amyloid formation. (a–c) Normalized kinetic profiles of 2.6 µM Aβ(1-42) at pH 8.0
corresponding to the data in Figure 4. Solid lines are the global fits to data using a model for
Cu2+-dependent variation in the elongation rate constant (k+). (d) Relative change in the elongation
rate constant (k+) determined from the fitting of the data in (a–c) compared to the relative rate
determined via the linear approximation of the initial slope at 25% seeds in Figure 4e. All the rate
constants are relative to that of 2.6 µM of Aβ(1-42) in the absence of Cu2+.

From a mathematical perspective, it is more difficult to distinguish between the fits for secondary
nucleation inhibition (k2, Figure S9d–f) and elongation inhibition (k+, Figure 5a–c), but the latter
(which also has a slightly better goodness of fit, 0.0206 vs 0.0214; the corresponding parameter for the
rejected kn fit was 0.0265) captures better the initial lagging behavior at high Cu2+ ratios. Furthermore,
increasing the Cu2+ concentration results in longer lag times together with successively decreased
steepness of the slopes of the aggregation kinetic curves (Figure 4a), which is expected for elongation
inhibitors [16]. The change in the elongation rate constant (k+) with increasing Cu2+ concentration
determined from the fitting (Figure 5e, Table 1) overlaps very well with the relative elongation rate
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constants estimated using the initial slope of the kinetic profiles (Figure 4e). We therefore conclude
that Cu2+ inhibits the Aβ(1-42) aggregation by interfering with the fibril elongation step. In order to
compare the fitted rate constants for the Aβ(1-42) aggregation in the absence of Cu2+ with previously
published values, we calculated the combined rate constants knk+ and k2k+ from the data given in
Table 1. This yielded 2.5 × 107 M−2h−2 and 8.6 × 1018 M−3h−2 for knk+ and k2k+, in good agreement
with previous reports [14,51], demonstrating the robustness of this Aβ(1-42) aggregation system.

Table 1. Rate constants for Aβ(1-42) aggregation in the presence of Cu2+. Rate constants were
determined by fitting the seeded kinetic data with k+ as a dependent variable and kn and k2 as
globally fitted fixed parameters (e.g., elongation inhibition). The fitted values for kn and k2 were

1.2 × 10−1+1.9×10−2

−9.2×10−3 M−1h−1 and 4.1 × 1010+6.7×109

−3.5×109 M−2h−1 respectively. The upper/lower errors define the
interval in which the rate constant variation does not significantly changing the goodness of fit [85].

[Cu2+] k+ Upper/Lower Error

(µM) (M−1h−1) (M−1h−1)

0 2.1 × 108 +1.1 × 107

−4.2 × 107

1.3 1.6 × 106 +7.5 × 106

−3.2 × 107

2.6 8.2 × 107 +4.5 × 106

−1.7 × 107

3.9 3.1 × 107 +1.6 × 106

−6.2 × 106

5.2 1.0 × 107 +5.3 × 105

−2.1 × 106

Our results show that Cu2+ reduces the elongation rate of Aβ(1-42) by 60% at a 1:1 Cu2+:Aβ ratio
and by 95% at a 2:1 ratio. These values can be compared to the elongation inhibitory effect of Zn2+ on
Aβ(1-40), which resulted in an 80% reduction in the rate constant at sub-stoichiometric concentrations
(2.5:20 molar ratio) [51] and to the extracellular chaperone clusterin, which elicits the strong inhibition
of elongation even at molar ratios as low as 1:100 [80]. In comparison, the Cu2+-mediated inhibition
appears to be weaker.

Fibril elongation occurs via monomer addition to the growing fibril end, and the inhibition could
therefore be envisioned to result from Cu2+ binding to the attaching monomer, the growing fibril,
or both, especially since Cu2+ has been reported to bind both Aβ(1-42) monomers and fibrils with
a comparable affinity [63]. Most studies suggest that elongation occurs via templating interactions,
where the misfolding rearrangement is aided by monomer contacts to the fibril end [98–100]. Molecular
dynamics simulations have suggested that it is the N-terminal part of the Aβ peptide that forms the
initial contact with the growing fibril end [101]. It can therefore be envisioned that the Cu2+ interaction,
promoting loop-formation in the N-terminus of either the free Aβ(1-42) monomer or the Aβ(1-42)
entities at the fibril end (Figure 1a), imposes conformational restrictions or charge repulsions that
impede monomers from attaching to the fibril ends.

3.4. Effect of Cu+ on Aβ(1-42) Aggregation

Since copper can exist in, and cycle between, two redox states (Cu+ and Cu2+), we also studied the
effect of Cu+ on the aggregation kinetics of Aβ peptides. Notably, this has not been explored previously,
in part because Cu+ is difficult to work with in aired solutions. To create and keep Cu+ in solution,
we used the reducing agent dithiothreitol (DTT), in similarity to work with Cu+ chaperones [82].
The aggregation of Aβ(1-42) in presence of CuCl2 and a 5x molar excess of DTT to Cu (creating Cu+)
resulted in a modest but reproducible concentration-dependent increase in the aggregation rate of



Biomolecules 2020, 10, 924 11 of 19

Aβ(1-42) (Figure 6a) (for two additional replicates of the experiments, see supporting Figure S10),
thus opposite to the effect of Cu2+. Control experiments showed that DTT on its own had no effect
(Figure S11). The kinetic results were confirmed by dot blot (Figure 6b, Figure S4), showing no decrease
in the fibril yield in the presence of Cu+. TEM imaging revealed the presence of typical amyloid fibril
aggregates at both sub- and super stochiometric Cu+:Aβ ratios (Figure 6c,d), similar to those observed
with Cu2+, suggesting that copper ions and redox state have no major effect on the morphology of
formed amyloid fibrils.
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Figure 6. Aβ(1-42) amyloid formation in the presence of Cu+ at pH 8.0. (a) Normalized kinetic profiles
of 2.6 µM Aβ(1-42), measured by ThT (5 µM) fluorescence, in the presence of indicated concentrations
of CuCl2 and 5x molar excess 1,4-dithiothreitol (DTT) to generate Cu+. The non-normalized dataset
is shown in Figure S2b. (b) Dot blot showing LOC-positive Aβ(1-42) species at the endpoint of the
kinetic experiments shown in (a). The full, uncropped image of the dot-blot membrane is shown in
Figure S4. (c,d) TEM images of 2.6 µM Aβ(1-42) amyloid fibrils formed in the presence of (c) 1.3 µM
and (d) 5.2 µM Cu2+. The scale bars represent 200 nm.

3.5. Cu+ Enhances Aβ(1-42) Aggregation by Catalysis of Primary Nucleation

Cu+ has been reported to bind Aβ(1-42) via bidentate coordination to imidazoles of His13 and
His14, located adjacent to the N-terminal side of the first β-sheet in the fibril core, but His6 may also
be involved (Figure 1d, [65]). In order to rationalize how this leads to the enhancement of Aβ(1-42)
aggregation, we performed seeded experiments analogous to those explained in Section 3.3.

We find that whilst Cu+ shortens the half-time of unseeded Aβ(1-42) aggregation from 0.84 ± 0.06
to 0.69 ± 0.07 (Figure 7a,d), there is no significant effect of Cu+ on seeded reactions (Figure 7b–d),
suggesting that secondary pathways are not affected. Consistently, Cu+ had no effect on the initial slope
of the kinetic traces under strongly seeded (25%) conditions, and therefore not on the relative elongation
rate constants (Figure 7e and Figure S7b). Furthermore, the observed characteristic shortening of the
lag time, without apparent alterations to the steepness of the slope of the aggregation curves [97],
strongly supports that the Cu+-mediated catalysis of the Aβ aggregation acts on primary nucleation.
Although in aired solutions, Cu+ will over time oxidize to Cu2+, it has been previously shown that
under reducing conditions (1-fold excess ascorbate) Cu+ remains stable for at least 1.5 h [65], which is
longer than the experimental time span in Figure 6a.
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Figure 7. Effect of Cu+ on seeded Aβ(1-42) amyloid formation at pH 8.0. (a–c) Normalized kinetic
profiles of 2.6 µM Aβ(1-42) in presence of indicated concentrations of Cu2+ in reactions with (a) no
seeds, (b) 5% seeds, and (c) 25% seeds. (d) Half-times of Aβ(1-42) aggregation extracted from the data
in (a–c). Error bars represent the standard deviation (n = 3). (e) Relative elongation rate of 2.6 µM
Aβ(1-42) in the presence of 25% seeds as a function of Cu2+ concentration, as estimated using a linear
approximation of the kinetic slope up until a fibril mass fraction of 0.5. All the rate constants are
relative to that of 2.6 µM Aβ(1-42) in the absence of Cu2+. The solid lines in (a) are the global fits to
data using a model for Cu2+-dependent variation in the combined rate constant for primary nucleation
and elongation (knk+).

We globally fitted the unseeded Aβ(1-42) aggregation data in the presence of Cu+ using the
Amylofit web interface [85] and a secondary nucleation model for unseeded amyloid growth.
The fit (solid lines in Figure 7a) shows that the mild aggregation-enhancing effect of Cu+ is well-described
by an increase in the combined primary nucleation and elongation rate constant knk+; the resulting
combined rate constants from the fitting are shown in Table 2.

There are relatively few studies investigating the Cu+–Aβ interaction, but due to the preferred
linear coordination geometry involving His13 and His14 [65,102], it is conceivable that Cu+ cannot
simultaneously bind these two ligands in the fibrillar state (due to steric restrictions imposed by
the alternating directions of side-chain residues in or near the cross-β core (Figure 1b)). However,
it is plausible that Cu+ may interact with His13 and His14 residues on different monomers in the
amyloid fibrils. Our data would then be consistent with a model in which Cu+ catalyzes the formation
of Aβ(1-42) dimers, which are the minimal elongation-competent Aβ(1-42) units [14], thus promoting
primary nucleation.
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Table 2. Rate constants for Aβ(1-42) aggregation in presence of Cu+. Rate constants were determined
by fitting unseeded kinetic data and setting the combined rate constant knk+ as the dependent variable
and the combined rate constant k2k+ as a globally fitted fixed parameter (e.g., primary nucleation

catalysis). The fitted value for k+k2 was 4.9× 1018+6.8×1016

−1.1×1017 M−3h−2. The upper/lower errors define the
interval in which the rate constant variation does not significantly change the goodness of fit [85].

[Cu+] k+kn Upper/Lower Error

(µM) (M−2h−2) (M−2h−2)

0 5.5 × 108 +5.6 × 107

−3.9 × 107

1.3 1.4 × 109 +1.3 × 108

−1.0 × 108

2.6 3.2 × 109 +2.6 × 108

−2.1 × 108

3.9 4.7 × 109 +4.3 × 108

−2.8 × 108

5.2 3.7 × 109 +3.0 × 108

−2.4 × 108

4. Conclusions

This study explores the effect of copper ions on Aβ(1-42) amyloid formation in vitro, identifying
effects on the overall aggregation rate as well as on discrete mechanistic steps of the aggregation
pathway (illustrated in Figure 8). Our results extend the growing body of literature, suggesting that
Cu2+, the major extracellular copper form [21], acts in an inhibitory manner on fibril formation [44–50].
We solidify this view by seeding experiments and kinetic analyses, which conclusively show how Cu2+

primarily impedes fibril elongation at both sub- and super-stoichiometric ratios and in a concentration
range that is relevant to the conditions that prevail in the brain. The Cu2+-mediated inhibition is modest
in comparison to other elongation inhibitors, including Zn2+ (see above and [51]). This is consistent
with observations of the significant accumulation of Cu2+ in AD plaques [21], and suggests that Cu2+

impedes, rather than completely blocks, Aβ(1-42) aggregation. Although the inhibition of Aβ(1-42)
aggregation is a tractable goal to limit the onset and progression of AD, it is important to recognize
that elongation inhibition, under conditions where primary and secondary nucleation proceeds, can
instead drive the formation of small fibrils and oligomers [12,16]. It is therefore possible that Cu2+,
despite its ability to reduce the amount of mature fibrils formed, as we report here, contributes to Aβ
toxicity in the brain. Furthermore, although we describe a strong stoichiometry-dependent inhibitory
effect of Cu2+ at a mildly acidic pH, we also report a loss of function at pH 5.0, a condition that prevails
in late endosomes and lysosomes and which may drive Aβ aggregation in intraneuronal locations
of the brain.
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Furthermore, we demonstrate that the effect of Cu is dependent on the redox state by including
the first experimental evidence that Cu+ also has an Aβ(1-42) aggregation-modulatory effect. Through
kinetic analysis and seeded experiments, we report that Cu+ accelerates fibril formation by mild
catalysis of primary nucleation, possibly related to Cu+-mediated dimer formation. This finding
is important, particularly in relation to observations that the redox cycling of Aβ-bound Cu can
contribute to the generation of reactive oxygen species in the brain [32]. Our results suggest that such
reactions, which result in Cu+ bound to Aβ, may also accelerate aggregation, thereby constituting a
dual toxic mechanism. Altogether, our study sheds more light on the possible pathological relevance
of Cu in Alzheimer’s disease and suggests a complex pivotal role of Cu in Aβ(1-42) aggregation
modulation that warrants further investigation in biological in vivo environments. The therapeutic
value of Cu–Aβ(1-42) interactions should also be taken into account in future strategies to develop
disease-modifying treatments.

Supplementary Materials: The following supplementary results are available online at http://www.mdpi.
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Reproducibility of Aβ(1-42) aggregation kinetics; Figure S3: Aβ(1-42) amyloid formation in presence of MgCl2;
Figure S4: Dot blot; Figure S5: Relative ratio of fibrillar content at different Cu concentrations; Figure S6:
Quenching of ThT by Cu2+; Figure S7: Half-time of Aβ(1-42) aggregation in presence of Cu2+; Figure S8: Initial
slope analysis of 25% seeded aggregation curves; Figure S9: Fitting of Aβ(1-42) amyloid kinetic data in presence
of Cu2+ to models of primary nucleation and secondary nucleation inhibition; Figure S10: Amyloid formation in
presence of Cu+- extra data; Figure S11: Dithiotreitol (DTT) has no effect on Aβ(1-42) amyloid formation; Table S1:
Buffer specifications.
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98. Bacci, M.; Vymětal, J.í.; Mihajlovic, M.; Caflisch, A.; Vitalis, A. Amyloid β fibril elongation by monomers
involves disorder at the tip. J. Chem. Theory Comput. 2017, 13, 5117–5130. [CrossRef] [PubMed]

99. Cannon, M.J.; Williams, A.D.; Wetzel, R.; Myszka, D.G. Kinetic analysis of beta-amyloid fibril elongation.
Anal. Biochem. 2004, 328, 67–75. [CrossRef] [PubMed]

100. Vettore, N.; Buell, A.K. Thermodynamics of amyloid fibril formation from chemical depolymerization.
Phys. Chem. Chem. Phys. 2019, 21, 26184–26194. [CrossRef] [PubMed]

101. Gurry, T.; Stultz, C.M. Mechanism of amyloid-β fibril elongation. Biochemistry 2014, 53, 6981–6991. [CrossRef]
[PubMed]

102. Feaga, H.A.; Maduka, R.C.; Foster, M.N.; Szalai, V.A. Affinity of Cu+ for the copper-binding domain of the
amyloid-β peptide of Alzheimer’s disease. Inorg. Chem. 2011, 50, 1614–1618. [CrossRef] [PubMed]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1038/nprot.2016.010
http://dx.doi.org/10.1186/1750-1326-2-18
http://www.ncbi.nlm.nih.gov/pubmed/17897471
http://dx.doi.org/10.1002/pro.5560020312
http://www.ncbi.nlm.nih.gov/pubmed/8453378
http://dx.doi.org/10.1016/j.bbrc.2015.01.132
http://www.ncbi.nlm.nih.gov/pubmed/25660454
http://dx.doi.org/10.1002/anie.200700318
http://dx.doi.org/10.1016/j.jmb.2007.08.068
http://dx.doi.org/10.1016/j.bbrc.2015.11.051
http://dx.doi.org/10.1039/C7SC00215G
http://dx.doi.org/10.1002/mrc.1341
http://www.ncbi.nlm.nih.gov/pubmed/14745804
http://dx.doi.org/10.1038/s41598-017-02227-9
http://dx.doi.org/10.1039/C8CC02204F
http://www.ncbi.nlm.nih.gov/pubmed/29978862
http://dx.doi.org/10.1016/j.jmb.2012.02.031
http://www.ncbi.nlm.nih.gov/pubmed/22406275
http://dx.doi.org/10.1021/acs.jctc.7b00662
http://www.ncbi.nlm.nih.gov/pubmed/28870064
http://dx.doi.org/10.1016/j.ab.2004.01.014
http://www.ncbi.nlm.nih.gov/pubmed/15081909
http://dx.doi.org/10.1039/C9CP04524D
http://www.ncbi.nlm.nih.gov/pubmed/31755512
http://dx.doi.org/10.1021/bi500695g
http://www.ncbi.nlm.nih.gov/pubmed/25330398
http://dx.doi.org/10.1021/ic100967s
http://www.ncbi.nlm.nih.gov/pubmed/21280585
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Protein Expression and Purification 
	A(1-42) Aggregation Assays 
	Seeds Preparation 
	Analysis and Fitting of ThT Kinetic Curves 
	Dot-Blot Assay 
	Transmission Electron Microscopy (TEM) 

	Results and Discussion 
	Cu2+ Inhibits A(1-42) Amyloid Formation 
	pH and Salt Dependence of the Cu2+-Mediated Inhibition of A(1-42) Amyloid Formation 
	Cu2+-Mediated Inhibition of A(1-42) Aggregation Affects the Fibril Elongation Step 
	Effect of Cu+ on A(1-42) Aggregation 
	Cu+ Enhances A(1-42) Aggregation by Catalysis of Primary Nucleation 

	Conclusions 
	References

