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Abstract—In this paper, the advantages of list decoding for
short packet transmission over fading channels with an unknown
state are illustrated. The principle is applied to polar codes
(under successive cancellation list decoding) and to general short
binary linear block codes (under ordered-statistics decoding).
The proposed decoders assume neither a-priori knowledge of
the channel coefficients, nor of their statistics. The scheme relies
on short pilot fields that are used only to derive an initial channel
estimate. The channel estimate is required to be accurate enough
to enable a good list construction, i.e., the construction of a list
that contains, with high probability, the transmitted codeword.
The final decision on the message is obtained by applying a
non-coherent decoding metric to the codewords composing the
list. This allows one to use very few pilots, thus reducing the
channel estimation overhead. Numerical results are provided for
the Rayleigh block-fading channel and compared to finite-length
performance bounds. The proposed technique provides (in the
short block length regime) gains of 1 dB with respect to a
traditional pilot-aided transmission scheme.

I. INTRODUCTION

Recently, there has been an increasing interest in design-
ing wireless communication systems with short information
blocks, up to a few tens of bits, due to emerging applications
with strict latency constraints [1]. As capacity is far beyond
what is achievable for such message lengths, the fundamental
limits of communications for finite-length messages have
received renewed attention [2]-[5]. Code designs [6]-[8] and
sophisticated decoding algorithms [9], [10] closing the gap to
those limits in the moderate- and short-length regimes have
been proposed. It is possible to operate within a few tenth of
a dB from the finite length bounds as illustrated in a recent
survey [11] comparing various code classes and finite-length
bounds. While most of the attention has been focused on
communication over additive white Gaussian noise (AWGN)
channels, some applications require communicating with short
packets over a fading channel where no a priori channel state
information (CSI) is available at the transmitter and receiver
[1]. In fact, classic pilot-assisted transmission (PAT) methods
[12] become highly sub-optimal when short blocks are used
[13]. The rates achievable over fading channels, when the CSI
is not a priori available have been investigated in [14], [15] for
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a fixed blocklength and error probability. Bounds on the error
probabilities are provided in [16] not only for non-coherent
transmission but also for various PAT strategies.

Recently, a novel decoding strategy for PAT schemes has
been proposed [17], which aims at approaching the bounds de-
veloped in [16] without significantly increasing the complexity
with respect to the so-called coherent setup where perfect CSI
is available at the receiver. The decoder, in particular, assumes
neither a priori knowledge of the channel coefficients, nor
of their statistics. The technique relies on the use of very
few pilot symbols to obtain a channel estimate, which is
used to initialize an efficient list decoder. The list decoder
provides a set of candidate codewords, which includes, with
a sufficiently high probability, the transmitted codeword. For
the final decision, a non-coherent decision metric is adopted.
The effectiveness of the method was illustrated for a quasi-
cyclic code under ordered-statistics decoder (OSD) [9], [18].
Although the gains were remarkable, the list sizes required by
OSD to provide such gains are relatively large. In this paper,
we apply the same principle to polar codes with successive
cancellation list (SCL) decoding. We show that larger gains
can be achieved in this setting, with much smaller list sizes
than for the OSD, over a single-input single-output (SISO)
Rayleigh block-fading channel.

II. PRELIMINARIES

We use capital letters, e.g., X, for random variables (RVs)
and their lower case counterparts, e.g., z, for their realizations.
We denote the random vectors via capital bold letters, e.g.,
X = [X;1,Xo,...,X,], and their vector realizations via the
lower case counterparts, e.g., € = [21,Z2,...,%,]. As an
exception, I, refers to the a x a identity matrix. The probability
density function of the continuous RV X is denoted as px.
We use ||-|| for the [?-norm, {-,-) for the inner product of
two vectors, In(-) for the natural logarithm, and E[-] for
the expectation. We write CN (i1,02) to denote a complex

Gaussian distribution with mean y and variance o2.

A. System Model

We consider a SISO Rayleigh block-fading channel, i.e., the
random fading coefficient is constant for n, channel uses and
changes independently across ¢ coherence blocks, which are
also called diversity branches. Therefore, the packet size is



n = {n.. Such a setup is relevant for OFDM systems, e.g.,
LTE and 5G (see [19]). The input-output relationship of the
channel for the ith coherence block is

Yy, =hx;+n;, i=1....¢

where ¢; € A" and y; € C" denote the transmitted
and received vectors, h; is the realization of the channel
coefficient, which is distributed as H; ~ CN(0,1) and m;
is the corresponding AWGN term, which is distributed as
N,; ~ CN(0,0%1,,). The mutually independent RVs H; and
NN; are assumed to be independent over i. We will focus on
quadrature phase shift keying (QPSK) signalling where the
energy per symbol is normalized to 1.

B. Decoding Metrics over the Rayleigh Fading Channel

If the channel coefficients are known to the receiver, then
the (coherent) maximum likelihood (ML) decoding rule is

T = arg maxpy|x,H(y‘93a h)
xzecC

¢
: 2
= arg min Z |y — hiz|
reC i—1
where C is the set of transmitted signal vectors induced by the
chosen channel code and modulation. When ||x;|| is constant
across codewords and blocks, we have

¢
& = argmax > R{(y;, hiw:)}. ()
xeC p—
This is the case, for instance, if the modulation is QPSK. The
idealized setting described above is often approximated by
including pilot symbols in the transmitted sequence, which
are used to obtain an estimate f of the channel coefficients.
The estimate is treated as ideal by the decoder, yielding the
mismatched decoding rule (1) where h; is replaced by h;.
Assume next that the decoder does not have access to the
channel coefficients and to their distribution, and that no pilots
are embedded in the transmitted sequence. In this case, the
problem of decoding can be tackled, for instance, by designing
a generalized likelihood ratio test (GLRT) [20], yielding

& = arg max suppy|x,H(y|$, h)

xeC h
¢
= arg min Zianyi — hiz; |2 2)
weC o M
¢
|<y7,7 wi>|2
= arg max _— 3
gmax D e

The last step follows because the estimate h; achieving (2) is
hi = (yi,x;)/||2]|2. Note that, under the assumption that the
signals in C have the same energy over each coherence block,
(3) reduces to

’
T = arg max Z |<yu$1>|2 S

zeC i—1

C. Successive Cancellation List Decoding of Polar Codes

Polar codes [21], [22] are the first class of provably
capacity-achieving codes with low encoding and decoding
complexity over any binary-input memoryless symmetric
channel under successive cancellation (SC) decoding [22]. For
a length-n polar code, a matrix G,, is constructed as

G, = B, K"

where B,, is the n x n bit-reversal permutation [22] and K. §® m
denotes m-fold Kronecker product of K defined as

A1 0
watf) ]

with m = log, n. A polar code of dimension % is designed by
selecting the indexes of . — k bit positions, to be included in a
set A. Then, an n-bit vector u is defined for encoding, where
u; = 0 for all ¢ € A, yielding the so-called frozen bits, and the
remaining k elements of w carry information bits. Encoding is
performed as ¢ = uG,,. SC decoding [22] estimates wu;, ¢ =
1,2,...,n, by using the channel observations and the previous
decisions 1, s, ..., U;—1. The code constraints imposed by
the set 4 are taken into account by setting 4; to 0 if i € A.
In SCL decoding [10], the two hypotheses 0/1 are kept active
instead of making a hard decision for each bit u; (if it is not
a frozen bit). More specifically, several instances of an SC
decoder run in parallel. Each relies on a different hypothesis,
which we call path, on the previous information bits. At step
i, each SC decoder instance computes the likelihoods for two
new paths, corresponding to %; = 0 and @; = 1, arising from
the same path. This doubles the number of paths for each ¢ ¢
A. Whenever the number of paths exceeds a given maximum
list size L, the least likely paths are pruned from the list. At
the final stage, the decoder outputs the codeword maximizing
the relevant decision metric.

D. Ordered-Statistics Decoding of Binary Linear Block Codes

An OSD represents an instance of a list decoding algorithm,
which can be used for any binary linear block code [9], [18].
With a moderate complexity, it provides a very competitive
performance at short blocklengths [11]. For a given (n,k)
code with generator matrix G, the algorithm starts by ordering
the bit-wise channel log-likelihood ratios (LLRs) in decreasing
order of reliability. This reordering is reflected in a permutation
of the columns of the generator matrix G. The permuted
generator matrix is put into systematic form.! For a given
parameter ¢, the decoder assumes that the maximum number
of erroneous bits in the k& most reliable bit positions is t.
Based on this assumption, the decoder generates a list £ of
codewords with a size equal to |£| = >¢_, (¥), by first taking
hard decisions on the k most reliable positions and then by
adding to them all the error patterns with Hamming weight
up to t. Each vector is encoded via the systematic (permuted)

This step might require an additional reordering of both the generator
matrix and LLRs in case the first £ columns of the permuted generator matrix
are not linearly independent.



generator matrix to produce the candidate codewords in L.
Finally, the codeword in £ that maximizes the decision metric
of choice is selected. Typically, the likelihood metric is used
if it is known and if it can be computed efficiently.

E. On the Complexity of Non-Coherent Decoding

Efficient maximum likelihood decoders (such as Viterbi
decoding over the code trellis) as well as decoding algorithms
that relies on the factorization of the channel likelihood (such
as belief propagation decoding of low-density parity-check
and turbo codes, SCL decoding of polar codes or OSD
of a generic code) require to be initialized with bit-wise
LLRs. However, the decoding metric in (4) does not admit
a simple factorization, which prevents a straightforward use
of such efficient decoders. A typical approach to address this
issue relies on PAT. More specifically, n,, pilot symbols are
embedded into each coherence block. For the ith coherence
block, the vector of pilot symbols is denoted by x!. The pilots
are followed by n. — n, coded symbols, denoted by x;. The
corresponding channel outputs are y! and y§, respectively. The
rate in bits per channel use (bpcu) is R = k/(¢n.) where k
is the number of information bits encoded by C. The rate of
the code C is Ry = k/({(n. — nyp)). As a result, for a fixed
rate R and a fixed blocklength /n., a large number of pilots
comes at the cost of an increase in the code rate Ry, and
thus a reduction of the error correction capability. This yields
a trade-off between resources allocated to channel estimation
and error correction [13].

The approach that will be used as reference in the following
relies on a separation between the channel estimation and
the channel decoding steps. In particular, upon observing the
channel output, the pilot symbols are used in each coherence
block to perform an ML estimation of the corresponding
channel coefficient, i.e., we have

7 <y§ ) iB? > .

h; = = 1=1,...,4 5)
The channel estimates (5) are treated as perfect and
the bit-wise LLRs based on the mismatched likelihoods
py|X7H(yf|a3§-',iLi), with 7 = 1,...,¢, are fed to the (list)
decoder in use. We refer to such approach as pragmatic PAT
decoding. In the following, we demonstrate the effectiveness of
a recently introduced technique [17] compared to the reference
described above. It relies on a very limited number of pilot
symbols (yielding a coarse initial channel estimate) to generate
a list, from which the final decision is obtained according to
a non-coherent metric.’

ITII. L1ST DECODER WITH IN-LIST GLRT

A simple modification of pragmatic PAT decoding can be
devised for algorithms relying on list decoding. The modi-
fication works as follows. The initial channel estimates (5)

2An alternative approach to reduce the pilot overhead is to use it-
erative decoding and channel estimation algorithms [23]-[25]. A per-
formance/complexity comparison between the technique outlined in this
manuscript and iterative decoding and channel estimation approaches is
beyond the scope of this paper.

are used by the list decoder to form the list £ of codewords
through the mismatched LLRs. Then, each codeword in the
list is modified by re-inserting the pilot symbols, which yields
a modified list £'. We finally apply the GLRT rule (4) on the
codewords in £’ to obtain the decision as follows:

4

& = arg max Z |(yi, ;)|
xzeLl’

i=1
¢
o §R d }AL d 1 d dy\ |2 6
= argmax E {5, hiz§)} + e (yi, )" (6)
xeLl’ i=1 np

Note that the decoding metric has two contributions: a first
term that resembles a coherent metric based on the estimate
h, and a second term that is related to the non-coherent
correlation. The second term is weighted by the inverse of
the number of pilots; hence it becomes negligible when n,, is
large (i.e., when the channel estimate is reliable).

An alternative derivation of the results is as follows. Observe
that the channel estimate h; provides the decoder with a
statistical knowledge of the actual channel coefficient [26].
In particular, assuming the a priori distribution of the fading
to be unknown to the decoder, the distribution of the channel
coefficient for the ith coherence block given its estimate can
be modeled as a complex Gaussian distribution with mean hi
given in (5) and variance o?||z?||~2. Using this knowledge,
we obtain

¢
& = arg max HE[de|Xd,H,; (y; |5, H;)]
zeC’
e ~
[(yf, 29)|* + 2)|2f|*R{(y;, hixs) }
= arg max Z EAE

!’
xzeC i—1

P2 2| 24|12 P2
O 2 e 1 o
a3 a4 ]2

where (7) follows because the conditional received vec-
tor y¢ per coherence block given the transmitted sequence
x! is complex Gaussian with mean h;x?¢ and covariance
o2 (I, + [|[z5]|~2(x$)"x¢) and C’ is the modified channel
code obtained by re-inserting the pilot symbols to each code-
word. By assuming QPSK and restricting the search space to

L', we recover (6).

IV. FINITE-BLOCKLENGTH BOUNDS

Next, we introduce the tools from finite-blocklength infor-
mation theory that we shall use to benchmark our coding
schemes. We provide an outer (converse) bound based on
the metaconverse theorem in [5, Thm. 28] and for the inner
(achievability) bound, we use a relaxed version of the random
coding union (RCU) bound in [5, Thm. 16] that is commonly
referred to as the RCUs bound [27, Thm. 1].

Let ¢ Cre x C* — R™ be an arbitrary
block-wise decoding metric and let (X;, X;Y;) ~
px (Zi)px (:)py|x (yil®:), i = 1,...,£, be independent



across coherence blocks. We define the generalized informa-
tion density as

9(933‘7 vi)°
E[q(X, yi)*]
where s > 0 and the expectation is with respect to X. The

RCUs achievability bound states that, for a given rate Rz, the
average error probability is upper-bounded as

e <l B [en B n vy mmeton]T g,

15(x,y;) = In (8)

We evaluate the bound in (9) for the following combinations of

input distributions and decoding metrics [16, Sec. I[II.A-IIL.D]:

i) Input symbols uniformly distributed on a shell in C"e,
and ML decoding, i.e., ¢(x;, yi) = py | x (yi|Z:);

ii) a pilot-assisted scheme as in Section II-E with the n,—n,,
data symbols uniformly distributed on a shell in C"<™"»
and ML decoding, i.e., ¢(Zi, i) = Py x4 s, hi)s

iii) input distribution as in ii), and pragmatic PAT decoding,
Le., q(zi yi) = exp(—[lyf — hi{|]?).

For the converse bound, we let px be as in i) and define
Py |x (Yilz:)
a3 (i)
where ¢5 (y;) = ﬁE[py‘X(de)s]l/s and p(s) is chosen

so that ¢3-(y;) integrates to 1. Then, for a given rate R, the
average error probability is lower-bounded as

Js(xi,y5) = In (10)

‘
€ > supsup P st(Xi,Yi) <A =M Bt (11
s>0 A>0 i—1

For more details on this bound, the reader is referred to [28].

V. NUMERICAL RESULTS

We present next the performance achieved by the modified
list decoders proposed in Section III. We consider two coding
schemes: a quasi-cyclic code and a polar code. The results are
obtained by Monte Carlo simulations and are provided in terms
of block error rate (BLER) vs. signal-to-noise ratio (SNR) with
the SNR espressed as E; /Ny, where Ej is the expected energy
per symbol and N; the single-sided noise power spectral
density. The results are compared with the bounds of Section
IV. We consider a Rayleigh block-fading channel with 4 diver-
sity branches. Each branch consists of 17 channel uses. This
results in 68 channel uses per message. For the simulations,
we transmit &£ = 32 information bits within each codeword,
yielding a rate R = 32/68 =~ 0.47 bpcu. The symbols are
taken from a QPSK constellation. The (128, 32) quasi-cyclic
code used in the simulations is obtained by tail-biting termina-
tion of a rate—1/4 non-systematic convolutional code with a
memory 14 and generators [47633, 57505, 66535, 71145] [29,
Table 10.14]. A suitable number of codeword bits is punctured
to accommodate the pilot symbols within the 68 channel uses.
The minimum distance of the quasi-cyclic code is upper-
bounded by the free distance of the underlying convolutional
code, which is 37. In addition, we designed a (128, 32) polar
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Fig. 1: BLER vs. SNR for the proposed scheme adopting quasi-
cyclic code under OSD (—e—) and polar code under SCL decoding
(—e—) with n, = 1 (top), np, = 2 (middle) and n, = 3 (bottom).
Finite length performance bounds given by the converse bound of
(11) (—), the achievability of (9) for a non-coherent setup with
ML decoding (-----), for PAT under ML decoding (- --) and for
PAT under pragmatic PAT decoding (----+- ). The performance of the
pragmatic PAT scheme of Section II-E adopting both quasi-cyclic
and polar codes, (——) and (——), respectively, are provided as a
reference.



code using the Gaussian approximation of density evolution
with a design SNR of F;/Ny = 3 dB. As for the quasi-
cyclic code, puncturing is applied according to the number of
channel uses available after pilot insertion. For the polar code,
quasi-uniform puncturing [30] is adopted, while the quasi-
cyclic code is punctured randomly. For both codes, a random
interleaver is applied to the codeword bits after encoding. The
receiver uses an OSD to decode the quasi-cyclic code. The
OSD order is set to 3, which provides a reasonable trade-
off between performance and decoding complexity. With this
choice, the OSD builds a list £ of 5489 candidate codewords.
For the polar code, the list size of the SCL decoder is set to
1024.

In Fig. 1, we compare the performance of the proposed
modified list decoders to the performance of the pragmatic
decoders described in Section II-E for different numbers of
pilot symbols (n, € {1,2,3}) per coherence block. For the
tested cases, the gains achieved by the proposed technique
is no less than 1 dB compared to pragmatic PAT decoding
at a BLER ~ 1073, Remarkably, the polar code under
SCL decoding outperforms the quasi-cyclic code under OSD
despite the much smaller list size, attaining a performance
close to the RCUs achievability bound for PAT under ML
decoding.

VI. CONCLUSIONS

In this paper, the performance of short block codes over the
Rayleigh block fading channel have been analyzed under list
decoding. The analysis deals with the case where no channel
state information is available at the transmitter/receiver, and
where no information on the fading distribution is available
at the decoder. Focusing on pilot-aided transmission, it is
shown how (modified) list decoders can provide an efficient
solution to the reduction of the pilot overhead. The approach
has been applied to polar codes under successive cancellation
list decoding and quasi-cyclic codes with an ordered statistics
decoder, and it was shown that the former operate within
~ (0.25 dB from the best known random coding achievability
bounds at a block error rate &~ 10~4, with a remarkably smaller
list size than the ordered statistics decoder.

REFERENCES

[11 G. Durisi, T. Koch, and P. Popovski, “Towards massive, ultra-reliable,
and low-latency wireless communications with short packets,” Proc.
IEEE, vol. 104, no. 9, pp. 1711-1726, Sep. 2016.

[2] S. Dolinar, D. Divsalar, and F. Pollara, “Code performance as a function
of block size,” Jet Propulsion Laboratory, Pasadena, CA, USA, TMO
progress report 42-133, May 1998.

[3] A. Valembois and M. Fossorier, “Sphere-Packing Bounds Revisited for
Moderate Block Lengths,” IEEE Trans. Inf. Theory, vol. 50, no. 12, pp.
2998 — 3014, Dec. 2004.

[4] I Sason and S. Shamai, Performance Analysis of Linear Codes under
Maximum-Likelihood Decoding: A Tutorial. ~Now Publisher Inc., Jul.
2006, vol. 3, no. 1-2.

[5] Y. Polyanskiy, H. V. Poor, and S. Verdd, “Channel coding rate in the
finite blocklength regime,” IEEE Trans. Inf. Theory, vol. 56, no. 5, pp.
2307-2359, May 2010.

[6] C. Poulliat, M. Fossorier, and D. Declercq, “Design of regular (2, d.)-
LDPC codes over GF(q) using their binary images,” IEEE Trans.
Commun., vol. 56, no. 10, pp. 1626-1635, 2008.

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

(16]

[17]

[18]

[19]

[20]

(21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

G. Liva, E. Paolini, B. Matuz, S. Scalise, and M. Chiani, “Short turbo
codes over high order fields,” IEEE Trans. Commun., vol. 61, no. 6, pp.
2201-2211, Jun. 2013.

L. Dolecek, D. Divsalar, Y. Sun, and B. Amiri, “Non-binary protograph-
based LDPC codes: Enumerators, analysis, and designs,” IEEE Trans.
Inf. Theory, vol. 60, no. 7, pp. 3913-3941, Jul. 2014.

M. P. C. Fossorier and S. Lin, “Soft-decision decoding of linear block
codes based on ordered statistics,” Trans. on Inf. Theory, vol. 41, no. 5,
pp. 1379-1396, Sep. 1995.

I. Tal and A. Vardy, “List decoding of polar codes,” IEEE Trans. Inf.
Theory, vol. 61, no. 5, pp. 2213-2226, May 2015.

M. C. Coskun, G. Durisi, T. Jerkovits, G. Liva, W. Ryan, B. Stein, and
F. Steiner, “Efficient Error-Correcting Codes in the Short Blocklength
Regime,” Elsevier Phys. Commun., vol. 34, pp. 66-79, Jun. 2019.

L. Tong, B. M. Sadler, and M. Dong, “Pilot-assisted wireless trans-
missions: General model, design criteria, and signal processing,” IEEE
Signal Process. Mag., vol. 21, no. 6, pp. 12-25, Nov. 2004.

G. Liva, G. Durisi, M. Chiani, S. S. Ullah, and S. C. Liew, “Short codes
with mismatched channel state information: A case study,” in [EEE
Int. Workshop on Signal Process. Adv. in Wireless Commun. (SPAWC),
Sapporo, Japan, Jul. 2017, pp. 1-5.

W. Yang, G. Durisi, T. Koch, and Y. Polyanskiy, “Quasi-static multiple-
antenna fading channels at finite blocklength,” IEEE Trans. Commun.,
vol. 60, no. 7, pp. 4232-4265, Jul. 2014.

G. Durisi, T. Koch, J. Ostman, Y. Polyanskiy, and W. Yang, “Short-
packet communications over multiple-antenna Rayleigh-fading chan-
nels,” IEEE Trans. Commun., vol. 64, no. 2, pp. 618-629, Feb. 2016.
J. Ostman, G. Durisi, E. G. Strom, M. C. Coskun, and G. Liva,
“Short packets over block-memoryless fading channels: Pilot-assisted
or noncoherent transmission?” IEEE Trans. Commun., vol. 67, no. 2,
pp. 1521-1536, Feb. 2019.

M. C. Coskun, G. Liva, J. Ostman, and G. Durisi, “Low-complexity
joint channel estimation and list decoding of short codes,” in Proc. ITG
Int. Conf. Syst., Commun. and Coding, Feb 2019.

B. Dorsch, “A decoding algorithm for binary block codes and j-ary
output channels (corresp.),” IEEE Trans. Inf. Theory, vol. 20, no. 3, pp.
391-394, May 1974.

J. Ostman, G. Durisi, E. G. Strom, J. Li, H. Sahlin, and G. Liva, “Low-
latency ultra-reliable 5G communications: Finite block-length bounds
and coding schemes,” in Int. ITG Conf. Sys. Commun. Coding (SCC),
Hamburg, Germany, Feb. 2017.

D. Warrier and U. Madhow, “Spectrally efficient noncoherent commu-
nication,” IEEE Trans. Inf. Theory, vol. 48, no. 3, pp. 651-668, Mar.
2002.

N. Stolte, “Rekursive Codes mit der Plotkin-Konstruktion und ihre
Decodierung,” Ph.D. dissertation, TU Darmstadt, 2002.

E. Arikan, “Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,” IEEE
Trans. Inf. Theory, vol. 55, no. 7, pp. 3051-3073, Jul. 2009.

H. Wymeersch, Iferative Receiver Design. ~ Cambridge: Cambridge
University Press, 2007.

C. Herzet, N. Noels, V. Lotticii H. Wymeersch, M. Luise,
M. Moeneclaey, and L. Vandendorpe, “Code-aided turbo synchroniza-
tion,” Proc. of the IEEE, vol. 95, no. 6, pp. 1255-1271, 2007.

M. Khalighi and J. J. Boutros, “Semi-blind channel estimation using the
EM algorithm in iterative MIMO APP detectors,” IEEE Trans. Wireless
Commun., vol. 5, no. 11, pp. 3165-3173, Nov. 2006.

G. Taricco and E. Biglieri, “Spacetime decoding with imperfect channel
estimation,” IEEE Trans. Wireless Commun., vol. 4, no. 4, pp. 1874—
1888, June 2005.

A. Martinez and A. Guillén i Fabregas, “Saddlepoint approximation of
random—coding bounds,” in Proc. Inf. Theory Applicat. Workshop (ITA),
San Diego, CA, U.S.A., Feb. 2011.

A. Lancho, J. Ostman, G. Durisi, T. Koch, and G. Vazquez-Vilar,
“Saddlepoint approximations for short-packet wireless communications,”
2019. [Online]. Available: https://arxiv.org/abs/1612.01276

R. Johannesson and K. S. Zigangirov, Fundamentals of Convolutional
Coding, 2nd ed. Piscataway, NJ, USA: Wiley-IEEE Press, 2015.

V. Bioglio, F. Gabry, and I. Land, “Low-complexity puncturing and
shortening of polar codes,” in 2017 IEEE Wireless Communications and
Networking Conference Workshops (WCNCW), Mar. 2017, pp. 1-6.



