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An analytical framework for studying transcriptional regulation 
CHRISTOPH SEBASTIAN BÖRLIN 
Department of Biology and Biological Engineering 
Chalmers University of Technology 
 

ABSTRACT 
The state and behavior of any living cell is controlled by a complex interplay of different 
regulatory processes, with the regulation of transcription playing a major role. When a 
cell adapts to a new environment it often does that by modulating gene transcript 
levels, mainly through changes in transcription factor binding events. Therefore, 
understanding the transcriptional regulation is vital for many biological research fields 
ranging from understanding cancer metabolism to metabolic engineering.  

In this thesis, I present and apply an analytical framework for studying transcriptional 
regulation in a well-characterized eukaryotic model organism, the yeast S. cerevisiae. 
The framework is a combination of advanced sequencing methods like Chromatin 
Immunoprecipitation followed by DNA sequencing (ChIP-seq / ChIP-exo) and Cap 
Analysis of Gene Expression (CAGE) with bioinformatic approaches. 

The relative binding location of transcription factors in relation to the transcription start 
site is important for interpretation, therefore the transcription start sites of all genes 
active in multiple controlled growth environments were determined using CAGE. To 
use and analyze the gathered data in a reliable and efficient way a high-quality 
bioinformatics pipeline was established. 

After establishing the required analytical framework, I employed it in various projects, 
all aimed to gain a better understanding of yeast transcriptional regulation. In a detailed 
study of a single transcription factor, I investigated Leu3, the main regulator of leucine 
biosynthesis. Here, I was able to show that its binding behavior is affected by the 
availability of leucine in the media, an adaptive behavior that has not been reported 
before. 

Metabolic engineering will be increasingly important to support the needs of our society 
and in order to help with this, I developed a tool for fine tuning conditional gene 
expression levels using hybrid promoters. This tool is based on a machine learning 
approach and can be used to improve productivity in large scale fermentations. 

In conclusion, this thesis lays the foundation for future large-scale studies of 
transcriptional regulation in S. cerevisiae and can also serve as a blueprint on how to 
study it in different organisms. 

Keywords: S. cerevisiae, transcription factor, transcriptional regulation, ChIP-exo  
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1 INTRODUCTION 
This thesis is about creating a framework to efficiently study transcriptional regulation. 
Before diving into how I did this and why it is an interesting field of study with many 
applications, we must start at the beginning and understand what transcription is. 

1.1 WHAT IS TRANSCRIPTION? 

In order to explain what transcription is, we have to start at a molecular understanding 
of what life is and how cellular organism behave and interact with their environments. 
As this thesis will focus on a yeast species, Saccharomyces cerevisiae (also known as 
baker’s yeast), let us take a look at the (simplified) life of a yeast cell used to brew 
beer. During the brewing process the cell consumes sugar molecules, mainly in the 
form of glucose from the barley, and converts them into alcohol molecules, more 
specifically into ethanol. So how is that done? First the glucose has to be imported into 
the cell by transport proteins (long-chains of amino-acids strung together and folded 
into three dimensional structures), then the glucose will be converted through many 
intermediate steps performed by enzymes (a specific class of proteins) into ethanol 
and finally it will be transported out of the cell. 

One can compare this to a miniature factory. First the raw goods have to be delivered 
to the factory where they are processed by an assembly line of machines (the 
enzymes) towards the final product that will be shipped to the customer. Besides the 
enzymes and transport proteins there are many more proteins that play a role in the 
cell, many involved in regulating the processed and responding to the outside 
environments. One could think of them as a mix of support utilities like conveyer belts 
and power lines in the factory, as well as managers talking to customers and suppliers. 
So now that we have established that proteins are the machines inside the cell that get 
the work done, the question is how are they produced? 

Proteins are produced by a process called translation, where a ribosome (a complex 
of multiple proteins) reads a messenger RNA (mRNA) molecule and translates the 
instructions encoded in the mRNA into a chain of amino acids; the protein. One can 
look at the mRNA as an order for a new machine for our factory that conveniently 
already includes all necessary instructions in how to build that machine. But where 
does the mRNA come from and how can the assembly instructions be encoded in 
there? 

Now we are finally getting to the process called transcription. The assembly instruction 
for every protein is encoded in its gene, which is part of the genome (consisting of 
DNA) of the organism. In the process called transcription, a selected part of the DNA 
is transcribed into mRNA. One can interpret the whole DNA as a product catalog of a 
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machine manufacturer where the customer can pick the page of a machine he or she 
would like to order. As the mRNA is basically just a one-page copy of that catalog, the 
process is called transcription (from the verb “to transcribe” meaning to make a written 
copy of something). Later, the instructions encoded in the mRNA are then translated 
to obtain the needed amino acid sequence to build that specific protein, hence that 
step is called translation. 

This three-step process from DNA being transcribed to mRNA and then being 
translated to proteins is also known as the central dogma of molecular biology and a 
graphical representation is shown in Figure 1, including a comparison to the product 
ordering analogy I used here to explain it. 

  

 

Figure 1: Graphical summary of the transcription and translation process to 
make proteins starting from DNA. 
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1.2 HOW IS TRANSCRIPTION REGULATED? 

To better understand the whole process of transcription and how it is regulated we first 
have to dive deeper into the exact molecular mechanism at play. The production of 
mRNA or any other kind of RNA is done by large enzymes called RNA polymerases, 
which consist of many subunits (Hahn 2004). In yeast and other eukaryotes all protein-
coding genes are transcribed by the RNA polymerase II (Alberts et al. 2015).  

Transcription is initiated in the core promoter, a stretch of 60-70 base-pairs defined as 
the minimal stretch of DNA necessary to start transcription from, at least in vitro 
(Danino et al. 2015; Haberle and Lenhard 2016). In the process, the RNA polymerase 
II is recruited to the core promoter by a group of general transcription factors. Together 
they form the transcription preinitiation complex (PIC) which can then start the 
transcription at the transcription start site (TSS) (Smale and Kadonaga 2003; Sandelin 
et al. 2007; Hahn and Young 2011).  

Unfortunately, this process is not as straightforward in vivo as it is in vitro. In vivo the 
basal level of transcription from a core promoter is basically zero (Struhl 1999). This 
means that for transcription to take place, the polymerase recruitment and transcription 
initiation process needs to be activated, which can be done by various mechanisms. 
This is often done by members of a class of proteins called transcription factors (TFs) 
binding to specific activating sequences upstream of the TSS, called upstream 
activation sequences (UAS) (Struhl 1999). 

Before going into more details about what TFs exactly are and how they regulate 
transcription, we first have to examine why the ground state of a yeast core promoter 
is inactive in vivo while it is active in vitro. 

DNA is not floating around unstructured in the eukaryotic cell, but highly condensed in 
a structure called chromatin. Chromatin is made out of nucleosomes, which is a stretch 
of DNA tightly wrapped around a protein complex consisting of histones (Alberts et al. 
2015). Because the DNA is wrapped around the histones it is not openly accessible for 
the PIC to assemble there and initiate transcription. First, the chromatin has to be 
opened, which is often done through proteins called chromatin remodelers, recruited 
by the TFs, or by direct binding of pioneer TFs that can open the chromatin structure 
on their own (Zaret and Carroll 2011). The strong involvement of TFs in chromatin 
remodeling and opening explains why TFs are often necessary for transcription to 
occur. TFs are however not the only mechanism by which the chromatin can be 
remodeled and thereby made accessible. Longer DNA stretches with high ratios of 
adenine and thymine bases can for example also improve chromatin accessibility by 
decreasing nucleosome stability (Iyer and Struhl 1995).  



4 
 

After opening the chromatin and thereby making the DNA more accessible, the general 
transcription factors can be recruited which in turn recruit the RNA polymerase II, 
thereby assembling the PIC. With a functionally assembled PIC, transcription initiation 
can finally occur and an overview of the three main stages of transcription initiation is 
shown in Figure 2. 

Now we can go back to the topic of transcription factors and understand what exactly 
they are and what roles they play in more detail. 

  

 

Figure 2: Overview of necessary steps to initiate transcription. UAS = upstream 
activation sequence, TSS = transcription start site, GTFs = general transcription 
factors. 
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1.3 WHAT ARE TRANSCRIPTION FACTORS? 

The most common definition says that a TF is a protein that has two distinct 
characteristics, it is (i) able to bind DNA in a sequence-specific matter and (ii) able to 
influence the transcription of a gene (either inhibiting or enhancing) (Hughes and de 
Boer 2013). This definition is however not without issues as there are several edge 
cases to consider. For example, in yeast there is the case of the transcriptional 
activator Met4, which is sometimes considered a TF (Hahn and Young 2011), despite 
the fact that it does not have its own DNA binding domain and relies on Met31 / Met32 
or Cbf1 for binding (Carrillo et al. 2012). Therefore, there are other definitions out there, 
leading to the situation that different publications will mention different total number of 
yeast TFs (mainly in the range 141 to 251 TFs) (Hughes and de Boer 2013). 

In this thesis, I will follow the most common definition as also described by Hughes and 
de Boer in their review, where they state that there are around 209 TFs in S. cerevisiae 
(Hughes and de Boer 2013). 

TFs can be classified into different structural groups based on their DNA binding 
domain (DBD), and an overview of the groups in S. cerevisiae and their relative sizes 
is shown in Figure 3. This is based on data about the DBD of 202 TFs obtained from 
the YeTFaSco database (De Boer and Hughes 2012). The largest group of TFs is the 
zinc binding type, which has a DBD that is stabilized by one or more zinc ions (Hahn 
and Young 2011). Adr1 and Leu3 are both member of this large group, which can be 
further subdivided into zinc fingers (also called C2H2 zinc fingers), zinc clusters (also 
called Zn2Cys6 clusters) and GATA fingers (also called C4 fingers). Zinc fingers are 
common among most eukaryotes while zinc clusters are unique to fungi (Hahn and 
Young 2011; Hughes and de Boer 2013). The second largest group are the zipper type 
DBDs, which are characterized having a basic region and a dimerization motif. 
Examples of this class are Gcn4, Ino2 and Ino4. The zipper type DBDs can be 
subdivided into basic zippers (bZIP) and basic helix-loop-helix (bHLH) types (Hahn and 
Young 2011). 

The third largest group is the helix-turn-helix (HTH) type that is defined by two alpha 
helices in the protein structure connected by a short loop region. Members of this group 
are for example Mcm1 and Hsf1. The main subclass of the HTH group are the 
Homeodomain TFs, while Forkhead TFs and MADS box TFs are associated with this 
class due to their high similarity to the Homeodomain DBD (Hahn and Young 2011). 
Besides these three large groups there are a number of TFs that have their quite 
unique DBDs and for some TFs the exact DBD is still unknown or not classified. 



6 
 

Besides their differences in structure and how they bind to DNA, TFs also show a wide 
range of behaviors when it comes to conditional responses. In their 2004 paper, 
Harbison et al. classified TFs into four groups, as shown in Figure 4. There are TFs 
that are (i) condition invariant, meaning that they will always bind to the same target 
genes independent of the environmental condition. One example of this behavior is the 
TF Put3 (Axelrod, Majors and Brandriss 1991), a TF involved in regulating proline 
utilization processes. Here I would like to note that Leu3, the example given as a 
condition invariant TF by Harbison et al., is responding to changes in the environment, 
as I will later show in this thesis. Another group of TFs is (ii) condition responsive, 
meaning that they are inactive until a trigger activates them. This is the case for many 
stress responsive TFs, like Msn2 (Schmitt and Mcentee 1996; Estruch 2000). Next, 
are TFs that are (iii) condition expanded, which means that they have a subset of their 
possible targets that they always or most of the time bind to and then - once 
activated - they expand their target range. This behavior can for example be seen in 
Gcn4, the main regulator of amino acid metabolism, which under amino acid starvation 
binds to many more targets than in the presence of sufficient amino acid levels 
(Albrecht et al. 1998). The last group are (iv) condition altered TFs, which bind to 
different target genes in response to the environment. The targets do not have to be 
exclusive for that condition, there can be a conserved core-response of that TF. An 
example would be Ste12, which can either promote a mating phenotype or filamentous 
growth, partially depending on its binding partners (Zeitlinger et al. 2003). 

 

Figure 3: Distribution of TF types and subtypes. 202 non-dubious TFs and their 
DBD extracted from YeTFaSCo are shown, subtypes with less than 5 members are 
not shown. Number of TFs in each main group are: Zinc binding type 105; Other types 
46; Zipper type 23; HTH type 19; Unknown 9. 
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As shown above, TFs can exhibit a large range of gene targeting behavior and how 
the targets change depends on the cellular environment. But how are TFs regulated 
themselves so that they can respond to changes in the environment? 

There are many different molecular mechanisms by which TFs are regulated and the 
major ones are shown in Figure 5. The probably most intuitive regulation is through 
changing the protein level of the TF, which can be achieved by either increasing the 
transcription rate or the translation efficiency. Even though this seems like a very 
straight forward mechanism, how this is exactly done can nevertheless be quite 
convoluted. An excellent example of this is the TF Gcn4, whose translational efficiency 
depends on the overall availability of amino acids. This is achieved through the 
presence of four short open reading frames upstream of the Gcn4 reading frame that 
are transcribed together (Mueller and Hinnebusch 1986). If the amino acid levels are 
not sufficient the translation efficiency is increased by enabling more ribosomes to 
either read through these short open reading frames or reinitiate at the Gcn4 coding 
start site. This results in an increase in Gcn4 levels and thereby enabling the TF to 
induce the expression of amino-acid synthesis genes (Hinnebusch 1988; Hinnebusch 
and Natarajan 2002). 

 

Figure 4: Overview of different types of conditional response from transcription 
factors. For each type of conditional response, the binding behavior is shown for two 
conditions on a set of example genes. Condition 1 is shown as binding above the gene 
boxes, condition 2 is shown as binding below the gene boxes. 
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Gcn4 is also interesting because it does not only respond by an increase in 
translational efficiency but also by an subsequent increase in transcription rate to 
further increase its protein levels (Albrecht et al. 1998). 

Another way to regulate TFs is through protein-protein interactions, for example in the 
case of the TF Gal4 that is inhibited when it is bound by Gal80 (Egriboz et al. 2013), 
or by phosphorylation of the TF, for example Adr1, which is inactive when 
phosphorylated (Cherry et al. 1989). Binding of the TF to metabolites is an alternative 
way to control TF activity levels; for example Leu3, the main regulator of leucine 
metabolism is activated once it is bound to alpha-isopropylmalate, an intermediate in 
the leucine synthesis pathway (Kohlhaw 2003). The activity of TFs can also be 
regulated by influencing their concentration in the nucleus, either by targeted import or 
export mechanisms. Examples for this are the TFs Rtg1 and Rtg3 that are imported 
into the nucleus when the cells are grown in media containing urea or ammonia 
(Komeili et al. 2000). 

I would also like to note that these different mechanisms are not exclusive, and many 
TFs are regulated by a combination of them. This is especially the case for TFs that 
are regulated by nuclear exclusion and localization, as this is often achieved through 
phosphorylation events, that either target them for transport into or out of the nucleus, 
for example the aforementioned Rtg3 is regulated in such a way (Komeili et al. 2000). 
Another example is Pho4 which is exported out of the nucleus after phosphorylation 
(Komeili and O’Shea 1999). 

  



9 
 

  

 

Figure 5: Overview of common regulatory mechanisms influencing the activity 
of transcription factors. 
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1.4 WHY STUDY TRANSCRIPTIONAL REGULATION? 

Now that we have a good understanding of what transcription is and how it is regulated, 
we should take a step back and talk about why studying this topic is important and 
interesting, before moving on to how to study it. 

First of all, I would like to note how limited our current knowledge of the molecular 
processes and regulatory steps inside the cells still is. Therefore, gaining a better 
understanding of any of those processes is a valid research goal on its own, because 
sometimes we do not even know what we do not know. But besides a general need 
for basic research what are more tangible fields where we could apply the gained 
knowledge about transcriptional regulation? 

When it comes to using improved knowledge about molecular biology, one important 
area is always medicine, often related to cancer research and treatment. It has been 
shown that TFs and therefore transcriptional regulatory processes play an important 
role in cancer development and progression (Nebert 2002). But being linked to cancer 
development is not unique to TFs and it would actually be quite difficult to find an 
important cellular mechanism or process that would not cause cancer when it goes 
horribly wrong. 

So why am I interested in studying TFs? My motivation comes from a mix of fascination 
for basic research combined with the potential application of this knowledge to the area 
of metabolic engineering. Before I start and describe how knowledge about TFs can 
be used in metabolic engineering, let me first explain what that is. 

As explained before in the introduction, cells take in nutrients from the environment 
and convert these into products, for example into ethanol in the case of beer and wine 
fermentation processes. In metabolic engineering one genetically modifies the 
organism with the purpose to increase the rate or efficiency of producing a desired 
chemical, for example to increase the amount of ethanol produced in a microbial 
bioethanol production plant. Metabolic engineering can also enable the organism to 
synthesize products it was not able to produce before, for example the production of 
terpenoids by yeast for the use in fragrances or pharmaceuticals (Zhang, Nielsen and 
Liu 2017). 

Metabolic engineering is an important tool to achieve the transformation towards a bio-
based economy, where many chemicals will be produced by sustainable fermentation 
processes, thereby decreasing our dependency on fossil derived resources. Therefore, 
metabolic engineering will be increasingly important to support the needs of our society 
in the future. 
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So how can TFs and knowledge about their roles be used in metabolic engineering? 
As TFs are versatile and play an important role in many cellular processes there are 
plenty of ways to use them in metabolic engineering. 

One could use them to upregulate their target pathways to achieve a desired 
phenotype. This has been shown by overexpressing the stress-responsive TF Msn2, 
which led to an increase in furfural resistance and improved ethanol production rates 
(Sasano et al. 2012). The problem with this approach is that we unfortunately lack 
sufficient knowledge to identify the best TF or group of TFs that we should overexpress 
to achieve our goal.  

But there are still ways how one can use the power of TFs in metabolic engineering 
already today. One of these options is through the creation of a library of artificial TFs, 
where a known activator domain is fused with different artificial DNA binding domains, 
and then select those artificial TFs that show the desired improvement. The 
applicability of this idea has already been shown for improving the phenotypes of yeast 
cells, for example to achieve an increased thermotolerance (Park et al. 2003). The 
drawback, however, is that one has to create an extensive library and invest resources 
to screen the library, which takes time and effort. This bottleneck can however be 
alleviated by more knowledge about TFs as stated before. 

Modulation of TFs as metabolic engineering strategy has not only been successfully 
demonstrated in yeast but also in other organisms, for example in bacteria and plant 
cells (Broun 2004; Grove 2017), making it a promising research area for many 
applications. 

Besides working with native or fully artificial TFs one can also take a route in-between 
and modify native TFs for increasing productivity, for example using a constitutively 
active form of Leu3 for increased isobutanol production (Park, Kim and Hahn 2014). 
TFs can also be used as part of a biosensor where a TF induces the expression of 
specific target genes based on the input from the sensor. Increased productivity was 
achieved by linking the intra-cellular levels of malonyl-CoA to the synthesis of the 
product (David, Nielsen and Siewers 2016). 

Apart from these few examples, there are many more possibilities to use TFs in the 
field of metabolic engineering. Therefore, improved knowledge about TFs would allow 
us to speed up the metabolic engineering efforts and thereby help with the transition 
towards a bio-based economy. 
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1.5 HOW CAN WE STUDY IT? 

Now that we have established that the study of transcriptional regulation and 
transcription factors is interesting and important, how can we do this? There are two 
common ways to study TFs, either by changing the expression level of the TF and 
measure the effects or by identifying the genomic location where the TF is binding. 

An example for modulating the TF abundance in order to infer their function is the 
large-scale knock-out study by Hu et al., showing that one can use such a dataset to 
reconstruct a transcriptional regulatory network (Hu, Killion and Iyer 2007). The 
computationally identified gene targets for their TF showed a good enrichment for 
known motifs. In addition, using their computational model they could assign TFs to be 
either activating or repressing. Another example of this approach is the study by 
Hackett et al., where they used an inducible promoter to selectively overexpress a 
single TF and measure the short-term changes in genome-wide gene expression 
levels using microarray measurements at different time points 5 to 90 minutes after 
induction (Hackett et al. 2020). 

The issues with these approaches are that other TFs can buffer the effect of a changed 
TF abundance, and that there is no proof that the observed changes are directly 
caused by the changed TF and not by the adaption of the cell to the new state. Both 
these issues have been reduced in the approach used by Hackett et al., by measuring 
the short-term changes in expression directly after the increased expression of the TF. 
Regardless, the overexpression has its own challenges, because many TFs are 
activated by a certain metabolic state and just producing more TF molecules that will 
be inactive in the studied condition will not reveal their metabolic function. 

The other common approach to identify regulatory targets of TFs are based on 
identifying the binding sites of a specific TF. Most approaches to achieve this are based 
on a method called Chromatin Immunoprecipitation (ChIP) (Carey, Peterson and 
Smale 2009). The principle behind ChIP is that one first fixates all DNA bound proteins 
for example by using formaldehyde and then employ an antibody against a specific TF 
of interest (or against a tag attached to that TF) to selectively enrich for this TF and 
simultaneously filter out all other TFs that were also bound to the DNA. How the 
TF-bound DNA is then identified has changed dramatically over the years. The first 
large-scale method used DNA microarrays, resulting in the ChIP-chip method (Ren et 
al. 2000). After high-throughput sequencing technologies were becoming more 
accessible, an improved protocol for Illumina sequencers was developed, called 
ChIP-seq (Johnson et al. 2007). The next and currently last step of protocol 
development introduced a lambda exonuclease treatment, resulting in ChIP-exo (Rhee 
and Pugh 2011; Rossi, Lai and Pugh 2018). The exonuclease treatment will digest 
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DNA that is not directly bound by any TF, thereby improving the resolution down to the 
single nucleotide level. The exonuclease treatment also improved the signal-to-noise 
ratio by degrading unbound DNA strands. The individual steps involved in the ChIP-
exo protocol are covered in Section 2.2. 

To date many large scale studies of S. cerevisiae TFs have been performed using 
different ChIP methods, mainly by the now outdated ChIP-chip, like the study by Lee 
and the extension by Harbison (Lee et al. 2002; Harbison et al. 2004), which were 
performed for a total of 158 TFs during growth in rich culture medium and occasionally 
other conditions, or a study of 30 TFs involved in DNA damage response (Workman et 
al. 2006). The main conclusion gained from these large-scale studies is that the binding 
behavior of many TFs is highly dependent on the exact growth condition. Therefore, 
one can unfortunately not run a single experiment using rich media and get all insights 
into the TF. However, if one compares two different conditions, one can gain 
meaningful insights into specific regulatory programs, for example into the response to 
DNA damage (Workman et al. 2006). These studies also showed that the number of 
gene targets per TF varies significantly, with some TFs being quite specialized with 
very few targets, while other TFs are acting more as general regulators of transcription 
have several hundred targets. 

Besides ChIP based methods to identify TF binding sites there are methods that 
identify all binding sites of all TFs simultaneously, like ATAC-seq (Li et al. 2019) or 
DNase-seq (He et al. 2014). The main different is that these methods identify TF 
binding peaks but cannot identify which specific TF is binding. So, to identify the 
binding sites of a specific TF one still needs a ChIP based method. 
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1.6 AIMS OF THIS THESIS 

The currently best way to study TFs and reliably identify their targets in my opinion is 
by using large-scale ChIP-exo experiments involving many TFs in different 
environmental conditions. Therefore, the aim of this thesis was to establish a robust 
and efficient framework to streamline the process and serve as a base for future ChIP-
exo studies. 

In addition, I wanted to use that framework to study TF binding events using machine 
learning approaches to see how they can be used in this context and if it would be 
possible to create tools for targeted metabolic engineering approach. Given the vast 
amount of TF binding data already collected and the simplified processes of gathering 
more data, because of my framework, I believe that machine learning will become more 
and more important in the study of transcriptional regulation. 

Besides large-scale studies, I also wanted to show how this framework can be used to 
gather detailed insights about single TFs with selected small-scale experiments. This 
shows how to efficiently augment the knowledge gained through large scale 
experiments, possibly using machine learning approaches, by detailed studies to 
further improve the knowledge base we have. 
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2 EXPERIMENTAL SETUP AND METHODS 
In this section I will cover the employed experimental setup for the majority of 
experiments in this thesis as well as explaining the main methods I used. 

2.1 CHEMOSTATS AND GROWTH CONDITIONS 

All experiments performed in this thesis were using the S. cerevisiae strain 
CEN.PK113-7D (van Dijken et al. 2000) and the majority of experiments were done 
using a continuous cultivation method called chemostats. A schematic overview of 
such a reaction vessel setup is shown in Figure 6 A, the chemostat system used here 
was built by D2Biotech (D2biotech.com). Fresh medium is constantly pumped into the 
vessel at a fixed rate while spent medium containing yeast cells is drained to achieve 
a constant volume. In addition, gas is pumped into the vessel for aeration, and the 
medium is continuously stirred. Together, this system forces the cells to grow at a 
growth rate corresponding to the pump rate set for the fresh medium inflow (this is also 
called the dilution rate). The growth rate equals the dilution rate because of the limited 
supply of fresh nutrients. If there are too many cells in the vessel, they can only grow 
slower than the dilution rate due to the competition for nutrients and are therefore 
slowly washed out (the number of cells decreases). If there are too few cells in the 
vessel, they have an overabundance of nutrients and can grow faster than the dilution 
rate until the cells reach a steady state of cell count and growth rate. Therefore, this 
system provides a robust base for biological experiments as the cells reside in a 
reproducible steady state. In addition, the fixed growth rate enables the straightforward 
comparison of cells grown at different growth conditions without the influence of 
changes in the growth rate. This is important as various media compositions were used 
in this thesis, forcing the cells to employ different metabolic pathways for growth and 
survival. If the cells had been grown in shake flasks, where they had reached their 
condition-specific maximum growth rate, many of the observed differences between 
the conditions would have originated from the different growth rate and not the different 
metabolic program employed. The four main media compositions used in this thesis 
were: (i) fermentative glucose metabolism using glucose limitation in an anaerobic 
environment; (ii) gluconeogenic respiration using ethanol limitation; (iii) respiratory 
glucose metabolism using glucose limitation; and (iv) aerobic fermentation using 
nitrogen limitation. An overview of the conditions is shown in Figure 6 B. 
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These conditions were chosen to cover a wide range of metabolic states and programs 
of the cells. In addition, these conditions represent industrially relevant conditions and 
are therefore interesting to explore. In industrial fermentation processes, such as 
second generation bioethanol production, the expenses for the carbon source can 
make up 45–58% of the overall product cost (Hamelinck and Faaij 2006). Therefore, 
industrial fermentations are often nutrient-limited conditions to minimize wasted 
resources, similar to the glucose-limited condition studied here. Many industrial 
cultivations are also performed in anaerobic fermentations, as it is surprisingly 
expensive to aerate the sizeable tanks that can typically contain up to 200,000 liter 
(Humbird, Davis and McMillan 2017). A better understanding of anaerobic conditions 
therefore also has industrial relevance. 

  

 

Figure 6: Overview of chemostat and cultivation conditions. A: Overview of a 
chemostat reaction vessel. B: Graphical representation of the four used media 
compositions. 
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2.2 CHIP-EXO METHODOLOGY 

Inside the cells the TF of interest as well as other TFs and DNA binding proteins are 
constantly binding to and dissociating from the DNA as well as moving along the DNA 
during all stages of the cells life cycle (Marklund et al. 2020). Therefore, the first step 
of measuring the TF binding is to create a snapshot of the currently bound proteins. 
This is achieved by treating the cells with formaldehyde, which covalently cross-links 
all DNA–protein complexes, stopping the constant dissociation (Solomon and 
Varshavsky 1985). Due to the small molecular size of formaldehyde it also only links 
macromolecules together that are maximum 2 Å apart, thereby avoiding to cross-link 
every protein present in the nucleus with the DNA (Hoffman et al. 2015). Next, the DNA 
is sheared using sonication, to achieve an average length of 200 to 500 bp. Then, 
antibodies against the TF or its attached tag are used to enrich the mixture of sheared 
DNA-protein complexes for the TF of interest. This enrichment process using 
antibodies is why the method is called chromatin immunoprecipitation (Carey, 
Peterson and Smale 2009). Up until this point the process is exactly the same for the 
ChIP-chip, ChIP-seq and ChIP-exo method. 

For ChIP-chip and ChIP-seq one would now reverse the DNA-protein crosslinking, 
degrade all proteins using proteinase K and then identify the bound DNA either by DNA 
microarrays (ChIP-chip) or by sequencing (ChIP-seq) (Ren et al. 2000; Johnson et al. 
2007). The obtained resolution of these methods depends then on the exact 
specification of the DNA microarray and on the size of the DNA fragments after 
sonication, but in general only a resolution of up to 100 bp can be achieved (Rhee and 
Pugh 2011). 

To increase the resolution to the single nucleotide level, a treatment step with the 
lambda exonuclease was added, giving ChIP-exo its name (Rhee and Pugh 2011, 
2012). The lambda exonuclease will selectively degrade DNA from the 5′ to the 3′ end 
in a processive manner. The DNA that is covered by the TF is protected from the 
exonuclease and therefore the 5′ end of both the DNA strands will end at the border of 
the TF. This means that the achievable resolution of the footprint of the TF is defined 
by its actual binding size and not by the size of the DNA fragments after sonication. 
Next, the cross-linking is reversed, all proteins are degraded, and the DNA fragments 
are prepared for sequencing by adding the necessary Illumina sequencing linkers. 

After high-throughput sequencing, the obtained reads are mapped to the genome of 
the organism and the TF binding peaks can be detected and analyzed with specialized 
software, for example with GEM to call the TF binding peaks (Guo, Mahony and Gifford 
2012). The process of steps of the ChIP-exo method are summarized in Figure 7. 
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The original ChIP-exo protocol published in 2012 involved thirteen enzymatic steps, 
making the process long and cumbersome. To address this issue and to increase the 
adoption of ChIP-exo in the research community, in 2018 an improved protocol called 
ChIP-exo 5.0 with only five enzymatic step was published (Rossi, Lai and Pugh 2018).  

 

Figure 7: Steps of the ChIP-exo method. After sampling the TFs are crosslinked to 
the DNA using formaldehyde and the DNA is sheared into 200 to 500 bp long stretches 
using sonication. Next magnetic antibodies are used for enrichment of the TF of 
interest and 5′ ends of the unbound DNA are removed using the lambda exonuclease. 
Finally, the cross-linking is reverse, the proteins are degraded, and the sequencing 
linkers are added to finish the library preparation. 
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2.3 MACHINE LEARNING 

As two of the papers included in this thesis rely heavily on machine learning as part of 
the specialized software to analyze and repurpose ChIP-exo data, I will give a brief 
introduction covering the different types of machine learning and the main principles 
on how to use them. The basic idea of most machine learning approaches is that we 
have data available and would like to train a computational model on it, in order to 
predict one or multiple characteristics. For the sake of completeness, I have to mention 
one type of machine learning called reinforcement learning, that does not start with 
data, but I will not go into more details about it and focus on the other two approaches. 

What kind of data we have available and what kind of features we would like to learn 
and predict determines whether we can employ supervised or non-supervised 
methods. If the data we have also contain labels, for example a set of pictures of cats 
and dogs that are individually annotated as either depicting a cat or a dog, we can use 
supervised methods. This is what most people would think of when one talks about 
machine learning. If we do not have these labels available, we can only use 
unsupervised methods, like a clustering algorithm to try and identify interesting 
subgroups in our data set. In the cat and dog example, that could result in one cluster 
of images only depicting dogs and another one only containing images of cats, while 
the model would still not be able to say what each cluster contains as it has no labels 
available. 

In this thesis I will only be using supervised learning and this approach can be further 
divided into two classes: classification and regression. Classification is when the model 
learns to which class an observation belongs. A widely used example data set for this 
type of machine learning is on the iris flower, where the flower is either classified as 
being Iris setosa, Iris virginica, or Iris versicolor based on the length and width of the 
petal and the sepal (Fisher 1936). The other class of supervised learning is regression, 
where the model output is not the class but any numerical value. This means, that while 
a classification algorithm trained on the iris flower set will never be able to classify 
something for example as a cactus, a regression algorithm can output a value that is 
not present in the training data. The typical example for learning about regression is 
predicting the price of a house based on the size, the number of rooms, a rating of the 
neighborhood, etc., for example by using the Boston Housing dataset from 1976 
(Rubinfeld and Harrison 1978). A graphical overview of these two classes and their 
differences is shown in Figure 8. 
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How can we evaluate what the model learned and how good the model is? This 
evaluation is done by predicting the labels of our data and compare them to the actual 
values, to see how far off the predictions are. In regression problems, one could then 
take the mean absolute error as an evaluation metric. When choosing and evaluating 
a machine learning model one commonly observes two types of issues called under- 
and over-fitting. To illustrate what they exactly are, let us have a look at the example 
in the first row of Figure 9, where we have data with one input variable (X) and one 
label / output variable (Y). The relationship between X and Y is a noisy quadratic 
function. We now fit three different regression models on the data, a linear model, a 
quadratic model and a 6th order polynomial model, as shown in the second row of 
Figure 9.  

 

 

 

Figure 8: Overview of the two supervised machine learning classes. While 
classification assigns one of the three known classes to the data, regression can output 
any number for the house, even if that number was not present in the training data. 
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Figure 9: Under- and over-fitting in machine learning. Example of fitting data that 
was generated with a quadratic function. The linear fit does not fit the data well (it is 
underfitting), while the 6th degree polynomial is overfitting. The overfitting can only be 
detected when using cross validation. If wrongly fitted and evaluated on all data, the 
6th degree polynomial fit produces the smallest error of the three. 
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The goodness of fit for these three models is then evaluated by comparing the 
predicted values of Y to the true data for Y and the mean absolute error is calculated 
and displayed. One can observe that the linear model does not capture the full 
dynamics of the underlying data, a behavior called underfitting. It therefore has the 
highest error of the three models. The quadratic model (that is also underlying the data) 
fits very well to the data as expected. Interestingly, it does however not have the lowest 
error, which is achieved by the 6th degree polynomial model. The drawback with that 
result is that this model captures a lot of the noise in the data (see the initial dip in the 
prediction curve) and will therefore probably not generalize very well for other points, 
a phenomenon called overfitting. For a simple data set like the present one here with 
just one variable it is easy to plot the results and examine which model fits the best 
visually, but how can this be achieved for larger data sets with many variables if one 
cannot use the amount of error as a guide? 

To solve this problem, one commonly uses a method called cross-validation. The idea 
is that one splits the data into two sets, one training data set and one test set. In the 
third row of Figure 9, this is displayed by assigning 75% of the data to the training data 
in grey and 25% to the test data in red. The models are then trained on the training 
data and are used to predict the labels for the test data. Now the model with the lowest 
error is indeed the quadratic model, outperforming both other models by a large 
margin. By using cross-validation we can now be more confident that the model really 
learned the characteristics of the data and will generalize well to new data when it 
produces a low error measurement. The most used cross-validation technique is called 
k-fold cross-validation, with the k standing for an integer typically in the range of 5 to 
10. This means that the data is split into k-folds, and then the model is trained on all, 
except one, folds and evaluated on the left-out fold. This is repeated so that every fold 
is used once for evaluation. This method has the advantage that all the data can be 
used for training and that the models will be evaluated on all data points. This is 
important, because the random assignment of data points into training and test sets 
could otherwise have unwanted effects. It could have happened that in our example 
the three points with the lowest x values had been assigned to the test data, which 
would not have given us a fair evaluation of the model across the whole range of 
values. 

After successfully training a machine learning model, one can then interrogate it to try 
and understand which characteristics the model learned and are therefore of interest. 

Supervised machine learning techniques can therefore be a powerful tool to improve 
our understanding of biology and have been applied in a variety of research projects 
like the prediction of essential genes (Hwang et al. 2009), classifying breast cancer 
types (Amrane et al. 2018) or predicting protein structures (Senior et al. 2020).  
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3 ESTABLISHING THE FRAMEWORK 
The aim of this thesis was to establish a framework to efficiently analyze large scale 
data sets of TF binding data and apply it to gain insights into TF biding events. This 
framework, which is presented here in this section consists of two parts and covers 
Paper I and II. First, the transcription start sites for each expressed gene had to be 
determined (Paper I) and then an efficient bioinformatics pipeline had to be 
constructed (Paper II). 

3.1 IDENTIFICATION OF TRANSCRIPTION START SITES  

When analyzing TF binding data, the exact location of the binding site is important, 
which can be obtained by mapping the sequencing reads against the genome of the 
organism. This, however, only provides the absolute position on the chromosome, for 
example that the TF Gcn4 is binding to chromosome 10 around the base pair 161962, 
which on its own is not informative. One can use the genome annotations to search if 
any genes are located close to the detected binding site, and here, this would tell us 
that the binding occurs 843 bp upstream of the start of the URA2 gene. This is already 
much more informative, but it is known that the actual site where transcription starts is 
not identical to the start of the coding sequence. This means that the distance of the 
TF binding site to the ATG is difficult to compare between different genes, because the 
distance from the ATG to the TSS is different for each gene. To overcome this hurdle. 
one would need to know the exact location of the Transcription Start Site (TSS), and 
in this example it would reveal that the Gcn4 binding site is 317 bp upstream of the 
URA2 TSS, a measurement that is now comparable across different genes. The only 
issue left here is that the exact locations of the TSSs in S. cerevisiae have previously 
only been reported using rich medium in shake flasks (Parky et al. 2014; Wery et al. 
2016), but not in the growth conditions we were interested in. It is known that the growth 
conditions of the cells influences the TSS in other eukaryotic organisms (Reyes and 
Huber 2018), therefore we could not use the already published data because it was 
not known if the growth condition also influences the position of the TSS in yeast. To 
address this issue, the TSS were experimentally determined as described in the first 
paper of this thesis, Paper I. 

To identify and map the TSS at a high resolution I used Cap Analysis of Gene 
Expression (CAGE), an RNA sequencing method to specifically sequence the 5′ ends 
of intact mRNA molecules (Kodzius et al. 2006). More specifically I used the non-
amplification non-tagging CAGE method which has the best resolution and signal to 
noise ratio of all CAGE protocols (Murata et al. 2014).To be able to identify the TSS in 
the four conditions used in the various experiments across this thesis and to asses if 
the TSS landscape is changing in different growth conditions, the cells were grown in 
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these four different conditions using chemostats with a fixed dilution rate of 0.1/h. The 
four conditions were: (i) fermentative glucose metabolism using glucose limitation in 
an anaerobic environment, (ii) gluconeogenic respiration using ethanol limitation, (iii) 
respiratory glucose metabolism using glucose limitation and (iv) aerobic fermentation 
using nitrogen limitation. After the cells reached steady state for at least 24 hours, the 
cells were collected, and CAGE was performed. The workflow of the method is shown 
in Figure 10. The first step was to extract the mRNA from the yeast cells, which results 
in a mix of intact mRNA molecules that were still capped at their 5′ end and partially 
degraded ones that already lost the cap. Next, a reverse transcriptase was used to 
create a hybrid RNA – cDNA double strand using random hexamer primers, and the 
cap was biotinylated. As the starting point for the reverse transcriptase was random it 
was not guaranteed that it will continue long enough to reach the 5′ end of the mRNA 
molecule. Therefore, the hybrid strands were treated with RNAse I that selectively 
degraded single stranded RNA, resulting in the removal of the 5′ cap if the reverse 
transcriptase did not transcribe until the end. Now, all molecules with a biotinylated cap 
were extracted using streptavidin beads. In the last steps before sequencing, the cap 
was removed, the mRNA was replaced with a second DNA strand and the necessary 
linkers were added at both ends for subsequent Illumina sequencing. After sequencing, 
the reads were mapped against the reference genome for the used CEN.PK113-7D 
strain (Salazar et al. 2017). The 5′ end of each read now denoted the starting position 
for an individual transcription event. The data were analyzed using CAGEr (Haberle et 
al. 2015), where first the individual 5′ end read positions were clustered together into 
TSS clusters, then the clusters were merged across the conditions and the cluster 
width as well as the main TSS position was determined. Finally, the TSS clusters were 
assigned to genes if their main TSS position was within 1 kb upstream of the start of 
the gene coding region. An example of how the data looked for two different promoter 
regions is shown in Figure 11 A and B. For each of the four condition the individual 
read distribution is shown, the height of each blue bar denotes how many transcription 
start events originated from that exact nucleotide position. One can also see how the 
individual transcription start events were clustered together (the row labeled Cluster 
annotation), and where the dominant TSS is (thin vertical blue line in the row labeled 
Cluster annotation Dom TSS). 
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Figure 10: CAGE workflow. After the mRNA is extracted from the cells, it was reverse 
transcribed into a cDNA-mRNA hybrid molecule and the mRNA cap structure was 
biotinylated. Next an RNAse I treatment was used to selectively degrade RNA 
molecules without a cDNA binding partner and magnetic beads coated in streptavidin 
were used to select for mRNA molecule with an intact cap. Finally, the cap is removed, 
the mRNA is replaced by DNA and the necessary linkers are added for sequencing. 
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Figure 11: Overview of TSS cluster. A: Screenshot from IGV showing the broad 
CAGE read distribution for the constitutively expressed gene YGL106W (MLC1). B: 
Screenshot from IGV showing the peaked CAGE read distribution for the constitutively 
expressed gene YOR204W (DED1). C: Results for detecting shifted TSS, showing the 
proportions of clusters associated to genes that were detected as differentially 
distributed (using getShiftingPromoters from CAGEr, shifting score > 0.6 and adj. 
p-value of Kolmogorov-Smirnov test < 0.01) in n pairwise comparisons of the different 
conditions (four conditions = six possible comparisons). D: Results for differential gene 
expression analysis of RNA-seq data, showing the proportions of genes that were 
detected as differentially expressed (using DEseq2, adj. p-value < 0.001) in n pairwise 
comparisons of the four different conditions. 
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3.1.1 Stability of the TSS landscape 

One of the reasons the CAGE experiment was performed was to determine whether 
the TSS landscape is different in the four different conditions, and in Figure 11 A and 
B one can already observe that even though the two TSS cluster have quite different 
width and shapes there are no obvious differences between the four conditions. To 
quantify the stability, I tested whether the read distribution for each cluster was 
significantly different in any of the four conditions, using six pair-wise comparisons. 
The assessment was performed using the Kolmogorov–Smirnov test with an adjusted 
p-value threshold of 0.01. The results for this are shown in Figure 11 C, and 99.7% of 
all cluster show no differential distribution. This is especially striking because more 
than 50% of all cluster show a significant change in expression level in at least one 
pairwise comparison as shown in Figure 11 D. This means that, even though the 
overall expression levels are changing quite dramatically, the distribution of 
transcription start events stays the same. To further validate the stability of the TSS 
landscape across conditions, we compared the length of the 5′ untranslated region (5′ 
UTR, the region between the TSS and the start of the coding sequence) we obtained 
from our data with the previously published data for another S. cerevisiae strain (Parky 
et al. 2014) and found that the average difference is less than 9 bp. Therefore, for all 
future experiments where one maps TF binding events in relation to the TSS, the same 
TSS annotation can be used independent of the actual growth condition. 
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3.1.2 Cluster shape index 

In Figure 11 one could already observe that different TSS clusters have distinct widths 
and shapes and Hoskins et al., developed a metric called Shape Index (SI) to measure 
how broad or peaked a cluster is (Hoskins et al. 2011). The SI for a cluster can be 
calculated using the following formula: 

𝑆𝑆𝑆𝑆 = 2 +  �𝑝𝑝𝑖𝑖 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙2 (𝑝𝑝𝑖𝑖)
𝐿𝐿

𝑖𝑖

  

𝑝𝑝𝑖𝑖 = proportion of counts at position i in the cluster 

𝐿𝐿 = position with at least 1 tag 

 

Clusters with an SI of less than −1 are classified as broad (e.g. the cluster in Figure 
11 A) and clusters with an SI of larger than −1 are classified as peaked (e.g. the cluster 
in Figure 11 B). The distribution of all SI values is shown in Figure 12 A. One can 
observe that the majority of all cluster are classified as peaked. The SI, which is 
calculated for each individual condition, is also very stable across the different 
conditions, with a minimal Pearson correlation coefficient of 0.92 between any two 
conditions, as shown in Figure 12 B. 

 

 

 

Figure 12: Overview of shape index characteristics. A: Distribution of average 
shape index of each cluster, bin size = 0.1. Grey dashed line at -1 denotes the border 
which separates clusters classified as peaked (shape index > −1) and clusters 
classified as broad (shape index ≤ −1). B: Pearson correlation coefficient for each 
pairwise comparison of the condition specific shape index. 
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The shape index also has another very interesting characteristics, it shows a quite 
strong negative correlation with the expression levels as displayed in Figure 13 A. This 
means that a gene which TSS cluster has a higher shape index (more peaked) tends 
to have a lower expression value than a gene with a broad TSS cluster distribution. 
This correlation also seems to be exclusively linked to the actual distribution of 
transcription start events and not just the width of the cluster span (Figure 13 B). The 
link between the shape index and the gene expression can also be observed in higher 
organisms like Drosophila melanogaster, where there is a remarkable connection 
between the shape index and the gene expression level during different developmental 
phases (Hoskins et al. 2011). 

  

 

Figure 13: Correlation of TSS cluster characteristics with expression levels. A:  
Comparison of the mean shape index and the mean CAGE expression levels showing 
an anti-correlation with a Pearson correlation coefficient −0.45. D: Comparison of the 
mean promoter width with mean CAGE expression levels showing no correlation. TPM 
= transcript per million. Color denotes the number of observations per hex tile. 
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3.2 CREATION OF THE BIOINFORMATICS PIPELINE 

After obtaining the high resolution TSS annotations, the next step was to analyze the 
already gathered ChIP-exo data. Even though the original ChIP-exo protocol has been 
published several years ago (Rhee and Pugh 2012) there had not been a complete 
bioinformatics pipeline available to process the generated sequencing reads in a 
straight forward matter. Therefore, we developed such a pipeline, which will be 
presented here (Paper II). 

Analyzing ChIP-exo data is more complicated than analyzing ChIP-seq data, as the 
borders of the TF binding area are captured in different reads, one side by reads from 
the positive strand and the other side by reads from the negative strand. This means 
that one has to estimate the distance between the borders and trim the reads to the 
correct length so that reads coming from both sides will overlap in the middle to mark 
the TF binding site. This procedure is visualized in Figure 14. If the reads are not 
extended long enough, they will not overlap in the middle and will therefore not be 
recognized as a peak. If the reads are on the other hand extended too long, they will 
extend over the border of the TF and increase the measured footprint, thereby reducing 
the overall resolution which is the main reason for using ChIP-exo in the first place. To 
overcome this issue, we developed a formula to calculate the optimal trim length of a 
TF based on its size: 

𝑇𝑇𝑇𝑇 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ [𝑛𝑛𝑛𝑛𝑛𝑛] ∗
1 𝐴𝐴𝐴𝐴
3 𝑛𝑛𝑛𝑛𝑛𝑛

∗ 110
𝐷𝐷𝐷𝐷
𝐴𝐴𝐴𝐴

 

𝑇𝑇𝑇𝑇 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 0.066 
𝑛𝑛𝑛𝑛

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
∗  𝑇𝑇𝑇𝑇 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡 [𝐷𝐷𝐷𝐷]

1
3 

𝑇𝑇𝑇𝑇 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 3 ∗ 𝑇𝑇𝑇𝑇 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∗ 3.03
𝑏𝑏𝑏𝑏
𝑛𝑛𝑛𝑛

  

 

The first step is to calculate the weight of the TF based on the amount of amino acids 
and the average amino acid weight of 110 Da. Next, the size of the TF is estimated 
based on a spherical shape using a previous published formula (Erickson 2009). 
Based on the assumption that most TFs bind as dimers that overlap by half the 
diameter, we multiply the radius by 3 to obtain the footprint in nm and convert this to 
length in bp units. This footprint then corresponds to the optimal trim length. 
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Figure 14: Overview of ChIP-exo read trimming procedure. To reconstruct the 
binding footprint of the TF, as shown in the upper row, from the sequencing data, first 
the reads were mapped to the genome and the position of the first base of each read 
was marked. Then each read was extended to the previously determined trim length 
so that reads from both sides overlap. This overlap corresponds to the real binding 
behavior in the cell, as shown in the last row now. 
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3.2.1 Pipeline workflow 

The pipeline consists of several steps that are executed in a stepwise fashion and an 
overview is shown in Figure 15. The pipeline starts with mapping the raw sequence 
reads to the genome using the well-known tool Bowtie2 (Langmead and Salzberg 
2012). Next, PCR duplicates that are created during the library construction are 
removed. The resulting SAM / BAM files are handled using Samtools and Bamtools (Li 
et al. 2009). The main path going forward is to trim the reads to the previously 
determined optimal trim length using Bamtools. The overlap of reads from both strands 
are subsequentially counted to produce the genome-wide read profile files. Using the 
same trimmed reads, GEM (Guo, Mahony and Gifford 2012) is used to identify TF 
binding peaks. These binding peaks can then be assigned to genes based on their 
distance to the TSS and result in the gene target list. With looking at only the first 
nucleotide of each mapped read, one can also create the peak centered read 
distribution plots as shown in the next section. 
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Figure 15: Overview of bioinformatics pipeline for ChIP-exo data. Here, all steps 
are shown with computational steps represented as arrows and boxes for files. The 
pipeline starts with a number of computational steps using existing software tools 
(marked with black arrows), producing intermediate result files (marked with blue 
boxes). The final analysis of the output is done using custom made python scripts 
(marked with gray arrows) producing the final output files (marked with red boxes). 
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3.2.2 Pipeline output 

In Figure 16, three of the graphical outputs of the pipeline are shown using the TF 
Gcn4 in the glucose-limited condition as an example. In panel A, one can clearly 
observe that there is a strong enrichment of reads upstream of the TSS, matching the 
region where most TF binding is to be expected. Panel B and C show a detailed view 
of how reads are distributed on both strands around the detected peaks. This shows 
that there is a clearly defined border of the TF binding, which one would expect based 
on how the ChIP-exo reads are generated. From Figure 16 C one can also estimate 
the overall footprint of the Gcn4 binding to roughly 25 bp, which highlights the high 
resolution of the ChIP-exo method down into the single nucleotide space. 

These output figures can be easily employed for quality control purposes. If there was 
no enrichment of reads upstream of the TSS as observed in Figure 16 A, or no clearly 
visible peak borders as observed Figure 16 B and C, this would indicate that the 
sequencing quality is sub-par. In addition, the pipeline also produces a correlation plot 
for the individual replicates, which also serves as a quality control step. 
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Figure 16: Overview of the pipeline output figures. A: The overall read count 
distribution (coming from overlapping reads on both strands) is shown across the 
promoter region. One can observe an enrichment of reads upstream of the TSS. B: 
This histogram shows the read distribution (with only the first base of each read 
mapped to the genome) around all peaks for Gcn4 in glucose-limited conditions on an 
individual peak level, where every line corresponds to a single peak. C: This plot shows 
the average read distribution from all the Peaks shown individually in B. 
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4 APPLICATION OF THE FRAMEWORK 
After the successful establishment of the complete framework, I was able to use it to 
investigate different aspects of TF binding (Papers III to XI). The applications in this 
section will range from detailed studies of single TFs to machine learning based 
analysis of many TFs simultaneously and will also include a web tool for increased 
accessibility and usability of the gathered TF binding data. 

4.1 LINKING TF BINDING TO GENE EXPRESSION 

The first project I want to talk about is a large-scale study of many TFs involved in 
central carbon metabolism (Paper III). In the project the underlying ideas of the 
analytical framework were already employed, even though the framework was still 
under development and was therefore not yet published. We collected data for 16 TFs 
and combined them with previously published data for seven TFs (Bergenholm et al. 
2018; Ouyang et al. 2018) in four different metabolic conditions: (i) fermentative 
glucose metabolism using glucose limitation in an anaerobic environment, (ii) 
gluconeogenic respiration using ethanol limitation, (iii) respiratory glucose metabolism 
using glucose limitation and (iv) aerobic fermentation using nitrogen limitation. 
Throughout the thesis I will mainly focus on the ethanol and the glucose-limited growth 
condition. The 21 TFs analyzed here were: Cat8, Cbf1, Ert1, Gcn4, Gcr1, Gcr2, Hap1, 
Hap4, Ino2, Ino4, Leu3, Oaf1, Pip2, Rds2, Rgt1, Rtg1, Rtg3, Sip4, Stb5, Sut1 and 
Tye7. They were selected due to their previously published involvement in processes 
related to the central carbon metabolism, mainly based on ChIP-chip datasets 
(Harbison et al. 2004). 

We were interested to see if we can connect the TF binding events, that we measured 
using ChIP-exo with the gene expression levels that were obtained from RNA 
sequencing (RNA-seq) in the exact same conditions. To model this we employed a 
regression method called multivariate adaptive regression splines (MARS) (Friedman 
1991). The difference to regular multiple linear regression methods is that MARS can 
introduce a hinge in the model to account for non-linear behavior if beneficial for the 
fit. The results for predicting the gene expression levels in the glucose and ethanol-
limited condition using the TF binding events are shown in Figure 17. Being able to 
explain up to 42% of observed gene expression variability with a rather simple model 
using only 21 TFs, out of more than about 209 TFs in yeast (Hughes and de Boer 
2013), is a great start. 

The build-in feature selection of MARS was used to only select the TFs with the highest 
predictive power and the best splines for each selected TF are also shown in Figure 
17 (lower panels). One can see that the hinges are used in all cases, mainly to add an 
unresponsive part to the model. This can be seen as either an activation threshold that 
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has to be crossed before more binding translates to more expression (e.g. Cat8 in 
ethanol limited growth) or a saturation effect after which more binding does not 
correlate with more expression anymore (e.g. Gcn4 in ethanol limitation). The 
introduction of hinges in all cases also explains why MARS outperformed simple 
multiple linear regression models, indicating that at least partial non-linear relationships 
between TF binding and gene expression are occurring. 

As we have only mapped a small subset of all TFs in yeast, it would be interesting to 
see if we can identify subsets of genes for which we have a higher coverage of TF 
binding events and that we can therefore better predict their expression level. To do 
this, we clustered metabolic genes based on their relative change in expression levels 
across the conditions. The resulting 16 clusters had strong enrichments for specific 
metabolic processes as determined by GO term analysis and are shown in Figure 18. 

 

Figure 17: Results for multivariate adaptive regression splines models used to 
predict gene transcript levels. A: Cross-validated predictions for gene expression 
levels in ethanol-limited condition. Selected TFs and splines are shown below. B: 
Cross-validated predictions for gene expression levels in glucose-limited condition. 
Selected TFs and splines are shown below. FPKM: fragments per kilobase per million 
reads mapped. 
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Next, we used multiple linear regression to predict the gene expression levels of the 
genes in each cluster using the TF binding events and the results for two of the clusters 
are shown in Figure 19. The predictive power of the models clearly increased, showing 
that subsets of genes are co-regulated by similar TFs and mechanisms. The increased 
ability to accurately predict gene expression levels when focusing on gene subsets 
(where relatively more TF data are available) also indicates that the amount of 
available TF binding data is the limiting factor in our current models. Therefore, the 
approach can be further improved by gathering more data, which would enable us to 
build stronger predictive models of gene expression based on TF binding data. 

 

 

 

Figure 18: Results of expression-based gene clustering. For clusters which have 
at least one significantly enriched GO term, the top GO term is shown. The two marked 
clusters were selected for further analysis. 
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Using MARS, we could show that employing machine learning approaches can 
generate insights into the relationships between TF binding events and gene 
expression levels. It was especially interesting to see that most linear splines got a 
hinge, indicating that non-linear effects play a role in TF binding. This could mean that 
by using more complex machine learning models the predictive power could be further 
increased using our large-scale datasets. 

We were not the first to employ machine learning models to link TF binding events with 
gene expression patterns. There have been studies in other organisms, for example in 
mouse embryonic stem cells where the authors were able to explain up to 65% of gene 
expression variability with ChIP-seq data from 12 key TFs (Ouyang, Zhou and Wong 
2009). In related studies histone modification marks, instead of TF binding, have been 
used as input data employing different machine learning models, such as deep 
learning models (Singh et al. 2016). 

  

 

Figure 19: Results for training MARS models on gene clusters. Cross-validated 
gene expression predictions for two different clusters are shown. The selected TFs as 
well as the resulting R2 score is shown. FPKM: fragments per kilobase per million reads 
mapped. 
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4.2 ANALYZING CONDITIONAL GENE EXPRESSION CHANGES 

After this successful application of machine learning approaches to understand TF 
binding patterns and their effect on gene expression, I wanted to see how far I can 
push this and if I could create a machine learning model that would be useful in 
metabolic engineering applications, which lead to Paper IV. 

It has been shown before that gene expression levels are not only depended on TF 
binding events, but are also influenced by a variety of other processes and 
characteristics, like the shape of the TSS (see Paper I), or the codon bias (dos Reis, 
Wernisch and Savva 2003; Zhang et al. 2012). Therefore, a machine learning model 
trained on TF binding data alone will never be able to capture the full dynamic of gene 
expression. To overcome this, I decided to focus on the change of gene expression 
levels between two conditions. This eliminates the effect of many sequence-related 
features, as the promoter and coding sequence of a gene does not change between 
conditions. Therefore, one can assume that changes in TF binding patterns are the 
main driver of differential gene expression. The two conditions chosen are the growth 
during glucose-limitation and during ethanol-limitation. This decision was based on 
three reasons: (i) these are the two conditions where we observe the most TF binding 
events, (ii), a Crabtree positive yeast cell like S. cerevisiae grown in an aerobic batch 
cultivation on glucose will go through both of them during the growth process; and (iii) 
these two conditions are also of industrial relevance for large-scale fermentation 
processes. In addition, these two conditions are well studied with many genome wide 
comparative studies about gene expression levels in both batch and chemostat 
cultures, showing an extensive reorganization of the central carbon metabolism 
(DeRisi, Iyer and Brown 1997; Daran-Lapujade et al. 2004; Wu et al. 2004). This 
means that there is already extensive knowledge we can use to spot-check predictions 
from our model later on. 

Using RNA-seq data, the gene expression changes between the two conditions were 
calculated and the distribution is shown in Figure 20 A. One can see that even though 
there is no global increase or decrease of gene expression, many genes are affected, 
and the average change is 0.2 log2 fold. Looking at the change of TF binding patterns, 
there are a total of 7581 TF peaks present in either or both conditions. Of these, 1463 
are only present in glucose and 887 are only present in ethanol. For the remaining 
5231 peaks the distribution of log2 binding strengths ratios is shown in Figure 20 B. 
One can observe that there is again no global decrease or increase of TF binding 
strength, but there are many individual changes with an absolute log2 ratio average of 
0.54. This large change, together with the over 2000 peaks that are present in only one 
condition, shows that TF binding patterns change significantly between the two 
conditions, which could explain the observed change in gene expression levels. 
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4.2.1 Feature engineering and selection 

Improving the feature engineering approach from Paper III, I created seven types of 
features using the data of 20 TFs from Paper III (excluding Hap4 due to low quality) 
and previously published data for Cst6 (Liu, Bergenholm and Nielsen 2016). In order 
to obtain the seven feature types, first the whole promoter (−1000 bp to +500 bp, 
relative to TSS) was binned into 50 bp long intervals and the sum of normalized reads 
for each TF was calculated for binding in glucose, binding in ethanol and the difference 
between them (ethanol – glucose). In addition, the number of positions with reads were 
counted for these three conditions; for the difference we distinguish between positions 
with read counts above zero (where binding in ethanol was stronger) and positions 
with read counts below zero (where binding in glucose was stronger). 

As it is known that TFs often act together, groups of TFs were created to combine them 
as additional features. These groups were: (i) all TFs together; (ii) all zipper type TFs; 
(iii) all zinc cluster type TFs; and (iv) the 6 known TF pairs in the data (Ino2 - Ino4, Oaf1 
- Pip2, Cat8 - Sip4, Gcr1 - Gcr2, Ert1 - Rds2 and Rtg1 - Rtg3). 

These features that were initially based on 50 bp promoter stretches were 
subsequently combined into four larger intervals to reduce the number of features. 
These intervals were: (i) full length promoter [from −1000 bp to +500 bp relative to the 
TSS]; (ii) the first 500 bp of the promoter [−1000 bp to −500 bp]; (iii) the second 500 
bp of the promoter [−500 bp to 0]; and (iv) the first 500 bp after the TSS [0 to +500 bp]. 

 

Figure 20: Overview of conditional expression changes between the ethanol and 
the glucose phase. A: Distribution of log2 expression ratios. B: Distribution of log2 
binding ratios for all TF peaks present in both conditions. The grey dashed line is at 0 
for orientation and the mean of all ratios as well as the mean of the absolute of all 
ratios is displayed. Bin width is 0.1. 
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This resulted in a total of 840 features, which were the starting point for training a tree-
based gradient boosting regression model on the data and score its performance using 
a five-fold cross-validation scheme. To further reduce the number of features and 
select the most important ones, a very stringent feature selection was performed using 
sequential forward-selection, a method that starts with finding the most important 
single feature and then adds more features step-wise to find the best performance, 
which was achieved here with only 26 features. The stringent feature selection process 
led to an impressive gain in performance to a final cross validated R2 score of 0.519 
(starting from 0.362 for all features). Analyzing the importance scores of the features 
can provide valuable insights into the used data. Here, we split each feature into its 
four parts: (i) the TF (or TF group); (ii) the interval; (iii) the data processing type; and 
(iv) the condition (glucose, ethanol, or the difference between them). For each part all 
scores were aggregated, and the averages are shown in Figure 21. 

The two most important TFs were both pairs, Cat8 - Sip4 and Gcr1 - Gcr2. Cat8 and 
Sip4 are both involved in the activation of gluconeogenesis (Hedges, Proft and Entian 
1995; Hiesinger et al. 2001), while Gcr1 and Gcr2 have been shown to play an 
important role in the activation of glycolysis genes (Chambers, Packham and Graham 
1995). This encouragingly shows that our ML model learned true biological knowledge, 
giving us greater confidence in the model and our approach. 

Overall, Cat8 was the most important TF in our model, as it is also part of the zipper 
type TF group (rank 3) and was on rank 4 on its own. This indicates that Cat8 plays an 
even bigger role in regulating conditional gene expression changes in the glucose and 
ethanol condition than was previously known and should warrant future studies about 
it. Besides the feature importance of TFs, we also have data about the other feature 
types and looking at the intervals, we can observe that the most important interval was 
the 500 bp directly upstream of the TSS, where also most TF binding events were 
taking place. This again is an indicator that the model learns biological relevant 
patterns and not noise. Interestingly the 500 bp interval downstream of the TSS was 
more important than the 500 bp stretch that was located 500 bp upstream of the TSS. 
This would indicate that binding of TFs downstream of the TSS play a role in regulating 
expression in addition to any binding events occurring upstream of the TSS. 
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Figure 21: Feature importance plots. The 26 selected features were aggregated by 
either (A) the transcription factor, (B) the condition, (C) the type of feature or (D) the 
interval. For all groups the feature importance values were averaged and displayed. 
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4.2.2 Promoter engineering 

Fine tuning the conditional gene expression behavior of promoters is of interest in 
metabolic engineering projects, because it can be used to increase the productivity of 
fermentation processes. Examples for this are the usage of promoters induced by high 
glucose levels like HXT1 (Scalcinati et al. 2012; Teixeira et al. 2018) or by ethanol, like 
ADH2 (Kealey et al. 1998) and ICL1 (Maury et al. 2018). Besides direct application of 
conditional promoters in metabolic engineering projects, other studies aimed to support 
these approaches by providing datasets of conditional promoters (Peng et al. 2015). 
Because of my strong interest in metabolic engineering and the transition towards a 
bio-based economy I developed an online promoter engineering tool, called HYENA 
(Hybrid promoter design using advanced transcription factor binding predictions) to 
further aid in this endeavor. 

 

The workflow of HYENA is displayed in Figure 22. After the user selects a promoter of 
a metabolic gene to engineer and the desired gene expression ratio between the 
ethanol and glucose phase, the tool creates hybrid promoters by exchanging a 50 bp 
long stretch of the upstream promoter region (−750 to −250 bp relative to TSS) with 
the corresponding 50 bp stretch from another promoter. This is done for each of the 
10 short regions and 1037 other metabolic genes. In the next step, the expression 
ratios for these 10370 hybrid promoters are predicted using the machine learning 
model and then ranked according to their difference to the user-designated expression 
ratio. The top candidates for feature engineering are displayed, together with their 
hybrid promoter sequence. HYENA is available online at https://hyena-
toolbox.herokuapp.com/ and the source code is available through GitHub 
https://github.com/SysBioChalmers/Hyena. 
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After creating the model, the next step is to validate it. In absence of actual 
measurements of these hybrid promoters and their expression patterns, can we 
instead use previous data and knowledge for an initial validation? In a first step I ran 
HYENA to independently increase or decrease the expression ratio of each gene by 
0.5, thereby making its expression pattern more pronounced in either the ethanol 
phase (increased ratio) or in the glucose phase (decreased ratio). I then analyzed 
which three donor promoters were chosen most frequently, as shown in Table 1. 
 

Table 1: Overview of common donor promoters chosen by HYENA. 

# top donor promoter Stronger in glucose Stronger in ethanol 

1 TPO1 (483 times) ATO3 (305 times) 

2 CDC19 (239 times) HXT3 (219 times) 

3 ENO1 (180 times) ADY2 (148 times) 

 

 

Figure 22: Promoter engineering strategy in Hyena. A 50 bp stretch of the promoter 
is replaced by the corresponding 50 bp stretch of different donor promoters creating 
hybrid promoters. These are then evaluated using the machine learning model and 
ranked according to the difference in predicted expression ratio to the desired 
expression ratio. 
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The first observation is that half of the top candidates are involved or directly linked to 
glycolysis (CDC19, ENO1 and HXT3). As the flux through glycolysis dramatically 
changes between the two conditions, it is not surprising that this pathway harbors great 
donor genes and beneficial properties have already been shown for promoters of other 
glucose transporter genes, like HXT1 (Scalcinati et al. 2012; Teixeira et al. 2018). This 
indicates that these top donor genes could indeed cause the desired change in gene 
expression ratio, providing a first validation step of HYENA. Interestingly, four out of 
the six most common donors encode transport proteins involved in quite different 
metabolic areas, the transport of acetate (ADY2), ammonium (ATO3) glucose (HXT3) 
or polyamines (TPO1). It makes sense that transporter genes show a very condition 
specific gene expression pattern as they are not always required, while this further 
indicates that transport proteins are potentially heavily regulated by TF binding events, 
rendering other transport proteins also interesting donors for future modifications. 

Besides the commonly selected promoters in Table 1, with for example TPO1 being 
selected for nearly 50% of all 1038 metabolic genes, I would like to note that in this 
initial test of HYENA, 390 different donor promoters were proposed by HYENA at least 
once to increase the expression in ethanol, 82 of these at least in five occasions. In 
the opposite direction, the numbers are very similar with 338 and 64 respectively. This 
demonstrates that there is a vast variety of potential donor promoters that can be used 
for fine tuning of conditional gene expression levels, in addition to the few that are 
currently already used in laboratories, and that this can only be efficiently unlocked 
using a machine-learning approach. 

 

In Paper III and IV I demonstrated how to use machine learning models to gain insight 
into the effects of TF binding patterns and how one can use these models to guide 
promoter engineering. Both showed promising progress and highlighted what can be 
done using ChIP-exo data. Both of these two big data approaches have only been 
made possible by having a large data set of ChIP-exo data available, which was 
processed in a fast and reliable way using our analytical framework. Therefore, the 
framework I developed can serve as the basis for future large-scale studies involving 
more TFs and more conditions to further improve the knowledge we have and allow us 
to even better regulate conditional gene expression. Taken together this will hopefully 
help and contribute to improved metabolic engineering strategies facilitating the 
transition towards a bio-based economy.  
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4.3 INVESTIGATING CONDITIONAL BINDING OF LEU3 

After these big data inspired studies, I would like to switch gears and talk about a 
detailed investigation of a single TF, namely Leu3, the main regulator of leucine 
biosynthesis (Paper V). Leu3 is a zinc knuckle type transcription factor that is activated 
by binding to alpha-isopropylmalate, an intermediate product of leucine biosynthesis 
(Kohlhaw 2003). It has been shown previously that Leu3 binds to the promoters of the 
majority of genes involved in leucine biosynthesis like LEU1, LEU2, LEU4, ILV2, ILV3, 
ILV5 and BAT1 (Kohlhaw 2003; MacIsaac et al. 2006). Interestingly Leu3 has been 
reported as being one of the few TFs that are always bound to their target gene, 
independent if it is activated or not (Kirkpatrick and Schimmel 1995; Harbison et al. 
2004). This contrasts with what we observed in a large-scale study of multiple TFs 
using ChIP-exo in the four chemostat conditions (see Paper III for more details).  

Because our large-scale study was based on four vastly different environmental growth 
conditions it was impossible to connect this differential binding behavior of Leu3 
directly to leucine availability. In order to elucidate this, I designed a simplified growth 
experiment were the only changing environmental variable was the availability of 
leucine or the two other branched-chain amino acids (valine and isoleucine) in the 
media. An overview of the setup is shown in Figure 23. 

 

Figure 23: Overview of experimental setup for measuring Leu3 activity. The yeast 
cells were grown in different media compositions in shake flasks and after the 
treatment the cells were collected for ChIP-seq and qPCR experiments. 
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In short, I grew the cells in shake flasks using slow-release glucose feed beads to 
achieve a glucose limited condition, similar to the chemostat setup. After addition of 
the branched-chain amino acids I harvested the cells for ChIP-Seq and qPCR analysis. 
The qPCR analysis of LEU1 mRNA levels was performed to validate the experimental 
setup and a strong reduction in LEU1 expression was observed as expected. 

Next, I mapped the TF binding sites, which was done by ChIP-seq. As this was a 
smaller-scale experiment, I decided to use ChIP-seq instead of ChIP-exo and trade 
the high resolution for a higher throughput. In addition, the sequencing was done using 
the novel Oxford Nanopore Sequencing Technology, where full length long reads are 
sequenced by translocation through a pore (see (Jain et al. 2016) for a comprehensive 
review of the technology). Using this setup, I achieved a sufficiently high quality for 
performing robust ChIP-seq analysis. The bioinformatics pipeline as introduced in 
Paper II was designed for ChIP-exo, therefore some small adjustments had to be made 
so that it was usable in this project, but the overall workflow stayed the same. The 
reads were first mapped to the genome using Bowtie2 and the peaks were detected 
using GEM. The numbers of detected peaks per condition are shown in Figure 24 A. 

 

 

Figure 24: Detected gene targets for Leu3. A: Number of detected Leu3 binding 
targets for each of the for each of the five conditions. Only peaks detected by GEM 
with a signal to noise ratio of ≥ 2 that are within 1000 bp of a TSS were taken into 
account. B: Distribution and overlap of the Leu3 gene targets between the five 
conditions. 
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The number of gene targets per condition responded to the availability of the branched-
chain amino acids in the media, with the most targets bound in the control condition 
and less than half of these in either leucine condition. In Figure 24 B, the overlap of 
gene targets between the different conditions is shown, and less than 50% of all 
detected 107 gene targets are bound in all five conditions. This is in contrast to earlier 
studies which concluded that Leu3 always binds to its gene targets (Kirkpatrick and 
Schimmel 1995), but matches with what we have observed in the large-scale ChIP-
exo study (Paper III). 

Investigating the binding behavior of Leu3 on genes involved in the leucine biosynthetic 
pathway as shown in Figure 25, one can observe that even though these gene targets 
are always bound, the binding strength is significantly decreased. The addition of 
leucine to the media reduced the binding strength by more than 50%. This reduction 
without abolishing binding, could explain the conclusion from the earlier studies 
concerning the quite unique binding behavior of Leu3.  

This finding nicely demonstrates the value of large-scale studies that are then coupled 
with detailed investigations of specific aspects to redefine our knowledge about 
biological processes. 

  

 

Figure 25: Leu3 binding strength on leucine metabolic genes. Peak binding 
strength (signal to noise ratio, SNR) normalized to control levels of Leu3 on genes 
involved in leucine biosynthesis in the five different conditions used. 
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4.4 IMPROVING DATA ACCESSIBILITY 

I strongly believe that making research data and results as open and accessible as 
possible is important and should always be considered. Therefore, I am very proud to 
have contributed to an R Shiny online app that makes all the gathered ChIP-exo data 
and analysis easily accessible. Here, I will present Paper VI, the S. cerevisiae 
Transcription factor Explorer (T-rEx), available at https://www.sysbio.se/tools/trex/. 

The main goal of T-rEx was to make all the gathered ChIP-exo data, that was 
processed using our published framework (Paper I and II), available. On the TF 
overview page, one can see the gene targets for each TF and obtain the consensus 
motif, the sequence map as well as the peak and read distribution plots, all produced 
by our analytical pipeline. An example overview page for Gcn4 is shown in Figure 26. 

Besides these summary plots one can also obtain the complete binding profiles for all 
TFs on each individual gene. As an example, the binding pattern of Gcn4 and Leu3 on 
ILV2, a gene involved in branched-chain amino acid metabolism, is shown in Figure 27 
for two different conditions, glucose-limited and nitrogen-limited. One can clearly see 
that both TFs show a single strong peak upstream of the TSS in the glucose-limited 
condition, with Gcn4 being located closer to the TSS. In comparison, the nitrogen-
limited condition only exhibits a weaker Gcn4 binding peak and no peak for Leu3. This 
again shows the conditional binding behavior of Leu3 (see Paper V). 

 

Figure 26: T-rEx overview page; showing pipeline outputs for Gcn4. For the 
selected TF the gene targets in each condition are shown. In addition, other 
characteristics like the consensus motif or the peak distribution profile are shown. 
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The tool also allows the user to zoom into the graph and inspect the genome sequence 
at this region. This could for example be used to identify the underlying motifs or to 
design guide RNAs for promoter engineering using CRISPR/Cas9. 

T-rEx is not only a powerful tool for visualizing ChIP-exo data and TF characteristics, 
it also includes a number of analytical tools. The user can select genes based on GO 
terms and for example plot which TFs bind to these genes. This allows the user to 
obtain a quick overview of which TFs are relevant in that subset of genes and how the 
TFs and gene targets cluster together. Such a heatmap is shown in Figure 28 for 16 
genes related to branched-chain amino acids. Gcn4, the master regulator of amino 
acid metabolism and Leu3, the main regulator of leucine biosynthesis, are the two TFs 
with the most binding targets. Ino2 and Ino4 also bind to a number of gene targets, and 
this two TF, that often bind together as heterodimers, also binds to the exact same 
targets. From the seven Ino2 / Ino4 targets, five of them are also bound by Gcn4, while 
two (AVT4 and PDC1) are not. Therefore, such a heatmap can be useful to identify the 
gene targets and to identify subsets of genes that are bound by specific TF or TF pairs. 

 

Figure 27: T-rEx binding profile output; showing Gcn4 and Leu3 on ILV2 in two 
different conditions. TSS = Transcription start site, CDS = Coding sequence start. 



52 
 

To summarize, the developed open-source online app T-rEx is a powerful tool to 
investigate high-resolution TF binding data in an accessible and user-friendly way. It 
can for example be used to find TF targets as well as perform various analytical steps, 
like cluster genes together based on their TF binding pattern or to find TFs that bind 
together to the same subset of genes. 

  

 

Figure 28: T-rEx analytical options; heatmap for number of peaks on genes 
related to branched-chain amino acids. This heatmap can be used to identify 
relevant TFs and their targets in addition to showing possible subgroups with distinct 
TF binding patterns. 
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5 CONCLUSION AND OUTLOOK 
Here in this thesis I presented the development of an analytical framework to study 
transcriptional regulation in the yeast species S. cerevisiae and give examples for its 
many possible applications. 

The framework that I built was based on two projects. The first project aimed to 
establish the exact transcription start sites for all expressed genes in a set of 
industrially relevant growth conditions using the state-of-the-art method called Cap 
Analysis of Gene expression (CAGE) (Paper I). With that data we were also able to 
show that the transcription start sites in yeast are stable across the chosen conditions, 
which was an important piece of knowledge needed for the larger framework. The 
second project aimed to create a unified data processing pipeline for analyzing 
transcription factor binding sites from ChIP-exo data using a combination of published 
software tools and custom written scripts (Paper II). The focus of this pipeline was to 
include extensive quality control measures to ensure that the obtained results are 
reliable. 

Together, this framework enables us to process large quantities of ChIP-exo data in a 
fast, reliable and unified way to increase the usability of the gathered data. The 
usefulness of this framework is demonstrated with the four different projects described 
in this thesis, covering a wide range of possible applications, ranging from data 
visualization and accessibility (Paper VI), to single TF studies (Paper V), to large scale 
studies using advanced machine learning methods (Paper III and IV). 

In believe that the use of machine learning models to study transcriptional regulation 
in yeast using TF binding sites as model inputs is a promising direction for further 
research and development. This view is based on several aspects: (i) the data we have 
already gathered show how complex the individual regulation is with a plethora of 
interactions, which will be otherwise difficult to decipher; (ii) the increased data 
availability makes machine learning approaches more viable; (iii) we are getting better 
at understanding how the machine learning models are working, and how to make 
them more explainable, which will help in getting biological insights through their 
application. In addition, I think it is a promising direction because of the great potential 
this has for applications in the area of metabolic engineering, for example through the 
design of custom hybrid promoters with clearly defined conditional response patterns. 

All in all, this thesis provides a reliable framework to study transcriptional regulation in 
an easier and more straightforward fashion than previously possible with an increased 
range of potential applications, especially using machine learning methods to guide 
metabolic engineering. The establishment of this framework was made possible by the 
continuous technological and methodological progress in regard to sequencings 
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technology as well as machine learning and I therefore anticipate that this framework 
will continued to be used to investigate TF binding patterns and their connection to 
transcriptional regulatory events. 

So, talking about the future, what would be the next step in continuing this project? To 
date, we have mapped only around 10% of all the TFs in S. cerevisiae, therefore one 
should focus on performing more ChIP-exo experiments to gain a better idea of the 
whole regulatory network and not only focusing on central carbon metabolism. 
Personally, I would first extend the list of studied TFs by adding more TFs related to 
amino acid metabolism (besides Leu3 and Gcn4 that are already mapped), as that is 
a vital part of metabolism and closely connected to the central carbon metabolism we 
already cover reasonably well. After that I would step aside from the core metabolism 
and instead start investigating the many TFs involved in stress response mechanisms. 
After achieving a good coverage of all TFs (> 70%) one should start focusing on 
mapping them in more conditions, because I think at that point the added value of the 
next TF is quite small in comparison with gaining insights into a completely new 
condition. Besides the four condition already presented in this thesis, I think one should 
focus on industrially relevant conditions, including high temperature stress and 
exposure to different acids and growth inhibitors. It would also be interesting to study 
the influence of different growth rates on TF binding patterns. With all of this additional 
data, our knowledge of the whole regulatory network would increase dramatically, and 
the different machine learning algorithms that are employed would become so much 
more powerful. 

But is this goal actually achievable with the methods we have available to date? In 
order to perform such a large scale experiment in a reasonable timeframe one has to 
invest in automation because otherwise just performing the necessary ChIP-exo 
experiments to map all TFs for a single condition will take roughly a year of full time 
work and then one still has not created a single tagged strain or run the cultivations. I 
would also love to see more than ten conditions mapped in different growth rates, 
further increasing the number of experiments that have to be done. 

So, can one automate the ChIP-exo experiment? Yes, one can. The new ChIP-exo 5.0 
protocol (Rossi, Lai and Pugh 2018) can be performed using magnetic beads for all of 
the individual washing and purification steps, meaning that it can be performed by most 
pipetting robots in 96 well plates using a magnetic stand as is already in use for many 
other sequencing libraries preparations. Besides the ChIP-exo experiments the other 
aspect of this project with much hands-on time is the bioreactor cultivation. I do not 
think that we will be able to completely automate that in the coming years, but with 
different companies working on smaller reactors for increased throughput, the hands-
on time per single TF will at least be significantly reduced. 
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The only part of this project that will be rather difficult to automate is the creation of the 
strains with a tagged TF and the necessary validation, but as this has only to be done 
once for every of the ~209 TFs, it is at least not a recurring work. 

As exciting as getting access to all this data would be, I have to admit this plan is largely 
just more of the same, so how could one move this project forwards even further? The 
framework I have created should be easily adaptable to single cell ChIP-exo as soon 
as such data becomes available. I guess that we will see a single-cell ChIP-exo 
protocol rather soon, as single cell ChIP-seq was already published (Rotem et al. 2015) 
and adapting it to ChIP-exo should pose no unmanageable obstacles. This would 
provide valuable insights into the cell-to-cell variability of TF binding patterns, 
something that we are currently lacking completely, without sacrificing the great 
resolution of ChIP-exo. It would also enable measuring the percentage of cells having 
the TF of interest bound at a given location in the genome, making the comparison of 
the binding strength of different TFs easier and more reliable. 

To further improve the insights into cell-to-cell variability and the presence or absence 
of different subpopulations, one could try to combine single cell ChIP-exo with 
simultaneous RNA-seq of the same cell. This would allow us to directly connect the TF 
binding event observed in a subpopulation with the transcriptional activity levels in that 
subpopulation. This sounds quite farfetched, but something very similar has already 
be done by combining single cell ATAC-seq and RNA-seq (Reyes et al. 2019), so there 
should be no fundamental obstacles. As single cell ChIP-exo is however not yet 
available I unfortunately do not expect that technology to become widely available in 
the next couple of years. 

Assuming that in maybe ten years’ time we have finally mapped all TFs, using single 
cell ChIP-exo combined with simultaneous single-cell RNA-seq, would we then be able 
to understand everything? Unfortunately, no. There would still be some specific binding 
patterns that we would not be able to resolve completely. To better explain this let me 
give an example: assume that we have identified a subpopulation of cells based on a 
gene expression pattern from RNA-seq and we measured that at a single location in 
the promoter of a gene Ino2 as well as Ino4 is bound in 50% of all cells. The interesting 
thing about this pair is that they are known to bind either as homodimer or heterodimer. 
This could mean that in 50% of the cells the heterodimer Ino2-Ino4 is binding and in 
the other half there is no binding of Ino2 or Ino4 at all. It could however also mean that 
we have up to four distinct sub-subpopulations of equal size: 25% of the cells are 
bound by a Ino2 homodimer, 25% by a Ino4 homodimer, 25% by a Ino2-Ino4 
heterodimer and the last 25% are not bound by either of them (many other percentage 
distributions would also be possible). This means that even with single-cell ChIP-exo 
one would not be able to identify all occurring sub-subpopulations. 
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So, is there a possible way to overcome this and push the mapping of TF binding 
events into a completely new level? Yes, I believe there is. This will however not be 
achieved by using any sort of ChIP method as this inherently implies that we can only 
measure one TF at the time. Therefore, one would need to swap out the antibody-
based enrichment step with a procedure that can identify all the proteins bound to the 
DNA at the same time. This could be done by a mass-spectrometry based methods, 
but I believe that the way to go in protein identification is through a protein sequencing 
device based on a nanopore. This concept is already working for DNA (and was also 
employed in this thesis), and recently a very important milestone for protein 
sequencing was reached, as it is now possible to distinguish all 20 amino acids from 
each other using an aerolysin nanopore (Ouldali et al. 2020). The added advantage of 
such a method is that it would dramatically cut the number of experiments necessary 
to map all TFs in a single condition from ~209 to 1 (ignoring necessary replicates), 
meaning that it would be able to map so many more conditions in a reasonable 
timeframe, one could even start to perform it on gene-knockout strains to measure the 
effect of that knockout. 

But this simultaneous TF mapping method is so far down the road that for now we 
should focus on gathering as much ChIP-exo / single cell ChIP-exo data as possible 
and with the framework developed in this thesis this will be easier than before. 

All in all, I think that the field of studying transcriptional regulation is currently at a very 
exiting stage, because we are just gathering momentum in collecting high quality data 
in high resolution and there are many possibilities for future methodological advances. 
In addition, the improved applications of machine learning to the vast data that is 
already collected or that will be collected in the future means that we will be getting 
better at understanding transcriptional regulation in yeast and that the possible 
applications for modulating transcriptional regulation will increase. Another interesting 
venue for analyzing TF binding patterns in the future will be through combining it with 
genome scale metabolic models that are continuously getting better and include more 
features. This could pave the way to a complete in-silico model of a living eukaryotic 
cell, including transcriptional regulation and continues adaptation to an ever-changing 
environment. 

It will be therefore very exciting to see where the field is going to be in the next five to 
ten years and I am proud to have contributed to its advancement. 
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