Joint Eigenfunctions for the Relativistic Calogero–Moser Hamiltonians of Hyperbolic Type. III. Factorized Asymptotics
Artikel i vetenskaplig tidskrift, 2020

In the two preceding parts of this series of papers, we introduced and studied a recursion scheme for constructing joint eigenfunctions $J_N(a_+, a_-,b;x,y)$ of the Hamiltonians arising in the integrable $N$-particle systems of hyperbolic relativistic Calogero-Moser type. We focused on the first steps of the scheme in Part I, and on the cases $N=2$ and $N=3$ in Part II. In this paper, we determine the dominant asymptotics of a similarity transformed function $\rE_N(b;x,y)$ for $y_j-y_{j+1}\to\infty$, $j=1,\ldots, N-1$, and thereby confirm the long standing conjecture that the particles in the hyperbolic relativistic Calogero-Moser system exhibit soliton scattering. This result generalizes a main result in Part II to all particle numbers $N>3$.

Författare

Martin Hallnäs

Chalmers, Matematiska vetenskaper, Analys och sannolikhetsteori

Simon Ruijsenaars

University of Leeds

International Mathematics Research Notices

1073-7928 (ISSN) 1687-0247 (eISSN)

rnaa193

Fundament

Grundläggande vetenskaper

Ämneskategorier

Annan matematik

Matematisk analys

DOI

10.1093/imrn/rnaa193

Mer information

Senast uppdaterat

2020-08-31