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Abstract

Optimization of industrial processes such as manufacturing cells can have
great impact on their performance. Finding optimal solutions to these large-
scale systems is, however, a complex problem. They typically include multiple
subsystems, and the search space generally grows exponentially with each
subsystem. This is usually referred to as the state explosion problem and
is a well-known problem within the control and optimization of automation
systems.

This thesis proposes a new method of solving these optimization problems
using a compositional optimization approach. This integrates optimization
with techniques from compositional supervisory control, dividing the opti-
mization of subsystems into separate sub-problems.

The key to this approach is the identification of local behavior in subsys-
tems, behavior that is independent of all other subsystems. It is proven in
this thesis that this local behavior can be optimized individually without af-
fecting the global optimal solution. This is used by the approach, to reduce
the state space in each subsystem, and then to utilize these reduced models
compositionally when the global optimal solution is computed.

Results in this thesis show that compositional optimization efficiently can
generate global optimal solutions to large-scale optimization problems, too big
to solve based on traditional monolithic models. It is also shown that these
techniques can be applied to several industrial applications, e.g. in logistics,
manufacturing etc.

Keywords: Compositional Optimzation, Large-scale optimization, Automa-
tion, Discrete Event Systems, Discrete Optimization.
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CHAPTER 1

Introduction

Automation is the technology by which a process or procedure is performed
with minimum human assistance [1]. This is something that we find every-
where in today’s society, within manufacturing, logistics, communication and
countless other areas. Moreover, the level of automation in these areas is con-
tinuously increasing to automate new tasks and improve the performance of
the system. With an increased level of automation comes an increased com-
plexity, where the systems include an increasing number of tasks and devices
that should be coordinated.

To automate a single task can be tricky enough and to coordinate a process
that includes hundreds of automated tasks is not a trivial problem. The
control of such a process can, for simplicity, be described in two parts: (i)
to ensure that all tasks are performed correctly and that the goal is finally
achieved, and (ii) to maximize the efficiency of the whole process such that
it can be performed as fast or as cheap as possible. The second part is an
extension of the first one, which implies that it is no longer enough to reach
the goal state. The controller has to be optimized such that the process can
be done in the best possible way. This optimization is the main topic of this
thesis.
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Chapter 1 Introduction

The work presented in this thesis initially explores and compares different
optimization paradigms for the specific type of optimization problems in Pa-
per A and later presents a novel optimization technique specifically designed
to excel at large-scale systems of systems in Paper B and C. The work focuses
mainly on manufacturing and logistics system, where multiple robots collab-
orate to perform certain tasks. The same theories could, however, be applied
to any automation system that is modeled similarly.

1.1 Research questions

The journey started 2015 when I was asked to help with an optimization of
a logistics system, including three stacker cranes that should collaborate to
perform a number of tasks. This sparked the first research question:

1. Which optimization paradigms are suitable for large-scale production sys-

tems?

This question was addressed in Paper A, which presents a comparison of
three well known optimization paradigms; Mixed Integer Linear Programming
(MILP), Constraint programming (CP) and graph search using A*, to explore
their individual strengths and weaknesses for a generalization of the given
problem.

The evaluation showed that all paradigms were able to solve the type of
problem addressed, but none of them scaled well enough to handle larger sys-
tems. The reason was that the complexity of the problem scaled exponentially
with the number of subsystems. The state space of the model became too big
to be solved by any of the methods. It suffered from the well-known state

explosion problem, also called the curse of dimensionality [2], [3], that is, as
the number of state variables in the system increases, the size of the system
state space grows exponentially.

To mitigate the state explosion I started to look for a viable method do de-
crease the complexity even before the optimization took part. Previous knowl-
edge in supervisory control theory (SCT) lead to the next research question:

2. Can SCT be integrated into the optimization to reduce the complexity of

the problem?
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1.2 Contributions

The idea was to use SCT to prune all in-feasible solutions such that they
do not have to be considered during a subsequent optimization. SCT could
probably reduce the complexity enough to solve slightly larger systems but it
does suffer from the same state explosion problem and, hence, will have the
same problem when dealing with large-scale systems. There are however tech-
niques within SCT that can mitigate this problem to some extent by modular
or compositional algorithms [4], when the system is separable into subsystems
(system of systems). It has been shown in later work that compositional su-
pervisory control can efficiently synthesize controllers for large-scale systems
[5], [6]. In the third and final research question I search for a way to utilize
the strength of the compositional SCT also within optimization:

3. Can optimization of system of systems be done compositionally and still

guarantee a global optimal solution?

This final question became the inspiration to the novel optimization tech-
nique presented in Paper B and C, which is considered as the main contribu-
tion of this thesis.

1.2 Contributions

The main contribution presented in this thesis is the optimization technique,
called Compositional Optimization, hereinafter called CompOpt. This method
integrates techniques from compositional supervisory control with traditional
graph based search algorithms. Its strength comes from the ability to re-
duce the state space of each subsystem individually by exploiting their local
behavior, mitigating the state explosion that otherwise would occur during
synchronization. Results in Paper B and C show that CompOpt drastically
reduces the search space during the optimization of a realistic large-scale ex-
ample and, hence, improves the computational complexity.

The most important components of this technique are: (i) a local optimiza-
tion algorithm that computes a minimal reduction of each subsystem while
maintaining the global optimal solution, (ii) an integrated synchronization and
optimization algorithm that computes reduced synchronous compositions be-
tween subsystems, and (iii) the compositional integration of all sub-problems
into a global optimal solution of the system without a monolithic model. Com-
positional methods are well known from SCT but, to the best of our knowledge,
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Chapter 1 Introduction

using these in a general optimization formulation is a novel contribution.

1.3 Outline

This thesis is divided into two parts. The first part aims to give the reader an
overview of the field of research and a better understanding of the concepts
discussed in included papers. The included papers constitutes the second part.

The introduction provides the background and the research questions that
have been the inspiration to the work. Chapter 2 includes a brief introduction
to the most common concepts and paradigms within optimization of automa-
tion systems in general, and how to compare them. Chapter 3 focuses on the
concept of modular/compositional optimization and specifically on position-
ing the main contributions of this thesis in relation to other work. A summary
of the included papers is provided in Chapter 4. Concluding remarks and a
direction of future work are provided in Chapter 5.
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CHAPTER 2

Modelling, Control and Optimization of Automation

Systems

An important tool in the development of automation systems is an unam-
biguous modelling paradigm that can be used to clearly specify the desired
behavior and to model included components and their environment. These
models and specifications can then be used in the control design or the opti-
mization of such systems. The choice of a suitable modelling paradigm does,
however, depend on the system that is being developed. This chapter gives a
few guidelines into the vast research area of modelling, control and optimiza-
tion of automation systems.

2.1 Discrete Event Systems

One of the most common ways to describe an automation system is as a
Discrete Event System (DES) [7]. A DES can informally be defined as a
discrete-state, event-driven system, which state evolution depends on the oc-
currence of instantaneous events that transition the system from one state to
the next.

7



Chapter 2 Modelling, Control and Optimization of Automation Systems

Figure 2.1: Visualization of as simple DFA model. The model specifies that the
events a and b should be executed once each in arbitrary order. If any
of them is executed more than once the system will reach an error state
from which it can not return.

The work in thesis has mainly used automata to model DES, where the
most common form of automata is probably deterministic finite automata

(DFA). A DFA is defined by a 5-tuple G := (Q, Σ, δ, q0, Qm), where Q denotes
the set of states, Σ denotes the set of events, δ : Q × Σ → Q denotes the
transition function, q0 ∈ Q denotes the initial state and Qm ⊆ Q denotes
the set of marked states. A DFA can be visualized as a graph, illustrated in
Fig. 2.1, where nodes and edges in the graph represents states and transitions
oif the DFA respectively. There are other similar modelling paradigms that
also specialize in the modelling of DES, e.g. Petri nets, Markov chains etc.

Modelling an automation systems as s DFA allows for verification and syn-
thesis using formal methods, such as supervisory control theory (SCT) [7]–[9],
which both can be used to verify the correctness of an existing system as well
as in controller design to ensure that he controller satisfy the desired behavior.
Techniques related to SCT has been utilized in this thesis in connection with
the compositional optimization, in Papers B and C, in order to prune away
unfeasible solutions from the search space of the optimization.

2.2 Optimal Control

The control synthesis of SCT focus in general on the generation of maximally
permissive controllers for a given set of specifications [7]. This means that
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2.2 Optimal Control

the purpose of the controller is to ensure that something bad never happens.
This is useful when the plant is operated by an external controller or human
operator. However, a controller of an automated task needs the ability to take
good decisions when multiple paths exist, in order to eventually let the system
reach a predefined goal state. Optimal control is the process of controlling the
system not only to reach a goal state but to do it in the best way possible.
This requires that the model is extended with a cost function that defines
the notion of good. The aim of optimal control is to make the system reach
the goal as cheap as possible, which constitutes an optimization problem or
optimal control problem.

Cost function defines the notion of good

The cost function of an optimal control problem defines the cost of taking
certain actions or executing specific events/transitions in case of a DES. The
type of cost to include depends on the desired outcome of the optimization. In
many applications this cost is represented by the execution time of the action,
which will result in an optimization that minimizes the total execution time
of the whole system, the makespan.

Constraints to specify required behavior

Just like in maximally permissive control synthesis, described in Section 2.1,
there are some system constraints that are non-negotiable, such as: “State
q must be reached eventually” or “Event σ must never occur”. These are
still viable in optimal control as specifications of desired behavior. The cost
function defines how to choose between two alternatives, while the constraints
define the ultimate goal.

Modeling and optimization paradigms

Modelling and solving optimal control problems is a vast area of research.
There are countless different modeling and optimization paradigms, each of
which have different strengths and weaknesses in terms of their ability and
efficiency in solving different classes of problems. For example, if the optimal
control problem can be solved using Linear Programming (LP) [3], then there
are very efficient solvers that efficiently solve even the worst case problems.

9



Chapter 2 Modelling, Control and Optimization of Automation Systems

Figure 2.2: The well-known math puzzle, Sudoku. This can be seen as a com-
binatorial optimization problem and is usually solve using a similar
technique as the propagation of constraints in CP.

An LP model is, however, restricted only to problems that can be expressed
in canonical form as:

minimize cTx

subject to Ax ≤ b

and x ≥ 0

where x represents the variables to optimize, c represents the costs related to
each variable, A and b are a matrix and a vector of coefficients defining the
constraints, and cT is the transpose of c. The first line above corresponds to
the objective of the model, where the variables in x should be chosen in such
a way that the expression is minimized. The second line corresponds to the
affine constraints, which, if combined, constitute the convex hull of a set of
feasible solutions.

Another example is, Constraint Programming [10], which is especially effi-
cient at certain type of combinatorial optimization problems, where parts of
the state space can be pruned away quickly by propagating the constraints.
An example of this is a Sudoku, shown in Fig. 2.2, which solution method is
similar to the procedure of CP. The basic concept is to consider each variable
individually and evaluate the set of feasible values of this variable, considering

10



2.2 Optimal Control

each constraint individually. This process has to be iterated multiple times,
until no changes to the variables can be made. For a Sudoku, this represents
that the empty fields are considered one at a time. The feasible values for
these fields are then evaluated based on the feasible values of all fields in the
same row, the same column, and the same square. In each iteration there is
at least one update to the set of feasible values, which will reveal additional
information about other fields. In this way the propagation can continue until
all fields have been assigned a value.

All classes of optimization problems can be modelled and solved using sev-
eral different paradigms. Moreover, the choice of model and solver will greatly
impact the computational complexity of the optimization. This is the basis of
the first paper, Paper A, where we evaluate three of the most well-known op-
timization pardigms: Mixed Integer Linear Programming (MILP), Constraint
Programming (CP) and Graph based search using A*.

11





CHAPTER 3

Compositional optimization

The aim of this chapter is to explain the concept of compositional optimization
in general, the challenges and the potential it presents, and finally to give the
reader a better understanding of CompOpt (the compositional optimization
method presented in this thesis) through a set of examples that illustrate the
key properties of the technique.

The main goal of compositional optimization is to minimize the state explo-
sion problem for the optimization of systems consisting of multiple subsystems.
The basic concept is to reduce each subsystem individually by exploiting lo-

cal behaviour and then construct the global solution compositionally using
their reduced models. This enables a global optimization of the complete
automation system without considering the complete monolithic state space.
The benefit is that this has the potential to reduce the overall complexity,
since the computation of a monolithic model typically results in a state ex-
plosion, where the state space scales exponentially with the size and number
of subsystems.
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Chapter 3 Compositional optimization

Figure 3.1: Illustration of a simple logistics system, consisting of two delivery
trucks A and B, operating in adjacent neighbourhoods, that should
pick up and deliver a total of nine packages. The pick up and delivery
location of a package i is marked iP and iD respectively.

3.1 Motivating example

This section provides a motivating example to illustrate the impact of the
state explosion problem and the potential benefit and challenges of using a
compositional optimization approach. The example depicts a simple logistics
system, consisting of two delivery trucks that pick up and deliver packages
in separate zones. Every day, there are a list of packages that should be
picked up and delivered within there operation area. One could argue that
this motivating example does not really depicts the optimization of a large-
scale system of systems, but the example is in fact already large enough for
the purpose of this illustration. The system is illustrated in Fig. 3.1.

The figure shows the two trucks and there respective zone. In the center
of the area there is a warehouse, which is where the trucks must start and
end each day. The figure also includes an example of a scenario where nine
packages should be picked up and delivered during the day. The pick up and
delivery location of these packages are marked with dots on the map, where
the labels iP and iD represent the pick up and delivery locations of package i

respectively. Some packages should be picked up in one zone but delivered in
another. In these cases the truck that picks up the package has to bring it back
to the central warehouse where it can be moved over to the delivery truck.
These type of switches between the trucks are assumed to occur only once
a day. The objective in this example is to deliver all packages as quickly as
possible, that is, the goal is to minimize the time when the last truck returns
to the warehouse in the afternoon. The weights to be considered by the cost

14



3.1 Motivating example

Figure 3.2: An automata model of the possible behavior of truck A, when assigned
the tasks to pick up packages 1, 2 and deliver package 1. States rep-
resent the physical locations, while edges represent operations in these
locations and travel in between. The state W represents the central
warehouse, which is both the initial and the accepting state of the
model.

function should in this case represent the time it takes to perform each task.
The tasks include the pick up and delivery of packages, as well as the travel
between these locations.

The physical position of each truck, can be modelled as a strongly connected
graph, where nodes represent the locations of the warehouse and the pick
up/delivery tasks, while the edges represent the travel in between. The actual
pick up and delivery operations can be modelled as self loops in the nodes
of the graph, indicating that a task is performed but the physical location
does not change. In favor of readability, a reduced example where truck A
only have to pick up and deliver package 1 and pick up package 2 is modelled
using a simple automaton in Fig.3.2. The markings of the transitions are: (i)
the self loops marked by 〈x〉 illustrating the different operations that can be
performed in each location, including 〈W 〉, which represents that the trucks
switch packages at the central warehouse, and (ii) the edges between different
locations marked by 〈x, y〉 representing the travel between two locations x

and y. The central warehouse is marked green to illustrate that this is the
desired goal state, the accepting state.

In addition to a model of the possible behavior, there are of course also
models of the desired behavior. These are specified in Fig. 3.3. The specifi-
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Chapter 3 Compositional optimization

(a) (b)

Figure 3.3: Generalized models of individual specifications for the route of each
package. (a) applies to packages that is picked up and delivered by the
same truck, (b) applies to packages that should be picked up by one
truck and delivered by another.

cation in Fig. 3.3(a) is applied to all packages that should be picked up and
delivered by the same truck. It specifies that the package has to be picked up
and then delivered to its final delivery location exactly once. The specification
in Fig. 3.3(b) is similar to 3.3(a) but should be applied whenever a package
is to be picked up in one zone by truck X and delivered to another zone by
truck Y . It is then required that the package is switched from one truck to
the other in the central warehouse. Individual specifications like these have
to be included for each package.

To evaluate the example, the scenario from Fig 3.1 is modelled as a system of
systems, using plant models for each truck and specifications for each package
to represent the subsystems, such as shown in Fig. 3.2 and Fig. 3.3. Any
optimization applied using a monolithic approach would have to consider a
search space spanning the complete synchronized behavior of all subsystems.
This is true regardless of the optimization paradigm that is used. Advanced
paradigms, such as MILP, CP, might be able to perform clever pruning of
the search space in an early stage, but initially all possible combinations of
states and transitions have to be considered. This is a potential problem since
the size of the search space grows exponentially, due to the state explosion
problem. The search space of the simple example shown here includes 342, 144
states and 6, 329, 115 transitions, representing the synchronous composition
of all subsystems.

When solving the same example using CompOpt, the optimization problem
is partitioned into multiple sub-problems but the sum of states in the search
spaces of all sub-problems combined only adds up to 16, 396 states. The reason
that CompOpt is able to perform so much better than the monolithic approach
is the ability to reduce the subsystems even before they are synchronized. The
full search space is never computed, no unnecessary states have to be pruned
away or evaluated. It is worth noting that CompOpt only represents one spe-
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3.2 Challenges

cific compositional approach, which most certainly can be further enhanced,
but the purpose of this example is just to illustrate that there is much to gain
from the ability to optimize systems of systems compositionally.

One could argue that there might exist more efficient models of this system
than what is shown here. To a human it is for example obvious that the
trucks can be partially optimized individually, since they drive in separate ar-
eas, have separate lists of tasks and so on. It is, however, not obvious exactly
how this problem can be partitioned since there still exist dependencies be-
tween the trucks. Without digging into the details of exactly which tasks that
can be considered local, there is no way to partition this problem manually.
One benefit of using CompOpt is that it reduces the need of smart manual
partitioning of the optimization problem, since it already exploits the local
behavior maximally.

3.2 Challenges

Discrete optimization problems are considered NP-hard or NP-complete[11]
in general and, hence, there cannot exist any general method that solves all
of these in polynomial time. There is simply no way to completely solve the
state explosion problem. To solve large-scale optimization problems one must
instead exploit the properties of the problem. Efficient solution methods have
been presented over the years for several classes of discrete optimization prob-
lems, such as traveling salesman, graph coloring, job-shop and minimum cut
problems. All of these solution methods are, however, efficient mainly for
the specific problem class that they are meant to address. When the specific
problem at hand deviates from the standardized class the solution method
typically becomes less efficient. The same is true also for compositional op-
timization, which exploits knowledge about the local behavior of subsystems
to reduce the global state space.

Compositional SCT exploits the fact that if a certain sequence of events
leads to something bad in one of the subsystems, then it is bad for the entire
system and should be prevented. This makes sense since a correct execution of
the full system requires all subsystems to function individually. In contrast to
SCT, compositional optimization can not use such a simplification. There is
no guarantee that the quickest or cheapest sequence of events in a subsystem
is part of the quickest or cheapest sequence of events for the whole system.
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Figure 3.4: A simple illustration of a railway system with two trains driving in
opposite directions.

This can be illustrated with a simplified example of a railway system, shown
in Fig 3.4. The example includes two trains A and B that are moving with the
same speed in opposite directions from X to Y and from Y to X respectively,
and the global objective is to minimize their combined traveling time. It is
easy to see that the optimal solution requires train A to wait at Z until B has
arrived, since B otherwise would not be able to start until A has finished. If
we, however, only optimize the path of A, without taking B into considera-
tion, it would be more efficient to just continue directly without delays. This
illustrates one of the main limitations of compositional optimization. There is
typically not enough information available to decide on a local optimal path
for each subsystem individually. The key challenge then becomes the identi-
fication of those parts of the subsystems that we do have enough information
about to reduce locally.

3.3 Previous Work

As mentioned in Section 2.2, many efficient methods for optimization of au-
tomation systems have been explored over the years, using a wide range of
different optimization techniques [12]–[16]. Many of them have been proven
efficient with respect to computational complexity, and typically scale poly-
nomially with the size of the system. However, these methods normally do
not utilize any modular or compositional approach and, hence, suffer greatly
from the state explosion problem. It is not enough with methods that scale
polynomially with the size of the system if the size itself scales exponentially
with the number and size of its sub-systems.

In recent years, related work has been presented by other groups on mod-
ular or compositional methods, but these are either very restrictive in their
reduction of the sub-systems or offer only approximative solutions [17], [18].
Particularly relevant to CompOpt is the work by Ware and Su in [19], which
proposes a compositional method for synthesis of a time optimal controller.
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In contrast to CompOpt, they do not provide any general local optimization
algorithm that can reduce intermediate automata, unless these are completely
disjoint. This is left for future research.

3.4 CompOpt – an Optimal Compositional

Optimization Technique

Section 1.2 states that the main contribution of this thesis is CompOpt, de-
veloped in Papers B and C. The technique is specifically designed for the
mitigation of the state explosion problem during the optimization of large-
scale systems of systems. It is done by the identification and optimization of
strictly local behaviour within each subsystem, combined with an integrated
synchronization and optimization algorithm. These methods enable Com-
pOpt to compute global optimal solutions without computing any monolithic
models.

Local optimization reduces each subsystem individually

The local optimization method is the core of CompOpt. We prove in Pa-
per B that this method can compute maximal reductions of each subsystem
or sub-problem, called locally optimal reductions, without affecting the global
optimal solution. The level of reduction is paramount to the complexity of
the optimization, since it directly affects the extent of the state space growth
in the subsequent synchronization.

The key to the local optimization method is to identify parts of the behavior
in the subsystems that are strictly local, meaning that the behavior in these
parts is independent of other subsystems. These parts can then be considered
individually, without affecting the global problem.

To give a better understanding of the properties of local optimization, con-
sider a small system consisting of two subsystems G1, G2. The task at hand
is to optimize the first subsystem G1 shown in Fig. 3.5(a), where the marking
{σ, w} of transitions indicates that the transition is activated by the event σ

and has the weight w. The only available information of G2 is that the event
a is shared between the two subsystems in some way, how they interact is not
revealed. The local optimization have to preserve the shared behavior, since
this can affect the global behavior, which in this case means that the locally
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(a) (b)

Figure 3.5: An illustration of the properties of local optimization. (a) shows a
plant model of a subsystem G1, where it is known that the event a is
shared with another subsystem, (b) shows the locally optimal reduction
of G1, where the local transition {d, 3} and the sequence {b, 1}, {c, 1}
has been replaced by an abstraction {bc, 2}.

optimal reduction of G1, denoted G′
1, will include the same transition over

event a. The rest of the behavior can be considered local and can, hence,
be optimized without affecting G2. The resulting locally optimal reduction
is shown in Fig. 3.5(b), where the event d is deactivated since it is more ex-
pansive than the sequence of local events b, c. The sequence of local events is
abstracted to a single transition representing there combined behavior.

Integrated synchronization and optimization

The integrated synchronization and optimization method is the latest addition
to CompOpt and was proposed for the first time in Paper C. This method
mainly aims to reduce the complexity of dealing with a specific type of systems
called time-weighted systems, where the cost function expresses the execution
time of the tasks performed by each subsystem. CompOpt will then minimize
the total execution time of the full behavior of the system, which requires
synchronization of the time lines for the subsystems.

In SCT, these type of systems generally requires more complex modelling
paradigms such as timed automata [20]. An alternative approach is to apply
simplifications to the time-weighed system, e.g. discretization of the time

20



3.4 CompOpt – an Optimal Compositional Optimization Technique

(a) (b) (c)

Figure 3.6: An example showing that default synchronous composition is insuffi-
cient when synchronizing time-weighted systems. (a-b) represent two
independent subsystems that should run in parallel, (c) gives their
synchronous composition.

line. This was applied using tick automata in Paper B. It was then sufficient
to show the potential of CompOpt in general, but it was proved to be very
inefficient, since it resulted in a reduced accuracy as well as a drastically
decreased efficiency of the optimization.

The reason why these type of systems require a more complex modeling
framework is that they no longer are pure DESs. The fact that the cost
function or weights in these systems reflect the execution time of there transi-
tions, makes it necessary to also consider the synchronization of the execution
of these transitions, something that by construction can be neglected for an
ordinary DES, since the transitions are assumed to occur instantaneously.
The synchronous composition will, by construction, model parallel events as
a sequence. This makes sense in a DES, since the events are by definition
instantaneous, and, hence, can occur at the same time even if modelled se-
quentially. It does not make sense when the weights connected to the system
transitions represent the execution time of the transitions, which would re-
quire a transition to finish its entire execution before it reaches the next state,
where subsequent events can occur.

To illustrate this effect, consider the automata in Fig. 3.6, where (a) and (b)
are two independent systems that run in parallel and (c) is the default syn-
chronous composition of these systems. Let us first assume that the weight as-
sociated with each transition represents the energy consumption of the event.
Then, a sequential model of the events a and b is correct. Each event, even if
executed in parallel, still generates an individual energy consumption and the
total consumption equals the sum of the two weights which will be the result
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of the sequence of transitions in Fig. 3.6(c). Now let the weights represent
the execution time of the transition. Since it is specified that the subsystems
run in parallel, we expect G1 and G2 to reach its marked state in 1 and in
2 seconds respectively, independent of each other. Following the behavior of
the synchronous composition in Fig. 3.6(c) does, however, indicate that it
will be the sum of these execution times that is required to reach the marked
state. This shows that the default synchronous composition known from DES
is insufficient for the synchronization of time-weighted subsystems.

To fully understand the type of parallel behavior that should be consid-
ered, consider the timed Petri net[21] in Fig. 3.7. The parallel behavior of the
events a and b can easily be incorporated using a Petri net model since this
paradigm has the ability to use multiple tokens, which in this case are used
to represent that the two transitions are performed in parallel. The timed
Petri net model is however a more complex model than an automaton, in-
cluding more information in each state about the current status of ongoing
and possible transitions. To search through this system one would still need
to explicitly search through each variation of these states, which would have
the same effect as using a timed automaton or any other complex modelling
paradigm.

The new approach, proposed in Paper C, for the synchronization of sub-
systems in CompOpt, is able to model the parallel execution of tasks in mul-
tiple time-weighted systems using only regular weighted automata, such as
in Fig. 3.6. Moreover, by integrating an optimization heuristic, similar to
the local optimization, in the synchronization it can utilize the weights of the
transitions in order to compute a synchronous compositions that is partially
reduced by construction. This enables the subsequent optimization of the
composition to be faster due to the reduced search space.

To better understand the concept of the proposed approach, consider the
weighted automaton in Fig. 3.8. This model represents the same synchronous
composition as in Fig. 3.6 but has in this case been synchronized using the pro-
posed approach in Paper C. The weights of the transitions of the synchronous
composition G1 ‖ G2 are no longer directly related to the corresponding tran-
sitions in the subsystems G1 and G2. Instead they have been modified during
the synchronization in order to represent the parallel execution of the events.
One can see that the weight of transition a is now set to zero. This means
that the the transition is performed instantaneous, just like a regular DES,
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Figure 3.7: A timed Petri net model, representing a parallel execution of events
a and b. Note that the final state is drawn as an accepting state
only to highlight that it represents the same accepting state as in the
corresponding automaton model. Generally, accepting states are not
represented graphically for Petri nets.

and the actual execution time of a is instead covered during the subsequent
transition. The weight of b is kept at 2 to allow both event a and event b to
finish there execution. The system then ends up in the accepting state. This
approach and further examples are explained in detail in Paper C.

Compositional computation of a global optimal solution

That CompOpt uses a compositional approach is pushed as one of the main
contributions to this thesis. But once the local optimization and integrated
synchronization and optimization is in place, the compositional computation
actually becomes trivial.

From SCT we know that the compositional synthesis of a supervisor cor-
responds to an iterative process, where individual supervisors are computed
for each subsystems and then combined incrementally while doing further
synthesis step-wise. This is the case also in CompOpt. Let the set G =
{G1, G2, . . . , Gn} be a weighted system that should be optimized using Com-
pOpt. For example, let G′

i represent the locally optimal reduction of a subsys-
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Figure 3.8: A time-weighted automaton representing the parallel execution of the
events a and b.

tem Gi and let Gi ‖ Gj be the composition of the systems Gi, Gj computed us-
ing the integrated synchronization and optimization method presented above,
then the iterative process of CompOpt can be simplified to

S′
i =

(
G′

i ‖ S′
i−1

)′
, ∀i ∈ [1, n],

where S′
n will be the final global optimal solution.

The reason why this simple compositional approach is able to compute a
global optimal solution is that each iteration of the algorithm expands on the
local behavior by synchronizing additional subsystems. Once the final model
Sn is reached, all tasks can be considered as local, which will let the locally
optimal reduction S′

n represent the global optimal solution.

Strengths and limitations of the approach

The strength of CompOpt is first of all that it fully integrates the optimization
into a compositional framework. It is shown in Papers B and C that this has
the potential to drastically reduce the state space of the optimization problem
without computing large monolithic models.

However, from Section 3.2 we remember that one of the main limitations
to any compositional optimization approach is that the information available
when considering a single subsystem typically is insufficient for the compu-
tation of a final optimal control strategy. CompOpt is no exception to this
rule. It does guarantee that the local optimization computes a minimal reduc-
tion of each subsystem and that the final solution will be a global optima for
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Table 3.1: Average number of states in the monolithic model of an instance with 2
robots when the number of tasks is increased from 2 up to 10, calculated
using instances with ten different random seeds.

Tasks States

2 8,140.0
3 15,392.0
4 96,030.8
5 180,032.0
6 912,585.6
7 1,638,088.0
8 6,986,696.0
9 11,981,064.0
10 42,450,952.0

the system, but we show in Papers B and C that the efficiency of CompOpt
depends heavily on the complexity of the local behavior in the subsystems.

Taking the limitations into account, results in the papers show that Com-
pOpt has the potential to improve efficiency of the optimization of large-scale
systems of systems, when these have a complex local behavior in the subsys-
tems. Tab. 3.1 includes a part of an example from Paper C, where a number of
robots, here only 2, should each perform a varying number of tasks. The table
indicates how the average size of the state space increases with the number of
tasks to be performed. Without going into all the details about the example,
these are described in fully in the paper, it is obvious that the exponential
growth of this state space quickly becomes a problem for an optimization. In
the paper, one can also observe that the growth becomes even worse when the
number of robots are increased, instead of the number of tasks.

The results of solving the same systems as in Tab. 3.1 using CompOpt is
shown in Fig. 3.9. Observe that number of states are represented using a
logarithmic scale. The figure originally comes from Paper C and includes also
varying number of robots but the bottom blue line of the graph represents
the case with two robots, which is equivalent to the example in the table.
One can see in the figure that the state space no longer grows exponentially
with an increased number of tasks. Instead the growth resembles a low degree
polynomial, since the line is almost linear. The paper further evaluates the
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Figure 3.9: An example from Paper C, illustrating how the state space of CompOpt
scales with the number of robots and tasks per robot. Each line in the
plot represents a fixed number of robots ranging from 2 to 15.

potential of the approach and also includes detailed examples that illustrate
possible limitations of the optimization method.

Applying compositional optimization in industry

This thesis gives examples of industrial applications both from logistics, in
the motivating example of Section 3.1, and manufacturing industry, shown
in the large-scale examples of Papers B and C. The general formulation of
CompOpt does, however, enable it to optimize any system of systems as long
as these can be modelled using weighted automata. These type of systems
can be found in a wide range of applications and are in no way restricted to
only the traditional areas of industrial automation.

In Papers B and C we apply CompOpt on an artificial example of a robot
cell in production industry. This specific example may not be entirely realistic
but there are similar scenarios in industry today. The example presented in
these papers is a simplification of a respoting problem in a welding robot
cell. Just like the example, the real scenario includes multiple robots that
operate in parallel on the same product but from different angles. During
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a production cycle there are specific events that affect all robots similarly,
such as the assembly of one additional sub-part to the product. A few of the
welding operations performed by the robots has to be performed while the
assembly robot is still gripping the part while a majority of the operations
can or has to be performed once the assembly robot has left the zone.
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CHAPTER 4

Summary of included papers

This chapter provides a summary of the included papers.

4.1 Paper A

F. Hagebring, O. Wigström, B. Lennartson, S.I. Ware and R. Su
Comparing MILP, CP, and A* for Multiple Stacker Crane Scheduling
13th International Workshop on Discrete Event Systems (WODES), 2016,
Xi’an, China

This paper presents an optimization model for a logistics system contain-
ing three stacker cranes that collaborate to perform a number of tasks. This
model is then used to compare and evaluate the strengths and weaknesses of
the well established optimization paradigms Mixed Integer Linear Program-

ming and Constraint Programming, as well as the simpler graph based search
strategy A*. The comparison includes their ability to solve problem instances
of different size as well as their ability to find good approximations to the
original problem where no global optimal solution can be found.
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4.2 Paper B

F. Hagebring and B. Lennartson
Compositional Optimization of Discrete Event Systems
14th IEEE Conference on Automation Science and Engineering (CASE),
2018, Munich, Germany.

This paper presents CompOpt as a novel optimization technique that in-
tegrates techniques from compositional supervisory control with traditional
graph based search algorithms. Its strength comes from the ability to re-
duce the state space of each subsystem individually by exploiting their local
behavior, mitigating the state explosion that otherwise would occur during
synchronization. The technique shows great potential in dealing with large-
scale systems of systems.

4.3 Paper C

F. Hagebring and B. Lennartson
Time-Optimal Control of Large-Scale Systems of Systems using Com-
positional Optimization
Submitted for possible journal publication. 2018

This paper improves on CompOpt by proposing a novel and efficient syn-
chronization method for time-weighted systems, called reduced asynchronous

synchronization (RAS). This method is able to synchronize the parallel be-
haviour of time-weighted subsystems without adding any additional states or
transitions to their models. The key is the integration of an optimization
heuristic that, similarly to the local optimization, reduces the state space of
the synchronous composition by removing non-optimal or redundant solutions,
while maintaining the global optimal solution. We show in this paper that this
further improves the efficiency of CompOpt by strengthening the mitigation
of the state explosion problem.
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CHAPTER 5

Concluding Remarks and Future Work

The work initially started as an evaluation of existing optimization paradigms,
trying to identify efficient methods to deal with systems of systems. The eval-
uation did, however, result in the realization that all the evaluated methods
suffered severely from the state explosion problem. This was, of course, ex-
pected since the problem is caused by the modelling rather than the optimiza-
tion it self. This became the inspiration to the remainder of this thesis and
the aim has since then been to push the boundaries of large-scale optimization
of systems of systems.

The major contribution of this thesis is a novel approach to optimization
of large scale systems of systems. This method, called compositional opti-
mization, integrates time optimal control with methods from compositional
supervisory control.

There are three key components in this method: (i) a local optimization
technique that reduce the size of each sub-system individually to mitigate the
state explosion problem, (ii) an integrated synchronization and optimization
technique that synchronize the behavior of multiple subsystems and at the
same time reduces the global state space using a fully integrated optimization
heuristic and (iii) the compositional approach that computes the global opti-
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mal solution of the complete system using the results from (i) and (ii). It is
proven in this thesis that the proposed compositional optimization approach
both maintains the global optimal solution of the system and computes a
minimum reduction of each subsystem.

It is shown in the included papers that this method has the potential to
be very efficient in large-scale optimization. Moreover, it is shown that it can
scale very well with the number of sub-systems. This is especially true when
the subsystems have a complex local behavior, something that in a mono-
lithic optimization would cause an exponential growth of the search space.
It is shown in this paper that the method can calculate globally optimal so-
lutions for large-scale industrial applications. The focus has mainly been on
automation systems, including examples of manufacturing and logistics sys-
tems. Yet, the general theories presented can be applied to any system of
systems, as long as it can be modelled as a discrete event system.

In future work it would be interesting to apply this method as an online
optimization method in real industrial applications. The main challenge that
this presents is to model these industrial applications in an efficient way, such
that their local behavior can be exploited maximally by the approach. Addi-
tionally, it would also be of interest to implement parallel computation of the
sub-problems in compositional optimization and implement this as a cloud
service to evaluate the potential of having scalable computational power.
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