
Intrusion Detection in Industrial Networks via Data Streaming

Downloaded from: https://research.chalmers.se, 2025-07-03 05:55 UTC

Citation for the original published paper (version of record):
Butun, I., Almgren, M., Gulisano, V. et al (2020). Intrusion Detection in Industrial Networks via Data
Streaming. Industrial IoT: Challenges, Design Principles, Applications, and Security: 213-238.
http://dx.doi.org/10.1007/978-3-030-42500-5_6

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)

Pr
e-

pr
in

t

Intrusion Detection in Industrial Networks
via Data Streaming

Ismail Butun (Ph.D.), Magnus Almgren (Ph.D.), Vincenzo Gulisano (Ph.D.)
and Marina Papatriantafilou (Ph.D.)

Abstract Given the increasing threat surface of industrial networks due to dis-
tributed, Internet-of-Things (IoT) based system architectures, detecting intrusions in
Industrial IoT (IIoT) systems is all the more important, due to the safety implications
of potential threats. The continuously generated data in such systems form both a
challenge but also a possibility: data volumes/rates are high and require processing
and communication capacity but they contain information useful for system opera-
tion and for detection of unwanted situations.

In this chapter we explain that stream processing (a.k.a. data streaming) is an
emerging useful approach both for general applications and for intrusion detection
in particular, especially since it can enable data analysis to be carried out in the
continuum of edge-fog-cloud distributed architectures of industrial networks, thus
reducing communication latency and gradually filtering and aggregating data vol-
umes. We argue that usefulness stems also due to facilitating provisioning of agile
responses, i.e. due to potentially smaller latency for intrusion detection and hence
also improved possibilities for intrusion mitigation. In the chapter we outline archi-
tectural features of IIoT networks, potential threats and examples of state-of-the art
intrusion detection methodologies. Moreover, we give an overview of how leverag-
ing distributed and parallel execution of streaming applications in industrial setups
can influence the possibilities of protecting these systems. In these contexts, we give
examples using electricity networks (a.k.a. Smart Grid systems).

We conclude that future industrial networks, especially their Intrusion Detection
Systems (IDSs), should take advantage of data streaming concept by decoupling
semantics from the deployment.

Ismail Butun, Magnus Almgren, Vincenzo Gulisano, and Marina Papatriantafilou
Chalmers University of Technology, Department of Computer Science and Engineering (CSE),
Network and Systems Division, 412 96 Gothenburg, Sweden,
emails:{ismail.butun, magnus.almgren, vincenzo.gulisano, ptrianta}@chalmers.se
Acknowledgement: This research has been partially supported by the Swedish Civil Contingencies
Agency (MSB) through the projects RICS, by the EU Horizon 2020 Framework Programme under
grant agreement 773717, and by the Swedish Foundation for International Cooperation in Research
and Higher Education (STINT) Initiation Grants program under grant agreement IB2019-8185.

1

Pr
e-

pr
in

t

2 Butun et al.

1 Introduction

The digitalization of society is on-going and affects everything from consumers
and their home devices/networks to complex industrial systems such as the smart
grid. The digitalization brings many advantages, but also comes with risks: due
to distributed Internet-of-Things (IoT) architectures, the threat surface is rapidly
increasing and many societal critical systems have become susceptible to cyber
attacks and even attacked. Anecdotally, whereas cyber attacks and defenses of the
20th century focused on data and information, attacks of the 21st century also focus
on physical manipulation of systems with devastating effects [15].

Even though cyber security for traditional IT systems is quite mature, there is a
gap when it comes to deploying security mechanisms for industrial networks. The
architecture is highly distributed, data is generated at many points in the system and
the aggregated volume at central nodes is very big even if data is highly filtered and
aggregated beforehand (which may in turn remove important indications of attacks).
Orthogonal, there are also aspects of confidentiality and privacy of data which argue
for some analysis to be local to the node where data is generated while a full system
attack analysis needs to be done centrally.

The explosion of sensor data in the last twenty years has also shown the limitations
of databases, where information first needs to be stored and then queried. Driven
by general need for analysis of very large data, the streaming paradigm was devel-
oped emphasizing the query/analysis of the data over data persistence in the form
of databases. Considering data as flows between nodes makes the data streaming
paradigm well suited to the analysis of data in highly distributed industrial networks,
such as the smart grid. Data is analyzed on the node and then streamed throughout
the system. However, even with the advantages of data streaming for general analysis
of data, this same paradigm has not been widely adopted by the security community
to enhance security mechanisms tailored to industrial networks.

Following the earlier chapters’ presentations of wireless communication needs
and challenges, automation trends and applications of Industrial IoT (IIoT) and
industrial networks, this chapter is dedicated to present intrusion detection and how
it can be combined with the principles from data streaming to build more efficient
attack detection systems for industrial networks.1

As data is generated at high rates and volumes in the industrial networks, bottle-
necks occur from data/command source to destination, which eventually increases
the processing and response times of the queries/commands. In this aspect, we
project that the data streaming paradigm would be a remedy in helping the efforts
of migration of cloud to the edge, meaning that the data are first analyzed as close
to the source as possible, before a subset / refinement is sent elsewhere for further
analysis. Apart from reducing the volume of data to be analyzed centrally, the local
analysis is also faster, meaning that if early signs of attacks are detected the node can
quickly reconfigure itself to mitigate the attack.

1 Industrial networks and IIoT are used interchangeably, with a preference for the former term.

Pr
e-

pr
in

t

Intrusion Detection in IIoT 3

The rest of the chapter is structured as follows: Section 2 presents the preliminaries
by introducing the distributed network architecture of evolving industrial networks
along with our use-case scenario, the smart grid. We look at requirements suggested
in literature for such networks, as well as give a summary of actual attacks to learn
from when designing new detection algorithms. We then introduce data streaming
in Section 3 with a short motivating attack detection example. Section 4 introduces
IDSs, with their underlying detection algorithms with some concrete examples. In
Section 5, we discuss how streaming-based applications can be leveraged to improve
intrusion detection systems. Finally, Section 6 concludes the chapter.

2 Preliminaries

This section gives an introduction to the distributed network architecture of evolving
industrial networks, followed by an example of such infrastructures, namely a generic
smart grid system. The security requirements in such networks are discussed as well
as important historical attacks found in the literature.

2.1 Distributed edge-fog-cloud architectures

Nowadays, with the adoption of edge-computing, the computing resources are ap-
proaching to the end-devices from the cloud, hence the term “distributed network”
is widely used. We foresee that future industrial network deployments will benefit
from this distributed networks wisely. An example to evolving multi-tier architecture
of IIoT, Fig. 1 [42] presents an abstraction, consisting of:

• Cloud / high-end layer, where processing devices are commonly high-end servers,
multi/many -core systems, or supercomputers, such as a data center of a business
network, in which final data allocations, processing, storage, etc. are handled.
Location wise, they are at the farthest point of the network from the low-end
layer, yet reachable to/from each end-device.

• Fog / intermediate layer, where processing devices provide moderate computing
power, such as edge optimized network servers, located in the vicinity of the
low-end layer, in order to provide real-time experiences to the low-end devices.

• Edge / IoT / low-end layer, where resource-constrained on-premise devices are
representative examples, such as machines, robot arms, door locks, sensors, etc.

The fog layer constitutes an intermediate layer in between IoT and cloud layers,
to provide ways of leveraging cloud layer resources by the resource-constrained IoT
end-devices.

Pr
e-

pr
in

t

4 Butun et al.

Fig. 1: Fog computing and cloud computing layers in IoT networks [42].

2.2 A use-case scenario of an industrial network: A smart grid system

As a use-case scenario of an industrial network, we present a smart grid system.
A full grid contains the generation, transmission and the distribution, where we
emphasize the electricity distribution network with the coupled information network
on top. This part of the grid contains the infrastructure for distributing electricity to
customers, from the transmission grid out to the substations and finally the customers
with smart meters to measure quality of the delivered electricity as well as to handle
billing. The smart meters can be seen as a type of IoT devices, which communicate
using ZigBee, BLE, LoRa, NB-IoT, etc. All together, they build up the so called
Advanced Metering Infrastructure (AMI), which is the heart of a smart grid system.
Typically, we can distinguish the following layers of a smart grid system:

1. Smart meters: Instant usage data from the smart meters are collected by the
sensors and then sent to the utility head-ends via data concentrators, for further
analysis and/or storage to be used at billing, statistics, etc. Think of IoT layer of
the Fig. 1.

2. Data concentrator: Data from many (hundreds-thousands) smart meters are
collected at the data concentrators and relayed to the AMI head-end. Think of
Fog layer of the Fig. 1.

3. AMI head-end:A broad spectrum of the data is stored and processed at the AMI
head-end (the utility side), such as the consumer short/long term electricity usage
data. Think of Cloud layer of the Fig. 1.

As a specific example; electricity usage data of the consumers follow the path of
1-2-3 (upstream); whereas commands (such as pushing software patches) from the
control center follow the reverse path of 3-2-1 (downstream).

Pr
e-

pr
in

t

Intrusion Detection in IIoT 5

Some data generated at the smart meter is used for billing. As such, it needs to be
correct, can be aggregated and only available to theAMI head-end at regular intervals
and not in real time. Other data generated at the smart meter offers the possibility to
improve the overall electricity quality if it can be shared instantaneous with at least
the data concentrator (and the corresponding sub station for the electricity flow).
For the best effects, this data should be sampled often (implying customer privacy
concerns) but it would not need to be stored.

Considering the attack surfaces of the system, attacks can target any level of
the system and the communication in-between. As such, analysis should include
data from the individual smart meters (analyze number of local failed logins), some
aggregate at intermediate nodes from smart meters to understand if some behavior
is wide-spread (a wide-spread attack to many nodes to probe for weak passwords),
with the final aggregate analysis in the head-end.

2.3 Requirements for protecting industrial networks from
cyber-attacks

Kumar et al. list the following basic requirements for protecting the users of industrial
networks and also the network itself from cyber-attacks [28].

For the network:

• Integrity of data and commands: The integrity of the data is critical, as it might
affect the operation functions in the factories, the AMI meter readings, the sent
commands to the actuators, etc.

• Availability against DoS/DDoS attacks:Denial-Of-Service (DoS) attacks cause
depletion of the network resources (e.g. throughput, bandwidth, etc.) by sending
fake requests either to the server or to the whole network. On the other hand,
Distributed DoS (DDoS) attacks are executed by leveraging distributed captured
components, such as compromised smart meters of the AMIs; captured firewalls,
routers and switches of regular networks; and/ or consumer appliances and using
them against a single target. DDoS is one of the most dreadful attacks against
industrial networks and it is hard to circumvent [47]. For instance, availability
of the pricing information and also the power are the key aspects of smart grid
networks, therefore they need to be somehow guaranteed (pricing for the provider,
and power for the consumer).

For the users:

• Confidentiality of the usage: The data including the usage of the services offered
by the industrial network provider should be kept confidential. For instance, in a
smart grid network, short/long -term electricity usage information of a commer-
cial customer, i.e. an industrial company, should be kept confidential, in order to
protect company’s production secrets from industrial espionage.

Pr
e-

pr
in

t

6 Butun et al.

• Data privacy of the users: Consumers’ private information, such as Personal
Identification Information (PII) should not be revealed to the outsiders; an adver-
sary shall not gain any knowledge about individual users of the industrial network
without the will of the consumers. Among PII, most sensitive ones are citizen
ID number, passport number, passwords of online banking accounts, credit card
information, or other financial data, etc. [12]. For the case of smart grid net-
works, the information pertaining the instant electricity usage patterns might be
sensitive as they may reveal personal activities such as presence at the home,
being awake or not, etc. All these kinds of sensitive user information should
be protected by the network operator (for instance, electricity utility provider in
smart grid systems) from unauthorized viewers. More importantly, future im-
plementations of the smart grid systems should comply with the newly released
General Data Protection Regulation (GDPR, privacy law of E.U.), by informing
the consumers about their data collection processes and obtaining their consent;
along with applying transparent data storage/processing policies [37]. Therefore,
the utility center should be aware of the total consumption information for billing
operations, yet should decide storing the details of the daily consumption pattern
of the individuals according to their privacy choice [3].

Privacy and Confidentiality Goals: As mentioned above, confidentiality of the
industrial customers, and privacy of the individual consumers are very important
for the industrial networks. Especially after the GDPR law, privacy carries prime
importance and if violated, it might be costly for the network operators (such as
the utility providers in smart grid systems). While building the industrial networks,
particularly following enlisted privacy and confidentiality goals should be aimed at
by the network operators [27]:

• Anonymity: A user should not be identifiable within a set of subjects.
• Unlinkability: After the billing service, any consumption data should not be

linkable to the related customer.
• Undetectability: The consumption data should not be detectable by adversaries.
• Unobservability: An outsider should not observe whether the communication

takes place or not regarding execution of certain system related messages and/or
other actions of interest, such as sending consumption messages, demand-bidding
messages, etc.

• Pseudonymity: In smart grid communication, many parties may want to have
access to the consumption data from the smart meters or AMI, therefore, a smart
meter should have a pseudonym identifier. These pseudonym identifiers can only
be possessed by the dedicated entities that are communicating or exchanging
messages with the smart meter.

Having these requirements in mind, let’s now look at actual attacks that are found
in the literature.

Pr
e-

pr
in

t

Intrusion Detection in IIoT 7

2.4 Known Cyber-Security Attacks on Industrial Networks

The frequency of cyber-attacks involving industrial networks, especially CPSs, has
been expanding. Here, we present only a small sample of well known incidents in
chronological order [43]:

Maroochy Shire Sewage Spill (2000:) The city council of Maroochy Shire
(Queensland, Australia) has outsourced the water treatment facility automation job
to a contractor in 1997 and the contractor installed Supervisory Control and Data Ac-
quisition (SCADA - industrial automation and control standard devised by Siemens
Inc.) automation tools to the 142 sewage pumping stations. The number of faults
recorded has never exceeded two or three per day till late January 2000. However,
the number of faults increased drastically whenever cyber-intrusions happened and
continued till the date they were identified on 23 April 2000. The pumping stations
were normally controlled by the main SCADA station through the dispersed Re-
mote Terminal Unit (RTU)’s. The sabotage was executed by an old employee who
took advantage of the wireless RTU’s to execute the manipulating commands, an
execution of man-in-the-middle (MITM) attack. This overall incident caused a spill
of 264K gallons of raw sewage to the environment, which caused an overall bill
of $676,000. This is the first ever reported cyber-security incident in the history of
SCADA systems [36].

Slammer (2003): Slammer malware targeted a nuclear power plant located at Ohio
in 2003 and shut off its safety monitoring system for five hours. After the incident,
it was revealed that the attacker followed a T-1 communication line to connect the
corporate network which bypassed the plant’s firewall.

Aurora (2007): This vulnerability has shown in 2007 to affect systems that control
rotating machinery in the industrial sites such as turbines and diesel generators.

BlackEnergy (2009): This malware targets the Human-Machine Interface (HMI)
software of the industrial control systems. It is believed that the first ever hacker-
caused power-outage at Ukraine in 2015 was caused by this malware. BlackEnergy
was used to steal a legitimate user’s Virtual Private Network (VPN) credentials, and
by using that attackers gained remote access to the SCADA network of the power
distribution and also the HMI. Then they executed further physical attacks such as
shutting down the circuits and so on. In a very similar incident at USA, attackers
inserted rogue code in software to control electrical turbines of a power plant in
2009.

Stuxnet (2010): This incident is very famous due to political reasons. In 2010, the
Stuxnet worm was able to take over many of the Programmable Logic Controllers
(PLCs) controlling the centrifuges of the Iranian nuclear facilities, disrupted their
centrifuge speed and eventually destroyed them. It has been shown that this worm
can be tailored as a platform for attacking smart grid systems that are composed of
SCADA systems.

Pr
e-

pr
in

t

8 Butun et al.

Vampire attack (2011): Cyber-attacks are sometimes intended to extract secret
information, but otherwise, to destroy the communication abilities of the network
under attack. For instance, Vampire Attacks, in the category of DoS attacks [45],
is a very good example of this, in which an attacker intends to drain batteries of
the target wireless nodes. In the long run, this type of attack causes a DoS in the
overall network; by depleting the batteries of the sensors in the network and causing
partition and segregation in the network. These kind of attacks are hard to detect and
tough to cope with, and especially dangerous for the IIoT [14].

Havex (2014): It is a malware that uses Remote Access Trojan (RAT) to infiltrate
and modify the default software in ICS and SCADA systems. In 2014, it has targeted
a number of European companies that develop industrial applications and appliances.

Stealthy attack (2015): Industrial networks are becoming increasingly susceptible
to sophisticated and targeted cyber-attacks initiated by attackers with motivation,
domain knowledge, and resources. Recently, a specific kind of attack called Stealthy
Attack has been discovered to be seriously threatening the industrial environments
due to the nature of the attack [29]. The adversaries hide their attacks even at the
process level, by injecting just enough malicious data that the compromised sensor
values still remain approximately within the noise level. Such stealthy integrity at-
tacks are very tough to detect by anomaly detectors that are not sensitive to noise
level fluctuations. Solutions to this kind of attackmight require specification-agnostic
techniques that monitor time series of sensor measurements for structural changes
in their behavior [8]. Coping with this kind of attacks is not easy since they re-
quire rigorous tests on carefully crafted attacks in a simulation setting by using the
prerecorded data-sets from the selected test-beds with a duration of several days.

Mirai (2016) and Torii (2018) botnet attacks: Because of lacking rigid security
precautions and bad user habits, IoT devices are leveraged as a workforce of the
botnets by ill-mannered hackers. For instance, Mirai malware is released against
Linux OS based IoT devices and aims at gaining shell access of the devices to divert
their operations towards the benefit of the Mirai botnet [7]. This kind of captured
devices are used by the Mirai botnet afterwards in performing joint DDoS attacks
toward more advanced targets [17]. Torii botnet, is a more sophisticated and an
advanced version of Mirai, which also needs to be paid attention while securing
industrial networks [31].

2.5 How can we enforce security and privacy for industrial networks?

Given the requirements discussed in Section 2.3 and the lessons learned from the
attacks listed in Section 2.4 we now list important general steps to increase the cyber
defense.

1. The very first step in increasing the cyber defenses of the industrial networks
is executing an extensive security risk analysis of the existing infrastructure,

Pr
e-

pr
in

t

Intrusion Detection in IIoT 9

including the research of software, hardware, and communication processes.
Furthermore, as intrusions themselves can also provide valuable information, it
would be beneficial to analyze system logs and other records of their nature and
timing. Already known common weaknesses include poor code quality, improper
authentication, and weak firewall rules.

2. Once the first step is completed, then it is suggested to complete an analysis
of the potential consequences of the aforementioned failures or shortcomings.
This includes both immediate consequences as well as second- and third-order
cascading impacts on parallel systems.

3. Thirdly, risk mitigation solutions, which may include simple remediation of in-
frastructure inadequacies or novel strategies, can be deployed to address the
situation. Some such measures include re-coding of control system algorithms to
make themmore capable of resisting and recovering from cyber-attacks or preven-
tative techniques that allow more efficient detection of unusual or unauthorized
changes to data. Strategies to account for human error which can compromise
systems include educating those who work in the field to be wary of suspicious
USB drives as in the case of Stuxnet, which can introduce malware if inserted,
even if just to check their contents [39].

4. Finally, as a complementary element to the whole security architecture, an IDS
should be employed, so that in any case of intrusion, system managers can be
aware of the threats and take early action against them.

Especially the last point is of interest to us. Even though research of intrusion
detection has been ongoing for over 40 years, the current design of such systems
may not be optimal for industrial networks. As such, we envision that data streaming
(discussed next) can be leveraged for more effective designs (Section 5).

3 Introduction to data streaming

We overview in this section the data streaming paradigm. We first discuss its dif-
ferences from traditional database-based (DB-based) analysis approaches. Subse-
quently, we introduce basic concepts about the paradigm. Finally, we list some of
the available streaming-based analysis frameworks that could be directly leveraged
by security applications for industrial systems.

3.1 From Database Management Systems to Stream Processing
Engines

Database Management Systems (DBMSs) have been used for decades to persist
and query data. The amount of data collected in large distributed systems, which
has always increased since the introduction of the first pioneer DBMSs, motivated
research focusing on distributed and parallel storage and processing. The popularity

Pr
e-

pr
in

t

10 Butun et al.

of DBMSs is not only due to their efficient managing of data, but also due to their
powerful language (e.g., SQL), that allows for complex processing of data by means
of a set of well known basic commands.

Since the year 2000, nonetheless, the emergence of IoT setups and sensor net-
works, together with the explosion of the amounts of sensed data, started showing
the limitations of DBMSs. Such limitations stem from the fact that the primary goal
of DBMSs is data persistence rather than data querying. That is, they are designed
to efficiently maintain data that is accessed and aggregated only when a query is
issued by a user (or accessed by queries triggered based on user-defined conditions).
This data processing paradigm incurs high overheads when applied to applications
that are mainly designed to transform and aggregate raw data (possibly coming from
unbounded streams) into small, manageable sets of data.

(a) DBMSs information processing.

Main

Memory

Input Data

Storage

User

Query
Query

output

(1)

(2)

(3)

(4)

(b) SPEs information processing.

Main

Memory

Input Data
Query

Query

output
(1)

(2)

(3)

Fig. 2: Information processing overview for DBMSs (a) and SPEs (b) [21].

To better understand the limitations of DBMSs, Figure 2a (from [21]) presents
a high-level overview of how data is stored and processed by a DBMS. Input data
is initially persisted into relations (1). When a request to process a query from a
user is received (2), the query is instantiated and data is read from the storage (3),
processed and delivered as output (4). This approach, sometimes referred to as first
the data, then the query incurs the unnecessary overhead of storing incoming data
for applications that are interested in the results of the analysis but that do not require
the input data to be persisted once such results are produced.

When the data streaming paradigm was first introduced [40], the main idea was
to change the architecture of traditional DBMSs by removing the persistence of each
incoming message. The removal of the persistence reduces the per-tuple processing
latency significantly as writes to and reads from persistent storage take significantly
longer than accesses to main memory.

However, such a modification introduces several new challenges about how data
is processed, such as the fact that the available memory is smaller than the available
storage space; hence, portions of raw data can only be maintained during limited
periods of time. Figure 2b (from [21]) overviews how a Stream Processing Engine

Pr
e-

pr
in

t

Intrusion Detection in IIoT 11

(SPE) processes data. Input information is processed directly by a continuous query
(1). For each incoming message, the query updates its internal state (2). Finally, if it
is the case, an output is generated by the continuous query (3).

3.2 Basic concepts and sample application

A streaming continuous query (or simply query, in the remainder) consists of streams
and operators. A stream is an unbounded sequence of tuples sharing a schema
〈ts, a1, . . . , an〉 where ts is the timestamp of the tuple and carries the notion of time
for the queries later processing such tuples, and a1, . . . , an are application-related
attributes. In a query, tuples are processed by a Directed Acyclic Graph (DAG) of
operators, which can also produce new tuples and deliver results to data analysts.

The common operators provided by SPEs includes Aggregate, Join, Stateless
andMerge operators [24, 21]. Aggregate operators apply aggregation functions over
sliding windows of tuples. Windows are defined by their size, their advance and,
optionally, by a group-by parameter referring to one or more of the input tuples’
attributes when the aggregation function is applied independently to each group of
tuples sharing such attributes. The Join operator matches tuples from two streams
(keeping a sliding window for each stream) and forwards the pairs for which a given
predicate holds. Stateless operators, as the name suggests, do not maintain a state
evolving with the tuples being processed, and can produce zero, one or more output
tuples for each input tuple, applying a user-defined function that specifies the input
tuples’ attributes to be copied to the output tuples and the functions to be applied to
them. Finally, Merge operators allow to merge multiple streams into a single one.

S

Login
monitor

Aggregate
A1

Filter
F1

Aggregate
A2

Filter
F2

Count logins in the
last 5 minutes,

group by id and user.

Forward if
count > 10

Sum logins in the last
5 minutes,

group by user.

Forward if
count > 10

<ts,id,user> <ts,id,user,count> <ts,user,count>

Fig. 3: Sample query monitoring the number of login attempts over a distributed set
of terminals and generating an alert if more than 10 attempts are made for the same
user (either from one or multiple terminals) over a period of 5 minutes.

Pr
e-

pr
in

t

12 Butun et al.

Figure 3 shows a sample query intended to monitor the number of login attempts
at the terminals of an industrial setup and generates an alert if such number is
suspiciously high. More concretely, the application should generate an alert if more
than 10 login attempts are made by a user over a period of 5 minutes. It should
be noticed that the suspicious number of attempts can be generated from one as
well as from many terminals, and the query should generate outputs that allow to
differentiate between the two cases.

The query is composed by Aggregate and Filter operators. In the example, each
login monitor is a source of data and generates a tuple composed by attributes ts,
id and user (the schema of each stream is shown in grey above each stream). Each
tuple specifies which terminal id has been used to attempt a login from a given user
at a given time ts. Aggregate A1 counts the number of distinct login attempts on a
per-id, per-user basis, and forwards such count both to Filter F1 and to Aggregate A2.
Filter F1 forwards suspicious tuples to the analyst. At the same time, aggregate A2
produces the cumulative count on a per-user basis. Finally, Aggregate A2’s output
tuples are forwarded to filter F2 which, based on the count, discards them or forwards
them to the analyst. The latter can distinguish whether a suspicious alert has been
generated from a single terminal or many of them depending on the output stream
delivering such alert.

3.3 Commonly used Stream Processing Engines

SPEs have rapidly evolved from research prototypes such as Aurora [2] and Bo-
realis [1] to solutions leveraged by many tech companies. Among existing ones,
the most widely adopted include Apache Flink [16], Apache Storm [41], Apache
Kafka [26], Apache Beam [9] and Twitter’s Heron [25]. While they differ in their
architectural choices and the specific APIs they make available to programmers,
they usually provide the aforementioned common set of operators for programmers
to compose streaming-based applications.

4 The Role of Intrusion Detection Systems (IDSs)

Before discussing the special needs of intrusion detection for industrial networks,
we will give an overview of the state-of-the art systems used for normal IT systems.
As such, Section 4.1 introduces layered cyber-security life cycle of information
systems. IDS categories are introduced in Section 4.2 and especially anomaly-based
IDSs. Specific traditional IDSs that have been used in industrial networks are then
summarized in Section 4.3.

Pr
e-

pr
in

t

Intrusion Detection in IIoT 13

4.1 Layered Cyber-Security Life Cycle of Information Systems

As discussed in [11], in order to provide a complete solution against cyber-attacks,
any cyber-security system should have a layered defense structure as shown in
Figure 4, consisting of prevention, detection and mitigation layers.

Fig. 4: Layered Cyber-Security Life Cycle of Information Systems [14]

1. Prevention: This layer, when employed as a system, is referred to as an Intrusion
Prevention System (IPS) and constitutes the first line of defense against intrusions.
Sometimes, IPSs such as firewalls are not fully trusted and/or they are not efficient
enough to prevent all types of attacks towards our networks.

2. Detection: This layer, when employed as a system, is also referred to as Intru-
sion Detection System (IDS) and constitutes the second line of defense against
intrusions. History has taught us that the first line of defense, IPSs, may fail as in
the case of many severe incidents of cyber-attacks against critical infrastructures
such as nuclear enrichment facilities, electric grid, etc., as discussed earlier in
Section 2.4. IDSs are complementary for system administrators by offering fur-
ther solutions to the problem by detecting intrusions to their network on time, so
that the threats can be mitigated. Therefore, IDSs are as important as IPSs.

3. Mitigation: The last line of defense in the cyber-security is the mitigation, which
includes security measures (such as disabling some ports, limiting the Internet
access, etc.) to be taken after an intrusion incident is detected.

Even though the methodologies of Prevention / Detection / Mitigation is well-
founded in the literature, the terms of IPS and IDS sometimes shift. As an example,
we can take Snort (an open-source, free and lightweight network IDS [38]), the
de-facto standard when it comes to signature-based IDSs. It started out as an IDS to

Pr
e-

pr
in

t

14 Butun et al.

detect attacks, but later developments allowed it to also react (mitigate) attacks. As
such, it is now classified as an intrusion detection and prevention system.

Looking at more specific systems such as industrial networks, vulnerabilities,
cyber attacks and the need for IDSs are stressed by Butun et al. [14]. Accordingly,
IDS is a very important part of any cyber-security system, and in many cases bears
the weight of the overall cyber-defense.

4.2 Intrusion Detection Systems (IDSs)

As stated earlier in Section 4.1, Intrusion Detection Systems (IDSs) will constitute
the second line of defense against intrusions towards industrial networks. Therefore,
it is important to learn their types along with their working principles. In computer
science, IDSs can be classified into three categories according to their detection
methodology [18, 11, 13]:

1. Anomaly-based IDS,
2. Misuse (signature)-based IDS,
3. Specification-based IDS.

The advantages and disadvantages of IDS types are as shown in Table 1.

Table 1: Comparison of IDS types.

IDS Type Advantages Disadvantages
Anomaly detection
-based

- can handle unknown attacks
- does not need frequent updates
- easy to configure/generalize

- low accuracy
- high false positive ratio
- high false negative ratio

Misuse detection
-based

- high accuracy
- low false positive/negative ratios

- can not handle unknown attacks
- need frequent updates

Specification detection
-based

- high accuracy
- cost-efficient
- low false positive/negative ratios

- hard to design
- hard to generalize

Commonly, misuse-based systems manually encode indicators of attacks, so-
called signatures. As such, these systems are quite specific when they alert in that
they can give the type of attack the system is exposed to. These systems work well
with very well and categorized attacks of the past. However, they are quite useless
in the case of new attack vectors that can not be specified with the old ones.

Specification-based systems are built on the specifications of the allowed behavior
of the system and many times used for network protocols. Such systems can be
successful when a formal description of the system behavior exists, and that this
document is strictly followed. They have been suggested for network protocols,
but for very complex systems, a formal specification often does not exist or the
behavior of the system is quite dynamic. Specification-based IDS is reported as

Pr
e-

pr
in

t

Intrusion Detection in IIoT 15

more suitable to detect process-based attacks, and on the contrary, is observed to be
typically expensive for large deployments (such as factory environments) to set up
and comparably less scalable [20].

Anomaly-based system are often built using machine-learning techniques in that
they try tomodel the normal system behavior (regardless of its formal specifications).
When the current behavior is different enough from the learned profile, an alert is
generated. Opposed to misuse-based systems, anomaly-based systems are much less
exact as they only alert for system anomalies and not true attacks. On the other hand,
anomaly-based systems may be able to alert for future unknown attacks (zero-day
attacks) if they cause a visible effect in the monitored data [14].

As discussed in [44], it is claimed that the best approach of IDS for industrial
networks is Anomaly-based IDS, due to its capability of detecting unknown and
new types of attacks. Moreover, many industrial networks are quite regular in their
behavior (M2M communication), meaning that some of their weaknesses are less
pronounced when deployed in industrial networks.

A taxonomy of anomaly detection-based IDSs is shown in Figure 5, and consists
ofmainly the following approaches: statistical, datamining andArtificial Intelligence
(AI) [14]. Each of these approaches is then sub-classified into various methods. The
interested reader is referred to [13] for a detailed discussion of these types.

4.3 Examples of traditional IDS deployed for industrial networks

This section presents two recent works focusing on IDS for industrial networks.
These approaches employ anomaly-based techniques in an effort of detecting intru-
sions toward industrial networks but they do not utilize the streaming paradigm to
efficiently process data.

4.3.1 Example #1

A recent study by Anton et al. [6] on industrial networks has used two different
solutions for anomaly detection to capture intrusions:

1) Artificial Intelligence/SVM -based solution: This solution is based on the
Support VectorMachine (SVM)which is amachine learning-based anomaly detection
method. The SVM is a supervised classification and regression analysis method
in machine learning which is equipped with learning algorithms to analyze any
separated set of data used for classification, meaning the training set needs to contain
enough information so that the examples of the different categories are divided by a
clear gap that is separating the two groups as wide as possible. New samples are then
mapped into the same domain and categorized based on the proximity to the which
group they fall near by. It is a large margin classifier and it is trained with a labeled
set of instances. The training session is followed by another session, in which the
identification and classification of the test and productive data are performed.

Pr
e-

pr
in

t

16 Butun et al.

2) Data mining/Data clustering -based solution: This solution is based on the
Random Forest which is a data mining/data clustering and outlier detection-based
anomaly detection method. Random Forest is a collection of Decision Trees which
have many binary classifiers comprised of internal split leaf nodes used to classify
events and bundled together to a one root node. The majority voting of all decision
trees is the main classification of the Random Forest, hence they are robust to over-
shooting of the data and can converge to the intended best fit quickly, making them
applicable in a variety of use case scenarios [6].

The data containing industrial network in operation is analysed for the sake of
discovering the attacks targeted the data. As shown in Table 2, two different data-

Fig. 5: Taxonomy of Anomaly Detection-based IDSs [14]

Pr
e-

pr
in

t

Intrusion Detection in IIoT 17

sets are employed: Modbus-based gas pipeline control traffic and Object Linking
and Embedding for Process Control Unified Architecture (OPC UA)-based batch
processing traffic data (from the tanks, pumps, actuators and sensors consisting of
water level, flow volume, pressure, temperature, and pump status).

Table 2: Parameters of the used data sets in [6].

ID Protocol # of packets Duration Attacks # of mal. pac. % of mal. pac.
DS1 Modbus 274,627 4 days none 60,048 22
DS2 OPC UA 4,910 41 minutes 2 702 14
mal. pac.: malicious packets

3) Comparison: According to the authors, both anomaly detection methods per-
formed well, with the Random Forest method slightly outperforming the SVM
method. Methods of machine learning (such as SVM) and data mining (such as
Random Forests) can enhance the detection rate of the commercial IDSs in the mar-
ket. These approaches benefit from a limited state set of the systems as well as a
large amount of training data for a given environment, as industrial environments
are fruitful data generators.

4.3.2 Example #2

In [8], Aoudi et al. introduce the notion of departure-based attack detection where
a departure is a specific type of anomaly that refers to the process dynamics being
forced to depart from the normal behavior due to potentially malicious structural
changes in the stream of sensor measurements. The normal behavior is established
in an offline training phase through a mathematical construction that enables the rep-
resentation of the process dynamics in a noise-reduced geometric space. Thereafter,
to detect a departure in the process behavior, devised method computes a departure
score during an online detection phase in an iterative way. Whenever this departure
score crosses a predetermined threshold, an alarm is raised to the operators.

Aoudi et al. argued that their devised specification-agnostic technique can suc-
cessfully defend industrial networks against by detecting stealthy attacks (see Sec-
tion 2.4). This is achieved by monitoring time-series of sensor measurements in the
industrial network for structural changes in their behavior.

4.3.3 Summary

These two recent examples from the literature show very promising results in de-
tecting attacks in industrial networks. The first example with two methods are using
network traffic as input data to find the attacks. As such, a specific wiretap needs
to be installed somewhere in Figure 1. If several devices communcicate over the

Pr
e-

pr
in

t

18 Butun et al.

same network link, a single instance may monitor several devices. Otherwise many
such taps need to be installed throughout the network. The PASAD algorithm by
Aoudi et al. (example 2) use sensor data from the process as the input to be analyzed
for devations. As such, it is favorably installed locally to each device. However, the
resulting alerts should then be propagated through the system so larger-scale attacks
can be detected.

As we discuss in the next section, data streaming for intrusion detection will
naturally allow a flow of information throughout the system, making the deployment
of example 1 easier, and allow systems such as described in example 2 to easily
communicate between nodes.

5 IDS and Data Streaming

We present in this section why (and how) streaming-based applications can be
leveraged for efficient intrusion detection in industrial setups. We begin discussing
the different deployment options for the analysis of data in industrial setups. Then, we
show how data streaming can enable such deployments by decoupling the semantics
of security applications from their distributed and parallel execution. To exemplify
this, we also extend the example introduced in Section 3. Finally, we present some
of the streaming-based IDSs discussed in the literature.

5.1 What deployment options exist for the data analysis?

We can identify three possible hierarchy levels at which data can be processed within
an industrial network. In the context of a smart grid, for instance, the options may
include following (refer to the details presented in Section 2.2):

• At the smart meters,
• at the data concentrator,
• at the AMI head-end.

It should be noted that these options are not mutually exclusive. That is, a security
application could run both at the meters as well as at the concentrators, as also
discussed in [22].

Table 3 is inspired from [19] and provides a good comparison of all entities in the
smart grid systems, especially from the data streaming point of view. As we travel
from the smart meter to the AMI head-end (leaf to the root), the amount of data to
be handled increases drastically, as well as the speed required to carry and process
that data. This is a clear indication of where the data streaming can be used and why.

Pr
e-

pr
in

t

Intrusion Detection in IIoT 19

Table 3: Comparison of AMI entities [19].

Property Smart meter Data concentrator AMI head-end
Amount
of data

Small volume,
as data sources are cus-
tomer’s HAN and its as-
sociated devices

Large volume,
comparatively as it has to
handle data from about a
few hundred to tens of
thousands of smart me-
ters

Huge volume (Big Data),
as it has to process data
from about several mil-
lions of smart meters

Resources∗ in KB range,
are very restrictive

in MB range,
more powerful

in GB/TB range,
plentiful resources com-
posed of high-end servers

Data speed Comparatively low,
because of non-frequent
requests at the smart me-
ter

High,
as it aggregates a good
number of smart meters’
data

Very high,
as it needs to handle a
huge amount of meter
data, event data, com-
mands, etc.

∗main memory, processor capacity, etc.

5.2 Leveraging distributed and parallel execution of streaming
applications in industrial setups

As we discussed in Section 3, a streaming application is a DAG of base opera-
tors composed into a continuous query. Once the semantics of a certain streaming
application have been expressed by composing such base operators, parallel execu-
tion is achieved by (1) instantiating multiple copies of each operator and enabling
data-parallelism by distributing their input data (according to the semantics of the
operator) and then collecting the results, as well as by (2) assigning such operators
to distinct threads (possibly belonging to different processes and/or nodes).

A2 F2

S A1

F1

S A1

F1

…

M

M

Remote terminal
Data center Server

stream merger operator

Fig. 6: Distributed and parallel deployment of the sample query from Figure 3. The
query monitors the number of login attempts over a distributed set of terminals and
generates an alert if more than 10 attempts are made for the same user (either from
one or multiple terminals) over a period of 5 minutes.

Pr
e-

pr
in

t

20 Butun et al.

Figure 6 shows a possible deployment plan for the sample query introduced in
Figure 3. In this example, we assume an industrial setup is composed of a collection
of remote terminals and a set of servers that, together, compose a data center used
for the analysis of gathered data. The idea is to run the query presented in Figure 3,
which monitors the number of login attempts over a distributed set of terminals and
generates an alert if more than 10 attempts are made for the same user (either from
one or multiple terminals) over a period of 5 minutes, in a parallel and distributed
fashion, making the overall analysis scalable by distributing as much as possible data
at the edge rather than gathering all of it in the central data center. In the sample
deployment, a pair of operators A1 and F1 are deployed at each remote terminal to
locally check if more than 10 login attempts are made by each user. If that is the
case, the output produced by operator F1 (which is merged by a merger operator
M at a different node that, in this example, is a server at a central data center) is
then forwarded to the end user. At the same time, the partial counts forwarded by all
instances of operator A1 are also merged at the data center server and the cumulative
sums, if exceeding the threshold 10, are also forwarded as alerts.

Leveraging of the data streaming paradigm and SPEs allows for monitoring
applications to be deployed at all the levels of a given industrial setup hierarchy by
means of distributed and parallel operator execution [33, 30]. Distributed execution
(achieved by means of inter-operator parallelism) allows for operators belonging to
the same query to be run at different nodes (e.g., A1 and A2 in Figure 6). At the same
time, parallel execution (achieved by means of intra-operator parallelism) allows
for individual operators to be run in parallel at arbitrary numbers of nodes (e.g., A1
and F1 in Figure 6). We refer the reader to [21] for a exhaustive discussion about the
parallelization of data streaming operators.

5.3 Correctness guarantees enabled by the data streaming processing
paradigm

The execution of a query is said to be deterministic if feeding the query the same
sequence of input tuples results in the query producing the same sequence of output
tuples. Formonitoring applications in CPSs, determinism is crucial to achieve correct
and predictable/repeatable analysis, especially when the latter is used to generate
sensitive or safety-related alerts [32].

A way to achieve such behavior is to compose queries with base operators that,
if fed the same sequence of input tuples, produce the same sequence of output
tuples [21, 46]. That is, operators that have no randomness in their analysis and
whose analysis does not depend on execution-specific aspects [21, 4]. The common
way for stateful operators to achieve deterministic execution is to base the latter
on the notion of time carried by the tuples’ timestamps (also referred to as event
time [16, 4])2. Continuing the example of Figure 6, this implies that, once each

2 In this case, a common assumption in the literature is that all nodes of a distributed setup have
synchronized clocks [24].

Pr
e-

pr
in

t

Intrusion Detection in IIoT 21

remote terminal generates a tuple about a user login and sets a timestamp to it, an
alert will be generated (if the threshold condition is satisfied) independently of the
latency and interleaving of messages at the data center server.

5.4 Applications of the streaming paradigm in the context of IDSs in
the literature

Even though streaming has been developed since 2000 and offers a structured way
to consider parallel and distributed analysis of data over complex systems such as
the smart grid [23, 10, 35, 34], few examples of intrusion detection systems that use
the technique exists in the literature. Below we summarize two promising examples
to highlight the possibilities.

METIS

Gulisano et al. [22] propose METIS. METIS relies on probabilistic models for de-
tection and is designed to detect challenging attacks in which the adversaries aim at
going unnoticed. Owing to its two-tier architecture, it eases the modeling of possible
adversary goals and allows for a fully distributed and parallel traffic analysis through
the data streaming processing paradigm. At the same time, it allows for comple-
mentary intrusion detection systems to be integrated in the framework. Gulisano et
al. have shown METIS’ use and functionality through an energy exfiltration attack
scenario, in which an adversary aims at stealing energy information fromAMI users.
Based on a prototype implementation using the Apache Storm SPE and a very large
dataset from a real-world AMI, authors have shown that METIS is not only able to
detect such attacks, but that it can also handle large volumes of data even when run
on commodity hardware.

Stream Data Mining for Distributed-IDS

Alseiari et al. [5] propose a real-time Distributed Intrusion Detection System (DIDS)
for the AMI infrastructure that utilizes stream data mining techniques with a multi-
layer implementation approach. Using unsupervised online clustering technique, the
anomaly-based DIDS monitors the data flow in the AMI and distinguishes if there is
anomalous traffic. The authors employed Mini-Batch K-means clustering technique
which is a variant of “K-means” clustering algorithm, that is suited to data stream
models.

It incrementally fits the new sessions to the existing model by continuously learn-
ing and updating the clusters in real time which significantly reduces running and
computation time. However, K-means follows a static procedure by discarding the
previously created clusters and building a new model from scratch in every sliding

Pr
e-

pr
in

t

22 Butun et al.

window iteration, hence using more memory and time. By executing a comparison
between online and offline clustering techniques, the authors claim that their exper-
imental results have shown that online clustering “Mini-Batch K-means” algorithm
was able to suit the architecture requirements by giving high detection rate and low
false positive rates.

5.5 Security Implications and Opportunities of Data Streaming

As in every complex system, inclusion of new components (as well as removal of the
old ones) might provide opportunities along with implications. As such, inclusion
of data streaming paradigm will have pros and cons against the already existing
components, users, etc, as discussed below.

Security Implications

This is a debated issue, whether centralize v.s. distributed detection of intrusions is
more critical and beneficial. It is argued in this chapter that distributed and real-time
monitoring of events (intrusions) is important for industrial networks, especially for
mission-critical systems, such as smart grid systems presented in Section 2.2, hence
timely taken decisions might save people from catastrophic events.

In most instances, bottlenecks (the data traffic gets congested!) occur in the up-
stream path of the centralized networks. However, distributed networks are resilient
to that problem. For instance, intrusion detection solutions (especially related to the
data streaming) discussed in this chapter, aim at pushing the data analysis towards
peripheral devices instead of gathering data centrally. This kind of solution is offered
to provide a fast response by removing the necessity of the round-trip messages in
between the smart meter and the server. Besides, data streaming is also beneficial to
the overall network performance in distributed networks due to the decreased load
in preventing the aforementioned bottlenecks.

On the other hand, centralized solutions have shown to be more effective against
more dedicated and distributed attacks such as DoS and DDoS attacks.

Opportunities

This chapter argued and also discussed that the data streaming paradigm can be really
helpful for industrial networks in fulfilling detection of intrusions timely manner,
hence it allows continuous monitoring of events in an autonomous and adaptive way.
It can be also beneficial in decreasing the bottlenecks in big industrial networks such
as smart grid systems presented in Section 2.2, by not only enhancing the response
time of the queries/commands but also decreasing the overall traffic of the network.

Pr
e-

pr
in

t

Intrusion Detection in IIoT 23

6 Conclusions

This chapter presented key points of industrial networks, especially network architec-
ture, data handling (centralized vs. distributed), and cyber-security vulnerabilities,
attacks and their counter measures. Besides, data stream processing as means to
analyze data in IIoT infrastructures is described. Overall research challenges are also
presented regarding cyber-security aspects of data streaming for industrial networks,
especially for smart grid systems. Finally, applicability of data streaming to IDSs is
proven by the evidence from the literature that appeared in the recent years.

Based on the recent developments in the field, it is concluded in this chapter
that the data streaming concept can be utilized for industrial networks, especially
for smart grid systems, by leveraging cloud and/or fog based deployments. More
importantly, data streaming is projected to be very useful and handy for detecting
intrusions in timely manner and cost efficient way.

Acknowledgements This research has been partially supported by the SwedishCivil Contingencies
Agency (MSB) through the projects RICS, by the EU Horizon 2020 Framework Programme under
grant agreement 773717, and by the Swedish Foundation for International Cooperation in Research
and Higher Education (STINT) Initiation Grants program under grant agreement IB2019-8185.

List of Abbreviations

AI: Artificial Intelligence
AMI: Advanced Metering Infrastructure
CPS: Cyber-Physical Systems
DBMS: Data-Base Management System
DoS: Denial-Of-Service
DDoS: Distributed DoS
DIDS: Distributed IDS
HMI: Human-Machine Interface
IDS: Intrusion Detection Systems
IoT: Internet of Things
IIoT: Industrial Internet of Things
IPS: Intrusion Prevention System
MITM: Man-In-The-Middle
OPC UA: Object Linking and Embedding for Process Control Unified Architecture
PII: Personal Identification Information
RAT: Remote Access Trojan
RTU: Remote Terminal Unit
SCADA: Supervisory Control And Data Acquisition
SPE: Stream Processing Engine
SVM: Support Vector Machine
VPN: Virtual Private Network

Pr
e-

pr
in

t

24 Butun et al.

References

1. Abadi, D.J., Ahmad, Y., Balazinska, M., Cetintemel, U., Cherniack, M., Hwang, J.H., Lindner,
W., Maskey, A., Rasin, A., Ryvkina, E., et al.: The design of the borealis stream processing
engine. In: CIDR, vol. 5, pp. 277–289 (2005)

2. Abadi, D.J., Carney, D., Çetintemel, U., Cherniack, M., Convey, C., Lee, S., Stonebraker, M.,
Tatbul, N., Zdonik, S.: Aurora: a new model and architecture for data stream management. the
VLDB Journal 12(2), 120–139 (2003)

3. Abdallah, A., Shen, X.: Security and privacy in smart grid. Springer (2018)
4. Akidau, T., Bradshaw, R., Chambers, C., Chernyak, S., Fernández-Moctezuma, R.J., Lax, R.,

McVeety, S., Mills, D., Perry, F., Schmidt, E., et al.: The dataflow model: a practical approach
to balancing correctness, latency, and cost in massive-scale, unbounded, out-of-order data
processing. Proceedings of the VLDB Endowment 8(12), 1792–1803 (2015)

5. Alseiari, F.A.A., Aung, Z.: Real-time anomaly-based distributed intrusion detection systems
for advanced metering infrastructure utilizing stream data mining. In: 2015 International
Conference on Smart Grid and Clean Energy Technologies (ICSGCE), pp. 148–153. IEEE
(2015)

6. Anton, S.D.D., Sinha, S., Schotten, H.D.: Anomaly-based intrusion detection in industrial data
with svm and random forests. arXiv preprint arXiv:1907.10374 (2019)

7. Antonakakis, M., April, T., Bailey, M., Bernhard, M., Bursztein, E., Cochran, J., Durumeric,
Z., Halderman, J.A., Invernizzi, L., Kallitsis, M., et al.: Understanding the mirai botnet. In:
USENIX Security Symposium, pp. 1092–1110 (2017)

8. Aoudi, W., Iturbe, M., Almgren, M.: Truth will out: Departure-based process-level detection
of stealthy attacks on control systems. In: Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, pp. 817–831. ACM (2018)

9. Apache Beam. https://beam.apache.org/. Accessed: 2019-09-25
10. Botev, V., Almgren, M., Gulisano, V., Landsiedel, O., Papatriantafilou, M., van Rooij, J.:

Detecting non-technical energy losses through structural periodic patterns in ami data. In:
2016 IEEE International Conference on Big Data (Big Data), pp. 3121–3130. IEEE (2016)

11. Butun, I.: Prevention and detection of intrusions in wireless sensor networks. University of
South Florida, Ph.D. thesis (2013)

12. Butun, I.: Privacy and trust relations in internet of things from the user point of view. In: 2017
IEEE 7th Annual Computing and Communication Workshop and Conference (CCWC), pp.
1–5. IEEE (2017)

13. Butun, I., Morgera, S.D., Sankar, R.: A survey of intrusion detection systems in wireless sensor
networks. IEEE communications surveys & tutorials 16(1), 266–282 (2013)

14. Butun, I., Österberg, P.: Detecting intrusions in cyber-physical systems of smart cities: Chal-
lenges and directions. In: Secure Cyber-Physical Systems for Smart Cities, pp. 74–102. IGI
Global (2019)

15. Butun, I., Österberg, P., Song, H.: Security of the internet of things: Vulnerabilities, attacks
and countermeasures. IEEE Communications Surveys & Tutorials (2019)

16. Carbone, P., Katsifodimos, A., Ewen, S., Markl, V., Haridi, S., Tzoumas, K.: Apache flink:
Stream and batch processing in a single engine. Bulletin of the IEEE Computer Society
Technical Committee on Data Engineering 36(4) (2015)

17. Chaudhary, S.: Privacy and security issues in internet of things. International Education and
Research Journal 3(5) (2017)

18. Debar, H., Dacier, M., Wespi, A.: Towards a taxonomy of intrusion-detection systems. Com-
puter Networks 31(8), 805–822 (1999)

19. Faisal, M.A., Aung, Z., Williams, J.R., Sanchez, A.: Data-stream-based intrusion detection
system for advanced metering infrastructure in smart grid: A feasibility study. IEEE Systems
journal 9(1), 31–44 (2014)

20. Fauri, D., Dos Santos, D.R., Costante, E., den Hartog, J., Etalle, S., Tonetta, S.: From system
specification to anomaly detection (and back). In: Proceedings of the 2017 Workshop on
Cyber-Physical Systems Security and PrivaCy, pp. 13–24. ACM (2017)

https://beam.apache.org/

Pr
e-

pr
in

t

Intrusion Detection in IIoT 25

21. Gulisano, V.: Streamcloud: an elastic parallel-distributed stream processing engine. Ph.D.
thesis, Universidad Politécnica de Madrid (2012)

22. Gulisano, V., Almgren, M., Papatriantafilou, M.: Metis: a two-tier intrusion detection system
for advanced metering infrastructures. In: International Conference on Security and Privacy
in Communication Networks, pp. 51–68. Springer (2014)

23. Gulisano, V., Almgren, M., Papatriantafilou, M.:When smart cities meet big data. Smart Cities
1(98), 40 (2014)

24. Gulisano, V., Jimenez-Peris, R., Patino-Martinez, M., Soriente, C., Valduriez, P.: Streamcloud:
An elastic and scalable data streaming system. IEEE Transactions on Parallel and Distributed
Systems 23(12), 2351–2365 (2012)

25. HERON: A realtime, distributed, fault-tolerant stream processing engine from Twitter.
https://apache.github.io/incubator-heron/. Accessed: 2019-09-30

26. Kafka Streams. https://kafka.apache.org/documentation/streams/. Accessed: 2019-10-09
27. Kumar, P., Lin, Y., Bai, G., Paverd, A., Dong, J.S., Martin, A.: Smart grid metering networks:

A survey on security, privacy and open research issues. IEEE Communications Surveys &
Tutorials (2019)

28. Mo, Y., Kim, T.H.J., Brancik, K., Dickinson, D., Lee, H., Perrig, A., Sinopoli, B.: Cyber–
physical security of a smart grid infrastructure. Proceedings of the IEEE 100(1), 195–209
(2011)

29. Mo, Y., Sinopoli, B.: On the performance degradation of cyber-physical systems under stealthy
integrity attacks. IEEE Transactions on Automatic Control 61(9), 2618–2624 (2015)

30. Najdataei, H., Nikolakopoulos, Y., Papatriantafilou, M., Tsigas, P., Gulisano, V.: Stretch: Scal-
able and elastic deterministic streaming analysis with virtual shared-nothing parallelism. In:
Proceedings of the 13th ACM International Conference on Distributed and Event-based Sys-
tems, pp. 7–18. ACM (2019)

31. Osborne, C.: Meet torii, a new iot botnet far more sophisticated than mirai variants.
https://www.zdnet.com/article/meet-torii-a-new-iot-botnet-far-more-sophisticated-than-mirai/
(2018). Accessed: 2018-10-09

32. Palyvos-Giannas,D.,Gulisano,V., Papatriantafilou,M.:Genealog: Fine-grained data streaming
provenance at the edge. In: Proceedings of the 19th International Middleware Conference, pp.
227–238. ACM (2018)

33. Palyvos-Giannas, D., Gulisano, V., Papatriantafilou, M.: Haren: A framework for ad-hoc thread
scheduling policies for data streaming applications. In: Proceedings of the 13th ACM Interna-
tional Conference on Distributed and Event-based Systems, pp. 19–30. ACM (2019)

34. van Rooij, J., Gulisano, V., Papatriantafilou, M.: Locovolt: Distributed detection of broken
meters in smart grids through streamprocessing. In: Proceedings of the 12thACMInternational
Conference on Distributed and Event-based Systems, pp. 171–182. ACM (2018)

35. vanRooij, J., Swetzén, J., Gulisano, V., Almgren,M., Papatriantafilou,M.: echidna: Continuous
data validation in advanced metering infrastructures. In: 2018 IEEE International Energy
Conference (ENERGYCON), pp. 1–6. IEEE (2018)

36. Sayfayn, N., Madnick, S.: Cybersafety analysis of the maroochy shire sewage spill, working
paper cisl# 2017-09. Cybersecurity Interdisciplinary SystemsLaboratory (CISL), Sloan School
of Management, Massachusetts Institute of Technology pp. 2017–09 (2017)

37. Sharma, R.: How does gdpr affect smart grids? https://www.energycentral.com/c/iu/how-does-
gdpr-affect-smart-grids (2018)

38. Snort: Snort network intrusion detection system.
https://www.snort.org. Accessed: 2019-11-05

39. Sridhar, S., Hahn, A., Govindarasu, M.: Cyber–physical system security for the electric power
grid. Proceedings of the IEEE 100(1), 210–224 (2011)

40. Stonebraker,M., Çetintemel, U., Zdonik, S.: The 8 requirements of real-time stream processing.
ACM Sigmod Record 34(4), 42–47 (2005)

41. Apache Storm. http://storm.apache.org/ (2017)
42. Stylianopoulos, C.: Parallel and distributed processing in the context of fog computing: High

throughput pattern matching and distributed monitoring. Licentiate Thesis, Chalmers Univer-
sity of Technology (2018)

https://www.zdnet.com/article/meet-torii-a-new-iot-botnet-far-more-sophisticated-than-mirai/
https://www.snort.org

Pr
e-

pr
in

t

26 Butun et al.

43. Tesfay, T.T.: Cybersecurity solutions for active power distribution networks. Ph.D. thesis,
EPFL (2017)

44. Tong, W., Lu, L., Li, Z., Lin, J., Jin, X.: A survey on intrusion detection system for ad-
vanced metering infrastructure. In: 2016 Sixth International Conference on Instrumentation &
Measurement, Computer, Communication and Control (IMCCC), pp. 33–37. IEEE (2016)

45. Vasserman, E.Y., Hopper, N.: Vampire attacks: draining life from wireless ad hoc sensor
networks. IEEE transactions on mobile computing 12(2), 318–332 (2011)

46. Walulya, I., Palyvos-Giannas, D., Nikolakopoulos, Y., Gulisano, V., Papatriantafilou, M., Tsi-
gas, P.: Viper: A module for communication-layer determinism and scaling in low-latency
stream processing. Future Generation Computer Systems 88, 297 – 308 (2018). DOI https://
doi.org/10.1016/j.future.2018.05.067. URL http://www.sciencedirect.com/science/
article/pii/S0167739X17326791

47. Yan, Q., Huang, W., Luo, X., Gong, Q., Yu, F.R.: A multi-level ddos mitigation framework for
the industrial internet of things. IEEE Communications Magazine 56(2), 30–36 (2018)

http://www.sciencedirect.com/science/article/pii/S0167739X17326791
http://www.sciencedirect.com/science/article/pii/S0167739X17326791

	Intrusion Detection in Industrial Networks via Data Streaming
	Ismail Butun (Ph.D.), Magnus Almgren (Ph.D.), Vincenzo Gulisano (Ph.D.) and Marina Papatriantafilou (Ph.D.)
	Introduction
	Preliminaries
	Distributed edge-fog-cloud architectures
	A use-case scenario of an industrial network: A smart grid system
	Requirements for protecting industrial networks from cyber-attacks
	Known Cyber-Security Attacks on Industrial Networks
	How can we enforce security and privacy for industrial networks?

	Introduction to data streaming
	From Database Management Systems to Stream Processing Engines
	Basic concepts and sample application
	Commonly used Stream Processing Engines

	The Role of Intrusion Detection Systems (IDSs)
	Layered Cyber-Security Life Cycle of Information Systems
	Intrusion Detection Systems (IDSs)
	Examples of traditional IDS deployed for industrial networks

	IDS and Data Streaming
	What deployment options exist for the data analysis?
	Leveraging distributed and parallel execution of streaming applications in industrial setups
	Correctness guarantees enabled by the data streaming processing paradigm
	Applications of the streaming paradigm in the context of IDSs in the literature

	METIS
	Stream Data Mining for Distributed-IDS
	Security Implications and Opportunities of Data Streaming

	Security Implications
	Opportunities
	Conclusions
	List of Abbreviations
	References
	References

