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Abstract

We study big Hankel operators H 7‘3 : AL — LY generated by radial Bekollé—Bonami weights
v,whenl < p < ¢ < oo.Here the radial weight w is assumed to satisfy a two-sided doubling
condition, and A% denotes the corresponding weighted Bergman space. A characterization
for simultaneous boundedness of H} and H-. is provided in terms of a general weighted
mean oscillation. Compared to the case of standard weights that was recently obtained by
Pau et al. (Indiana Univ Math J 65(5):1639-1673, 2016), the respective spaces depend on the
weights w and v in an essentially stronger sense. This makes our analysis deviate from the
blueprint of this more classical setting. As a consequence of our main result, we also study
the case of anti-analytic symbols.
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1 Introduction and main results

Let H(D) denote the space of analytic functions in the unit disc D = {z € C : |z|] < 1}.
A function w : D — [0, 00), integrable over the unit disc D, is called a weight. It is radial
if w(z) = w(|z|) forall z € D. For 0 < p < oo and a weight w, the Lebesgue space L?
consists of (equivalence classes of) complex-valued measurable functions f in ID such that

1
Il p = (/D If(Z)I”w(Z)dA(Z))] < o0,

where d A(z) = dx dy/m denotes the normalized Lebesgue area measure on ID. The weighted
Bergman space A5 is the space of analytic functions in L%. As usual, A} denotes the weighted
Bergman space induced by the standard radial weight (w+1)(1 —|z|*)®. If v is aradial weight
then A2 is a closed subspace of L2, and the orthogonal projection from L2 to A2 is given by

Po(f)(2) = /D FOBIOV(Q) dAE). zeD,

where B, are the reproducing kernels of A%; f@)=(f,B))jpoforallz e Dand f € A%.

The study of the boundedness of weighted Bergman projectvions on L?-spaces is a com-
pelling topic that has attracted a considerable amount of attention during the last decades.
A well known result due to Bekollé and Bonami [4,5] describes the weights @ such that the
Bergman projection P, induced by the standard weight (n+1)(1 —|z 127, is bounded on LY,
for 1 < g < 0o. We denote this class of weights by B, (), and write B; = U;~ 1B, (n) for
short. In the case of a standard weight, the Bergman reproducing kernels are given by the neat
formula (1 — z¢) =", However, for a general radial weight v the Bergman reproducing
kernels B may have zeros [18] and such explicit formulas for the kernels do not necessarily
exist. This is one of the main obstacles in dealing with P, [9,16]. Nonetheless, we shall prove
in Proposition 6 below that if v € B, is radial, then P, : L} — L is bounded for each
I < g < oo. The proof of this relies on accurate estimates for the integral means of B}
recently obtained in [16, Theorem 1], and the result itself plays an important role in the proof
of the main discovery of this paper.

All the above makes the class of radial weights in B, an appropriate framework for the
study of the big Hankel operator

Hp(e)(z) = — P)(f9)(z), feL), zeD,

on weighted Bergman spaces. For an analytic function f, the Hankel operator Hfﬂ, induced
by a standard projection, has been widely studied on Bergman spaces since the pioneering
work of Axler [3], which was later extended in [1]. In the case of a rapidly decreasing weight
vand f € H(D), Galanopoulos and Pau [10] did an extensive research on HY on A‘%; see [2]
for further results. For general symbols, Zhu [21] was the first to build up a bridge between
Hankel operators and the mean oscillation of the symbols in the Bergman metric, and this
idea has been further developed in several contexts [6-8,22]; see [23] and the references
therein for further information on the theory of Hankel operators. More recently, Pau et al.
[12] described the complex valued symbols f such that the Hankel operators H j’? and Hé

are simultaneously bounded from A% to L‘;}, provided 1 < p < g < oo. Our primary
aim is to extend this last-mentioned result to the context of radial B,-weights. To do this,
some definitions are needed. For a radial weight w, we assume throughout the paper that
w(z) = flil w(s)ds > 0 for all z € D, for otherwise the Bergman space A, would contain
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Hankel operators induced by radial Bekollé—Bonami... 213

all analytic functions in ID. A radial weight w belongs to the class D if there exists a constant
C = C(w) > 1 such that ®(r) < C@(%) for all 0 < r < 1. Moreover, if there exist
K = K(w) > 1 and C = C(w) > 1 such that

1—r
a0) zca<1 —T') 0<r<l, (1.1)

then w € D. We write D = D N D for short. For basic properties of these classes of weights
and more, see [13,14] and the references therein. Let §(z, ¢) denote the hyperbolic distance
between z, ¢ € D, A(z, r) the hyperbolic disc of center z and radius » > 0, and S(z) the
Carleson square associated to z. For 0 < p, ¢ < oo and radial weights w, v, define

@)1 — |27

: _, zeD. (1.2)
D)7 (1—|z))?

y(z) = Vw,v,p,q(z) =

Jaen SOV dAG)

V(AG) and

Further, for f € L, write f, ,(z) =

v,loc?

1
MO, 4., ()(2) = ( Lf (&) — ﬁ,u(Z)qu(t)dA(C)>q

v(A(z, 1)) A(z,r)

for all z € D. It is worth noticing that for prefixed r > 0, the quantity v(A(z, r)) may equal
to zero for some z arbitrarily close to the boundary if v € D. However, if v € D, then there
exists ro = ro(v) > 0 such that v(A(z, 7)) < v(S(z)) > Oforall z € Difr > rg. The space
BMO(A)y,v,p,q,r consists of f € LY such that

v,loc

Il F IBMO(AY 1 pgr = Sug (MO, .- (/) (DY (2)) < 0.
A4S

We will show that if v € D, then BMO(A),y, p,4,- does not depend on r for r > rg. In this
case, we simply write BMO(A),, 1, p,q- The main result of this study reads as follows and it
will be proved in Sect. 5.

Theorem1 Let 1 < p < g < oo, w € D, v € By a radial weight and f € LY. Then
Hy, H% : Al, — LY are bounded if and only if f € BMO(A)w,v,p.q-

The approach employed in the proof of this result follows the guideline of [12, Thorem 4.1],
however a good number of steps cannot be adapted straightforwardly and need substantial
modifications. In Sect. 2 we prove some results concerning the classes of weights involved in
this work and the boundedness of the Bergman projection P,,, while in Sect. 3 we introduce and
study two spaces of functions on ID. One of them is denoted as BA(A),, v, p 4, and although
its initial definition depends on r, it can be described in terms of an appropriate Berezin
transform or simply observing that f € BA(A)g,y, p,4 if and only the multiplication operator
My (g) = fg is bounded from A}, to L] [15]. The second one, denoted by BO(A)y,y. p g
consists of continuous functions on ID such that the oscillation in the Bergman metric is
bounded in terms of the auxiliary function y given in (1.2). We show that f € BO(A)y, v, p.q
if and only if

1f@) = OIS NF1BOW w0 p, (L + B DT (2, 8) 2,8 €D,

@ Springer



214 J.A.Peldezetal.

where
1 z+1
( l1-z¢ )r v a(1 _ o op-mp )
max{1—|z2,1-[¢|?} max{1—|z|?,1-¢]%)
I'e(z,8) = 1 . 7,6 €D,
; V(@) V) |
mmn [ =07 * T=I¢Dh* ]

for an appropriate (small) constant T = t(w, v) > 0. If @ and v are standard weights, then
I'; does not coincide with the function playing the corresponding role in [12, Lemma 3.2]; in
the latter case the function is simpler in many aspects and does not depend on the additional
parameter t. Then, we show that

BMO(A)w,v,p,q = BA(A)w,v,p,q + BO(A)w,v,p,q- (1-3)

S |-

In order to prove this decomposition, due to the complex nature of I';(z, {), we are forced
to split D into several regions depending on z, establish sharp estimates for I'; (z, ¢) in each
region and then apply properties of weights in D. The identity (1.3) together with a description
of the boundedness of the integral operator
. / £1%)”
bef(2) = f(()id ©)
—z0)¢

and its maximal counterpart from A% to L7, see Sect. 4 below, are key tools to prove that
each f € BMO(A),v,p,q induces a bounded Hankel operator from AP to LY. Theorem 1
will be proved in Sect. 5.

Finally, in Sect. 6, as a byproduct of Theorem 1, we describe the analytic symbols such
that H+: A? — L% is bounded. The space By, consists of f € H(ID) such that

7.
I fllBsy = SUHPDIf/(Z)I(l — 12Dy (@) + £ (0)] < oo,
ZE

where y is given by (1.2).

Theorem2 Let1 < p < g < o0, w € D, v € By a radial weight and f < All,. Then
H% : AL, — L1 is bounded if and only if f € By, .

Throughout the paper L L —1forl < p < oo. Further, the letter C = C(-) will denote
an absolute constant whose value depends on the parameters indicated in the parenthesis, and
may change from one occurrence to another. We will use the notation a < b if there exists a
constant C = C(-) > O such thata < Cb, and a 2 b is understood in an analogous manner.
In particular, if ¢ < b and a@ 2 b, then we will write a < b.

2 Auxiliary results

For a radial weight v, K > 1 and 0 < r < 1, let p}, = p),(w, K) be defined by &(p},) =

o(r)K " forall n € NU{0}. Write p, = ,on for short. For x > 1, write w, = fol r*o(r)dr.
Denote

1
w*(z):/ log%w(s)sds, 2 € D\{0}.
Bl

Throughout the proofs we will repeatedly use several basic properties of weights in the

classes D and D. For a proof of the first lemma, see [13, Lemma 2.1]; the second one can be
proved by similar arguments.
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LemmaA Let w be a radial weight. Then the following statements are equivalent:
(i) weD;
(ii) There exist C = C(w) > 0 and B = B(w) > 0 such that

~ 1—-r\’ .
o) <C 1= o), 0<r<t<l,

(iii) There exist C = C(w) > 0and y = y(w) > 0 such that

t 1—1¢ Y
/ <7) w(s)ds <Co®), 0<t<l;
0 1—s

(iv) There exists .. = A(w) > 0 such that
/ dAG)  _ B©)
p |l =gz A= 1gh

(v) There exist K = K(w) > 1 and C = C(w,K) > 1 such that 1 — p)(w, K) >
c1 - ,0;;_,_] (w, K)) for some (equivalently for all) 0 <r < 1 and for all n € N U {0}.

¢ ey

LemmaB Let w be a radial weight. Then w € D if and only if there exist C = C(w) > 0
and o = a(w) > 0 such that

_ 1—1\"
w(t)<C 1=, o), 0<r=<t<l.
—r

Two more results on weights of more general nature than Lemmas A and B are also
needed.

Lemma 3 Let w be a radial weight. Then the following statements are equivalent:
(i) we D;
(ii) For some (equivalently for each) v € D there exists a constant C = C(w, v) > 0 such
that

w(t)

(iii) For some (equivalently for each) v € D there exists a constant C = C(w, v) > 0 such
that
4 t C
/ 20 o C o<r<n
0o w@®v() v(r)

Proof Let firstw € Dand 0 < r < 1, and consider o, = py(w, K) forall n € NU{0}. Then
Lemma B, applied to v € D C D, and Lemma A(v), applied to w, imply

w(f)v(t) Pos1 @ (£YD(F) Pust w(t)
/r 0 U= Z/ (1) dl<z( )f 20"

1 o~
/ @OV®) < By, 0<r <1

Py
V(pgp)
SlogK g Z( - o)
Po n=0
~ ch
< V(r)logKZ (Cﬁ)n =90 logK 5. 0=r =<1,
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216 J.A.Peldezetal.

for a suitably fixed K = K (w) > 1, and thus (ii) is satisfied. Conversely, (ii) implies

1 = L = - -
C’J(r)z/ Mdr>/ ’ Mdrgﬁ(l+'>logAw(’) 0<r<l

(1) - o(t) 2 @ (1%) - ’
1

and since v € D C D by the hypothesis, we deduce &(r) < @ (47) forall 0 < r < 1. Thus
w € D.

Let w € D and 0 < r < 1, and consider p, = p,(w, K) for all n € N U {0}. Fix
k = k(w, K) € NU {0} such that py <r < pgy1. Then

r k_l n r
f%d;:i/wf’@ dt+/ 2O o< <1,
0 o@®)v() o on o()v(t) o @(OV(D)

where, by Lemma B, appliedtov € D C 15, and Lemma A(v), applied to w,

k-1 Pn+1 t k-1 1 Pn+1 t

Z/ Aw(,\) dt < ZA —cﬁ( ) dt

2, a0 " T 5 L, a0
k—1

<y (I —p)* 1 10g< @(pn) )

= V) (1= per)® &(Ppt1)

k—1
(1 — o) 1
= IOgK S Z aYk—1—n _ o
V) = (C) (1= pr)
logK o 1 logk C“
<225 == , keN,
v(r) = (Coyn v(r) C* —1

for some o = «(v) > 0 and for a suitably fixed K = K (w) > 1, and similarly,

T o) 1 o(pr) log K
/pk s0r0 =50 log( o) ) =30y FeNVOk

The statement (iii) follows from these estimates.

Conversely, by replacing r by 1% in (iii) we obtain
(1+r)/2 (14r)/2 1 .
o) DD () p 0RO 50 5 (1)
and sincev € D C ﬁby the hypothesis, we deduce ®(r) < @ (1%) forall0 <r < 1. Thus
w e D. O

Lemma4 Let w,v € D, and denote 6 = 0, = wV/®. Thend < v on [0, 1), and hence
o e€D.

Proof Lemma 3(ii) implies ¢ < D on [0, 1). The argument used to prove (i) = (ii) in the
said lemma shows thata > D on [0, 1), provided w € Dand v € D. Thus o < V,and o € D
by Lemmas A(ii) and B. ]

The next lemma says that in many instances concerning A”-norms we may replace w by
@ =®/(1—|-|)if w € D. This result has the flavor of radial Carleson measures and indeed
can be established by appealing to the characterization of Carleson measures for the Bergman
space A% induced by w € D given in [15]. That approach requires showing that the involved
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Hankel operators induced by radial Bekollé—Bonami... 217

weights belong to D, which is of course the case, and thus involves more calculations than
the simple proof given below.

Lemma5 Let0 < p < 00, w € Dand —a < k < 00, where ¢« = a(w) > 0 is that of
Lemma B. Then

/le(z)l”(l—Izl)”w(z)dA(z)X/DIf(Z)IP(l—IZI)“ 15(:)dAG), f e HD).
2.1

Proof The function (1 — |- )" '@isa weight for each k > —o by Lemma B. Therefore an
integration by parts shows that (2.1) is equivalent to

1 ) » 1 1 9 » i 1 i~
/0 5Mp(r,f) (/’ (1 —t)"a)(t)dt) dr x/(; 5Mp(r,f) (/’ (1 =0k w(t)dt) dr.

Another integration by parts reveals that both integrals from r to 1 above are bounded by a
constant times @(r)(1 — r)*. But Lemma A(ii) implies

A

W/ A=) PO g <A —r)F, 0<r<l,

1
/ A=) '"&@)dt > a

and

o(r) Lo@) 1 —p)<th@
(1 —r)p@ / (1)

by Lemma 4. The assertion follows. O

1
/ (I—-0)w(t)dt 2, dt <o(r)(1-=r), 0<r <1,
.

The last auxiliary results shows that each radial weight in the Bekollé-Bonami class By,
belongs to D, and for each v € D the maximal Bergman projection

Pf(f)(z)=/Df(;>|B;<<>|v(;>dA(;), s eD,

is bounded on L. It is worth noticing that obviously D ¢ Ul<g<ocoBg because v € D may
vanish on a set of positive measure.

Proposition6 Let 1 < q < oo and v € By a radial weight. Then v € D. Moreover,
Pt LY — LY is bounded for all v € D.

Proof If v € B, then by [5] there exists § > —1 such that

! -7

1 _ B [ q
(/ v(z)dA(z))q f A= [zD7) (1—1zpPdAa) | <a—1ap@P, aeD.
S(a) S(a) v(z)

Since v is radial, this condition easily implies v € D.

_ L / PN
Letnow 1 < g < ooand v € D, and define h =7V 97" Then frl h(s)?v(s)ds <xv(t)9
for all 0 < ¢ < 1. Therefore Lemma B yields

S PN ,
/ Mdzx/ ld’ < 11 =h’'(r), 0<r<l1. (22
o vOd=0) 0 BT —1) V()T
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218 J.A.Peldezetal.

Moreover, by symmetry, (2.2) with ¢’ in place of ¢ is satisfied. Since v € D, we may apply
[16, Theorem 1] and (2.2) to deduce

[ 1B om” @ver dae i@,z e,
and

[ 1B e dae <@, «e.
It follows from Schur’s test [23, Theorem 3.6] that the maximal Bergman projection P :
LP? — L7 is bounded. u]
3 Some spaces of functions

Recall that

@71 — |z)) D o

=] ==

y(z) = )’w,v,Pa‘I(z) = 1
o(z)r (1 —|z|)»

n e FOV@ dAQ)
and fr‘,v(z) = MJW for f € L! and

v,loc?
1

MO,.¢.-(/)(2) = < 1f (&) — ﬁ,u(Z)lq\)(C)dA(C))q

v(A(z, 1)) Jaer

forallz e D. Ifv € 5, then by the definition there exist K = K(v) > landC =C(v) > 1
such that

1= 1—r
/ V(S)dSZ(C—l)?<1— < )>0, 0<r<l1.

It follows that there exists ,, € (0, co) such that v(A(z,r)) > Oforallz e Difr >r,.
The space BMO(A) = BMO(A), v, p,q,r consists of f € LY such that

v,loc

Il flIBMO(a) = sup (MO, 4. (f)(2)¥(2)) < oc.
zeD
The following lemma is easy to establish; see [12, Lemma 3.1] for a similar result.

Lemma7 Letl < p,q < 00, w a radial weight, v € D andr, <r < oo. Then

1
MO,,¢,-(f)(2) = 2( Lf (&) —)»I”V(Z)dA(Z)>q . z2€D,2€eC, fell,

v(A(z, 1)) Jaer

and therefore f € LY belongs to BMO(A) if and only if for each z € D there exists 1. € C
such that

_r@? T
fg(\;m(z,r)) A(”)lf(g“) Azl v(;)dA(§)> < 00.
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For 0 < p,q < 00,0 <t < oo and radial weights w, v, let

1 T+1 1
(%)7_ a 6(1 . oi-mp? );
1—|z2,1—|¢|? 1—|z|2,1—|¢|?
(2, 0) = max{1—|z|* 1—|¢|*} max{l H s L zceD, (32
V@) Q) |9
(I=[zD*> (A=[¢D*

min [

with the understanding that @(r) = @(0) when ¢ < 0. The following lemma explains the
behavior of I'; near the diagonal.

Lemma8 Let0 < p,q,r <00,0 <t <o0andw,v € D. Then
Lz O =y@ 7 =y@©)~" BEo =
Proof Clearly
=z =<1—lz[ =< 1= B0 =r,
and hence there exist 0 < m, < 1 < M, < oo such that

2|11 —z¢ 2

(1= < <
=D S = = e

M,(1—|z]), B(z,¢) =r.

Since @ € D by the hypothesis, and &(t) = @(0) for # < 0, Lemma A(ii) implies

_ C C . 2|11 —z¢? )

86 = - 5o =~ D) < - 50 (1 TR |;|2}>’ BGz.0) <,

and

ol1- 211 -z 2 <CMPHA = M-(1 —|2))) < CMPB(E), BG.O) <r
max{l — [z, 1= ¢} =7 ’ T e

for some C = C(w) > 0 and B8 = B(w) > 0. Further, V(z) < V(¢) and @(z) < @(¢) if
B(z,¢) <r by Lemma A(ii). The assertion follows from these estimates. ]

For continuous f : D — Cand 0 < r < oo, define
Qf(2) =sup{lf(z) — f(O)N:B(E¢) <r}, zeD,
and let BO(A) = BO(A)y,y,p,q.r denote the space of those f such that

I/ lIBoa) = sup (2, f(2)y (2)) < oo.
zeD
Lemma 9 shows that the space BO(A) = BO(A)y, v, p,q,r is independent of 7.

Lemma9 Let 0 < p < g < 00,0 <71 < o0, w,v € D and Y(2) = Youpq(@) =
1 1
DT (=27

D@7 (1-|z)?
a(v) and a(w) are those from Lemma B. Then the following statements are equivalent:

.Let f : D — C be continuous, and 0 < 7 < min{ga(w)/p, a(v)}, where

(i) f € BO(A);
(i) [f(2) = FOI S N flIBoay(X + Bz, )< (z,¢) forall z, § € D.
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220 J.A.Peldezetal.

Proof Lemma 8 shows that (ii) implies (i). For the converse, assume (i), that is,

[f(2) = f©Oly@) = flBOry, Bz, ¢) <r. (3.3)

The estimate (ii) for B(z, ¢) < r then follows from Lemma 8. If 8(z,¢) > r,let N =
max{n € N:n < B(z,¢)/r + 1}, and pick up N + 1 points from the geodesic joining z and
¢ such that B(z;,z;41) = B(z,8)/N < rforall j =0,..., N — 1. Then, as the hyperbolic
distance is additive along geodesics, (3.3) yields

N-1 N— 1A
Zi) 1_1
F@ = FOI= Y 1FE) = FEa0l < 1Flbow) Y % ’) (1= |z;h7 7.
j=0 j=0 "\
Next, observe that
1—|z;] < 20t -z i =0,....,N; (3.4)
I a2 P ey T '
see the proof of [12, Lemma 3.2] for details. This together with the inequality % — é >0

gives

1 1

2|11 —z¢|? g N-l s 2
1£(2) = £ < I flIBOCa) (ma _' lzlji'_ |;|2}> 3 i)(zi,)
’ q

x{1 j=0 v(z j)

21—z >,L i a7 <1—|z,|)5

= 17 leoca) (max{l —z2, 1 =12} o a- |Zj|)4 v(zj)q

The election of t together with Lemma B shows that the functions @(r)/(1 — r)%r and
V(r)/(1 —r)" are essentially decreasing on [0, 1). Therefore the inequalities (3.4) and |zj] <
max{|z], |¢]} yield

1_t4l
2|1 _2§-|2 roq
max{l — |z|2, 1 — |C|2}>
o %N—l Y
-6(1— 2|1 2Z;“I 2) Zw
max{l — [z|%, 1 — [¢ |} =0 V(zj)7
< IflIBowyTe . ON < I flBowa) (L + Bz ENTe(2.0). p(z. ) >

Therefore (ii) is satisfied. ]

If(2) = FOI S I IBOCa) (

For 0 < p,q < 00,0 < r < oo and radial weights w, v, the space BA(A) =
BA(A)w,v,p,q,r consists of [ € LY such that

v,loc

1 q
Il fliBAa) = fgg ((U(A(z,r)) e |f(§‘)|"v(§‘)dA(§)> y(z)) < 00

For ¢, o € R and aradial weight v, the general Berezin transform of ¢ € Ll(lfu)” is defined
by

1 — 2ye+1 1= 2\o
B(@)(2) = Buc.o@)(2) = %Aw({)%vmdmo, zeD.

V(2) |2+c+<7
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The next lemma shows, in particular, that the space BA(A) = BA(A)q,,v, p,q.r 18 independent
of r as long as r is sufficiently large depending on v € D.

Lemmal10 Let0 < p < g < 00,0 <7 < o0and w,v € D, y(2) = Vu,vu,p,q() =
1 1
w. If f € LY, then the following statements are equivalent:
o(z)P (1-|zp P
(i) There exists ro = ro(v) > 0 such that f € BA(A) = BA(A)w,v, p,q,r for all r > ro;
(i) |fl9vdA is a g-Carleson measure for A%,
(iii) The identity operator 1d : Al — L‘qf‘qv is bounded;
(iv) The multiplication operator M r(g) = fg is bounded from Al to LY,
(v) sup.cp ¥ (2)IB(f19)(z) < oo foralloc > 1 —L(1+a)andc > max{—1—o, L(1 +
B) — 2}, where a« = a(w) > 0 and B = B(w) > 0 are those of Lemmas A(ii) and B.

Proof Tt is obvious that (ii), (iii) and (iv) are equivalent by the definitions. Assume (ii) is
satisfied, that is,

1
(/DIg(é“)lqlf(C)IqV({)dA(C)>q Sliglhaz, g € AL, (3.5)

Atl

)T, where A = A(w) > 0 is that of Lemma A(iv). Further,

Forz e D, let g;(¢) = (}:‘EZ(‘

since v € D by the hypothesis, there exists r, € (0, co) such that v(A(z,r)) > 0 for all
r>ry,. Forg=g;andr >r,, (3.5) yields

(% |f<;>|4v(;>dA<:))3 s Lol @OUZEDT . p
VAT Jaen VAT v(AG )T
But since v € D, applications of Lemmas A(ii) and B show that

V(A(z, 1)) < V()1 —|z|), zeD, (3.6)

if 7 is sufficiently large. It follows that f € BA(A) = BA(A)w,v,p.q,r for all such r, and
thus (i) is satisfied.
Conversely, if (i) is satisfied, then by using (3.6) we deduce

1
(/A(" )|f<;>|qv<;)dA(;>>q SBEIA -7, zeD.

Therefore | f|7vd A is a g-Carleson measure for AP by [17, Theorem 3].

By integrating only over A(z, r) in (v) and using (3.6) we obtain (i) from (v). To complete
the proof of the lemma, it remains to show the converse implication. To do this, pick up a
sequence {a;} and 0 < r < oo in accordance with [23, Lemma 4.7], and observe that @ is
essentially constant in each hyperbolically bounded region by Lemma A(ii). Then by using
(3.6), the hypothesis (i), the election of ¢ and o, and finally Lemmas A(ii) and B, we deduce
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S(\B g 00 1— 2\o
Y@BUSDE) ZfA )|f(g)|q¢lf(§)d14(§)

(1— |Z|2)c+1 1 — ZC|2+”+U

o0 (1 _ |aj|2)(r f
< — S q dA
N E — A(ajyr)lf(é)l v(¢)dA(%)

= |1 _ Zaj|2+c+a
o0 -~

< (1 —la;j|»° 1))

~ P Il = za; v (Alaj, ) Jaa;.n

|fOITv(©)dAE©)

q
p

00 NN o0 2v0+% ~
(1 —lail")° " vai) (I —la;|7)" "rwlaj)
S Z
=1

|1 — za; |2+c+r7 (a;)4 1 — 27j|2+c'+a

dA(u)

< / (= w7 o)

1 — za|>+eto

I2] @(t)% 1 ! 4_5 g
< dr + ‘ / A= P °%)r di
/0 (1 =)t (I —[zpetott J

U -
P DL O
Ta— et A=z @

eD,

and thus (v) is satisfied. m]

With these preparations we are ready to show that BMO(A) = BA(A) + BO(A). This
follows from the case (ii) of the next theorem.
1 1
V(Z)z (1—|ZI)"]
@7 (1-z)P

Theorem 11 Let 1 < p < g < 00, w,v € D, ¥(2) = Vou,pq(@) = and

f e LY. Further, letr > r,, o > 0 and

c> 2 (B(@)+ 1) + 0 +max {28(v), y (v)},

where B(w), B(v), y(v) > 0 are associated to v and w via Lemma A(ii), (iii). Then the
Jfollowing statements are equivalent:

(i) There exists ro = ro(v) > ry such that f € BMO(A) = BMO(A)y,v,p,q.r for all
r>ro;
(i) f = fi+ f2, where fi € BA(A) and f> = fr . € BO(A);
(iii) sup.cp (BUS = frv(@)IDy(2)7) < 00;
(iv) For each z € D there exists A, € C such that sup,.p (B(|f — A:|7)y(2)7) < oo.

Proof Obviously, (iii) implies (iv). Next assume (iv). The relation (3.6) shows that there
exists rg = ro(v) > 0 such that

1
_ — A7 dA
v A Jacr |f(§) [Tv(¢) dA(S)
(1—|zpt! : g, (=12° -
ST/I.})U(O_)\ZI WV(C)M({), zeD, rog<r <oo,

which together with Lemma 7 shows that (i) is satisfied.
Assume now (i), and let f> = f; . Since f € L g > 1l and r > r,, the function f> is
well defined and continuous. Since w, v € D by the hypothesis, one may use Lemmas A(ii)
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and B together with the argument in [12, 1651-1652] with minor modifications to show that
= ﬁ y € BO(A)and fi = f — f; v € BA(A). Thus (ii) is satisfied.

To complete the proof it sufﬁces to show that (ii) 1mphes (iii), SO assume f =N+,
where f1 € BA(A)and f, = f, » € BO(A). Since f, vy = f1, » T+ fz, »» it suffices to prove
the condition in (iii) for f; and f; separately. First observe that by Lemma A(iii) the constant
function 1 satisfies

SR ED S ) 1 !
< —° < z
B()(2) S 3@ (/0 REET: dr + TR ‘Z‘(l H%v(t)dt ) <1, zeD,

because ¢ > max{y (v), 0} — 1 by the hypothesis. This together with Holder’s inequality and
Lemma 10 yields

B(|fi= Firu@|") y@) S (BUAING +1fir 1) 7 ()
= (BUAING +TAl, ) () S 1. zeD,

and thus (iii) for f; € BA(A) is satisfied.
To deal with f> € BO(A), pick up t satisfying the hypothesis of Lemma 9. Then

1£2©) = Py = (f2(2) — fr)v(u) dAu)

m A(z,r)
1
= w(A(z, 1) /A(m) | f2(¢) = fa(w)|v(u) d Au)

PR
U(A(Z,I’) A(z,r)
S(I—FIB(Zv;))FT(Z?{)’ Z!é-E]D)s

I+ B u)le (&, u)v(u) dAu)

because I'; (¢, u) < 'z (z, ¢) forall u € A(z, r) by Lemma A(ii); see the proof of Lemma 8
for similar estimates. Hence it suffices to show that

(1—¢?)°

(1 — |zt y (2)?
1 — ZE|2+c+a

= v()dA(K) <1, zeD,
V(z)

/Dl(l + B T (2, DI
3.7)

to obtain (iii) for f» € BO(A). The proof of (3.7) is involved and will be divided into
four separate cases. Before dealing with each case, we observe that since S(z, ) grows

logarithmically, we may pick up 0 < § < min {(r, %,B(a)) + B(w) + %} and a constant
C = C(8) > 0 such that

1480 <Cl(1—| (c)|)‘3—c(”‘“'2)" sreD. (38
o= v “S\a-ma-gp) - s W
Case 1 If

2|1 — zw|?
;eDl(z)z{wemzl—ﬂg }

1—|z?
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then 1 — |z| < |1 —zZ|? and

( l1—z¢ |2 )p -1
E 1212 1— 2
max{l—|z|=, 1-[¢]*} 6(0)% <

— o\ L—1—1
1 — 2 P 1 _ T
(|m> (1~ Iz XD,z (£)

FT(Z7 ;)q S P —~ pasa—
: D(2) () ~MN 1 —|z)? V(z)
M =7 (1—\§I)Tl g (
— L_7—1
I1—zgP\" A =lgD"
T2 —= , D, Di(2),
+ ( =2 S FPwer@), zeD, £ eDi@)

because of how 7 is chosen in Lemma 9. Therefore (3.8) together with Lemmas A(ii) and 3
(ii) yields
(1 — |zt y (2)7

V(z)

e R 10 / e TS
~ V() DIONDW.IzD |y _ g tero=2(F+s-r)

1 c+2+r757% q 1 — |c|2)yo—d+t
(I =1z v (2) /D -1 V(&) dA(L)

V(z) dtcto—2(L+o-1)

(1—¢?)°

va@)dfx({)

/ |(1+ Bz, eNT2(z, )|
D1(z2)

+
1(@\D(0,]z]) ’V\(g)“ _ ZE'

o A=2DF 8y @) (F

(=5 %v(s)ds

~ V(z2)?
UZED 2y @ 1 e 2O
v(z) |2 v(s)

(1— |Z|)g+z—%+1—% (1— |Z|)§+%+1+r—5—%
<

T()@() 7 ()0
<A — |2t AORA@ < e,

where the last estimate is an immediate consequence of the choices of ¢ and 8.
Case 2 If

2|1 — zw|?
teDz)=qweD: 1 - ———— >z > |w[¢,
1—|z)?
then |1 — z¢| =< 1 — |z|?> < 1 — |¢|2, which together the fact that (1?—(?)1 and L),, are
a-n'a
essentially decreasing on [0, 1) gives
Lz, 0" Sy, zeD, ¢ eDa2).

Therefore (3.8) and Lemma A(iii) yield

(1 =z y(2)? / (a—1z3°

A L 1+ Bz, DT (2, Ol ———=5———v({) dA

o o [+ BE O O T2 () dA)

v(£) dA(Z)

_ (= [zt / (- 1eP
~ )\7(2) Ds(2) |1 _ ZE|2+c+0725

1— c+1-6 |z] .
<4z kD Y 4 <1, zeD.
v(z) o (I—ryett=s
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Case 3 If

, 2|1 — zw|?
. €D3(z) ={w € D:min 1—17||2,|w| > z| ¢,
— |z

then |1 — z¢| =< 1 — |z|> = 1 — |¢|?, which together the fact that = t)r and —20)_
(1-r)"q
essentially decreasing on [0, 1) implies
()7 (1 |z
Pt S 2" 200 seD, ¢ e D).
v(¢)
Therefore (3.8) and Lemma 3(ii) imply
(1—unﬁﬂwnq/ (-1
- 14+ B, )z, )7 = v($)dA
=0 o | PG O O T v dAQ)

- 1= 127 v@©)
< (1 —|z)°t! 5/ (A=l v —2dA
S A =1lzD Dq(z) et B () ©)

1 —s)° §
<1- |Z|)5—U w <
I2| V(s)

Case 4 If
2|1 — zw|? | I}

§6D4(z):{weD:1— =212

then Lemma A(ii) gives

o1 - 222\ _ (1n-z0\""
ﬁ(l - ) < < ) w(z), zeD, € Dy(z),

1— |z 1—|z|

and hence

)4 S
reeof < (52 PN (L i L
R WY 1=Kl S POk

_ 4_z-1
1— 2\ »r 1— T
N <| zg | ) (—1&h XD\D(OJZ')(;)) zeD, € D42).

1 —1z| V(4)

Therefore (3.8) and Lemmas A(iii) and 3 (ii) yield

(1= lzpFly) g (-l
wa [(1+ Bz, DT (2. 0l W v(¢) dA()
q
1— c+2-6— 2ﬁ(w) +7 2,0=8=F+7+1
< -k / — —I¢l? )25 e O dAG)
”(Z> DAENDO.IED | _ p[HHeto—2-26@F-25+20
+ (1 =zt 2ﬂ<w>*—*+f+1/ (1— |gpo ot V()
Dg@\DO.1z) |1 — |4+¢+‘7 ~26-2B(w) §—25+21 V()
< (1 — 220 2@ /H V() .
u(z) 0 (17’_)2+C—8—2ﬂ(a))%—%+r
1 LA —n7 )
<
* (1 —|zpo—d+t J V() dr$l, zeD.

are

dA(Z)
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Since D = LJ‘]‘.:1 D;(z) for each z € D, by combining the four cases we obtain (3.7). Thus

(ii) implies (iii), and the proof is complete. ]

4 Boundedness of integral operators

In order to deal with the boundedness of Hankel operators, we need a technical result con-
cerning certain integral operators. For f € Ll and b, ¢ € R, define
21%)?
Ty ()2) = f(C)ig)d ), zeD,

and

1— 2\b
Sp.e()() = / oD 440), zeD.
A TET

In the analytic case the operator T} . can be interpreted as a fractional differentiation or
integration depending on the parameters b and ¢ [20]. The boundedness of these operator
between L? spaces induced by standard weights has been characterized in [19].

Lemma A(ii) shows that for n € D there exists a constant co = co(o) > 1 such that
hypotheses (i) and (ii) of the next lemma are satisfied for all ¢ > c¢o.

Lemma12 Letl < p<gq<o00,b>—1,c>1ando,n € D such that
(1 )L 2 (1 _’,)(,‘71

> 0<r<l;
r n(t)‘l () 1
r t =\
(ii) / 'Zq() L LI S
O (-2 HwoY (A=rr"

Then the following statements are equivalent:
1. Spe: AY — LY is bounded;
2. Tpe: AY — LY is bounded;

QU

2+b—c+ 3 —1 70)

3. supg, < (1 —=r) T < 00.
)P
Proof Obviously (1) implies (2). Assume now (2), and for each ¢ € D and N € N, define
2+b+N
fen € H® by fen(z) = L (%) for all z € . By differentiating the
o (S5()) v B

reproducing formula of A we obtain

7N N
g™ () = M/ (1(_”2(1)2+|bﬂv) dA@), zeD, NeN, geAl @41

where M| = M(N, b) > 0 is a constant. Therefore

(1— |y / WV (1 = Ju)?
Ty _ » )
el a(S(;))l% D (1 — ul)2+b+N (1 — uz)c dA(u)
— 2\2+b+N —N _ 5
= (I =1z 1 / uf (;HH_!;” ) s
o(S@cyr o =< (1 — zu)

1 — |£12)2+b+N N
:Mg( [¢19) z

o(syr (=20
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where M, = My(b,c,N) > 0. Fix N > max{MnH—1 C,M—b—Z}. Then

P
Lemma A(iv) gives | f¢ vl » < 1 and

/ 10y  1SE)
D

11— Zz|(eNa S d-jepermr £

Therefore (2) yields

g (A=Y n(2)
00 > lIfenllyp 2 Ty, (fe, N)”Lq = ( o—(S(;))% fD TS dA(2)

e D,

)q(2+b o) N(6)) W(S(C))
G(S(é“))

= (I -]

thus (3) holds.
1

1 by(1_1
Assume (3) holds and let 2(¢) = o () (1 — |§|2)”+(’ ")1 for all ¢ € D. Then
Holder’s inequality yields

1

1 / 7
. . dA(¢) ) /((1—|;|2>b>” dAE©) '\’
155, f(z)|<(/D|f(§)| O (D o) o

1 1
=11(2)7 - (z)",
where

_ 2h—141 1 _ p—Ll41
Ih(z) = w—)”;dA(;)x/ (ll N g
Dl —zg|o(@)r 0 TP (1 —rlzpe!

(-5t N e
:/ (] r) " rTa dr-i—/ (1 ry r'a dI”:J‘Z""JIZI'
0 Gy —rlzh! ELG @) e (1 —rlzhe!

Lemma B together with the assumption (3) yields
2l (1 — b—l%+ql+l—c Iz| dr 1
lelf/ ( ’) 1 drS/ 1’ 5 1> zeD,
0 a(ryr O [y d—-r) N9

sincen € D C D by the hypothesis. In a similar fashion, (3) together with the hypothesis (i)
gives

1
1 La—nr

Jpz1 < "
=T FRO

+

Q=

1 1 1—r c=2 1
dr 3 - =0 dar < , zeD,
A=z iz 5 7
o) n(z)4

1
and hence I5(z) S 7(z)” @ for all z € D. This estimate and Minkowski’s integral inequality
(Fubini’s theorem in the case ¢ = p) now yield

dA g g
15, CFIIZy < (/D ([ rrmer =) A”(Z)ldmz))

nz)r

E/DIf(C)I”?f(z)ls(i)dA(;),
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where
)2 ! 2
h()? (z)dA(2) T hE)? (r) !
RO = Ef{) / eruey Efc) / e =l
D1 -z i) O A =rihr R
Since
Iq - Iq - MtaYd
/ niqul /drf/ i’-q(’) _dr < n(C);ﬂ_l’ reD,
0 (L—=righ» n@)t/r 0 A—r 57 (I=1ghr
by the hypothesis (ii), and
1 1 P
- 1
/ n(:q) _dr < - / n(r)1 dr = n(f)"ﬂilv ¢ eD,
el (1 —rieh 7 907 (I =1gh» ™ Tl j0y v (I—1¢h7
we deduce
1
Ceql_1m(&)e
B©) S -t T < e,
a()r
by the assumption (3). It follows that ||Sb70(f)||L§/7 S N £l 42 This finishes the proof because
1Nl 4 = ||f||A£ for all f € H(D) by Lemma 5 provided o € D. ]

5 Proof of Theorem 1

In order to prove the sufficiency part of Theorem 1 we shall use the next result which follows

from the argument used in the proof of [12, Lemma 4.5].

Lemma 13 Let 1 < g < oo and v, w weights such that P, : LY — L9 is bounded. Then
”Hf(g)”qq <+ NPollpg  OIHY (g)IILq, felLl, geH™.

Proposition 14 Let 1 < p < q < 00, v € By a radial weight and w € D.If f € BO(A),
then H} : AP — LY is bounded.

Proof By [5] there exists a constant so = so(v) > —1 such that P; : L% — LY is bounded
for each s > sg. Let 0 < t < min{ga(w)/p, a(v)}, where «(v) and «(w) are those from
Lemma B. Then Lemmas 9 and 13 yield

y 1) = FOlIg@)] 2 ‘
IH} @Iy < IH} I </D< e (R dA(o) V() dAG)

1 FT s 7 oo
f(/ 190 LEDEDE D) O"L{TM(Z Da-iepy dA({)) V(@) dAG), geH®.

Lets > max {so, 2 (B(@) + B(v) +2a(v)}, § < min{Z, “<”>} and K > 1 to be fixed later.
Then applying (3.8), we get

5 q
(2,0 dAE) V()
v q <
IH} ()17 < ;/D (/Q_,.m Ol = W)g_s) T 4@

5 5.1
=13,
j=1
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where

1 2
QO = e o S TR Iclz}} N D, |zD),
1 2
D) =10eb: g TS S T mz}} N D\D(O, [z)) ,

- _ 72
oK) =lcen: 12 2|1 —z¢]| }

K 7 max{l —[z]%, 1 — [¢]*}

_ 1—¢] 211 —z¢?
U K)=1reD: — < RN Ee 1} N DO, |z]),
I—¢| 211 —z¢?

Qs(z,K)={ceD:

K max(l P - 1} N (D\D(O, |z])).

The quantities 1;(g), j = 1, ..., 5, will be estimated separately.
Case I1(g) By using the definition of € (z), and the fact that (1”_(’2)), is essentially decreas-
ing on [0, 1) we deduce

1_1
( 1z 2)!’ a Aot |
max(1—|z12,1-[¢?) 1—=z¢7\7 7 (1 —|z2D"\4
F(z,0) S i S(l 3 30 . zeD, eQi().
min{ I N (9) }a -l g
(T=[zN7 " T=IZDh*

Then the estimate

_1
My, f) = Mp(r. ) S Ifllgp@C) 7. 0<r <1, feHD), (5.2)
and Lemma 3(ii) yield
1 1 q
1— 57875+g 1— T8¢
hs [ ([ sy — D dA(c)) PO S e
D \Jo,¢) |1—3{|2+Y 25— z(ﬁ—g)
s q 1— T—8q
§(f 2@I0 —12)? ldA@)) /%mz)
D D (2)
1—p32! s b \?
< lelly (f L t) S llgll ( a-n2"""" dr) Slglt,, geH>,
()P @

Case I>(g) The definition of €25 (z) and the fact that (f 7(?), is essentially decreasing imply

1.1
< oz )f’ a Lot |
max{l—|z|*,1-[¢]7} [1—z¢|=\? ¢ <(17|§|)T>§
I';(z, < < — , zeD, Q .
(2,03 Bl }l/qw<1_§|2> 50 € ¢ €Q(2)

: 2)
“““{(1 BRI
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Therefore (5.2) and Lemmas A and B yield

()

q
(1 =1z v(z) dA(2)

Iz(g)ﬁf f lg(O)|
D Q0(2)
( / 12(0)]
(1_,>2 i

q
<lg ||A,,( 1 dA(c)) (u(O)
0 D))

1
<taly ([ a- dz) <

1 1
SO -z 2s—25— 2(p

d

_ —1+ ¢ 0
( |¢|)2 qu(;)> /(1
v(g)q 0

B =t

dA(2)

=

— r)_‘sqv(r) dr

+/‘ ()
1-

£)1+4s

.

gl g€ H>.

Case 13(g) To deal with I3(g), note first that now 2K |1 — §§|2 < (1 — |¢]) max{l —

12,1 = [¢1?} < 2 (max{l — |z|, 1 — |¢|})* for all ¢
some R = R(K) € (0,00) if K > 1 is sufficiently 1

V(¢) xV(z) forall ¢ € Q(z, K) by Lemma A(ii). By using this and the fact that

essentially decreasing on [0, 1) we deduce

1_1

€ Q3(z, K). Hence ¢ € A(z, R) for

arge. Fix such a K, and note that then
6w ) - is

1= x)"

1_1 I I
I1—zz)? Pa o w@)r V(z) V() T
Fr(zs§)5< zé‘ 2) d T n[ T’ d ‘[}
max{l —|z|%, 1 —[£|*} (1 —=1¢e (I—1fzh* A —=1gD
1
- 1 B(0)7
LUZRDTROOT gk,
V(C)"
and it follows that
s—o+1_2 1
1 (1—|§|2) P dAQ©) v()(1 — |z])1 =48
- ~
Is(g)N/D /A(Z’R) (Ig(C)Iw(C)P> TR 50 dA(z)
(=) Fane|
1 g F qu({) V()1 — |z])
= wt)P — dA
/D /A(Z,R) (Ig(i)lw(é) ) TS 50 (2)
s q
o1 (1—\§\2) dAQ) | v =z (5.3)
X/ / (Ig(z)lw(é)/’> 5 = dA(z)
D A(z,R) |1—z§|2+b p+q v(z)
s q
1\ (1=127) dA@) 01 —
5/ / (g(mo?(;)p)( 2> | e )'Z‘)dfuz)
D\ /D |1_7§|+\ p+q V(z
s <| | ol N gl )|’ H>
= gﬁ”) = ,L-<g5”) geH™,
s,s+2(lfi+%) L% b LZ

where 7(z) = &

ﬁ)v((l;& for all z € D. To apply Lemma 12 with 0 = 1, we must check that

its hypotheses are satisfied. To do this, first observe that n € D and 7(rr) =< (1 — r) for all
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0 <r < 1 by Lemma 4. Hence
c—=2 _ 1
U / A= ar=q-—pr i U207 g o
r ﬂ(t)q n(r)q
and, by Lemma 3(iii),

/"%d[x/r qv(t) _ iy
©a-nrTHor 0 Syt — b +2(1-5+7)) 13

1
1 7)?
—

< - y
b)) T an?

0<r<l,

so the hypotheses of Lemma 12 are satisfied. Moreover,

24b- “"TﬂAl, 0<r <1,

~Sl=| =

(I=r)
G(r)r
and consequently (5.3) and Lemmas 12 and 5 yield /3(g) < ||g||qp = ||g||qp forallg € H.

Case 14(g) By using the definition of Q4(z, K), Lemma A(n) and the fact that (1”(); )), is

essentially decreasing on [0, 1), we deduce

1_1 1
BN O R PN 1 -/ L N
max{1—|z|2,1-[¢|?} max{1—|z|2,1-¢]%)
(2,0 5 - 50 50 1
_ = z V(¢ q
(1 =10 min | 2, 2}
) 11 ) 1 9 l,l 2B(w) 1
N-ze2\P 7 K2l-%] 4 Loz ) 7 7 (1= 7 v
( -] ) “’(1 max{l—\z\z,l—\zm) ( i ) o
S ]
7 min [ 9@ Vo) e 7 2) Q) e
(] — |§'|)‘1 min (IE\Z\)I > (I—=¢DT }q (1 - Ml)( min {(1 zDT° T=[ZDT }q
1 Yoy 2 L . L
_ P q P — |z
<! mzﬂ(w 21(9) (( —lzD )‘1, zeD, ¢eu@K).
A g P s a—geni A PO
Therefore
2 1 _t 4
_5_7 === —
< I L) T V@ =z
14(9) < lg®)]w(g)P Zﬂ(w) 7 7 44%) TdA(Z)
o\ o ,ﬂzﬂ 28— -5+ 5.4)
1\ |4
= (Sb.c <|g|ap) . gEH™,
Lq

n

whereb=s—§—28@ 4 17 o4 25280 2.2 404n0;) = M*(\Z)Désq
P i V(z

for all z € D. We will appeal to Lemma 12 with ¢ = 1. First observe that n € D and

7)< (1 =r"%forall0<r <1 by Lemma 4. Hence

2

c=2 Zﬂ(n)) T 2@ _t
(1 ) dt = /(1 ) o _7—*+thv(1 )‘“—S—T—r%ﬁ
r n(t)‘f

(1 _’)c 1
Ay

0<r<l,

5
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232
and, by Lemma 3(iii),
r t r t
/0 ;(7)1 T4 x./ < (24s- 2;(239(‘”) 212)-1-88 a
(L=0? @) Pyl —1)P »Ta p
1
1 )P
S = 0<r<l1
Zﬁ( ) 2 9 _y° - ’
(1 =y (re2o- 225 3)- a-nr!
so the hypotheses of Lemma 12 are satisfied. Moreover.
Cepl 1 7(r)a
Ztb—cty PL( )I =<1, 0<r<l1,

d=n

o(r)?
A forall g € H*.

and hence (5.4) and Lemmas 12 and 5 imply 14(g) < ||g||A,, = gl
Case I5(g) By using the definition of Q5(z, K), Lemma A(ii) and the fact that (E’Q), is
essentially decreasing on [0, 1) we deduce
1_1 1
( l1-2¢ 2 )1’ a 5<1 __ op-wp? )f’
L2 12172 o 1—1-12 1—1712
o5, 0) < max{1—|z|*, 1—-|¢]} max{1—|z]| ’11 1217}
7 min | 7@ Q) 14
(1 =1z min { 7255 2|
2\Fd 2 3 2 %*5 2w |
11—z ~(_ _ K21-z] 1-z¢|= \? P v
( T=[¢] ) “’(1 max{l—\z\z,l—\§\2]> ( T=[¢] > 1 |¢ w@)?
: : 0 e
)4 m {(1 7" - \c\)f}

~

1
T S ey -
(1= [eD 7 min { 725, 2} (- leh

1 2@ L
P
OO D, e K).

1_1
o (I=z2\? ‘f(u—m) g
~\ - 1—[¢] ol

Therefore Lemma A(ii) yields
2B(@) | 1 q
1 T S dA
sws | <|g<c)|w(:>v> ) =
D \ JQ5(.K) @)1 -3 2s—26— L 242 (I —1z])
N zﬂ(w”“@ ! @dAD) (55
1 — q
5/ (f (\g(ow)(z)ﬂ) d Sl sz@)) V@dAm) (5)
AP e e ] (1 - [zpB—PWID() 7
1 q
= ||Sh.c <|g|<7ﬁ> geH®,
Lq
n
v -]z =%

where b = S—S—@ﬁ-;—@,c = 2+S—25—M—2+§ andn(z) = )
for all z € D. Again we will appeal to Lemma 12 with o = 1. First observe that n € D and
7)< (1 —r)#M=3% for all 0 < r < 1 by Lemma 4. Hence

2,2_pWw

2w 23((»)_, 2_
)1+s 5+ »ta—

1—r)2 2@ _2
( ) dt = /(1 s =5+ Pt dt = (1—

r n(t)‘f
1— c—1
xi 0<r<l,

G
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and, by Lemma 3(iii),

! t ! v(t
/0 J(*L 1y a x/0 i(2+v—25——2(ﬂ2“’)—3+Z)—1—7/3(">*‘15 @
(I—0)? @)/ Syl — P\ » P4 P

1

1 )P
< = - 0<r<l1
~ a4 _ps_ 2@ 2,2\ _|_BW—qs <y - ’

(1_r)p(2+s 2= p+q) == (1=rr

so the hypotheses of Lemma 12 are satisfied. Moreover,

1
2+b—c+$—l% nwya

a(r)r

d=n

=<1, 0<r<l,

and hence (5.5) together with Lemmas 5 and 12 imply I5(g) < ||g||i’4£ = ||g||i,, for all
g € H®. This finishes the proof of the proposition. ! O

In order to prove the necessity part of Theorem 1 some definitions are needed. Forn > —1
and a radial weight w, let b7, = B!/||B]|| o» for z € D, where B! (¢) = (1 — 2£)~ 37,
For each f € L], define

Py (fb20) ()
b »(£)
and note that gg,a, is a well-defined analytic function in D because the standard Bergman

kernel b;’,w has no zeros. If v, w are weights, n > —1 and 0 < p, g < o0, let us consider the
global mean oscillation

g, (@) = , CeD,

1£b2, — grw@b! g, zeD.

Proposition 15 Let 1 < p1 <gq 1< oo, f e L, w e Dve By a radial weight and
V() = Youpqe@@) = % IfH;, H% : AP — LY are bounded, then there exists
@) P (1=|zpP
no = no(v, ) > —1 such that
sup 17620 = 8w @bl ol g < NHl 42 pa +1Pyll g a (HH;nAgﬁLLV, + HH%HAOQ_)Lg) :
for each n > ng. Moreover, there exists ro = ro(v) > 0 such that for each fixed r > ro and
n = no,

1
q

sup || b2 — 8Zw(@DbZwll g 2 1f (&)~ g?,w(z)rfv(c)dA(;))

1
sup y(z) <7
D Ze{; v v(A@z, 1) JAGr)

Proof The definition of the Hankel operator along with triangle inequality gives

152, — 0@ g < IHFBL g + 1Py (FB) = 8L u(@b Il g
< H N gp 10157 gz + 1PU(FBY ) — 82a(@b! 1
= | H M ap g + 1P (FBY) = 82 0@ ]l 4.

Ifg e A}], then the reproducing formula for the standard weighted Bergman projection yields
g(z)bg,w =P, (gb?,w). Since v € By isradialand f € LY wehavev € Dand P,(fbY) € A?
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by Proposition 6. Therefore g € A{ forall z € D. Moreover, Aj C A} C A, ify > % -1
by Lemma A(ii). It follows that

1P, (fB ) = 820 (@b! Il g = 1P (FBI ) — Py(elub? )l g
= 1Py (Pu(fY ) — &b g, z€D.

By [5], there exists n1 = n1(v) > @ — 1 such that Py, : L? — LY is bounded if n > n1.
Therefore

1P (B2 ) = &l @bY ol g < 1Pyl g, paIPo(fbh0) = g2 bl wll g, 2 €D, n=m.
The triangle inequality yields
1Py (£D,) = 82ub? g < 1B, — PoC(FBE )l g + /Y, — ghubl Il o
= H} B! Mg + 1762, — &2 ,bY g
< H}lap 19167 ol ap + 1 FBY = Po(FBY ) g
= IH g + TG ) g < Wl pg + THE -

By combining the above estimates we deduce

n
17820 = 8T g < WHPlLagng + 1Pollgorg (1HF g + 1 4 sg )

for any n > ny(v).
To see the second one, first observe that [16, Corollary 2] and Lemma A(ii) give

g w(t) o(|z[) I 1
n <
I18: ”A” - /0 (1 — )P+ dr s (1 = |z)B@ /(; (1 — 1)PC+m—p(@) dt

= o(2)
T (1= [zppC=

lz| > 17,

provided n > Bl 5 Moreover, by (3.6) there exists ro = ro(v) > 0 such that (1 —

|z)V(z) < v(A(z, rg)) for any r > r¢. Hence, for each r > roy we have

150 = 8w@blol]q = / £ ©) = g2o@ITI @)1 v(@) dAE)
A(z,r)

1 ) 7 p
= — &0 dA
HB;? ”ZP(I — |z|)‘1(2+77) /A(ZJ') [f () 8z, @|Tv(&) )

1
= ﬁ/ 1£©) = 8T 0@ dA),
BE) P (1 —[zhp TAEN

P — 1 -
e 1F©) ~ 0@V EOdAQ).
D) P (1 —|z))? v(A(z, 1)) A(z,r)

The second claim for 9 = max{n,

w — 2} is now proved. O

Proof of Theorem 1 1f H , H” Al — L7 are bounded, then f € BMO(A) by Proposi-
tion 15 and Theorem 11.
Conversely, let f € BMO(A). Then f can be decomposed as f = f1 + f2, Where

f1 € BA(A) and f, € BO(A), by Theorem 11(ii). Proposition 14 shows that H I f :
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A, — LY are bounded. Moreover, since v € B, is radial, v € D and P, : L} — L{ is
bounded by Proposition 6. Therefore Lemma 10 yields

IIHfl(g)Iqu <Wfigllpg + 1P (fidllpe S f1glle S lIgllar g € HY.

It follows that HY, HY : AY — L% are bounded. O

f’f

6 Anti-analytic symbols

Recall that the space By, consists of f € H(ID) such that
I fllB,, = Sug If @I = 1zDy(2) +1f(0)] < oo,
ze
where y(z) = M for all z € D.
w(A)”(l |z D"

Proposition 16 Let 1 < p < g < 00, w,v € Dandr > rg, where ro = ro(v) > 0 is that of
Theorem 11(i). Then BMO(A) N'H(D) = BMO(A) g v, p.q,r N HID) = Byy .

Proof Let first f € By, . By Theorem 11(iv) to deduce f € BMO(A) it is enough to prove

( |Z|)L+1]/( )q (1— |§|2)o*
SEHP)A—/ lf ) —fz )Iqu(g)dA({) <00 (6.1
for some o > 0 and
c> 2 B@) + 1)+ 0 +max {28(v), y(v)}. 62)

24+ct+o
Since f € H(D), the function (f(¢) — f(z))(1 —¢z) a is an analytic function in ¢ for
each z € . Therefore Lemma 5 shows that (6.1) is equivalent to

c+1 q _ 2yo—1
sup('zl)—y(z)/ @) — fz >|‘1# () dAG) <00, (63)
zeD | zg | tcto
Further, Lemma A(ii) yields
(1= 2Dy () (=1
T/UC(C) f@| W V(&) dA(L)
g , (=g
SA=1zDTy(2) D] )|f(§) f@]| WdA(O
. (1— g7 thw -1
(1 *ﬂ%(z)"f«)ll 7@ - ol S daw
sa-E e [ ire - fe >|‘1wdm)
: : ¢ | |2+<+a ¢
(1 )P0y 0 [ 17@) = )|‘1(1_"“'2)F[+ﬂ(u)_1 dAQ)
+ ‘ yiz D ; Itz |1 —ZE|2+C+” C

=1(z)+ I(z), zeD.
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Fix ¢ > max {o, 1= 21+ a() + qﬂ(v)} and c satisfying (6.2). Then

¢ > max {ﬂ(\)) - 1,24+ BW)+ %(1 + B(w)) — qa(v)} .

Therefore, [11, Lemma 7] together with Lemmas A(ii) and B gives

1()<(1_||)C+1 @7 | 1 )|qwdm)
12) 3 z v(z 5 e 11— sgpreto ¢
q e+l IO I
5 ”f”de(l ) + )/(Z)q/D)/(C) qmdA@)

1~ I 442
o I FI19 Cinel g [P =8P
< 171, (1 =12 y(z)/o e ds
D(2)7 (1 — |z

/I | ds
(1- |z|)vﬁ<‘*’”<z) (1 — ) Fppperre®

SIAIE,, @ =12y @)

w(z)” (1 —|zpfW (1 gy bre2tia@—p) 4o
q
(= |z|>n"(“”ﬁ(z) 1

a7
V(2)

+1£1I5,, (1= 12D~y @)

SIAIG, A=)y @75 < £, <oo, zeD,

and
2y0+B(v)+q—1
g (L= g2y tPOta
11— ZE|2+C+U

L(z) S (1 = [zpHI=A0)y ()4 fD 1) dA(C)

(1= JgHfertet

T gprere 4O

S, (- |z\>"+1‘ﬂ<“>y(z)"/Dy(;r"

)ﬁ(v)+%+a—2

q
: Las)? (1—s
= 1£1% (1= |zpet=Fm) q/ o(s)
171%,, =1z ro! [ S a e
q
S P (1 — a(v) 2|
S 1, (= DTy @ . ﬂ(lj) / e ﬁ(utjs —Lp(@r+atm)
a- \ZI)” V(2)? 1-s) P
B(2) P (1 — 2PV
+H‘f”%d (1_|Z|)7ofﬁ(u)y(z)qw(2)1'(1 |z]) (1 ﬁ(u)+ +o-2+FLa@-pw) 4
’ 2P 5() T
( )

§||f\|%dy(1—|2\)7 G (Z)q IIfIIBd <oo, zeD.

By combining these estimates we deduce f € BMO(A), and thus By, C H(D) NBMO(A).
Assume now that f € H(ID)NBMO(A). Then (6.3) holds for some ¢ > 1 and ¢ satisfying

(6.2). Therefore (3.6) implies

(1 —zDHy(2)? B g (=lg»H7 !
00 > sup 0 /le(é) f@]l e V($)dA(L)
y(z)4 g~
T o~ - dA
R A me) A(mlf(é) F@IT(&)dA©)
y(2)?

= Tacnl — I dAQ), D.
Az, P Jacr [f () — f)] ), ze€
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By arguing as in [12, 1653-1654] we deduce H(ID) N BMO(A) C By, . O

The space By, consists of constant functions only if lim sup,|_, - (1 —|z])y (|2 m-t=o.

Moreover, By, isasubset of the disc algebraif ((1—x)y )~ e L0, 1),and By coincides
with a Bloch-type space if y is decreasing.

Proof of Theorem 2 Since f € A!, the operator H% is densely defined. If H% AL - Lis

bounded, choosing g = 1 it follows that f € A?, and therefore f € Bay by Theorem 1 and
Proposition 16.

Conversely, assume f € By,. Since v € B is radial, Proposition 6 implies v € D.
Therefore Lemmas A(ii) and B yield

H q
||f||AquD(/0 f/< |Z|)’d“‘> VG dAE) + [ FO)
1 t ds q
q _
S ls,, <l+/0 </0 (l—s)ws)) ”(’)dt)

q
1 t @(s)ll’
SIfIg, 1+/ / 1 T ds | v(n)de
! 0o \Jo )it —s)'tes

1 ~ 1 ' q
(1) ds
S ”f”%dy 1+/ qa@ _ / o e | V(O dt
0 Syl —1) » PV N g ogpntTe >

forall f € H(D). If W - % > 0, Lemma 3(ii) gives

1 ~ q 1— 4 _q
T ( + Wu(r)dz)

1 o~
<IfIG, (1+ 50! /O V) dt)SIIfII‘Zg(,y-

V(1)

If % — % = 0, then Lemmas B and 3(ii) yield

Lo —nr! e
1F1% S 071, ( / g v

449
_t)a(w)p+p 1

1 1 e
<ur1e a0 [ ¢
S, 007 [ E0 T tog v ar

1 a(w) 4+ -
1—1) 2P
< q ( < q
S, /0 50 vy dr £,

Finally. if 120 _ Hta(@)
Y, q >

< 0, then Lemma 3(ii) gives

a1 =)
||f||"qN||f||de( + [ EEE ) S 0f1,,-

Therefore f € A}, and thus Bay C Al This together with Theorem 1 and Proposition 16
finishes the proof. O
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