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ARTICLE INFO ABSTRACT
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Revealing dockless bike-sharing utilization pattern and its explanatory factors are essential for urban planners
and operators to improve the utilization and turnover of public bikes. This study explores the dockless bike-
sharing utilization pattern from the perspective of bike using GPS-based bike origin-destination data collected in
Shanghai, China. In this paper, utilization patterns are captured by decoupling several spatially cohesive regions

Built environment O . . . . . L e . .

) ] L with intensive bike use via non-negative matrix factorization. We then measure the utilization efficiency of bikes
Social-demographic characteristics . . . . R . .
GWR within each sub-region by calculating Time to booking (ToB) for each bike and explore how the built en-
vironment and social-demographic characteristics influence the bike-sharing utilization with ordinary least
squares (OLS) regression and geographically weighted regression (GWR) models. The matrix factorization results
indicate that the shared bikes mainly serve a certain area instead of the whole city. In addition, the GWR model
shows higher explanatory power (Adjusted R> = 0.774) than the OLS regression model (Adjusted R* = 0.520),
which suggests a close relationship between bike-sharing utilization and the selected explanatory variables. The
coefficients of the GWR model reveal the spatial variations of the linkage between bike-sharing utilization and its
explanatory factors across the study area. This study can shed light on understanding the demand and supply of
shared bikes for rebalancing and provide support for operators to improve the dockless bike-sharing utilization
efficiency.

1. Introduction evolved as the newest generation of bike-sharing systems due to their

convenience, which gained much popularity and were widely accepted

Bike-sharing, as one of the environmentally friendly and active
transport modes, has received notable attention, as it has been shown to
be effective in relieving traffic congestion, mitigating transport-related
emissions, and improving public health (Wang and Zhou, 2017; Otero
et al., 2018; Zhang and Mi, 2018; Barbour et al., 2019). Currently, more
than 2000 bike-sharing systems (BSS) are operated in the world due to
these advantages,’ which can be divided into docked and dockless
systems. Compared with docked bike-sharing systems that require users
to pick up bikes from designated docking stations and drop off bikes at
docking stations with available lockers, dockless bike-sharing systems
are more flexible, which allow bikes to be picked up and dropped off in
any places with available parking space (Mooney et al., 2019). In ad-
dition, the fleet size of a dockless bike-sharing system is not constrained
by the capacity of docking stations anymore. Dockless systems have
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(Fishman, 2015; Chen et al., 2020).

Although the adoption and prevalence of bike-sharing systems bring
social and environmental benefits, the unbalanced usage of bike-
sharing raises concerns. For instance, bikes located in downtown areas
of a city may be used frequently, while some other bikes located in the
suburbs might not be used at all. This phenomenon is especially pre-
valent in metropolitan cities owing to inappropriate allocations of bikes
and other factors. Additionally, infrequently used bikes will occupy
road space and probably mess up cities, especially with dockless bikes.
Moreover, with the booming of bike-sharing systems, there is a need to
understand what factors influence the unbalanced patterns and their
strength. Understanding how those factors impact the usage of bike-
sharing could provide policy-making support and reference for de-
termining the allocation of bikes. Considering that dockless bike-
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sharing systems provide more freedom with users to choose origins and
destinations of their travels, the utilization patterns and influence fac-
tors could be different from those of docked bike-sharing systems.
Besides, little attention has been paid to the utilization of dockless bike-
sharing systems compared with docked bike-sharing systems.
Therefore, it is necessary to recognize those dockless bike-sharing usage
pattern and their explanatory factors, which can help to adopt measures
for improving the performance and usage efficiency of existing dockless
bike-sharing systems.

In recent years, the explosive growth of GPS datasets from bike-
sharing systems has stimulated a number of studies in transportation
and urban planning, such as on bike-sharing ridership (Rixey, 2013;
Wang and Akar, 2019; Yang et al., 2020), bike-sharing demand pre-
diction (El-Assi et al., 2017; Lin et al., 2018; Hua et al., 2020), facility
planning for bike-sharing services (Ozceylan et al., 2017; Mete et al.,
2018; Zhang et al., 2019b), bike accessibility (Li et al., 2020), bike-
sharing usage patterns (Faghih-Imani et al., 2017; Guo et al., 2017;
Barbour et al., 2019; Xu et al., 2019). Although several studies have
explored dockless bike-sharing usages with GPS-based bike data, little
attention has been paid to dockless bike-sharing utilization from the
perspective of bikes. Previous studies focus on describing bike-sharing
usage from the perspective of users, such as bike-sharing ridership, trip
demand, riding duration or distance, arrival and departure rates, usage
frequency and so on. The knowledge of whether bikes are utilized ef-
ficiently and what factors influence bikes' utilization efficiency is lim-
ited.

In this paper, the bike-sharing data collected in Shanghai, China is
used to investigate the dockless bike-sharing utilization and its influ-
ence factors. Our specific research questions are as follows: (1) How do
the bike-sharing utilization patterns change in different urban areas?
Theoretically, all the shared bikes should be utilized across the whole
city. (2) How is the bike-sharing utilization influenced by built en-
vironment and social-demographic factors? To solve these problems, we
conduct data processing to identify the start and end locations of the
trips for each bike, from which the service areas of all bikes are detected
with the non-negative matrix factorization method. Second, an in-
dicator called stop duration (SDR) is proposed to quantify the utiliza-
tion of bike-sharing at the sub-region level. Finally, ordinary least
squares regression (OLS) and geographically weighted regression
(GWR) models are utilized to examine the relationships between the
bike-sharing utilization and the selected variables.

The paper is organized as follows. Section 2 presents a literature
review on bike-sharing patterns and bike-sharing analysis. Section 3
introduces the study area and data of this study. Section 4 elaborates
the methodology, including bike service areas detection, geographically
weighted regression and the explanatory variables. Section 5 presents
the results. Discussions and conclusions are provided in Section 6.

2. Related work

In this section, we review some of the relevant research on bike-
sharing usage and its explanatory factors. A review of the literature
shows that bike-sharing usage studies can be divided into two main
categories based on the usage of data sources. The first type contains
bike-sharing system state data via a web crawler or other means to
capture related information from the websites. For instance, Hampshire
and Marla (2012) collected bike-sharing usage data by capturing bike-
sharing system state snapshot data via the websites. A panel regression
model was used to understand the factors influencing bike-sharing
usage. The results indicated that the number of bike stations, popula-
tion density, and labor market size are important factors. The study by
Faghih-Imani et al. (2014) investigated how meteorological data,
temporal characteristics, bike infrastructure, land use, and built en-
vironment attributes affect bike-sharing usage flows using minute-by-
minute bike availability data for all stations in service. They reported
that restaurants, commercial enterprises, and universities nearby a
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station have a significant influence on the arrival and departure rates of
the station. Wang et al. (2016) examined the effects of nearby busi-
nesses and jobs on trips to and from stations using the number of trips at
the station level. It is revealed that the factors, including neighborhood
socio-demographics, proximity to the central business district, proxi-
mity to other bike-sharing stations, are associated with bike-sharing
usage activity. Faghih-Imani et al. (2017) conducted an empirical
analysis of bike-sharing usage and rebalancing with station-level oc-
cupancy snapshot data from two cities, which are transformed into
customer arrivals and departures at the station level. The influence of
bike infrastructure, socio-demographic characteristics, and land-use
characteristics on bike-sharing usage was explored by developing a
mixed linear model. The results showed that bike infrastructure attri-
butes and land-use characteristics are of importance for bike usage.
Caulfield et al. (2017) examined the usage patterns of a bike-sharing
scheme with the data from a medium-sized city. The results show that
short and frequent trips account for the majority of the trips in the
scheme. Yang et al. (2019) analyzed the impact of metro service on the
dockless bike-sharing patterns from dockless bike availability data with
geostatistical analysis and graph-based approach. The results are ben-
eficial to understanding how the new metro service boosted nearby bike
demand, thereby supporting spatially detailed urban and transport
planning.

In recent years, with the emergence of the new dockless bike-
sharing programs that integrate mobile payment and GPS tracking
techniques, it is convenient to record the locations and moving trajec-
tories of bikes. These bike trajectory data allow us to analyze bike-
sharing usage via spatio-temporal distribution of bikes and gradually
become more prevalent. For instance, Shen et al. (2018) uncovered the
spatio-temporal patterns of bike usage with the GPS data of dockless
bikes in Singapore. Especially, the impacts of bike fleet size, sur-
rounding built environment, access to public transportation, bike in-
frastructure, and weather conditions were examined using spatial au-
toregressive models. The findings showed that high land use mixtures,
easy access to public transportation, more supportive cycling facilities,
and free-ride promotions are positively related to the usage of dockless
bikes. Du et al. (2019) developed a model framework to explore the
spatio-temporal usage patterns of free-floating shared bikes using
massive GPS data produced by the bike-sharing system. They found that
residential area, park and green area, and population size have the
largest influence on the usage frequency. Zhang et al. (2019a) proposed
the concept of biking islands that are defined as geographical areas of
interest with a high concentration of bike usage, and a framework to
identify them with bike trajectory data. This study can help understand
the travel behavior of cyclists and the urban structures used for cycling.
The study by Ji et al. (2020) performed a comparison of usage reg-
ularity and its determinants between docked and dockless bike-sharing
systems using the smart card data of a docked bike-sharing system and
GPS trajectory data of a dockless bike-sharing system in Nanjing, China.
By analyzing the influence of travel characteristics and built environ-
ment factors on the regularity of bike-sharing usage, the results provide
insights on improving the service of bike-sharing systems to operators
and governments.

There are also several studies identifying the factors affecting bike-
sharing usage with questionnaire data. For example, Bachand-Marleau
et al. (2012) examined the factors influencing the likelihood of using
shared bike systems and frequency of use by conducting a survey in
Montreal, Canada. The proximity of home to docking stations was
found to have the most substantial effect on the likelihood for use of
shared bike systems. Guo et al. (2017) explored the factors influencing
bike-sharing usage among the bike-sharing user population by col-
lecting a questionnaire survey data in Ningbo, China. A bivariate or-
dered probit model was developed to examine the associations between
bike-sharing usage and the selected factors. It is found that gender,
household bike ownership, travel time, bike-sharing station location
have a significant influence on bike-sharing usage. Barbour et al. (2019)
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conducted a statistical analysis of bike-sharing usage by collecting data
on the bike-sharing usage of registered bike-sharing users with a web-
based survey. Gender, age, income, household size, commute type and
length, and vehicle ownership have a substantial influence on bike-
sharing usage.

Despite this large body of literature on bike-sharing usage, most of
the aforementioned studies, however, are concentrated on the bike-
sharing usage from the perspective of bike users. This study intends to
investigate dockless bike-sharing utilization and its explanatory factors
from the perspective of bikes. In particular, time to booking is used to
explore bike-sharing utilization patterns in this study. Moreover, GWR
models are employed to examine the spatial non-stationarity of the
relationship between bike-sharing utilization and the influence factors.

3. Study area and data description

Shanghai is one of the largest cities in China and the world, with a
population of 24.24 million and an area of 6341 km?. Shanghai's GDP is
3.268 trillion Chinese Yuan in 2018, accounting for 6.6% of China's
total GDP. As one of the largest bike-sharing markets in the world,
Shanghai has 1.5 million dockless bikes in July 2017. In this paper, the
whole city is divided into sub-regions (SR) according to neighborhoods,
which are also the basic units of the sixth nationwide population
census. We select the sub-regions that are within or intersected by the
outer ring road as the study area, containing 133 sub-regions. The study
area totally or partly contains 11 districts, including Pudong, Baoshan,
Huangpu, Jiading, Xuhui, Putuo, Minhang, Yangpu, Changning,
Hongkou, Jing'an districts. Huangpu River, the largest river in
Shanghai, divides the study area into “Pudong” (the east side of
Huangpu River) and “Puxi” (the west side of Huangpu River), as shown
in Fig. 1. The inset at the right corner of Fig. 1 presents the whole city of
Shanghai.

The bike-sharing data used in this study were provided by Mobike,?
which is one of the biggest dockless bike-sharing companies. This da-
taset spans the period from August 267 to September 8" in 2018,
covering 14 days. Each record contains basic trip information, in-
cluding trip ID, start time, start location (longitude and latitude), end
time and, end location. Considering that some trips exceed the study
area, we filter out those trips whose start locations or end locations are
outside the study area.

After removing the trips outside the study area, statistical analysis of
basic bike usage patterns is conducted, as shown in Fig. 2. Fig. 2a and b
illustrate the distributions of trip distance and trip duration, respec-
tively. It can be observed that most of the trips are less than 5 km or 1 h.
Concretely, the proportions of the trips with a distance less than 5 km
and the ones with duration less than 1 h are 96% and 98.3%, respec-
tively, which demonstrates that bike is a short distance transport mode.
Fig. 2c shows the temporal patterns of bike usage frequency on work-
days and weekends. The weekday pattern displays two peak periods
(8:00-9:00 and 18:00-19:00), which may reflect the typical commuting
pattern on weekdays. The significant peak periods, however, fail to
appear on the weekend, which indicates that people's biking activities
distribute relatively uniform during the daytime on the weekend. Fur-
thermore, Fig. 2d describes the distribution of the number of trips per
bike, which shows that about 20% of bikes are rodden less than ten
times. Based on Fig. 2, the trips with an abnormal length or duration are
also excluded. To avoid the influence of the bikes with few trips, we
only consider bikes that have at least 14 trips (i.e., at least one trip per
day). Finally, 19.4 million trips from 348,037 bikes are included.

Another three datasets, Point of Interest (POI), the smart card data,
and population data, are used to calculate the explanatory factors. POI
data is collected from AutoNavi® (also known as Gaode Map, a Chinese

2 https://mobike.com/
3 https://Ibs.amap.com/
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navigation company). Each POI record contains name, address, cate-
gory, and location (longitude and latitude). According to the category
information, this dataset contains 17 types of POIs, which are shown in
Table 1. The smart card data are collected from the Shanghai Public
Transport Card Company. The data consists of basic subway trip in-
formation, including start time and subway station ID, end time, and
subway station ID. The population data is sourced from the Sixth Na-
tional Census of China. The data provides information on the resident
population and the density of population at neighborhood level (i.e.,
the sub-region in this study).

4. Methodology
4.1. Detecting service areas of bikes

In order to explore the bike-sharing utilization pattern, we detect
the service areas of bikes with non-negative matrix factorization (NMF).
First, the start locations of the trips are first mapped to the corre-
sponding sub-regions (SR). A visitation sequence is then defined as the
sequence of consecutive start locations based on SR, namely .7:
{SR™,SR2, ... SR™}, for each bike. Furthermore, we obtain a visitation
frequency matrix V) v, where M represents the number of bikes, N is
the number of sub-regions. The elements denote the visitation fre-
quency of each sub-region for each bike.

Non-negative matrix factorization (NMF) is applied to the visitation
frequency matrix V. NMF is a robust technique to detect hidden patterns
in a matrix, which decouples a non-negative matrix into two non-ne-
gative matrices of lower rank. The two matrices represent the meta
information of bikes and sub-regions in terms of bike visitation fre-
quency. In addition, NMF has the inherent property to cluster these
bikes and sub-regions. Mathematically, given a non-negative matrix
VM < v and a pre-defined rank K, the NMF algorithm decouples V into
two smaller non-negative matrix W  and H, ie.,
Vimixivy = Wimxk X Hgxn), and targets to minimize the difference
between the left-hand side and the right side. W is the coefficient matrix
and H represents the dictionary matrix. Theoretically, for any rank K
(meeting K <« min [|M|,|N|]), the NMF algorithm can be performed
and generates a result. The key issue is to determine the optimal factor
rank K. Several mature rank selection criteria, such as cophenetic cor-
relation coefficient (Brunet et al., 2004), dispersion (Kim and Park,
2007) and the residual sum of squares (RSS) curve (Hutchins et al.,
2008), have been developed. In this study, we adopt the cophenetic
correlation coefficient criterion, which is widely used to select the op-
timal K (Kang and Qin, 2016). The value of k is selected where the
magnitude of the cophenetic correlation coefficient begins to fall
(Brunet et al., 2004).

4.2. Measuring utilization efficiency of bikes

Time to booking (ToB) for a bike represents the duration that the
bike is booked again after the previous trip has ended (Guidon et al.,
2019), which is employed to measure the utilization efficiency of bikes.
Compared with the existing bike-sharing usage indicators (e.g. riding
duration, usage frequency, and turnover rate), ToB is capable of better
reflecting supply and demand of a certain area, thereby measuring the
utilization efficiency of bikes in the area. Taking riding duration as an
example, it depends on the origin and destination of trip and cyclist's
route choice, which is unrepresentative of demand and supply of one
region. Theoretically, if one sub-region is suffering from oversupply of
bikes, some bikes may not be used any more for a long time after they
are parked here. Otherwise, if bikes within the region are in short
supply, the bikes may be used again for a short time. In addition, al-
though usage frequency and turnover rate can evaluate bike-sharing
utilization efficiency to some extent, it measures bike-sharing usage
from the perspective of users and is partly influenced by ride duration
and uses' behavior. For example, given two bikes A and B during a
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Fig. 1. The study area.

certain period, it is supposed that bike A was rode for a long time during
one trip, while bike B was rode for several short trips during the same
period. It can be seen that A has lower usage frequency and turnover
rate even if it was used more efficiently during this period. Hence, ToB
is superior in measuring bike-sharing utilization frequency in one area
by examining the relationship between supply and demand perfectly.

To calculate the time to booking for each bike, we first extract all
pairs of consecutive trips for each bike. Given a trip of one bike, its
consecutive previous trip cannot always be obtained due to various
reasons (e.g., data quality). We only consider the trips whose start
points are less than § meters away from the end point of the previous
trip. The § is determined based on two aspects, 1) the accuracy of the
positioning device adopted by bike-sharing system,* 2) the distribution
of distances between two consecutive trips in the data (Fig. 3), which
shows most distances are not too long. Thus, the “inflection point”
é = 50 is adopted as the threshold to calculate the time to booking:

STt = Smyt — D1 (1)

where S, . is the start time of the current trip for bike m; D, ¢, is the
end time of the previous trip for the same bike.

“ https://kknews.cc/tech/q285v38.html

Based on Eq. (1), we obtain the ToB values for all the included bikes
during the whole period. Fig. 4 shows the distribution of ToB, which
displays a long-tail distribution. Concretely, the mean, median, and
standard deviation are 175.1, 29.6, and 452.0 min respectively. The
ToB for one bike reflects the bike's utilization efficiency, which is an
important indicator for operators. To analyze the utilization pattern of
the bike-sharing system and how it is affected by the influence factors in
urban space, we further project ToB values of bikes to the corre-
sponding sub-regions. To characterize the bike-sharing utilization at the
sub-region level, we define the median of all the ToB values within each
sub-region as stop duration (SDR), representing the indicator of the
corresponding sub-region. In a sub-region, higher SDR represents a
lower utilization efficiency of bikes, and a lower SDR represents a
higher utilization efficiency of bikes.

Fig. 5 shows the statistical and spatial distribution of SDR per sub-
region. The SDR varies between 12.3 and 156.8 min with the mean at
38.1 min (and a median of 29.8 min). From Fig. 5a, it is reported that
bikes in most sub-regions are used again quickly (less than 1.5 h), and
only a few sub-regions have a high SDR. In addition, the spatial dis-
tribution shows a clear spatial pattern across the study area. Sub-re-
gions near the center have a lower SDR, increasing as one moves away
from the center. Especially, these sub-regions with low SDR are
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Table 1

The POI Categories.

Code POI Category Code POI Category

1 Car Service 2 Car Sales

3 Car Repair 4 Motorcycle Service
5 Restaurant 6 Shopping

7 Daily Life 8 Sports

9 Hospital Related 10 Hotel Related

11 Tourist Attraction 12 Residence

13 Governmental Organization 14 Education Related
15 Transport related 16 Finance Service

17 Enterprises

concentrated within the inner ring road, which are the most developed
areas of Shanghai. The sub-regions with the highest SDR are distributed
outside of the outer ring road. Furthermore, we also measure the spatial
autocorrelation of SDR based on Moran's I by using ArcGIS. The Moran's
[is 0.32 (z — score = 6.615 and p < 0.001), which indicates SDR
values are correlated in space.

4.3. Exploring influence factors of utilization efficiency

To investigate the spatial heterogeneity of SDR in urban space, we
employ a Geographically Weighted Regression (GWR) model to quan-
tify the relationship between the stop duration of each sub-region and
the selected explanatory factors, e.g. socio-demographic features, POI
characteristics, and traffic facilities' convenience. In this section, we

briefly introduce the GWR model and the corresponding independent
variables.

4.3.1. Geographically weighted regression

Generally, the ordinary least squares regression (OLS) is used to
explore the global relationship between dependent and independent
variables, which assumes independent variables have the same effect on
the dependent variable across the study area. The OLS regression model
is denoted by Eq.(2).

Yi=oag+ o Xy + &
i 0 % kMki i (2)
where Y; represents the dependent variable, a; is the estimated coeffi-
cient of the independent variable Xj;, and ¢; is the residual error.

The estimated regression coefficients obtained from OLS regression
models are constant for all sub-regions of the entire study area due to
the global characteristics of this model. However, the SDRs are corre-
lated with each other in space (see Section 4.2). The GWR model is a
local spatial statistical method, which assumes the nearby observations
have greater a influence on the variable than the distant observations
(Brunsdon et al., 1996). The model quantifies the spatial effect by
conducting a separate OLS regression for each location. The local re-
gression models only incorporate the explanatory variables and de-
pendent variables of locations falling within the bandwidth of target
locations. Hence, GWR considers spatial autocorrelation and spatial
heterogeneity of observations, which has been widely used to examine
spatial non-stationarity of regression models (Yang et al., 2017; Soltani
et al., 2018; Zhao et al., 2020). The GWR model is formulated as:
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Y = ag(unv) + Y, o (i v) X + &
[3 (3)
where (u;,v;) represents the coordinate of location i and ax(u;, ;) is the
regression coefficient of independent variable Xj; at location i.
Weighted least squares are used to estimate the coefficients of the GWR
model, where the weights capture the spatial effect of local observa-
tions on the observation at location i. The spatial weight matrix is
calculated by the Gaussian kernel function, which models the spatial
effects of surrounding observations by Gaussian distance decay within
the bandwidth. Bandwidth has a great impact on the estimations of
coefficients. It is determined by the mgwr package in python.®

4.3.2. Explanatory variables
In this section, the candidate explanatory variables are derived from
the built environment and social-demographic characteristics, which

S https://github.com/pysal/mgwr

have been demonstrated to be closely associated with human mobility
behavior.

Land use has a significant influence on human mobility and further
influences the utilization efficiency of bike-sharing. Due to the advances
in sensor and positioning technologies, the percentages of 17 types of
POI (See Table 1) for each sub-region are calculated to indicate the land
use characteristics of each sub-region. In addition, the mixture of POI is
calculated to represent the degree of the land use mix. Entropy is em-
ployed to measure the mixture of POI in each sub-region, which is
formulated as

pm; = — Z Py log(p; ) (4)

where pm; refers to the POI mix of the ith sub-region; p; x denotes the
proportion of kth POI in ith sub-region.

To evaluate the degree of transport convenience, bus stop density
(BSD), subway station density (SSD), and distance from sub-region to
the nearest subway station (D2NSS) have been widely used in previous



A. Li, et al.

Journal of Transport Geography 88 (2020) 102828

Count

0 30 60
Stop Duration(SDR)/min

90 120 150

(a) Statistical distribution

5106
Nﬁm i hrkd,
. v --t»'__[—\‘,‘

WIm ~://_’,‘-39-6s
e [ 3sam

~
N

oo \.A\ N >
‘%‘UJ[Z\\‘ 3/ a N KMS
Y 1 x ‘ N % ¥ X

> 741 Inner ring road

D Outer ring road

top Time (min)

I s

rd B 151266

1% F 266-413
© OpensStreetMap (and) contributors, cCc-BY-SA®

(b) Spatial distribution

Fig. 5. The statistical and spatial distribution of SDR per sub-region.

studies. BSD and SSD are defined as the number of bus stops and
subway stations within each sub-region divided by the area of the sub-
region respectively, as illustrated in Fig. 6a. D2NSS is defined as the
distance between the center of sub-region and its nearest subway sta-
tion. One limitation of the three above mentioned variables is that they
regard transit stations or sub-regions as points. However, the influence

area of either transit station or sub-region is a polygon. For example,
although the values of BSD and SSD for the central sub-region in Fig. 6a
are 0, the central sub-region is definitely influenced by the transition
stations from adjacent sub-regions. In terms of D2NSS, it is inaccurate
to represent a sub-region by the center point of it, especially when the
sub-region is large. To solve this problem, we propose a novel indicator
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Fig. 6. Sketch map on transport convenience related factors.

to measure transport convenience, namely the proportion of over-
lapping area between influence area of transit station and the corre-
sponding sub-region (See Fig. 6b). The influence area of each transit
station is defined as a buffer with a radius of x meters. Hence, how to
determine the optimal value of x is noteworthy. In this study, all dis-
tances between every two nearest bus stops or subway stations are
calculated. x is determined as the mean of these distances. Thus,
x = 158 and x = 1025 are set as the radii of influence areas for bus
stops and subway stations, respectively. The two variables are denoted
as ARBus and ARSubway, which can be calculated based on the over-
lapping area between the buffer of bus stop or subway station and the
corresponding sub-region.

Moreover, we incorporate two socio-demographic variables, namely
density of permanent resident population (DRP) and the average flow of
subway stations (AFSS). Intuitively, sub-region with more residents
should have higher travel demand and short stop duration. Average
flow of subway stations represents the average number of passengers
leaving and going into the nearest n subways each hour, which is for-
mulated as:

Avg_flow = 1 z (HL + HO,)
ma 2 (5)

where HI; is the average number of passengers going into the subway
station each hour; HO; is the average number of passengers leaving the
subway station each hour; m denotes the nearest m subway stations (we
adopt m = 3 here), which is selected according to the Euclidean dis-
tance from the center of each sub-region to the subway stations.
Overall, 22 independent variables, including 18 POI related vari-
ables (the percentages of 17 types of POI and the mixture of POI), two
transport related variables, and two population related variables, are
explored, which share different units and ranges. To make them com-
parable, they are therefore scaled using the following equation:

Xy — min(Xy)
max(X;) — min(X;) (6)

Xsij =
where X is the scaled value for variable i at point j; x; is the raw value

of xg; X; is the variable i; and min(X;) and max(X;) are the minimum and
maximum of variable X;, respectively.

5. Results and discussion
5.1. Spatial characteristics of bikes utilization patterns

In this subsection, we explore the spatial characteristics of bikes'
utilization patterns based on the non-negative matrix factorization (See

subsection 4.1). The trips for each bike are extracted to construct vis-
itation sequence, thereby generating the visitation frequency matrix. To
determine the optimal parameter K, we test different values (i.e. from 2
to 12) to select the best rank according to the cophenetic correlation
coefficient, as shown in Fig. 7. The cophenetic coefficient does not al-
ways decrease along increasing rank K. K= 2, 6, and 11, which start to
decrease, have better decomposition results compared with other ranks.
In addition, all the sub-regions are divided into K groups, which are
displayed in Fig. 8. The first column illustrates the consensus map,
which indicates the probability that a pair of sub-regions are assigned to
the same cluster. Each consensus map presents K separating blocks. The
second column expounds the spatial distribution of each cluster corre-
sponding to one block in the consensus map. It can be seen that the sub-
regions in the same cluster are adjacent with each other in space, which
indicates that the bikes are mainly used in a limited area instead of the
whole study area. Notably, the clusters are becoming smaller with the
increment of K values. For instance, from K = 2 to K = 6, cluster 0 in
Fig. 8(a) is divided into cluster 1 and 3 in Fig. 8(b), while cluster 1 is
separated into 0, 2, 5, and 4. However, their spatial distributions still
show some similar patterns. For example, the Huangpu river is a natural
barrier that divides the sub-regions of either side into different clusters
no matter the K, as the bikes are not allowed to cross the river via the
bridge or tunnel.

Intuitively, the sub-regions within each block have various visita-
tion frequencies, which display the bikes' service patterns. These pat-
terns are represented as a set of eigenbehaviors (EB), which are derived
from the matrix W. For the sake of illustrative ease, these patterns are
mapped on the urban space, as shown in Fig. 9. Without loss of gen-
erality, the figure only presents the eigenbehaviors for Rank = 6. Since
the size of sub-regions varies widely, instead of the frequency of pick-
ups, we map the density of visitation frequency (i.e., the number of
pick-ups per square kilometer). In Fig. 9, all the sub-figures share the
same range of the visitation density across the six scenarios, and the
deeper color represents the high density of pick-ups.

Obviously, the density of pick-ups for each pattern demonstrates a
remarkable heterogeneity. In each sub-figure, we can easily find the
sub-region with a higher value, which indicates pick-ups are mainly
concentrated in these areas. In addition, the densities between the six
patterns are also different. EB1 (Fig. 9a), EB2 (Fig. 9b), and EB6
(Fig. 9f) have a high value, while it is not easy to find a deeper color in
EB3 (Fig. 9¢), EB4 (Fig. 9d), and EB5 (Fig. 9e).

In Fig. 9a, the deep color is mainly concentrated in Wujiaochang,
Siping Road Street, etc. The sub-region with the highest value is Wu-
jiaochang, which is one of the sub-centers and central business districts
in Shanghai. With its development, Wujiaochang is also a transport
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hub. In addition, Fudan university is also located in this sub-region.
These facts also make Wujiaochang produce the majority of the trips in
this block. For Siping Road Street sub-region, a campus of Tongji Uni-
versity and Shanghai Yangpu High School are located there. Together
with several residential blocks, Siping Road Street is also a sub-region
with a high density of bike trips. For EB2 (Fig. 9b), the visitations are
mainly distributed in Pudong district, such as Lujiazui sub-region with
the highest density. Lujiazui contains central business district (CBD)
and several residential blocks. The CBD is a national-level financial
district with many famous views such as Oriental Pearl Tower and
Shanghai Tower. Although bikes are not allowed on most roads of this
CBD, Lujiazui sub-region still displays a high visitation frequency ac-
cording to the data. The sub-regions with high visitation frequency of
EB6 (Fig. 9f) are mainly located in Huangpu, Hongkou, Jing'an, Putuo,
Changning districts, which are the center of Shanghai. For example, the
sub-regions with the highest density are mainly distributed within the
inner ring road, like Jingansi street, Xujiahui street, West Nanjing Road
street, which are the most developed area in Shanghai. With regards to
the other three patterns, the sub-regions with middle density are mainly
distributed outside of the inner ring road. Compared with EB1, EB2, and
EB6, fewer bike trips are generated in these areas. EB3 (Fig. 9c) is
distributed in the northeast of the study area. Within this EB, the sub-
regions with middle density are also distributed in Jing'an and Putuo
district. EB4 (Fig. 9d) reports a bike-sharing usage pattern in Puxi.
Although it has some overlaps with EB2, its highest-value sub-regions
are distributed between the inner ring road and the outer ring road. As
to EB5 (Fig. 9e), it mainly describes the usage pattern in the southeast
of the study area. The sub-regions with the highest value are adjacent to
the boundary of the study area, which reveals that the bikes used in
these sub-regions could also be connected with the regions outside the
study area. In addition, these highest-value sub-regions are the center of
the Minhang district.

5.2. Relationship between utilization pattern and impact factors

In this section, we explore the relationship between the SDR of sub-
regions and selected factors by using OLS and GWR models.

5.2.1. OLS regression analysis results
We first employ the OLS regression model to examine the effect of
the variables on the SDR. In our models, transport related variables and

population related variables are always included. However, it is in-
feasible to use all of the POI related variables because some of them are
highly related to each other. Therefore, we attempt different categories
to build OLS models. Before applying the model, variable inflation
factors (VIF) is used to test multicollinearity for each group of the in-
dependent variables. Ultimately, the optimal OLS regression model is
selected according to the corrected Akaike information criterion (AICc)
and the significance of independent variables. The determined ex-
planatory variables and their descriptions are shown in Table 2.

Table 3 displays the result of the selected OLS regression model. The
adjusted R? is 0.520, which indicates that the selected independent
variables can explain 52.0% of the variations. In this model, both AR-
Subway and ARBus have negative impacts on the stop duration. It
means that if the influence area of subway stations or bus stops occupies
a high percentage of sub-region, the bikes within that sub-region will be
used again after a short stop time. In addition, ARSubway is significant
while ARBus does not have a significant association with SDR, which
indicates that the subway stations, compared with bus stops, have more
remarkable impact on bike utilization. With regard to the two popu-
lation related variables, namely DRP and AFSS, both of them have a
negative influence. This is because the sub-regions with high DRP and
AFSS normally have larger demand for bike-sharing. For the POI related
variables, POI mixture is also negatively related to SDR, which indicates
the sub-regions with various types of POI require more sharing bikes
than the sub-region with single type of POIL In the selected model, we
consider the percentages of four types of POI, including restaurants,
daily life service, residence, and commercial facilities, which represent
four types of activities. The coefficients of PRt and PRc are negative,
while PDLS and PCF have a positive influence. In addition, both PRe
and PDLS are significant at the 0.05 level, but residence and commer-
cial facilities do not show significant influence.

Although the OLS regression model is capable of providing a global
understanding of the relationship between SDR and the explanatory
variables, spatial non-stationary inspection is neglected. Therefore, the
relationship is further explored with GWR model.

5.2.2. GWR analysis results

In this section, we further examine the relationships between SDR of
sub-regions and the explanatory variables based on GWR model. The
model yields a better result with adjusted R2 = 0.774, which is higher
than that of OLS regression model (i.e. adjusted R? = 0.52). In addition,
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Fig. 8. Consensus map and cluster map for rank = {2, 6, 11}. The first column shows consensus maps and the second column shows the cluster map in space. The
sub-figures in the same column are derived from the same Rank. For consensus maps, the number in x-axis and y-axis represents the number of sub-regions in each
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Fig. 9. Spatial patterns of eigenbehaviors for Rank = 6. The value is the density of visitation. The deeper the color is, the higher the value is.

the Akaike Information Criterion (AIC) of GWR model (i.e. 1095.4) is
lower than that of OLS regression model (i.e., 1158.1). It can be con-
cluded that the GWR model presents better explanatory power than the
OLS regression model for exploring the influence of explanatory factors
on bike-sharing utilization. Moreover, we also examine the spatial
distribution of the standard residuals from the GWR model, as shown in
Fig. 10. It can be observed that only 5 local regression models (3.7%)
fail the residual tests, which correspond to the blue and red sub-regions.
The spatial autocorrelation of standard residuals is further examined by
calculating the global Moran's I. The Moran's I (—0.019) result
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indicates that the standard residuals from the GWR model display
random distribution at the 5% significance level.

Table 4 shows the estimated results of GWR model, which lists the
descriptive statistics of the varying regression coefficients, including
Mean, standard deviation (Std.), Minimum, lower quantile (25%),
Median, upper quantile (75%), and Maximum. The descriptive statis-
tical indexes provide a general understanding of the distribution char-
acteristics of regression coefficients. For example, POIMix and PRc
(percentage of residence) display large standard deviation values,
which partly indicates that the distribution of their coefficients is more
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Table 2
The explanatory variables for OLS and GWR.

Variable name Description

ARSubway The ratio between the influence area of subway stations and the
area of sub-region

ARBus The ratio between the influence area of bus stops and the area of
sub-region

DRP The density of permanent resident population

AFSS Average flow of subway stations

POIMix Mixture of POIL

PRt Percentage of Restaurants

PDLS Percentage of Daily life services (e.g. travel agency)

PRc Percentage of Residence

PCF Percentage of commercial facilities

Table 3

The result of the OLS regression model.

Independent variable Coef. Std. t-Statistic p
ARSubway —42.552 7.224 —5.890 0.000"**
ARBus —5.225 13.408 —0.390 0.697
DRP —19.588 10.140 —-1.932 0.056"
AFSS —18.834 8.740 —2.155 0.033**
POIMix —13.915 23.104 —0.602 0.548
PRt —52.730 18.948 —2.783 0.006"""
PDLS 34.010 16.926 2.009 0.047**
PRc —13.843 21.009 —0.659 0.511
PCF 10.029 14.230 0.705 0.482
Constant 97.662 27.520 3.549 0.001"**
R? 0.552

Adjust R? 0.520

AlCe 1158.1

No. Observations 133

*** Represents the significance of the regression coefficient at the 0.01 level.

** Represents the significance of the regression coefficient at the 0.05 level.
* Represents the significance of the regression coefficient at the 0.1 level
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dispersed than other variables. For the variables like PDLS (percentage
of daily life services), more than 50% of sub-regions have a positive
impact on stop duration, whereas average flow in all sub-regions has a
negative effect on stop duration. Next, we investigated the spatial
variations of these explanatory variables on stop duration by projecting
these coefficients on the sub-regions.

Fig. 11 shows the spatial distribution of estimated coefficients for all
the selected variables from GWR model. The red color indicates that the
corresponding explanatory variables have a positive influence, and blue
color represents a negative influence. The deeper the color is, the
greater the influence is. The GWR model is able to quantify the spatial
varying influence of each independent variable across study area. The
spatial characteristics of the influence of each explanatory variable are
analyzed.

For the two transport related wvariables, namely ARSubway
(Fig. 11a) and ARBus (Fig. 11b), which display a negative influence on
stop duration in most sub-regions. It means that if there are more
subway stations or bus stops around one sub-region, the bikes within
the sub-region will be used again after a short stop period with higher
probability. This confirms the previous findings that the bikes within
the urban sub-regions near public transportation stations (e.g., subway
station, MRT station, bus stop) normally display high bike usage pattern
(Shen et al., 2018; Xu et al., 2019). It can be concluded that bike-
sharing might serve a number of last-mile trips. Note that positive as-
sociations are identified in previous studies compared with the negative
association in this study, which can be attributed to the measurement of
bike-sharing utilization. For instance, the indicators like the arrival and
departure rates, usage frequency, the average number of trips made per
bike are employed to measure the bike-sharing usage (Hampshire and
Marla, 2012; Faghih-Imani et al., 2017; Shen et al., 2018; Du et al.,
2019), higher values of which correspond to more bike-sharing usage.
On the contrary, as mentioned in Section 4.2, a smaller stop duration
for bikes represents higher bike-sharing utilization in this work. In
addition, as shown in Fig. 11a, the sub-region with lower influence of
ARSubway are mainly concentrated on the Bund, Yu Garden, Nanjing
road, which are the most developed areas in Shanghai and have highly
dense subway stations. One possible reason is that people can reach the
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Fig. 10. Spatial distribution of standard residuals of GWR model.
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Table 4
The results of GWR model.
Independent variable Mean Std. Minimum 25% Median 75% Maximum
ARSubway —29.8 20.8 —66.7 —49.3 —25.0 —12.7 0.5
ARBus -7.1 14.6 —45.8 -13.3 —-6.5 3.2 17.0
DRP —15.0 12.6 —41.9 —20.0 —14.2 —88 16.0
AFSS -15.3 11.2 —-37.1 -21.3 —-12.0 —-6.7 22
POIMix —23.5 43.3 —166.2 -27.6 —20.2 —0.8 73.2
PRt —44.2 389 —149.7 -56.6 —-27.2 —18.4 9.4
PDLS 8.6 24.2 —27.6 -9.0 —24 229 79.2
PRc -85 34.1 —74.9 —33.0 —-6.9 229 399
PCF -9.0 21.2 —49.0 —23.0 —-9.8 0.0 50.6
R? 0.829
Adjusted R* 0.774
AlCe 1095.40
No. Observations 133
(a) ARSubway ) ARBus (c) DRP

)¥

(d) AFSS

(g) PDLS

High Negative

(h) PRe

Low

) PRt

(i) PCF

High

Positive

Fig. 11. Spatial distribution of varying regression coefficients.

subway stations by walking easily in these sub-regions. Furthermore,
cycling is not allowed in some roads within these areas. For ARBus, the
sub-region with large negative influence are mainly concentrated in
Baoshan district, and the sub-regions with positive coefficients are
mainly distributed in Minhang and Pudong district. Although the po-
sitive influence is existed in some sub-regions, they only display small
influence. It can be attributed to high bus stop density in these sub-
regions and ease of accessibility for bus stops.

In terms of the two population related variables, they mainly show a
negative influence on SDR. For population density (DRP) (Fig. 11c),
most of the sub-regions present negative associations with stop duration
SDR. We can conclude that most of the sub-regions with a dense
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population normally present a small SDR (i.e. high bike-sharing utili-
zation). The conclusion is supported by the findings of previous studies
that high population density tends to generate and attract more biking
trips and then improve bike-sharing usage (Hampshire and Marla,
2012). However, the GWR model also examined the non-stationarity of
the variable in this study. It is reported that the sub-regions with strong
negative associations are mainly distributed in the periphery of Pudong
district, while the sub-regions with small positive coefficients are
mainly concentrated in Baoshan and Jiading district. This result occurs
may due to the incomplete living facilities in Pudong. In this situation,
high population density normally brings high travel volume. In Baoshan
and Jiading district, considering that most sub-regions are distant from
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metro stations, people depend heavily on the combination of bus and
subway. Hence, population density displays a low influence on the bike-
sharing utilization in these sub-regions. In Fig. 11d, it is reported that
AFSS always has a negative influence on stop duration. Especially, the
sub-regions in Pudong district display high impact on SDR. Compared
with DRP, the AFSS can motivate the usage of bike-sharing in the whole
Pudong district.

Regarding POI mixture (POIMix), the sub-regions with negative
coefficients are mainly concentrated on the northwest of study area,
namely the sub-regions in Baoshan, and the positive influence is mainly
distributed in Pudong (Fig. 11e). It is interesting to note that the in-
creasing mixture of POI can improve the diversity of activities in Puxi,
which makes SDR becomes shorter. However, the sub-regions with high
POI Mixture in Pudong district do not attract more people to use shared
bikes. Although previous studies demonstrated that POI mixture can be
beneficial to more diverse activities and attract more riders (Shen et al.,
2018; Wang and Akar, 2019), spatial non-stationarity is identified from
the result. One possible explanation is that although some sub-regions
in Pudong also have high POI mixture like the sub-regions in Puxi, the
sub-regions in Pudong could have different attractions on biking trips
considering the various POI types and incomplete living facilities in
Pudong. From Fig. 11f, we can observe that the percentage of restau-
rants (PRt) has a negative impact in almost all the sub-regions. It means
that bike-sharing system provides a convenient way for residents to
reach a restaurant. In addition, it can be seen that the sub-regions in
Pudong have a higher influence than that of the sub-regions in Puxi,
especially the central part of the study area. A possible explanation is
that more restaurants are concentrated in the center of the study area. It
is easy to reach them by walking instead of using a bike. Conversely,
regarding the percentage of Daily life services (PDLS), it is found that
PDLS presents a positive influence on most sub-regions in the periphery
of study area. In addition, the higher percentage of residence (PRc)
generally means more residents, which generates a higher travel de-
mand. PRc shows a negative influence on SDR in most sub-regions
(Fig. 11h), which also conforms to the conclusion that residential POI
positively influences the bike-sharing usage (Ji et al., 2020). However, a
higher percentage of residence does not motivate to decrease the SDR in
several sub-regions in the south of the study area. In terms of the per-
centage of commercial facilities (PCF), they do not always show a po-
sitive influence in the whole study area. As displayed in Fig. 11i, PCF
has a negative influence in the southeast of the study area, which is
mainly in Pudong district.

In summary, the influence of the selected explanatory variables
shows spatial variations across the study area. The OLS regression
model examines the global relationship between the variables and stop
duration for each sub-region. The GWR model identifies spatial varia-
tions of influence across the study area by considering spatial auto-
correlation and heterogeneity. For instance, for the variables such as
ARBus, POIMix, PRc, and PCF, the proportions of sub-regions with
positive and negative coefficients are comparable to each other, which
indicates complicated relationships between these variables and SDR of
sub-regions. This is why the coefficients of these variables are not sig-
nificant in the OLS regression model. This knowledge provides an in-
sight into the relationship between bike-sharing usage and built en-
vironment as well as socio-demographic characteristics, which can
assist decision-making for the management and planning of bike-
sharing.

6. Conclusions

Understanding the dockless bike-sharing utilization pattern and its
explanatory factors can be beneficial to urban planners and operators to
improve the utilization efficiency and turnover of public bikes.
However, little attention has been paid to investigating this particular
pattern from the perspective of bikes. To bridge the research gap, this
study explores the dockless bike-sharing utilization pattern and its
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influence factors by conducting an empirical study using a GPS-based
bike origin-destination data collected in Shanghai, China. The trips'
origin-destination of each bike are extracted from the data, which are
used to calculate Time to Biking values for each bike. These ToB values
are further mapped to the corresponding sub-regions to describe and
measure the bike-sharing utilization efficiency at the sub-region level.
The main contributions of this work are summarized as follows.

First, we detect the service areas of bikes to explore the bike-sharing
utilization pattern with non-negative matrix factorization at the sub-
region level. The visualization of matrix factorization results shows that
several spatially cohesive regions with intensive bikes exchange are
identified. In particular, the bike-sharing utilization patterns in six
scenarios are interpreted. It is indicated that the bikes have their own
service areas instead of being utilized across the whole study area. The
results are beneficial for the operators to rebalance the shared bikes,
thereby further improving the utilization efficiency of shared bikes and
saving parking spaces.

Second, we define an index called stop duration (SDR) to delineate
the bike utilization at the sub-region level, which describes the utili-
zation efficiency of bikes within each sub-region. In addition, the OLS
and GWR models are used to quantify the relationships between SDR
and the selected explanatory variables related to transportation, land
use, and social-demographic factors. Among these explanatory vari-
ables, we define three novel features, including the proportion of
overlapping area between influence area of transit stations (i.e. subway
and bus) and the corresponding sub-region, and the average flow of
subway stations. The first and second variables consider the influence of
transit as polygons instead of points to represent the convenience of
access. The average flow of subway stations, which consider the flow of
subway stations as a dynamic population index. The coefficients of the
OLS regression models demonstrate that ARSubway, the density of re-
sident population (DRP), average flow of subway stations (AFSS), and
the percentage of restaurants (PRt) are negatively related to SDR at a
significance level of 0.05, while percentage of daily life services (PDLS)
is positively related to SDR at the same significance level. According to
the corrected Akaike information criterion (AICc) and adjusted R-
square, the GWR model presents the remarkable improvement of ef-
fectiveness (Adjusted R? = 0.774, AICc = 1095.4) compared with the
OLS regression model (Adjusted R? = 0.52, AICc = 1158.1).
Furthermore, the varying regression coefficients revealed the spatial
varying of the influence of various factors on the stop duration, which
also explains why several variables are not significant in the OLS re-
gression model.

It is worth noting that this study has several limitations that should
be considered in the future. First, this study considers the whole bike
data to detect operation patterns and conduct utilization analysis but
ignores the influence of time. We should put much effort to understand
the bikes' operation pattern in specific periods, like busy traffic periods
and free flow periods. Second, all of our findings are in an aggregate
level, namely population census zone in our study. However, the spatial
scale is an important concept in geography, which may result in dif-
ferent conclusions. It still needs to further expand the work on different
spatial scales. Finally, SDR, which reflects the interaction of demand
and supply, shows the performance of measuring the utilization effi-
ciency of bike-sharing. It would be interesting to study how stop
duration can be used to measure bike-sharing providing a good service.
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