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Abstract

A two-type version of the frog model on Zd is formulated, where active type i particles
move according to lazy random walks with probability pi of jumping in each time step
(i = 1, 2). Each site is independently assigned a random number of particles. At time
0, the particles at the origin are activated and assigned type 1 and the particles at
one other site are activated and assigned type 2, while all other particles are sleeping.
When an active type i particle moves to a new site, any sleeping particles there are
activated and assigned type i, with an arbitrary tie-breaker deciding the type if the
site is hit by particles of both types in the same time step. Let Gi denote the event
that type i activates infinitely many particles. We show that the events G1 ∩Gc

2 and
Gc

1 ∩G2 both have positive probability for all p1, p2 ∈ (0, 1]. Furthermore, if p1 = p2,
then the types can coexist in the sense that the event G1 ∩G2 has positive probability.
We also formulate several open problems. For instance, we conjecture that, when the
initial number of particles per site has a heavy tail, the types can coexist also when
p1 6= p2.
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1 Introduction

The so called frog model on Zd is driven by moving particles on the sites of the Zd-
lattice. Each site x ∈ Zd is assigned an initial number η(x) of particles, where {η(x)}x∈Zd
are independent and identically distributed. We write ν for the product measure defined
by this initial particle distribution. Each particle is then independently equipped with
a discrete time simple symmetric random walk, denoted for particle j = 1, . . . , η(x) at
the site x by (Sx,jn )n∈N and encoded by jumps rather than sites. A particle starts moving
from its initial location and the associated random walk then specifies the movement
of the particle in each time step. The set of all these random walks is denoted by
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S = {(Sx,jn )n∈N : x ∈ Zd, j = 1, . . . , η(x)}. At time 0, the particles at the origin are
activated, while all other particles are sleeping. When a particle is activated, it starts
moving according to its associated random walk so that, in each time step, it moves to
a uniformly chosen neighboring site. When a site is visited by an active particle, any
sleeping particles at the site are activated and start moving. If the origin is non-empty,
this means that the set of activated particles grows to infinity.

The model has previously been studied e.g. with respect to transience/recurrence
on Zd [28] and on trees [15, 16], the shape of the set of visited sites [2, 4] and extinc-
tion/survival for a version of the model including death of active particles [3]. Here we
introduce a two-type version of the model, where an active particle can be of either of
two types. We study the possibility for the types to activate infinitely many particles
and investigate in particular the event of coexistence, which is said to occur if both
types activate infinitely many particles. Similar questions have been studied for other
competition models on Zd, for instance the so-called Richardson model where a site
becomes type i infected (i = 1, 2) at a rate proportional to the number of nearest neighbor
sites of type i. In our model however, the type is associated with the moving particles
rather than the sites.

1.1 Definition of the model

To define the model, first assign an initial number of particles per site according to
the product measure ν and equip each particle with a random walk from the set S, as
described above. At time 0, the particles at the origin are activated and assigned type 1,
while the particles at another site z ∈ Zd are activated and assigned type 2. All other
particles are sleeping and do not yet have a type. Each activated particle then moves
according to its associated sequence of jumps in S, however, performing a lazy random
walk (with the level of laziness depending on the assigned type): A type i particle makes
a jump in a given time step independently with probability pi and stays at its present
location with probability 1− pi. When a particle leaves its location after a geometrically
distributed number of time steps, it jumps to the next location in its associated random
walk.

We say that a site is discovered when it is first hit by an active particle. It is said to
be discovered by type i if the first particle(s) that hits it is of type i. Note that a site can
be discovered by both types – this happens if particles of both types arrive at the site
in the same time step. If there are sleeping particles at the discovered site, these are
activated and assigned the same type as the active particle(s) that discovered the site.
If the site is discovered by both types, we fix an arbitrary rule for deciding the type(s)
of its particles. We may e.g. toss a coin (fair or biased), assign the type(s) based on
the number of particles of each type that discover the site, or deterministically always
decide in favor of a given type. All our results hold for any tie-breaker rule; see however
Section 1.3 for a discussion on potential effects. Once it has been activated and assigned
a type, a particle remains active and keeps its type forever.

Formally, we construct the process as follows. Let (x, j) denote particle j at the
site x ∈ Zd and let (Lx,jn,k)n,k∈N be a family of independent and identically distributed

(i.i.d.) random variables associated with the particle (x, j), where Lx,jn,k is uniform on [0, 1].

Write L = {(Lx,jn,k)n,k∈N : x ∈ Zd, j = 1, . . . , η(x)}. These variables control the delays of
the particles compared to their associated random walks: Assume that a particle (x, j)

has made n jumps since it was activated, and that the particle arrived at its current
location Sx,jn at time t. Its next move (to Sx,jn+1) occurs at time t+ k if and only if Lx,jn,m > p

for all m < k and Lx,jn,k ≤ p. The randomness in the process is hence summarized by
Π = (ν, S, L). The rule for breaking ties may incorporate additional randomness, which
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we omit in the notation since it will not play a role for our arguments. Write P0,z for the
probability measure of the process started at time 0 with the particles at the origin 0

type 1 and the particles at z type 2.

Before proceeding, we note that the above construction provides a coupling of the
processes for different values of p1 (resp. p2) when p2 (resp. p1) is kept fixed, where
the set of sites discovered by type 1 (resp. 2) increases with p1 (resp. p2). Also note
that (ν, S, L) can be used to formally construct a one-type process based on lazy random
walks with probability p of jumping in each time step. The construction then provides
a coupling of the processes for different values of p, where the set of discovered sites
increases with p. We will mainly work with the two-type process and will clearly state
when considering the one-type process. By symmetry, we may assume that p2 ≤ p1 in
the two-type process.

1.2 Results

It follows from the results in [28] that the time until any given site is discovered is
finite almost surely. All particles will hence eventually be activated. Our first result is
that both types have a strictly positive probability of outcompeting the other type, in
the sense that it activates infinitely many particles, while the other type activates only
finitely many. If the initial particle distribution allows for empty sites, this is trivial –
since the starting site of either type may then be empty thereby preventing the type
from growing at all – but we show that it is true also conditioning on a non-zero number
of particles on both starting sites. Intuitively, the winning type then manages to capture
all particles in an area that surrounds all particles of the other type and that is thick
enough to prevent the surrounded type from traversing it. The event that infinitely many
particles are activated by type i is denoted by Gi and Gc

i denotes its complement.

Proposition 1.1. For any initial distribution ν, any p1, p2 ∈ (0, 1] and any z ∈ Zd, condi-
tional on η(0) ≥ 1 and η(z) ≥ 1, we have that P0,z(G1 ∩Gc

2) > 0 and P0,z(G
c
1 ∩G2) > 0.

Next we turn to the event G1 ∩ G2 that both types activate infinitely many sites.
This corresponds to a power balance between the types in the sense that none of them
manages to outcompete the other. We first show that whether this event has positive
probability or not does not depend on the choice of the starting site z for type 2 when
p1 ∈ (0, 1). We may hence assume that type 2 starts at the site 1 = (1, 0, . . . , 0) ∈ Zd next
to the origin. We expect this to be true also when p1 = 1, but the proof is based on a
coupling argument that requires that particles can stay put in a given time step. It turns
out however that a slight modification of the argument gives a weaker version when
p1 = 1; see Lemma 3.1. This will be used to establish our main result when p1 = p2 = 1.

Proposition 1.2. For any initial distribution ν and any p1, p2 ∈ (0, 1), we have for any
z ∈ Zd that P0,z(G1 ∩G2) > 0 if and only if P0,1(G1 ∩G2) > 0.

Our main result is that coexistence has a strictly positive probability when p1 = p2.
We are convinced that this is true for any initial distribution, but the possibility of having
empty sites causes some technical problems that we are only able to handle when the
expected initial number of particles per site is finite.

Theorem 1.3. Assume ν is such that, for any x ∈ Zd, either η(x) ≥ 1 almost surely or
E[η(x)] <∞. Then P0,1(G1 ∩G2) > 0 if p1 = p2 ∈ (0, 1].

In other competition models on Zd, the typical picture is that two species can coexist
if and only if they are identical in the sense that they grow according to the same
dynamics with the same parameter values. One might guess that the situation is similar
here so that coexistence is not possible when p1 6= p2 and the types can hence coexist
if and only if p1 = p2. However, we do not think this is true. In particular, we think
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that, when the initial distribution has a very heavy tail, then the types can coexist for all
values of p1 and p2. We comment further on this in Section 1.3.

An important ingredient in the proof of all our results is the shape theorem for the
one-type frog model. This was established in [2] starting with one particle per site and
generalized in [4] to arbitrary initial distributions. Both versions concern the one-type
model based on non-lazy random walks, but we will need the result also for a lazy
version of the process, where the particles move according to lazy random walks with a
probability p ∈ (0, 1] of jumping in each time step. This follows from the same proof as in
[2, 4]; see the appendix.

To formulate the theorem, let ξn(p) denote the set of discovered sites in a one-type
process started from the origin where all particles move according to lazy random walks
that have probability p of moving in each time step. Formally, we use the family L

introduced above to control the delays of the random walks in S to obtain the movements
of the particles. Write ξ̄n(p) = {x+ ( 1

2 ,
1
2 ]d : x ∈ ξn(p)}.

Theorem 1.4 (General shape theorem). Consider the one-type frog model. For any ν
and p ∈ (0, 1], there exists a non-empty convex set A = A(ν, p) such that, conditional on
η(0) ≥ 1 and for any ε ∈ (0, 1), almost surely

(1− ε)A ⊂ ξ̄n(p)

n
⊂ (1 + ε)A

for large n.

Characterizing the shape A largely remains an open problem. However a few things
can be said about how the shape depends on the initial distribution ν and the parameter
p. By construction of the process, we have that ξn(p) ⊆ ξn(p′) for p ≤ p′ and thereby
A(ν, p) ⊆ A(ν, p′) for any ν. For x ∈ Rd, let ‖x‖1 denote the L1-norm of x, define

Dr = {x ∈ Rd : ‖x‖1 ≤ r} (1.1)

and write D = D1 for the L1 unit ball. Due to the discrete nature of the model, the shape
cannot exceed D, that is, A(ν, p) ⊆ D for any ν and p. In [4], it is shown that, if ν is such
that the initial number of particles η(x) per site x has a heavy tail, then A(ν, 1) = D.
A minor modification of that proof shows that the conclusion remains valid also for p < 1;
see the appendix for a brief outline. Intuitively, if there are very many particles per site
then, with overwhelming probability, one particle will jump to each neighbor in a given
step even if the probability of jumping per particle is small.

Theorem 1.5. Consider the one-type frog model and assume that ν satisfies the condition
P(η(x) ≥ n) ≥ (log n)−δ for any x ∈ Zd, some positive δ < d and all n large enough. Then
A(ν, p) = D for any fixed p ∈ (0, 1].

We describe possible implications of this result for the possibility of coexistence in
Section 1.3 below, where we have collected open problems and suggestions for further
work. Section 1.4 contains references to previous work on competition on Zd. Proposition
1.1 and 1.2 are then proved in Section 2 and Section 3, respectively, and Theorem 1.3
is proved in Section 4. Finally, some details on how Theorem 1.4 and Theorem 1.5 are
derived using their counterparts for p = 1 are given in the appendix.

1.3 Open problems

Here we describe some open problems for the model, and some modifications of the
model that might be worth further study.

Coexistence and the shape A natural question is if Theorem 1.3 has a counterpart
for p2 < p1 saying that coexistence is then impossible. We do not think that this is the
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case. Instead, we conjecture that two types can coexist as soon as their one-type shapes
coincide.

Conjecture 1.6. If ν, p1 and p2 are such that A(ν, p1) = A(ν, p2), then P0,1(G1 ∩G2) > 0.

According to Theorem 1.5, for any p1, p2 ∈ (0, 1], a process with p = p1 and one
with p = p2 both give the same maximal shape D when ν has a sufficiently heavy tail,
indicating that type 1 can then coexist with a strictly weaker type 2 if our intuition is
correct. We think it might be enough that the shapes coincide in one direction (e.g. along
the diagonal) and therefore do not include the only-if direction in the above conjecture.
However, if the type 2 shape is strictly smaller than the type 1 shape in all directions,
then we conjecture that coexistence is not possible.

For a given initial distribution ν, how is the shape affected by p? This is of independent
interest, but would also be worth studying in view of its potential relevance for the
possibility of coexistence.

Question 1. As pointed out above, we have A(ν, p) ⊆ A(ν, p′) ⊆ D for p ≤ p′. Are
there conditions on ν that guarantee that A(ν, p) is strictly smaller than A(ν, p′) for
all p < p′?
Question 2. According to Theorem 1.5, the p-shape and the p′-shape coincide
when ν is heavy-tailed since the asymptotic growth rate in both cases is maximal.
Are there cases when A(ν, p′) is strictly smaller than D, but A(ν, p) = A(ν, p′) still
holds for p < p′ sufficiently close to p′?

The tie-breaker All our results apply for any tie-breaking rule. An unfair tie-breaker
can hence not ruin the possibility of coexistence when p1 = p2. One can still ask if an
unfair tie-breaker can make coexistence possible in a situation where it is not possible
with a fair tie-breaker (by giving an advantage to the weaker type). We think that the
answer is no. However the tie-breaker could potentially influence the geometry of the
sets of sites discovered by the respective types and the properties of the boundaries
between them.

Collective laziness An alternative way of modeling the delays is to toss one single coin
in each time step deciding if the type 1 particles move or not, that is, with probability p1

all type 1 particles move and with probability 1−p1 they all stay where they are. Similarly,
one single coin toss determines if the type 2 particles move or not. The intuition behind
the above conjectures concerning the relation between the one-type shapes the the
possibility of coexistence is fairly general and apply also to this version of the model.
One might hence guess that it is qualitatively similar to our model, where the delays of
the particles are independent. Note however that, with collective laziness the one-type
shape theorem follows immediately from the version without laziness from a simple
time-scaling argument and we obtain in this case that A(ν, p2) = p2

p1
A(ν, p1) for all ν, so

that type 2 gives rise to a strictly smaller shape when p2 < p1. If indeed our conjectures
are correct for both models, then there will be choices for (p1, p2) for which the types
can coexist with independent laziness but not with collective laziness.

Continuous time The frog model is traditionally studied in discrete time, but it could
of course also be defined in continuous time by letting the particles move according to
independent simple random walks in continuous time. This has been done in [26], where
a shape theorem is proved for the one particle per site initial configuration η(x) ≡ 1.
A two-type version of such a model would be obtained by letting type 1 particles jump
with rate 1 and type 2 particles with rate β < 1. It would have the advantage that no
tie-breaker is needed, since particles will almost surely not jump simultaneously. For
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η(x) ≡ 1 we conjecture that coexistence is possible if and only if β = 1. For other initial
distributions, one would first have to establish a shape theorem. In contrast to the
discrete case, this might require conditions on the initial distribution.

Question. Could the growth be superlinear in time in the continuous time frog
model if η(x) has a very heavy tail?

For a ν that does give rise to a bounded shape, it follows by time-scaling that the
shape at rate β < 1 is strictly smaller than the rate 1 shape.

Conjecture 1.7. For ν that gives rise to a bounded shape in the continuous time frog
model, coexistence is possible if and only if β = 1.

1.4 Related work

Stochastic competition models on Zd has been an active research area during the
last decades. The models often give rise to mathematically very challenging questions
at the same time as they are potentially relevant in applications. Phenomena that can
be described by the models include competing epidemics, spread of information and
opinion formation. One of the first models was a two-type version of the Richardson
model introduced in [12], with two types competing to invade the sites of the Zd-lattice.
The growth is driven by exponential passage times on the edges with potentially different
intensities for the types, and the conjecture is that the types can grow to occupy infinitely
many sites simultaneously if and only if they spread with the same intensity. The if-
direction was proved in [12] for d = 2 and independently in [10] and [14] for d ≥ 2. The
only-if direction is not proved, but partial results can be found in [11, 13].

A variation of the two-type Richardson model, where a site that has at least two
neighbors of a given type is immediately occupied by that type, is studied in [1]. Another
variation was recently introduced in [27]. A process consisting of type 1 particles there
starts from the origin and each time it reaches a new site, with some probability instead
a process consisting of type 2 particles starts from this site. We also mention the multi-
type contact process, introduced in [25] and further studied e.g. in [24, 23]. There sites
can recover and become susceptible again, and the focus is on properties of stationary
measures.

In the above models, the type is associated with the sites. The frog model however is
driven by moving particles, and the type in our two-type version is associated with the
particles. A model that is related to the frog model is obtained by letting all particles
move, that is, there are no sleeping particles but all particles start moving according
to independent random walks at time 0. This model is technically considerably more
challenging to analyze and has been studied e.g. in [18, 19]. A competition version
was studied in [20]. There the two types both move at rate 1, type 1 starting from a
single site and type 2 from some infinite set of sites S, and a particle changes type if a
particle of the other type jumps onto it. The main result is a condition on the set S that
determines when type 1 has a chance of surviving. In this context we also mention [17].
The model studied there is not a competition model, but also deals with the evolution of
two interacting types.

2 Proof of Proposition 1.1

In this section we prove Proposition 1.1. A key observation is that a given particle
will almost surely discover only finitely many sites, implying that it will activate finitely
many other particles. This follows from the fact that the distance of a random walk from
its starting point after n steps scales like

√
n, while the set of discovered sites in the frog
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model grows linearly in n according to the shape theorem. The proposition follows from
this in combination with coupling arguments.

Consider a (possibly lazy) simple symmetric random walk Sn on Zd, starting at
the origin. It is well known that the distance to the origin scales like

√
n. Recalling

the definition (1.1) of Dr, the following result quantifies the probabilities of moderate
deviations for the walk.

Lemma 2.1. For any ε ∈ (0, 1
2 ), there exists a constant γ > 0 such that, for all n:

P(Sn ∈ Dn1−ε) ≥ 1− exp{−γn1−2ε}. (2.1)

Proof. For a one-dimensional walk, it is proved in [9] that, for ε ∈ (0, 1
2 ), all c > 0 and

some γ > 0, it holds P(Sn 6∈ Dcn1−ε) ≤ exp{−γn1−2ε}. This immediately gives the bound
for d = 1. For d ≥ 2, the probability of a given jump being along the xk-direction
(k = 1, . . . , d) is 1

d . The displacement in a given direction can hence be controlled by
the one-dimensional bound, and by a union bound we obtain (2.1) for the d-dimensional
walk with Dn1−ε replaced by a cube with side length 2cn1−ε centered at the origin. The
desired bound follows from this by choosing c small such that this cube is contained in
Dn1−ε .

We now combine this with the shape theorem to conclude that any given particle
discovers only finitely many sites.

Lemma 2.2. For any initial distribution ν, the number of sites discovered by a given
particle in the one-type or two-type frog model is almost surely finite.

Proof. We show the statement for the origin particles in a one-type model, and then
explain how this gives the general statement. Consider one of the initially activated
particles at the origin in a one-type model. By Lemma 2.1 and the Borel-Cantelli lemma,
the position of the particle will almost surely be contained in Dn3/4 for large n. However,
by Theorem 1.4, the one-type process grows linearly in n, and gives rise to a deterministic
shape A on the scale n−1. The shape A is non-empty and convex, implying that A ⊃ Dδ
for some small δ > 0. Hence almost surely Dnδ/2 ⊂ ξn for large n. It follows that the
origin particle will almost surely not discover any new sites for large n.

The number of sites discovered by a particle with initial location x 6= 0 in the one-type
process is dominated by the number of sites discovered by a particle from x in a one-type
process started with only the particles at x activated. This gives the statement for any
given particle in the one-type process. In the two-type process, the number of sites
discovered by a given particle with initial location x is dominated by the number of sites
discovered by a particle from x in a one-type process (constructed based on the same
vector Π) started with only the particles at x activated and where the x-particles move
according to trajectories with the larger jump probability p1 while all other particles use
the smaller jump probability p2. It follows from the same argument as above that this
number is almost surely finite.

Remark 2.3. As noted in the proof, the same argument yields the same conclusion for
a given particle also in a slightly modified one-type process, where a finite number of
particles move according to random walks with jump probability p1 while the rest of the
particles move according to random walks with jump probability p2 < p1.

Proof of Proposition 1.1. We prove that P0,z(G
c
1 ∩G2) > 0, that is, the (possibly) weaker

type 2 has a strictly positive probability of winning. That P0,z(G1 ∩ Gc
2) > 0 is proved

similarly. We first treat the case when p1 < 1 so that both types are lazy, and then
describe how the argument can be generalized to the case when p1 (and possibly also
p2) is equal to 1.
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Consider a modified one-type process started with the particles at 0 and z active at
time 0, and where the particles starting at 0 move according to random walks with jump
probability p1, while all other particles (including those activated by the particles at 0)
move according to random walks with jump probability p2. The process is generated
using the random objects in the vector Π = (ν, S, L), as described in Section 1.1. We let
Πone
n denote the state of this process after n steps, including the location and origin of all

particles.
By Remark 2.3, the particles at 0 discover an almost surely finite number of sites

in the above one-type process. With N denoting the last time in the process a particle
starting at the origin discovers a new site, we can hence pick m such that P(N ≤ m) ≥ 1

2 .
Note that the set of discovered sites after m steps is contained in Dm and write vm for
the number of sites in Dm.

Now consider a two-type process started with the particles at 0 and z active of type 1
and type 2, respectively. We will define coupled random walks Ŝ and delay variables L̂
with the same distribution as S and L such that, if the two-type process is generated by
Π̂ = (ν, Ŝ, L̂), then with positive probability the only particles that become activated by
type 1 are those at 0. Essentially, the idea is to let the 0-particles stay put while type 2
progresses beyond the set of discovered sites in Πone

m , preventing type 1 from discovering
new sites if the 0-particles do not do so in the one-type process. To this end, the delay
variables for the 0-particles before their first jump are generated independently for
k = 1, . . . , 2vm +m, that is, for all i = 1, . . . , η(x), we let

L̂0,i
0,k =

{
L̃0,i

0,k k = 1, . . . , 2vm +m;

L0,i
0,k−2vm−m k > 2vm +m,

where {L̃0,i
0,k} are i.i.d. uniform on [0, 1] and independent of {L0,i

0,k}. Furthermore, the
variables controlling whether or not a given particle at z, say (z, 1), will jump in the time
step after its jth jump are generated independently for j = 0, . . . , 2vm − 1, that is,

L̂z,1j,k =

{
L̃z,1j,k j = 0, . . . , 2vm − 1 and k = 1;

Lz,1j,k otherwise,

where {L̃z,1j,k} are independent of {Lz,1j,k} with the same distribution. Also the jumps j =

1, . . . , 2vm for the particle (z, 1) are generated by an independent random walk, that is,

Ŝz,1j =

{
S̃z,1j j = 1, . . . , 2vm;

Sz,1j−2vm
j > 2vm,

where (S̃z,1j ) is independent of (Sz,1j ). All other particles move according to the same
random walk trajectories as in S and use the variables in L to control their jumps. Note
that Π̂ has the same distribution as Π.

We now define two events that will guarantee that, if N ≤ m, then type 2 wins in the
two-type process based on Π̂. First let Â0 denote the event that the type 1 particles at
the origin stay put in the first 2vm +m time steps. Hence, on Â0, the only particles that
are type 1 at time 2vm +m in the process are those at 0. As for type 2, let Âz denote the
event that, in the time interval [1, 2vm], the type 2 particle (z, 1) jumps between the sites
in Dm, making one jump in each time step, in such a way that all sites in Dm are visited
at least once and at time 2vm the particle (z, 1) returns to z. The particles in Dm that are
then activated by type 2 immediately start moving according to the same dynamics as
in Π. Any other type 2 particles at z and the particles activated by them develop in the
same way as in Π. This means that all discovered sites in Πone

m are discovered at time

EJP 24 (2019), paper 146.
Page 8/17

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP400
http://www.imstat.org/ejp/


Competing frogs on Zd

2vm in the two-type process, and all sites except 0 are discovered by type 2. Finally, in
the time interval [2vm + 1, 2vm +m), the growth of type 2 continues based on the same
random objects as in Π.

To summarize, on the event Â0 ∩ Âz, all particles that were activated in Πone
m are

activated at time 2vm +m in the two-type process based on Π̂. Furthermore, all particles
except those at 0 are activated by type 2 and have gotten at least as far along their
random walk trajectories as in Πone

m . Now assume that N ≤ m, that is, the 0-particles do
not discover any new sites after time m in the modified one-type process. Then, when
the 0-particles start moving according to the same random walks as in Π at time 2vm+m

in the two-type process, they will not discover any new sites. Hence

P0,z(G
c
1 ∩G2) ≥ P0,z(Â0 ∩ Âz|N ≤ m)P0,z(N ≤ m). (2.2)

The events Â0 and Âz are defined in terms of finitely many random objects that are inde-
pendent of the objects in Π, implying that P(Â0 ∩ Âz|N ≤ m) = P(Â0 ∩ Âz) > 0. Further-
more P(N ≤ m) ≥ 1

2 by the choice of m. We conclude that P0,z(G
c
1 ∩G2) > 0, as desired.

When p1 = 1, so that type 1 (and possibly also type 2) is not lazy and thereby can
not stay put, the argument is modified as follows. Pick a neighboring site of the origin,
say 1, and assume without loss of generality that z 6= 1 and that z is not a neighbor of 1.
Extend the definition of N to include also any particles at 1 so that no particle from 0 or
1 discovers a new site after time N in the one-type process. Then let the type 1 particles
from 0 jump back and forth between 0 and 1 while type 2 progresses as described above.
Any particles at 1 that are activated by type 1 jump back and forth between 1 and 0.
This is achieved by modifying the random walks associated with the particles at 0 and
1 in the beginning of the time course. We then arrive at a configuration where type
2 has progressed beyond its state at time m in the one-type process and where the
type 1 particles from 0 and 1 are thereby prevented from discovering any new sites if
they do not do so in the one-type process. Since the above scenario can be obtained by
controlling finitely many random objects, it has positive probability, and it then follows
as in (2.2) – with Â0 ∩ Âz replaced by the above scenario and the modified definition of
N – that Gc

1 ∩G2 has positive probability.

3 Proof of Proposition 1.2

We proceed with proving that the choice of the starting site z for type 2 is irrelevant
for the possibility of mutual infinite growth for p1, p2 ∈ (0, 1). This can be established
by a slightly shorter proof than the one given here, but the below argument has the
advantage that it partly extends to the case when p1 = 1 (see Lemma 3.1) and this
extension will be important in the proof of Theorem 1.3 when p1 = p2 = 1.

Proof. To verify the claim, we will use a technique occasionally referred to as “sticky
coupling” and often used in the context of mixing times of Markov chains (see e.g. [21,
Chapter 5.2]): Two copies of the process, started from different sites, evolve side by side
until they enter the same state. From that time point on, the same random variables are
used to generate the further evolution of both copies, preventing them from separating
thereafter. In contrast to the standard argument of this kind, in our case the two copies
will not evolve independently until they meet, but the second copy will be gradually
aligned with the first one until they finally reach the same state. The first copy will be
started from sites where we know that coexistence is possible, and the second copy from
sites where we wish to show that coexistence is possible.

First assume that P0,z(G1 ∩G2) > 0. In the first copy, type 1 then starts from 0 and
type 2 from z. Fix a shortest path Γ from 0 to z and label its sites according to the follow-
ing rule: a site v ∈ Γ is assigned label i (i = 1, 2) if η(v) > 0 and its particles are activated
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0
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Γ

Figure 1: Initially non-empty sites that are discovered by type 1 and type 2, respectively,
are labeled 1 (blue) and 2 (red), and initially empty sites are labeled 0 (white).

by type i, and label 0 if η(v) = 0; see Figure 1. Let c(Γ) ∈ {0, 1, 2}Γ be the (random)
string of labels and let M denote the time when all sites on Γ have been discovered.

Since {0, 1, 2}Γ is finite and M is finite almost surely, our assumption implies that, for
some γ ∈ {0, 1, 2}Γ and m ∈ N sufficiently large, the event

Cγ,m := G1 ∩G2 ∩ {M ≤ m} ∩ {c(Γ) = γ}

has positive probability. Let y be the first site on Γ (traversed from 0 to z) with label 2
(in γ) and x its predecessor.

We now define a second copy of the competition process, with type 1 started in x and
type 2 started in y. Conditioned on Cγ,m, the second copy will reach the same state as
the first copy in finite time with positive probability. To guarantee that there is a non-zero
number of particles at x, we first change the initial configuration slightly by interchanging
the number of particles at 0 and x. The process then starts with one type 1 particle
traversing Γ from x to 0 and back. Next, one particle of each type, starting from x and y,
respectively, move along Γ towards z according to the following rule: The particle of type
i moves forward if either it is trailing or the label of the next site (attributed by γ) is in
{0, i}, otherwise the type i particle moves backwards. In this way, once the type 2 particle
reaches z, all sites on Γ have been activated by the type prescribed in γ. Finally, both
particles return along Γ to their initial position and the (type 1) particles placed at 0 and
x switch places. During all this time, no other activated particle than the ones specified
moves. Note that the location of the particles now exactly corresponds to the starting
configuration {η(v)}v∈Zd of the first copy, however, all sites on Γ have been activated.

At this point, each particle in the second copy is paired up one-to-one with a particle
in the first copy, in such a way that the current position of the former and the initial
position of the latter coincide. To couple the copies, we proceed as follows: All particles
in the second copy mimic the moves of their twin in the first copy and, until the twin
gets activated, the particles on Γ \ {0, z} stay put by being lazy. Once all sites on Γ

are activated in the second copy, both copies are in the exact same state and further
evolve identically. Since we manipulated only finitely many sites, particles and moves in
the second copy, the coupling shows that P0,z(Cγ,m) > 0 implies Px,y(G1 ∩G2) > 0 and
hence P0,1(G1 ∩G2) > 0 by rotation and translation invariance.

Now assume that P0,1(G1 ∩ G2) > 0. To show that P0,z(G1 ∩ G2) > 0, we proceed
in a similar fashion: In the first copy, type 1 is now started from 0 and type 2 from
1. For n ∈ N, let Mn denote the time when all sites in Dn ∩ Zd have been discovered.
Furthermore, for v ∈ Zd, let c(v) ∈ {0, 1, 2} denote the label attributed to v according
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to the same rule as above, that is, c(v) = 0 if η(v) = 0 and c(v) = i (i = 1, 2) if particles
at v are activated by type i. Since P0,1(G1 ∩G2) > 0, for fixed z the probability that Dn
contains at least ‖z‖1 sites with label 2 tends to 1 as n→∞. Hence, as in the first part,
we can choose first n ≥ ‖z‖1, then m big enough, such that for some λ ∈ {0,1,2}Dn and
a collection of sites {y1, . . . , y‖z‖1} ⊆ Dn, the event

Cλ,m := G1 ∩G2 ∩
{
Mn ≤ m

}
∩
{
c(Dn) = λ

}
∩

( ‖z‖1⋂
k=1

{c(yk) = 2}

)
has positive probability.

Now consider a second copy started with type 1 in 0 and type 2 in z. In order to pair it
up with the first copy (started with type 1 in 0 and type 2 in 1), we would first like a type 2
particle from z to activate the site 1. This however, potentially causes incorrect labels on
its way, which forces us to make some extra effort: Fix a shortest path Γ from 1 to z and
observe that Γ ⊆ Dn. Set x1 = z and let {x2, . . . , xk} be the sites on Γ\{z} that have label
1 in λ. Again, we alter the initial placement of particles in the second copy, this time by
interchanging the numbers of particles initially placed at sites xi and yi, for all 1 ≤ i ≤ k.

We now let the second copy evolve as follows: First one type 2 particle moves from z

to 0 via Γ and the edge 〈0,1〉. This type 2 particle then explores all sites of Dn together
with a type 1 particle from 0 in such a way that every site v ∈ Dn ∩ Zd that has label i
in λ is activated by the type i particle, with the exception of the sites y1, . . . , yk, which
are activated by the type 1 particle instead. All other activated particles (besides the
pair activating Dn) idle by being lazy. Once all sites in Dn have been discovered, the
activating pair moves back to their initial positions. Furthermore, all (type 2) particles
now placed at xi move to yi and all (type 1) particles placed at yi move to xi, 1 ≤ i ≤ k,
no particle ever leaving Dn. In this way, we have once more established a specified
activation pattern (here λ) which occurs with positive probability in the first copy, given
coexistence of both types, and moved all particles activated in the second copy to
correspond to the initial configuration of the first copy.

Now we couple the copies as before: Activated particles in the second copy idle until
their twin in the first copy gets activated and then mimic its moves. Conditioned on Cλ,m
for the first copy, after a finite time the two copies are in the exact same state, verifying
that P0,z(G1 ∩G2) > 0.

The above argument does not immediately extend to the case with p1 = 1, since the
particles can then not stay put. However, it turns out that the argument for one of the
implications can be modified slightly so that it partially extends to the case with non-lazy
particles. This will be important in obtaining Theorem 1.3 for p1 = p2 = 1.

Lemma 3.1. Assume that either (i) p2 < p1 = 1 or (ii) p1 = p2 = 1 and ‖z‖1 is odd. Then
P0,z(G1 ∩G2) > 0 implies that P0,1(G1 ∩G2) > 0 for any initial distribution ν.

Proof. We simply have to carefully go through the argument used in the proof of the first
part of Proposition 1.2 and note that it generalizes to the case of non-lazy particles. The
major problem arising is that particles of a non-lazy type cannot be forced to stay put.
We will therefore assign to every site v ∈ Γ a neighboring site v′ ∈ Γ and let non-lazy
particles which in the evolution of the second copy are supposed to idle at v instead jump

back and forth between v and v′: For a site v on 0
Γ−→ x we choose v′ to be its successor,

and for v on y
Γ−→ z its predecessor. This way, we can still establish the prescribed

activation pattern γ on Γ as above, since no site will be activated by particles jumping
back and forth.

In the phase after Γ has been activated and the copies are gradually coupled, a parity
issue might arise in the above construction: Until its twin (initially placed at v ∈ Γ) in the
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first copy gets activated, the corresponding non-lazy particle in the second copy moves
between v and v′. For the coupling to work, all non-lazy particles jumping back and forth
in the second copy have to be in their associated position v once the twin gets activated
at v in the first copy. It is crucial to observe that, given our construction of the second
copy, this is the case if and only if the L1-distance between the two starting sites of a
non-lazy type in the first and second copy, respectively, is even, owing to the fact that all
particles of a non-lazy type at an odd (even) time will be at odd (even) L1-distance to the
site this type started from.

This settles the case in which only type 1 is non-lazy (p2 < p1 = 1) and ‖x‖1 is even.
If ‖x‖1 is odd, we can fix the parity issue by starting the second copy instead with η(0)

active type 1 particles in y and η(y) active type 2 particles in x, which all move across the
edge 〈x, y〉 in the first time step. Then we proceed as described above to conclude that
Py,x(G1 ∩G2) > 0, which again implies the claim by rotation and translation invariance.

In the case of two non-lazy types (p1 = p2 = 1), it is crucial for our construction that
‖z‖1 is odd, so that either ‖x‖1 being even or switching starting positions x and y in the
second copy guarantees that for both types, the starting positions in the first and second
copy share parity.

4 Proof of Theorem 1.3

In this section we prove Theorem 1.3. The same argument was used in [10] by Garet
and Marchand to prove coexistence in the two-type Richardson model, and it has later
been used in [6] to prove an analogous result for a continuum model. It is also described
in [7, Section 4]. Here we combine it with Lemma 2.2.

Before proceeding with the proof, we define the passage time T (x, y) between two
sites x, y ∈ Zd to be the time when the site y is discovered in a one-type process started
with the particles at x active at time 0. Note that T (x, y) =∞ if there are no particles at
x, that is, if η(x) = 0. It is not hard to see that these times are subadditive in the sense
that

T (x, y) ≤ T (x,w) + T (w, y) for all x, y, w ∈ Zd. (4.1)

This is crucial in the proof of the shape theorem. Write n = (n, 0, . . . , 0). Specifically, as
shown in [2, 4], it follows from subadditive ergodic theory that there exists a constant
µ > 0 such that, conditional on η(0) ≥ 1,

T (0,n)

n
→ µ a.s. and in L1. (4.2)

In order to handle initial distributions with empty sites, we will have to control the
effect on T (0, y) of conditioning on the presence of particles at some third site x. To this
end we will need that, with large probability, the set of discovered sites in a one-type
process contains some linearly growing ball, as stated in the below lemma. This is proved
in a slightly more general formulation for non-lazy random walks in [4, Lemma 2.5]. We
give the general formulation and a brief explanation of why the result applies also to a
lazy process in the appendix.

Lemma 4.1. Consider the one-type frog model with initial distribution ν and p ∈ (0, 1].
There exist constants τ ∈ (0, 1) and α, β > 0 such that, conditional on η(0) ≥ 1 and for all
n:

P
(
ξ̄n ⊇ Dτn

)
≥ 1− α exp(−nβ). (4.3)

Now consider passage times based on (ν, S, L) and, for x1, . . . , xk ∈ Zd, write Ex1,...,xk

for expectation conditional on η(xj) ≥ 1 for j = 1, . . . , k.
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Lemma 4.2. Consider the one-type frog model with P(η(w) = 0) > 0 but E[η(w)] <∞.
For any x, y ∈ Zd we have that E0,x[T (0, y)] ≥ E0[T (0, y)] − C, where C is a positive
constant that does not depend on neither x nor y.

Proof. Let E0,¬x denote expectation conditional on η(0) ≥ 1 and η(x) = 0. We show that

E0,¬x[T (0, y)
]
≤ E0,x

[
T (0, y)

]
+ C ′,

where C ′ does not depend on neither x nor y. Since E0[T (0, y)] is a convex combination of
E0,x[T (0, y)] and E0,¬x[T (0, y)] this gives the desired bound. We hence want to quantify
the delay in a process without particles at x compared to a process with particles at x.
Note that this delay is bounded from above by the time when all sites that are discovered
by particles originating from a non-empty x have been discovered in a process without
particles at x. This time, in turn, is stochastically dominated by the time when all sites
that are discovered by the origin particles in a process started from the origin with
a non-zero number of particles have been discovered in another copy of the process
started with one single particle at the origin. Write U for this time.

Consider the particles initially located at the origin and write V for the last time when
one of them discovers a new site. Recall from Lemma 2.1 that Sn denotes a random walk
and let τ be as in Lemma 4.1. For v big enough, we then have that

P(V ≥ v|η(0) = k) ≤ kP(Sn 6∈ Dn1−ε for some n ≥ v) + P(ξn 6⊇ Dτn for some n ≥ v).

It follows from Lemma 2.1 and Lemma 4.1, respectively, that the probabilities on the
right hand side are summable in v. Hence E[V |η(0) = k] ≤ kC1 + C2 for some constants
C1, C2 <∞ and, since E[η(0)] <∞, we conclude that E[V ] <∞.

Now consider the second copy of the process started with only one particle at the
origin and the related time U defined above. Write ξ̃n for the set of discovered sites at
time n in a process with initial distribution P(η̃(w) = 1) = P(η(w) ≥ 1) = 1−P(η̃(w) = 0)

and let τ be as in Lemma 4.1 for such a distribution. Then

P(U ≥ u) ≤ P(V ≥ τu) + P(ξ̃u 6⊇ Dτu).

That the probabilities on the right hand side are summable in u follows from E[V ] <∞
and Lemma 4.1, respectively. Hence E[U ] <∞, as desired.

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. Consider a two-type process started with the particles at the
origin type 1 and the particles at n type 2, where n will be specified below. By Proposition
1.2 (if p1 = p2 < 1) and Lemma 3.1 (if p1 = p2 = 1), it suffices to show that coexistence
has a positive probability in this process. Assume for contradiction that P0,n(G1∩G2) = 0.
Then one of the types must have at least probability 1

2 of being the winner and we may
without loss of generality assume that Gc

1 ∩G2 has probability at least 1
2 (note that, if

the tie-breaker is fair, both types have probability exactly 1
2 of winning). The idea is to

show that the passage time from n to −m is substantially larger than the passage time
from 0 to −m for some large m. On the other hand, if type 2 is the winner, we obtain
an estimate that contradicts this, since the passage time from n to −m must then be
shorter than the passage time from 0 to −m for large m.

Consider passage times based on (ν, S, L) and fix ε > 0. We first treat the case
when the initial distribution allows for empty sites. For x1, . . . , xk ∈ Zd, write Px1,...,xk

and Ex1,...,xk for probability and expectation, respectively, conditional on η(xj) ≥ 1 for
j = 1, . . . , k. By (4.2), for C as in Lemma 4.2, we can pick n > 2C

µε large enough such that

E0,n
[
T (n,0)

]
≤ (1 + ε)nµ and P0,n

(
T (n,0) < (1− ε)nµ

)
< ε. (4.4)
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With 1B denoting an indicator for an event B, the latter inequality in (4.4) implies
that E0,n[T (n,0)1B ] ≥ (P0,n(B) − ε) · (1 − ε)nµ for any B. Combining this with the
former inequality in (4.4), and using the fact that E0,n[T (n,0)] = E0,n[T (n,0)1B ] +

E0,n[T (n,0)1Bc ], it follows that

E0,n
[
T (n,0)|Bc

]
≤ 1

P0,n(Bc)
(1− P0,n(B) + 3ε)nµ

=

(
1 +

3ε

P0,n(Bc)

)
nµ. (4.5)

We now claim that

E0,n
[
T (n,−m)− T (0,−m)

]
≥ (1− ε)nµ (4.6)

for arbitrarily large m. To see this, note that, for any integer k, trivially

E0
[
T (0, kn)

]
= E0

[
T (0,n)

]
+E0

[
T (0, 2n)−T (0,n)

]
+ . . .+E0

[
T (0, kn)−T (0, (k− 1)n)

]
.

Since E0[T (0, kn)]/k → nµ as k → ∞, it follows that E0[T (0, (k + 1)n) − T (0, kn)] ≥
(1− ε/2)nµ for arbitrarily large k. Taking m = kn and using invariance, we obtain that

E0
[
T (0, (k + 1)n)− T (0, kn)

]
= En

[
T (n,−m)

]
− E0

[
T (0,−m)

]
.

The latter expectation is trivially bounded from below by E0,n[T (0,−m)], since condi-
tioning on the presence of additional particles can only decrease passage times. For
the former expectation, if the expected initial number of particles per site is finite, then
we have by Lemma 4.2 and the choice of n that En[T (n,−m)] ≤ E0,n[T (n,−m)] + nµε/2

and can conclude that (4.6) holds for arbitrarily large m.
Now consider the symmetric two-type process. As described above, we are working

under the assumption that P0,n
0,n(Gc

1 ∩ G2) ≥ 1
2 , where P0,n

0,n denotes probability in the
two-type process conditionally on η(0) ≥ 1 and η(n) ≥ 1 (superscript) started with those
particles activated by type 1 and type 2, respectively (subscript). By Lemma 2.2, if type
1 activates only finitely many particles, then the number of sites discovered by type 1 is
also almost surely finite. Hence

lim
m→∞

P0,n
(
T (n,−m) ≤ T (0,−m)

)
≥ lim
m→∞

P
0,n
0,n(−m is discovered only by type 2) ≥ 1

2
.

Now let B = {T (n,−m) ≤ T (0,−m)} and pick m large such that (4.6) holds and such
that P0,n(B) ≥ 1

4 . By subadditivity, we have that T (n,−m) − T (0,−m) ≤ T (n,0) and
using (4.5), we obtain that

E0,n
[
T (n,−m)− T (0,−m)

]
≤ P0,n(Bc) · E0,n

[
T (n,−m)− T (0,−m)|Bc

]
≤ 3

4
(1 + 4ε)nµ.

For small ε, this contradicts (4.6), and we conclude that P0,n(G1 ∩G2) > 0, as desired.
For initial distributions without empty sites we note that the conditioning on some

sites being non-empty is superfluous throughout and the proof then goes through
without the comparison of En[T (n,−m)] and E0,n[T (n,−m)] provided by Lemma 4.2,
that required E[η(w)] <∞.
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Appendix

Here we sketch how Theorem 1.4 and Theorem 1.5 follow from the same arguments
as in the proofs of their analogues for non-lazy processes in [2, 4].

As for Theorem 1.4, this is an extension of [4, Theorem 1.1] to a lazy process. This,
in turn is a generalization to arbitrary initial distributions of [2, Theorem 1.1], which
is restricted to processes started with one particle per site. The proof in [4] has the
same structure as that in [2], but requires some non-trivial additions to deal with initial
configurations with empty sites. Specifically, the notion of m-good initial configurations
is introduced. For such configurations, which are shown to occur with high probability,
the same arguments as in [2] can be applied. Here we content ourselves with noting
that these modifications go through also for a lazy process, and move on to describe how
the key arguments from [2] are modified for a lazy process.

Recall that T (x, y) denotes the time when the site y is discovered in a process started
with the particles at x active at time 0. We now include the laziness parameter p in the
notation and write Tp(x, y) for the passage time when the particles jump with probability
p in each time step. As usual, the process is constructed using the randomness in (ν, S, L).

The key ingredient in the proof of the shape theorem in [2] is the subadditive ergodic
theorem [22]. This is applied to the passage times {T1(x, y)}x,y∈Zd to conclude that
T1(0, nx)/n converges almost surely and in L1 to some constant µ(x) > 0 for each
x ∈ Zd. All conditions of the subadditive ergodic theorem are easy to verify, except the
requirement that E[T1(0,1)] < ∞. The main challenge in [2] is to verify this and the
key result is the following tail bound for T1(0, x), formulated in [2, Theorem 3.2] and
extended in [4, Lemma 2.1] to include also d = 1.1

Theorem 4.3 (Lemma 2.1 [4]). Suppose that η(x) = 1. For all d ≥ 1 and all x ∈ Zd, there
exist constants α = α(x, d) > 0 and β = β(d) > 0 such that

P(T1(0, x) ≥ m) ≤ α exp{−m−β}

for all m.

Given this estimate and the conclusion of the subadditive ergodic theorem, the shape
theorem follows from standard arguments; see [2] for details.

We now describe how the above bound can be extended to the passage time Tp(0,1)

for a lazy process by comparing Tp(0, x) to its analogue T1(0, x) in the process without
laziness. To this end, couple the processes by constructing them from the same random
walks S. The site x is discovered at time T1(0, x) in the process without laziness and
we can hence fix a sequence of T1(0, x) particle jumps leading up to the discovery of x.
Consider the particle involved in the ith such jump, let xi−1 be its location before the jump
and write Di for the number of time steps that the particle remains at xi−1 in the lazy

process before performing the jump. By construction, the random variables {Di}T1(0,x)
i=1

are independent and geometrically distributed with parameter p. Furthermore, it is easy
to check that

Tp(0, x) ≤ T1(0, x) +

T1(0,x)∑
i=1

Di. (4.7)

1The analogue estimate for m-good random initial configurations is given in [4, Lemma 2.2].
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For any m ∈ N we hence have that

P

(
Tp(0, x) ≥ 4m

p

)
≤ P

(
T1(0, x) ≥ 2m

p

)
+ P

T1(0,x)∑
i=1

Di ≥
2m

p

 (4.8)

≤ 2P (T1(0, x) ≥ m) + P

(
m∑
i=1

Di ≥
2m

p

)
,

where the last inequality follows by conditioning on whether T1(0, x) ≥ m or not in the
last term in (4.8), and dominating the first term with P(T1(0, x) ≥ m).

Now note that
∑m
i=1Di has a negative binomial distribution with parameters m

and p. Hence P
(∑m

i=1Di ≥ 2m
p

)
≤ P (Y ≤ m), where Y is binomially distributed with

parameters d2m/pe and p, and hence E[Y ] ≥ 2m. A standard Chernoff bound for the
binomial distribution yields that P(Y ≤ m) ≤ e−cm for some constant c > 0 and all m ∈ N.
Using Theorem 4.3, we conclude that

P

(
Tp(0, x) ≥ 4m

p

)
≤ α′ exp{−cmβ},

where α′ = α′(x, d) and β = β(d) are positive finite constants. This bound serves the
same purpose as the one in Theorem 4.3 for a lazy process.

We now give a short sketch of the proof of Theorem 1.5, that is, we describe why
the “full diamond” result, Theorem 1.2 in [4], still holds with laziness. To this end, let us
first revisit Lemma 2.5 in [4], which states that in dimension d ≥ 2, there exist constants
τ ∈ (0, 1) and α, β > 0 only depending on d, such that, conditional on {η(0) ≥ 1}, for all
n ∈ N and x ∈ Zd:

P
(
Dxτn ⊆ ξ̄n+T (0,x)

)
≥ 1− α exp(−nβ), (4.9)

where Dxr = {y ∈ Rd : ‖x− y‖1 ≤ r}. An inspection of the proof reveals that the bound
applies also in d = 1 (although this is not needed in [4]). This is formulated in our Lemma
4.1 for x = 0.

The key to the proof of Lemma 2.5 is the fact that, for a simple symmetric random
walk (Sn)n∈N on Zd, there exists β > 0 such that for all d ≥ 1 and k ≥ 1:

P
(
|{Sj , 0 ≤ j ≤ k1/2}| ≥ k1/4

)
≥ β,

This follows from standard estimates using that the expected range of (Sn)kn=1 is Θ(
√
k)

for d = 1, Θ
(

k
log k

)
for d = 2 and Θ(k) for d ≥ 3. This, however, also holds for a lazy walk

and together with the lazy version of Theorem 4.3, we arrive at (4.9) for our setting.
In the proof of Theorem 1.2 in [4], the estimate (4.9) is used to show that, for

θ ∈
(
δ
d , 1
)
, the probability that there exists a site x ∈ Dτnθ with η(x) ≥ (4d)n that

has been activated by time nθ, is at least 1 − exp(−Cnθd−δ), where C =
(

log(4d)
)−δ

.
Conditioned on the existence of such an x, it is not hard to conclude thatDn−2Cnθ ⊆ ξ̄n+nθ

with high probability. Indeed, if x contains at least (2d)n active particles at a given time,
then the probability that a given site within distance n from x is hit by a particle from x

within time n is bounded away from 0. Hence, if x contains 2n groups of (2d)n particles,
then with high probability all sites in Dn−2Cnθ will be discovered at time n+ nθ. In order
to mimic this argument for the lazy process, we need η(x) ≥

(
4d
p

)n
instead. Given the

strong condition on the tail of η in the assumptions of Theorem 1.5, however, we find
that

P

(
η(x) <

(
4d

p

)n)
≤ 1−

(
log

(
4d

p

))−δ
n−δ

and slightly tweaking the constants will do the job.
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