
Thesis for the Degree of Licentiate of Philosophy

Practical Unification for
Dependent Type Checking

Víctor López Juan

Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Gothenburg, Sweden 2020

Practical Unification for Dependent Type Checking
Víctor López Juan

© Víctor López Juan, 2020.

Department of Computer Science and Engineering
Chalmers University of Technology
SE-412 96 Gothenburg
Sweden
Telephone +46 (0)31-772 1000

Printed by Chalmers Print Service
Gothenburg, Sweden 2020

iii

Practical Unification for Dependent Type Checking
Víctor López Juan
Department of Computer Science and Engineering
Chalmers University of Technology

Abstract:
When using popular dependently-typed languages such as Agda, Idris or Coq
to write a proof or a program, some function arguments can be omitted, both
to decrease code size and to improve readability. Type checking such a program
involves inferring a combination of these implicit arguments that makes the
program type-correct.

Finding such a combination of implicit arguments entails solving a higher-
order unification problem. Because higher-order unification is undecidable,
our aim is to infer the omitted arguments for as many programs as possible
with a reasonable use of computational resources. The extent to which these
goals are achieved affect how usable a dependently-typed proof assistant or
programming language is in practice.

Current approaches to higher-order unification are in some cases too in-
flexible, postponing unification of terms until their types have been unified
(Coq, Idris). In other cases they are too optimistic, which sometimes leads to
ill-typed terms that break internal invariants (Agda).

In order to increase the flexibility of our unifier without sacrificing sound-
ness, we use the twin types technique by Gundry and McBride. We simplify
their approach so that it can be used within an existing type theory without
changes to the syntax of terms. We also extend it so that it can handle more
classes of constraints. We show that the resulting solutions are correct and
unique.

Finally, we implement the resulting unification algorithm on an existing
type checker prototype for a smaller variant of the Agda language, devel-
oped by Mazzoli and Abel. We make a suitable choice of internal term rep-
resentation, and use few, if any, example-specific optimizations. We obtain a
type-checker which avoids ill-typed solutions, and is also able to handle some
challenging examples in time and memory comparable to the existing Agda
implementation.

Keywords: dependent types, type checking, unification.

iv

A summary of this thesis was accepted for publication:

Víctor López Juan and Nils Anders Danielsson
Practical Dependent Type Checking using Twin Types
5th ACM SIGPLAN International Workshop on Type-Driven Development
(TyDe 2020)
doi:10.1145/3406089.3409030

https://doi.org/10.1145/3406089.3409030

Contents

1 Introduction 1
1.1 Our contributions . 2
1.2 Problem statement . 2
1.3 A brief history of higher-order unification with dependent types 3
1.4 Recent approaches to dependent type checking with metavariables 6
1.5 Uniqueness of solutions . 6
1.6 Design choices . 7
1.7 Structure of the thesis . 9

2 A dependently-typed language 11
2.1 Term syntax . 11
2.2 Notational preliminaries . 11
2.3 Signatures (Σ sig) . 14
2.4 Contexts (Σ ⊢ Γ ctx) . 17
2.5 Types (Σ;Γ ⊢ 𝐴 type) . 17
2.6 Context equality (Σ ⊢ Γ ≡ Γ′ ctx) 18
2.7 Binders and variables . 18
2.8 Renamings . 20
2.9 Hereditary substitution and elimination (𝑡[𝑢/𝑥], 𝑡 @ 𝑒) 22
2.10 Head lookup (Σ;Γ ⊢ ℎ ⇒ 𝐴) . 26
2.11 Terms (Σ;Γ ⊢ 𝑡 ∶ 𝐴) . 26
2.12 Term equality (Σ;Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴) 28
2.13 Term reduction (⟶δη, ⟶⋆

δη) 29
2.14 Properties . 31

2.14.1 Judgments . 31
2.14.2 Substitution and elimination 32
2.14.3 Typing and equality . 35
2.14.4 Contexts . 37
2.14.5 Signatures . 39
2.14.6 Admissible rules . 46
2.14.7 Term reduction . 47

2.15 Weak head normalization (↘) 49
2.16 Type elimination (@̂) . 52
2.17 Metasubstitutions (Θ) . 59
2.18 Closing metasubstitution (close(Σ)) 63
2.19 Equality of metasubstitutions (Θ1 ≡ Θ2) 65
2.20 Signature extensions (Σ ⊑ Σ′) 68

v

vi CONTENTS

2.21 Non-reducible terms . 70
2.22 Rigidly occurring terms (𝑡⟦𝑢⟧) 75
2.23 Out of scope features . 80

2.23.1 Inductive definitions and inductive families 80
2.23.2 Identity types . 80
2.23.3 Generalized records with η 81

3 Unification for type checking 83
3.1 From type checking to unification 85
3.2 Higher-order unification . 90
3.3 (Un)decidability of higher order unification 90
3.4 Miller pattern unification . 91
3.5 Dynamic pattern unification . 92
3.6 Extension to product types . 92
3.7 Interleaving type checking with unification 93
3.8 The Π problem . 94
3.9 Strictly ordered, homogeneous constraints 95
3.10 Heterogeneous constraints using twin variables 95

4 Unifying without order 97
4.1 Two-sided internal constraints 98
4.2 Heterogeneous equality . 100
4.3 From type checking to internal constraints 103
4.4 A unification relation . 105
4.5 A reduction rule toolkit . 109

4.5.1 Syntactic equality check 109
4.5.2 Metavariable instantiation 109
4.5.3 Type constructors . 117
4.5.4 Constraint symmetry . 119
4.5.5 Term conversion . 120
4.5.6 Type conversion . 121
4.5.7 Type-directed unification 123
4.5.8 Strongly neutral terms 125
4.5.9 Metavariable argument killing 130
4.5.10 Metavariable argument currying 138
4.5.11 Metavariable η-expansion 142
4.5.12 Context variable currying 146

4.6 Beyond correctness . 151
4.6.1 Open-world assumption 152
4.6.2 Unsolvable problems . 153

4.7 Extensibility and limitations thereof 154
4.7.1 Singleton types with η-equality 155

5 Evaluation and conclusions 157
5.1 Unification algorithm . 157
5.2 Constraint book-keeping . 166

5.2.1 Constraint unblocking (Unblocked) 166
5.2.2 Ordering of rule application 167
5.2.3 Constraint satisfaction 167

CONTENTS vii

5.3 Language extensions . 168
5.4 Benchmarking methodology . 171

5.4.1 Comparing Tog with Agda 171
5.5 From Tog to Tog+ . 173

5.5.1 Term representation using hash-consing 174
5.5.2 Elaboration . 181

5.6 Case study: Type Theory in Type Theory 184
5.6.1 Impact of syntactic equality 187

5.7 Related systems . 190
5.7.1 Comparison with Coq, Matita, Idris, Lean and Tog . . . 192
5.7.2 Comparison with Agda 193
5.7.3 Comparison with the twin variable approach 194

5.8 Future work . 196
5.9 Conclusions . 198

A Code for the TT-in-TT case study 199

B Code and output of system comparisons 205

Index 213
List of definitions, notations and problems 213
List of postulates . 216
List of theorems, propositions, lemmas and remarks 216
List of examples . 219
List of algorithms . 220
List of figures . 220
List of code listings . 221
List of tables . 221

Bibliography 227

viii

Acknowledgements

I would first like to thank Nisse for his patience throughout this journey, and
for his tireless proof-reading and copious feedback: the quality of this work
would not be anywhere close without them. I would also like to thank Peter
for his support and understanding when things were toughest.

I would like to thank Andreas Abel, Jesper Cockx, Thierry Coquand, Nils
Anders Danielsson, Ulf Norell, Fabian Ruch and Andrea Vezzosi for the dis-
cussions on the subject of higher-order unification with dependent types, and
its implementation in Agda. These discussions helped develop the theoretical
underpinnings this work, put this work in a broader historical context, and
produced examples which motivated our work and allowed us evaluate our
progress. I also wish to thank Francesco Mazzoli for his previous work on the
Tog project, and Adam Gundry for his clarifications about his thesis, upon
both of which this work builds. Finally, I wish to thank Matthieu Sozeau for
his interest in discussing this licentiate thesis.

I would like to dedicate this door stopper to my friends, including Manos,
Inari, Fabian, Salvo, Franz, Herbert, Carlos, Irene, Stavros, Andrea, Stefan,
and those of you whom I have undeservedly omitted: you have made my time
as a PhD student more fulfilling than I could have imagined. And Carol,
Borja, Carlos, Felipe and Ralph: when I have travelled back to Madrid, you
have always made me feel as if I had never left.

A mis padres, por mantenerse a mi lado pese a lo difícil que se lo pongo.

Och till Henrik, mitt livs glädje.

ix

x

Chapter 1

Introduction

Dependent type checking is at the heart of implementations of proof assis-
tants and programming languages such as Agda, Idris or Coq. When writing
programs and proofs in such tools, omitting information which is unequivo-
cally determined by the surrounding context can make programs both easier
to read and to write. These omitted values are replaced by metavariables,
which are assigned values in the course of type checking. Inferring values for
such metavariables is in general undecidable (see Section 3.3). However, for
many specific programs and proofs that arise in practice (e.g. those where
some of the resulting constraints are in Miller’s pattern fragment [41]), unique
solutions can be found.

In this work, we describe an algorithm for performing such an inference,
with a focus on its practical implementability.

Following Mazzoli and Abel [36] with some minor optimizations, the entire
type checking problem is reduced to a set of dependently-typed, higher-order
unification constraints, of the form Γ ⊢ 𝑡 ∶ 𝐴 ≈ 𝑢 ∶ 𝐵, where Γ ⊢ 𝑡 ∶ 𝐴 (left side)
and Γ ⊢ 𝑢 ∶ 𝐵 (right side). These constraints are solved by first instantiating
metavariables in such a way that i) 𝐴 and 𝐵 become definitionally equal as
types, and ii) 𝑡 and 𝑢 become definitionally equal as terms.

Mazzoli and Abel [36] only consider constraints to be well-formed when
the types of both sides coincide. Thus, the constraint Γ ⊢ 𝐴 ∶ Set ≈ 𝐵 ∶ Set
needs to be solved before Γ ⊢ 𝑡 ∶ 𝐴 ≈ 𝑢 ∶ 𝐵 can be tackled. This prevents some
programs from being type-checked at all (for instance, see Section 5.6).

Inspired by Gundry and McBride’s twin types [25], we add rules that can
handle constraints where the types of the side are distinct, by allowing each
variable in the context to take up to two different types.

The original presentation of twin types requires annotations on variables to
indicate which type they take. In our solution, the left (right) side of the con-
straint only refers to the left (right) type of the variables in the context. This
means that the underlying term syntax and type theory remains essentially
intact.

By keeping the term syntax and type theory intact, we can rely on com-
mon assumptions about the type theory when proving the correctness of our
algorithm. Keeping the underlying theory unchanged also makes it easier to
adapt an existing type checker to use our unification algorithm. This helps

1

2 CHAPTER 1. INTRODUCTION

us to demonstrate that an approach based on twin types can indeed work in
practice.

1.1 Our contributions
• A high-level description of rules for higher-order unification (Section 4.5)

for a dependent type theory with uninterpreted constants, metavariables,
dependent products, dependent sums, and a boolean type (Chapter 2).
The rules implement the ideas in Gundry and McBride’s twin-type ap-
proach [25] without requiring changes to the underlying type theory (Sec-
tion 4.1). We show that, under some postulates about the underlying
type theory (page 216), the solutions produced by our unification rules
are correct and unique (Theorem 4.31).

• An implementation of the unification algorithm for Mazzoli et al.’s pro-
totype type-checker for a smaller variant of the Agda language, Tog [37].
This prototype implements a number of key features of Agda, such as
induction-recursion, equality type with J, and records with η-equality
(Section 5.3).

• Benchmarks of the implementation against programs that are typically
challenging for existing approaches, and are not handled by other
dependently-typed proof assistants such as Coq or Idris (Section 5.7.1).
With a suitable term representation (Section 5.5.1), we can type check
challenging examples in time and memory comparable to the existing
Agda implementation, while preserving the internal invariants that the
current Agda implementation occasionally breaks (Section 5.7.2).

1.2 Problem statement
We want to type-check terms with metavariables in an Agda-like dependently-
typed language. Metavariables are stand-ins for terms that have been omitted
by the language user. In the course of type checking a well-typed program,
the metavariables are replaced by terms (that is, instantiated) in such a way
that the resulting program is type-correct.

A program is only deemed type-correct if all metavariables can be instan-
tiated. We are interested only in solutions which are closed (i.e. without
uninstantiated metavariables) and unique.

First, we are interested in closed solutions because they correspond to well-
typed programs. Our algorithm is executed stepwise, producing a sequence
of intermediate metavariable assignments in which some metavariables are
uninstantiated. However, we do not study the theoretical properties of these
partial assignments beyond their well-typedness. We assume that the ultimate
goal of the interaction will be to produce a closed solution.

The case for uniqueness requires more explanation. In our setting, many
metavariables will occur in definitions, be they function bodies or theorem
statements. Avoiding non-unique solutions limits the potential for ambiguity
in what the define function does, or what theorem is being proved.

1.3. A BRIEF HISTORY 3

Consider the program in Listing 1.1. This pseudocode program creates,
manipulates and prints integer vectors with statically-checked lengths. The
function replicate produces a vector in which all the components have the
same value. The first argument to replicate, which is implicit, determines the
length of the resulting vector and, unless given explicitly, is inferred from the
context where the result is used. In the second usage of replicate (line 16),
the length of the resulting vector could be any natural number. We expect
the type checker to ask the user to give the first argument explicitly, and not
to fill in an arbitrary term.

Listing 1.1: Non-unique implicit argument

1 -- replicate 4 :: Vec 3 Int ≡ [4,4,4]
2 -- replicate {n = 5} 4 ≡ [4,4,4,4,4]
3 -- replicate {n = 0} 4 ≡ []
4 replicate :: {n : Nat} → Vec n Int
5

6 -- rotate90 [1,2] ≡ [-2,1]
7 rotate90 :: Vec 2 Int → Vec 2 Int
8

9 -- print [1,2,3]
10 -- > [1,2,3]
11 print :: {n : Nat} → Vec n Int → IO ()
12

13 main :: IO ()
14 main = do
15 print (rotate90 (replicate 1)) -- > [-1,1]
16 print (replicate 6) -- (?)

From the user’s point of view, avoiding ambiguity due to non-unique so-
lutions is not only important for the well-defined behaviour of programs, but
also in proof relevant settings such as homotopy type theory.

Implementation-wise, avoiding non-unique solutions means that all instan-
tiations of metavariables during type checking are final. In those cases when a
program type-checks, the result of the unification is predictable and indepen-
dent of implementation details; in particular, the order in which constraints
are solved. The algorithm can tackle the constraints in the order that the
implementer considers most efficient or convenient, and does not need to im-
plement a mechanism for backtracking. Furthermore, as Andreas Abel pointed
out (personal communication), making all instantiations final is also helpful
in an interactive setting, where backtracking on solutions which have already
been output might be confusing to the user.

1.3 A brief history of higher-order unification
with dependent types

Higher-order unification is a key component in type checking programs with
metavariables. In 1974, Huet [29] described a semi-decision algorithm which
given a higher-order unification problem in the simply typed λ-calculus, finds

4 CHAPTER 1. INTRODUCTION

a unifier if one exists, albeit not necessarily a most general one. This is known
as a pre-unification algorithm. As shown by Huet [28], because higher-order
unification is undecidable, any algorithm which can always find a solution when
it exists must in some cases not terminate when a solution does not exist.

In 1989, with Huet’s work [29] as a starting point, Elliott [20] shows an
algorithm for the 𝜆Π calculus, only constructs approximately well-typed terms,
which do at least have long βη head normal forms. Pym [51] arrives at a similar
solution, allowing variables to be substituted for terms of similar type, which
guarantees the existence of head normal forms. In both cases, this is enough
to prevent ill-typed terms from throwing the unification algorithm into a loop.
However, the problem of higher-order unification remains undecidable, so the
algorithm may not terminate.

In 1990, Elliott [21] extends his previous work into a pre-unification al-
gorithm for calculi with dependent function types (Π-types) and dependent
pair types (Σ-types). Higher-order unification with dependent types may re-
sult in ill-typed terms, which may not be strongly normalizing and thus cause
non-termination. However, in this case, the presence of non-normalizing terms
implies that no unifiers exist, in which case non-termination is already one of
the expected outcomes of the algorithm.

In 1994, Magnusson [34] implements ALF, a precursor to Agda. Before
ALF, all implementations of type theory (among them NuPRL [13], Petersson’s
system [49] and Coq [15, 18]) would instead have the user build proof-trees
using tactics until eventually a complete term is produced [42, section 1.4], in
the style of LCF [23]. The complete term (which may or may not be well-
typed) would then be type-checked by the proof assistant.

A key innovation in ALF, was the use of metavariables to allow the user
to refine the terms themselves interactively. Typechecking of the incomplete
terms in ALF is done by using a simplified version of the ideas by Elliott [20]
and Pym [51]. The type checker would produce a list of constraints; the user
would refine the metavariables until all constraints were satisfied. Once all
constraints are satisified, all terms are known to be type correct. An advantage
of the ALF approach is that terms are manipulated directly. The user can
then have several incomplete terms simultaneously, add new definitions, and
manipulate everything in any order they wish, without needing to type check
the terms again.

The underlying type theory of ALF has Π-types, two universe levels Set
and Type, inductive data types, explicit substitutions, and metavariables as
placeholders for open terms. In contrast with the approaches discussed so far,
only first order constraints are solved, and the remainder are postponed. The
unification algorithm may introduce terms which are not well-typed in general,
but are only well-typed modulo the unsolved constraints. In the case of ALF,
it is conjectured [34, section 8.4.1] that all terms involved in the execution of
the unification algorithm, even those which are ill-typed, are well-typed in the
simply-typed λ-calculus, and thus normalizing, so the unification algorithm
will terminate regardless. However, it is not clear how this line of reasoning
extends to a full dependent type theory.

In 1997, Cesar Muñoz [42, 43] put Magnusson’s [34] approach on a formal
footing, in such a way that all intermediate terms are well-typed, including
those with placeholders. As in the work by Huet [29], Elliott [20] and Pym [51],

1.3. A BRIEF HISTORY 5

the focus is on the completeness of the algorithm; thus it is still possible that
the algorithm may not terminate when a solution does not exist.

Coquand built a dependent type checker called Agda [14], which imple-
ments Martin-Löf type theory. Agda was further improved by Norell and Co-
quand [48], introducing a metavariable solving mechanism based on the one
in Epigram [38]. Metavariable solving involves checking the equality of terms.
As Norell and Coquand [48] explain, normalizing terms in order to check for
equality may make the type checker loop if those terms are only well-typed
modulo a set of constraints. With the aim of ensuring normalization even
in those cases where the program being type-checked is not well-typed as a
whole, potentially ill-typed subterms are replaced by guarded constants of an
appropriate type. These guarded constants are such that they only reduce to
the corresponding subterm once the constraints that ensure the well-typedness
of the subterm are solved. According to Norell and Coquand [48], an improve-
ment in Agda with respect to Muñoz’s [43] approach is that both sides of each
constraint have the same type. This means that no additional type checking
is needed when instantiating a metavariable, which may otherwise be costly.

When using higher-order unification to build a type checker for dependent
types with implicit arguments, an algorithm that is not complete, but is instead
guaranteed to always give an answer (even if it is more often a negative one)
may provide for a more predictable user experience. Miller [41] discovered that
when the constraints are restricted to a specific form (the pattern fragment),
higher-order unification becomes decidable, and thus a terminating algorithm
is possible. Even if not all the constraints are in the pattern fragment, one may
solve those which are, and postpone the remainder with the hope that they
will become part of the pattern fragment when other constraints are solved.
This technique is known as dynamic pattern unification.

In 2009, Reed [52] showed a terminating algorithm for dynamic pattern
unification, and Abel and Pientka [3] extended the dynamic pattern unification
technique to handle Σ-types and η-equality. In both cases, the terms are well-
typed only modulo the unsolved constraints. Normalization is ensured by
limiting how types may depend on terms.

Dynamic pattern unification [52, 3] with guarded constants [48] is used
for solving metavariables in the current version of Agda (2.6.1). The guarded
constants technique seems effective to ensure normalization of terms, but it
has some issues when implemented in practice [33, 16]. In the course of this
work we discovered that the first of these issues [33] can be solved using further
application of the technique of guarded constants, and proposed a fix to the
Agda developers. However, this fix was reverted after Abel et al. [9] found
out that it broke some existing code. For the other open issue [16] we are not
aware of any fix that does not involve a heterogeneous approach to unification
such as the one discussed in this work (but that does not mean that there are
none).

6 CHAPTER 1. INTRODUCTION

1.4 Recent approaches to dependent type
checking with metavariables

As Mazzoli and Abel [36] show, elaboration of an Agda-like language (an
extension of Martin-Löf type theory) can be completely reduced into a higher-
order unification problem with dependent types. Their elaboration algorithm
(Algorithm 1) produces constraints of the form Γ ⊢ 𝑡 ∶ 𝐴 ≈ 𝑢 ∶ 𝐵. Such a
constraint becomes solved when both Γ ⊢ 𝐴 ≡ 𝐵 type and Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴.

Because 𝐴 and 𝐵 are potentially different types, solving these constraints
is more complex than solving those with a single type for both sides (Γ ⊢ 𝑡 ≈
𝑢 ∶ 𝐴).

For instance, when solving a constraint by assigning a term to a metavari-
able (e.g. solving · ⊢ 𝛼 ∶ 𝐴 ≈ 𝑡 ∶ 𝐵 by assigning 𝛼 ≔ 𝑡 ∶ 𝐴), it is important that
the type of the right-hand side (here, 𝐵) matches the type of the metavariable
(𝐴). Otherwise, when the newly-assigned value of the metavariable is sub-
stituted elsewhere, ill-typed terms may be produced, which breaks important
invariants of the type checker, possibly resulting in run-time errors [4].

Checking whether the types 𝐴 and 𝐵 match is complicated by the fact
that the types themselves may contain metavariables. Mazzoli and Abel’s [36]
implementation unifies the types of both sides of the constraint before working
on the constraint itself. That is, first they will solve the constraint Γ ⊢ 𝐴 ≈
𝐵 ∶ Set and then solve Γ ⊢ 𝑡 ≈ 𝑢 ∶ 𝐴. This may prove too restrictive, as
explained in Section 3.9.

Agda [48] avoids creating constraints where the two types are distinct dur-
ing elaboration, using guarded constants. A guarded constant is a definition
that is blocked from being unfolded until the constraints that guard the body
of the constant are solved. These constraints, when solved, ensure that the
body of the constant has the same type as the constant itself. For example,
instead of producing a constraint Γ ⊢ 𝑡 ∶ 𝐴 ≈ 𝑢 ∶ 𝐵, it would produce a con-
straint Γ ⊢ 𝑡 ≈ 𝑝 ∶ 𝐴, using the guarded constant 𝑝 ∶ 𝐴 such that 𝑝 = 𝑢 when
Γ ⊢ 𝐴 ≈ 𝐵 ∶ Set.

Gundry and McBride [27] allow constraints with two different types. To
work around issues such as the one presented in Section 3.8, they introduce
twin variables. A twin variable ̂𝑥 in a context Γ can have two possible types
𝐴1 and 𝐴2, i.e. ̂𝑥 ∶ 𝐴1‡𝐴2 ∈ Γ. The type of the variable when it appears in
a term depends on which of the two forms of the variable is used: Γ ⊢ �́� ∶ 𝐴1,
and Γ ⊢ ̀𝑥 ∶ 𝐴2.

In all three approaches, the use of the solution to a metavariable is in effect
blocked until we can ensure that the types of the metavariable and its potential
body match. This aims to guarantee that constraints are always well-formed.

1.5 Uniqueness of solutions
Implementation-wise, finding solutions to metavariables is typically done it-
eratively, as explained in Section 3.5 (dynamic pattern unification). At each
step of the algorithm, one or more metavariables may be instantiated with a
term. Giving a value to a metavariable may in turn make further constraints
mentioning that metavariable solvable.

1.6. DESIGN CHOICES 7

A big point of distinction among implementations of unification for
dependently-typed languages is the uniqueness of solutions. In our approach,
a metavariable may only be instantiated with a term if the metavariable
is equal to that term in all possible solutions to the problem. This way,
all metavariable assignments are final, and so backtracking is not needed.
Because all instantiations are unique (i.e. there are no choices forced by
implementation heuristics), this approach is also less sensitive to the order in
which constraints are tackled, or how far terms are normalized. Restricting
instantiations to unique solutions is particularly advantageous when these
metavariables occur in definitions, so that changes in the unification algorithm
do not change the statement of a theorem or the behaviour of a program.

Other implementations of dependently-typed calculi, such as Coq or Idris,
will produce non-unique solutions. This allows for programs to type-check
which otherwise would not. Additionally, as Ziliani and Sozeau [55] explain,
tolerating non-unique solutions, when combined with a careful reduction strat-
egy and a strict ordering of constraints, works particularly well with overload-
ing mechanisms such as canonical structures. Furthermore, the lack of unique
solutions is not a big issue for those metavariables which occur in proofs of a
proof-irrelevant type.

In principle, allowing non-unique solutions makes more unification prob-
lems solvable. However, the increase in the problems that can be solved by
renouncing uniqueness of solutions is not strict in practice. As we note in Sec-
tion 5.7.1, the additional rigidity imposed in the ordering of constraints might
actually prevent some unification problems from being solved.

1.6 Design choices
We build on the existing unification algorithms by Abel and Pientka [3],
Gundry and McBride [25] and Mazzoli and Abel [36]. Together with some
modifications of our own, we obtain a type-checker which can handle a range
of examples.

We first note that the type theory which we use includes Type ∶ Type as an
axiom, which means that not only the theory itself, but also the assumptions
that we make regarding the theory (e.g. that all terms have a normal form)
are inconsistent. We believe however that these issues are largely orthogonal
to the treatment of unification; and thus that our arguments will hold in a
properly stratified theory.

In this section we explain the design choices that we made in the course of
our work.

Type checking through unification We use Mazzoli and Abel’s [36] ap-
proach for reducing a type checking problem with metavariables to a
higher-order unification problem.
As in Mazzoli and Abel’s [36] work, we use metavariables as place-holders
for both implicit arguments and for subterms which are not yet known
to be of the appropriate type. In the latter case, these metavariables are
constrained to be equal to the subterm they are replacing, and will be
assigned to this subterm once the types have been established to match.

8 CHAPTER 1. INTRODUCTION

Each placeholder introduces additional constraints that need to be
solved. To reduce this overhead, we add some shortcuts to the Tog
elaboration process which avoids inserting these placeholders in some
cases where the types are already known to match.

Type theory In the formal description, we use a dependent type theory with
Π-types, Σ-types, and booleans. Having booleans in the theory allows
us to describe situations where the final form of a type is non-trivially
dependent upon a metavariable instantiation (Example 5.3).

Pattern unification for λΠΣ with postponing At its core, the algorithm
used is Miller pattern unification with records and postponing of con-
straints. We follow Abel and Pientka’s approach [3] for solving unifica-
tion problems, including the requirement that solutions to metavariables
are unique. The latter choice is motivated in Section 1.5.

Solutions as closed metasubstitutions We consider only those solutions
in which all metavariables are instantiated in our correctness proof, fol-
lowing Abel and Pientka’s approach [3] of grounding metasubstitutions.
How this compares with an approach based on most-general unifiers is
described in Section 5.7.3.

Constraint unblocking We extend the blocking mechanism from the orig-
inal implementation of Tog by Mazzoli and Abel [36], which allows
for quickly narrowing down whether a constraint can potentially make
progress (Section 5.2.1).

Term representation Term representation affects the performance of term
normalization and other aspects of unification. The implementation uses
de Bruijn indices, just like both Agda and Tog. The theoretical repre-
sentation also uses de Bruijn indices in order to stay close to the imple-
mentation, although we sometimes denote them with names for clarity
(Section 2.7).
On top of the de Bruijn index based representation, we implement hash-
consing for terms. This increases the sharing of both the memory used to
store the terms, and of the work performed when normalizing them. Hash
consing is implemented in a way that is transparent to the unification
algorithm.

Term normalization We consider terms in β-normal form, both in the base
theory and in the implementation. This keeps us close to existing imple-
mentations such as Agda.
Overly eager normalization of terms may have adverse effects on perfor-
mance. Therefore, like Agda, but unlike Gundry and McBride [25], we
allow δ-redexes in terms.

Heterogeneous constraints In order to make more problems solvable, we
perform operations on constraints even when the types of the two sides
have not been shown to be equal (see Section 3.10 and Chapter 4).
More specifically, we use the twin type approach by Gundry and
McBride [25] for unification, but enforcing the additional invariant that

1.7. STRUCTURE OF THE THESIS 9

each side of an equality constraint (left or right) only references the
corresponding side of the context. In practice, this means that the term
syntax does not need to be extended with twin variables. This avoids
the need for extending the underlying type theory, reduces visual clutter
in the presentation, and saves the implementation cost of removing the
annotations on twin variables once an equation finally becomes solvable.

Closed metavariables The types and values of our metavariables are all
typed in the empty context. As Ziliani and Sozeau [56] observe, this has
the advantage of being easy to implement. However, because metavari-
ables will often appear applied to a series of variables in the context,
this leads to unnecessary β-reductions when the solution is substituted
in. We follow Mazzoli and Abel [36] in mitigating this issue in the im-
plementation by removing the leading λ-abstractions from the bodies of
the metavariables (Section 5.5.1).
A second issue with closed metavariables observed by Ziliani and
Sozeau [56] is that, when substituting their values into terms, many
unsightly lambdas will occur, unless the term is β-normalized afterwards.
This is not a concern for us, as we only consider terms in β-normal form
(see “Term representation” above).

Unique solutions As explained in Section 1.5, we choose to restrict our uni-
fier to producing those solutions which are unique. This gives us more
freedom in the order in which constraints can be solved, while preserving
the suitability of the language for both programs and proofs. The addi-
tional freedom in the ordering of constraints allows in practice for more
complex unification problems to be solved (Section 5.7). However, due
to the restriction to unique solutions, problems with more than one solu-
tion will not be solvable. As discussed above, other proof assistants may
have heuristics which choose one of those solutions as the more likely to
be intended by the user, and are thus able to deal with such unification
problems.

These choices constitute only one of the possible approaches to higher-
order unification for dependent type checking. In Section 5.7 we evaluate the
practical impact of some of these choices by looking at certain existing systems
in which these choices were made in certain ways.

1.7 Structure of the thesis
The next chapter (Chapter 2) describes a dependently-typed theory with
metavariables and its properties. Chapter 3 discusses pre-existing work on
how type checking terms in such a theory corresponds to a higher-order uni-
fication problem, and the challenges that arise when performing higher-order
unification on dependently-typed terms. Chapter 4 provides a toolkit of rules
to tackle these higher-order unification problems. Finally, Chapter 5 discusses
how the rules in Chapter 4 can be used to implement a unification algorithm,
and evaluates its performance.

10 CHAPTER 1. INTRODUCTION

Chapter 2

A dependently-typed
language

The theory presented below contains the same constructs as Mazzoli and
Abel [36], with the addition Σ-types and their corresponding equality rules.
The result is a dependent type theory with dependent function and sum types,
η-equality, and large elimination. These features allow us to address the issues
that we describe in Chapter 3.

Our theory is similar to the one used by Gundry and McBride [25], with
the distinction that they specify the recursor for booleans as an eliminator,
instead of as a term head.

2.1 Term syntax
The syntax of terms in the language is described in Figure 2.1.

We include some typical constructions from Martin-Löf Type Theory, along
with metavariables (which take the place of terms omitted by the user which
we hope to infer), and atoms, which are irreducible constants (corresponding
to postulates in Agda) that we use to write more interesting examples.

2.2 Notational preliminaries
When discussing unification, it is common to work with lists of variables,
terms, and other syntactic constructs. Throughout the document, we use ⃗𝑡 as
a succinct way to denote a sequence of elements 𝑡1,…, 𝑡𝑛. Several variations
on this notation are described below.
Notation (Vector notation: ⃗𝑡). Vector notation is a shorthand for sequences of
possibly-distinct elements sharing a common form:

• ⃗⃗⃗ ⃗⃗ ⃗⃗⬚ denotes a sequence of zero or more possibly-distinct elements of the
form ⬚. Example: ⃗𝑥 denotes sequence of zero or more possibly-distinct
variables.

11

12 CHAPTER 2. A DEPENDENTLY-TYPED LANGUAGE

𝑥, 𝑦, 𝑧 ∶∶= variables
𝑋,𝑌 , 𝑍 | 0, 1, 2,… de Bruijn indices

𝛼, 𝛽, 𝛾 metavariables

𝕒, 𝕓, 𝕔, atoms
𝔸, 𝔹, ℂ

𝑡, 𝑢, 𝑣, 𝑟, ∶∶= terms and types
𝑇 ,𝑈,𝐴,𝐵 | Bool boolean type

| Π𝐴𝐵 function type
| Σ𝐴𝐵 record type
| Set universe
| 𝑐 data constructor
| 𝜆.𝑡 λ-abstraction
| ⟨𝑡, 𝑢⟩ pair constructor
| 𝑓 neutral terms

𝑓, 𝑔 ∶∶= neutral terms
| ℎ elimination head
| 𝑓  𝑒 eliminator

ℎ ∶∶= elimination heads
| 𝑥,𝑋,… variable head
| 𝛼, 𝛽,… metavariable head
| 𝕒, 𝕓,… atom head
| if boolean recursor head

𝑒 ∶∶= eliminators
| 𝑡 term application
| .𝜋1 | .𝜋2 projections

𝑐 ∶∶= data constructors
| true | false booleans

Figure 2.1: Syntax for terms. Metavariables (𝛼, 𝛽, …) and atoms (𝕒, 𝕓‚ …)
are drawn from disjoint and countably infinite sets of names.

2.2. NOTATIONAL PRELIMINARIES 13

• ⃗⃗⃗ ⃗⃗ ⃗⃗⬚𝑛 denotes a sequence of 𝑛 possibly-distinct elements of the form ⬚.
Note: When specifying the length of a vector in this way, only one of the
occurrences needs to contain the length superscript. For instance, the
two sides of the equality 𝛼  ⃗𝑥𝑛 = 𝛼  ⃗𝑥 denote identical terms.

• ⬚1…⬚𝑛 denotes a sequence of 𝑛 possibly-distinct elements of the form
⬚, numbered from 1 to 𝑛.

• ⬚…𝑛⬚ denotes a sequence of 𝑛 identical elements of the form ⬚.

• ⬚1⋄…⋄⬚𝑛 denotes a sequence of 𝑛 possibly distinct elements of the form
⬚, such that the operator ⋄ is interspersed between each consecutive pair
of elements in the vector.

• ⬚ ⋄ …𝑛 ⋄ ⬚ denotes a sequence of 𝑛 identical elements of the form ⬚
such that the operator ⋄ is interspersed between each consecutive pair of
elements in the vector.

Remark. Within a given context (e.g. an example, lemma or theorem and its
proof, or a single paragraph), vector notations with the same name refer to
the same sequences of elements. For example, the two sides of the equality
𝛼  ⃗𝑥 = 𝛼  ⃗𝑥 denote identical terms.
Notation (Neutral terms in vector form: ℎ  ⃗𝑒). A neutral term can be viewed
as a head ℎ followed by a vector ⃗𝑒 of eliminators.

When manipulating neutral terms, we will use the recursive structure in
Figure 2.1 and the vector form given above interchangeably.
Notation (Vector elements: 𝑡𝑖). Subindices can be used to pick out individual
elements of a vector. Indices start at 1, unless otherwise noted.

• 𝑥𝑖 denotes the 𝑖th element of a vector ⃗𝑥.

• 𝑥𝑖,𝑗 denotes the 𝑗th element of a vector ⃗⃗⃗ ⃗⃗ ⃗⃗𝑥𝑖.

Notation (Vector slices: ⃗𝑡𝑖,…,𝑗). Subindices can be used to pick out a sequence
of consecutive elements from a vector.

Let ⃗𝑥𝑛 be a vector of 𝑛 elements. Then, given 𝑖,𝑗 such that 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛,
⃗𝑥𝑖,…,𝑗 is a vector of length 𝑗 − 𝑖 + 1 whose 𝑘th element is the (𝑖 + 𝑘 − 1)th

element of ⃗𝑥. Whenever 𝑖 > 𝑗, the expression ⃗𝑥𝑖,…,𝑗 denotes a vector of length
0.
Notation (Vector membership: _ ∈ _). We overload the notation ∈ for set
membership to also denote membership in vectors, or vector-like objects.

For example, Section 2.3 defines signatures, which we consider as a vector-
like object. If Σ = 𝛼 ∶ Bool, 𝔸 ∶ Set, 𝕒 ∶ 𝔸, we say that 𝛼 ∶ Bool ∈ Σ.
Notation (Ungrammatical terms: ⌈𝑡⌋). We use ⌈𝑡⌋ to clarify that 𝑡 is syntac-
tically invalid, or otherwise ill-formed.
Notation (Partial functions: 𝐹 ⇓ 𝑦, 𝐹⇓, 𝐹). In this development, we spec-
ify procedures on syntax that may only be well-defined under certain condi-
tions. Some examples are Definition 2.31 (hereditary substitution) and Defi-
nition 2.143 (closing metasubstitution).

14 CHAPTER 2. A DEPENDENTLY-TYPED LANGUAGE

We specify these procedures as relations 𝐹 ⇓ 𝑦 between two sides 𝐹 and 𝑦,
where 𝐹 is the computation begin defined, and 𝑦 is the result of the compu-
tation (if it exists). The definition is such that there is always at most one 𝑦
such that 𝐹 ⇓ 𝑦.

We say 𝐹⇓ if and only if there exists a 𝑦 such that 𝐹 ⇓ 𝑦. We denote such
a 𝑦 by 𝐹 itself.

2.3 Signatures (Σ sig)
A signature contains declarations which are available globally. In an extended
implementation, it could also include function and data type definitions.

Σ ∶∶= · empty signature
| Σ, 𝕒 ∶ 𝐴 atom
| Σ, 𝛼 ∶ 𝐴 metavariable declaration
| Σ, 𝛼 ≔ 𝑡 ∶ 𝐴 metavariable instantiation

Definition 2.1 (Fresh declaration). We say that 𝕒 is fresh in Σ (or, that 𝛼 is
fresh in Σ) if there is no 𝐵 such that 𝕒 ∶ 𝐵 ∈ Σ (respectively, if there is no 𝐵
such that 𝛼 ∶ 𝐵 ∈ Σ or no 𝑡 and 𝐵 such that 𝛼 ≔ 𝑡 ∶ 𝐵 ∈ Σ).

Definition 2.2 (Instantiated metavariable, body of a metavariable). When
a signature Σ contains an element of the form 𝛼 ≔ 𝑡 ∶ 𝐴, we say that the
metavariable 𝛼 is instantiated in the signature Σ. The term 𝑡 is the body of 𝛼
in this signature.

Definition 2.3 (Uninstantiated metavariable). Conversely, given 𝛼 ∶ 𝐴 ∈ Σ,
we say that 𝛼 is uninstantiated in Σ if there is no 𝑡 and 𝐵 such that 𝛼 ≔ 𝑡 ∶
𝐵 ∈ Σ.

Instantiated metavariables “expand” to their bodies. For example, in a
signature containing 𝛼 ∶= 𝜆𝑥.𝜆𝑦.𝑦 ∶ 𝐵 (for some type B), the term 𝔸 𝛼 expands
to the term 𝔸 (𝜆𝑥.𝜆𝑦.𝑦). Section 2.13 gives a full account of computation in
terms, which includes metavariable expansion.

Definition 2.4 (Well-formed signature: Σ sig). A signature Σ is well-formed
(written Σ sig) if each declaration is well-typed with respect to the preceding
declarations.

empty· sig

Σ sig 𝕒 is fresh in Σ Σ; · ⊢ 𝐴 type atom-declΣ, 𝕒 ∶ 𝐴 sig

Σ sig 𝛼 is fresh in Σ Σ; · ⊢ 𝐴 type meta-declΣ,𝛼 ∶ 𝐴 sig

Σ sig 𝛼 is fresh in Σ Σ; · ⊢ 𝐴 type Σ; · ⊢ 𝑡 ∶ 𝐴 meta-instΣ,𝛼 ≔ 𝑡 ∶ 𝐴 sig

2.3. SIGNATURES 15

The typing relations Σ; · ⊢ 𝐴 type, and Σ; · ⊢ 𝑡 ∶ 𝐴 are defined in Sec-
tion 2.5.
Remark 2.5 (Signature inversion). Let Σ = Σ1, Σ2, with Σ sig. Then Σ1 sig,
and:

• If Σ2 = 𝕒 ∶ 𝐴,Σ′
2, then Σ1; · ⊢ 𝐴 type.

• If Σ2 = 𝛼 ∶ 𝐴,Σ′
2, then Σ1; · ⊢ 𝐴 type.

• If Σ2 = 𝛼 ≔ 𝑡 ∶ 𝐴,Σ′
2, then Σ1; · ⊢ 𝐴 type. and Σ1; · ⊢ 𝑡 ∶ 𝐴.

Definition 2.6 (Support of a signature: support(Σ)). The support of a
signature is the set of metavariables that it declares.

support(·) = 𝜀
support(Σ, 𝕒 ∶ 𝐴) = support(Σ)
support(Σ, 𝛼 ∶ 𝐴) = support(Σ) ∪ {𝛼}

support(Σ, 𝛼 ≔ 𝑡 ∶ 𝐴) = support(Σ) ∪ {𝛼}
Notation (Signature concatenation: Σ1, Σ2). Signatures can be syntactically
viewed as lists. The concatenation of two signatures Σ1 and Σ2 is written
Σ1, Σ2. Note that this is a purely syntactic operation. It is not implied that
Σ2 is well-formed on its own, even if Σ1 and Σ1, Σ2 are.
Definition 2.7 (Atom declarations of a signature: AtomDecls(Σ)). The
atom declarations of a signature Σ (written AtomDecls(Σ)) are the set of
the atoms it declares.

AtomDecls(·) = ∅
AtomDecls(Σ, 𝕒 ∶ 𝐴) = {𝕒} ∪ AtomDecls(Σ)
AtomDecls(Σ, 𝛼 ∶ 𝐴) = AtomDecls(Σ)
AtomDecls(Σ, 𝛼 ≔ 𝑡) = AtomDecls(Σ)

Definition 2.8 (Constants declared by a signature: decls(Σ)). The constants
declared by a signature Σ (written decls(Σ)) are the metavariables and atoms
it declares (decls(Σ) = AtomDecls(Σ) ∪ support(Σ)).
Remark 2.9 (Atoms and metavariables are disjoint). For any two signatures Σ1
and Σ2, we have decls(Σ1) = decls(Σ2) if and only if AtomDecls(Σ1) =
AtomDecls(Σ2) and support(Σ1) = support(Σ2).
Definition 2.10 (Metavariables in a term: metas(𝑡)). The set of metavari-
ables occurring in a term 𝑡 (written metas(𝑡)) is the set of metavariables that
occur syntactically in 𝑡. The full definition is given in Figure 2.2.

Definition 2.11 (Set of atoms in a term: atoms(𝑡)). The set of atoms occur-
ring in a term 𝑡 (written atoms(𝑡)) is the set of atoms that occur syntactically
in 𝑡. The full definition is given in Figure 2.3.

Definition 2.12 (Set of constants of a term: consts(𝑡)). The set of constants
occurring in a term 𝑡 (written consts(𝑡)) is the set of metavariables and atoms
that occur syntactically in 𝑡.

consts(𝑡) = metas(𝑡) ∪ atoms(𝑡)

16 CHAPTER 2. A DEPENDENTLY-TYPED LANGUAGE

metas(𝛼) = {𝛼}
metas(𝕒) = ∅
metas(𝑥) = ∅
metas(if) = ∅
metas(𝑓 𝑢) = metas(𝑓) ∪ metas(𝑢)
metas(𝑓 .𝜋1) = metas(𝑓)
metas(𝑓 .𝜋2) = metas(𝑓)
metas(𝜆𝑡) = metas(𝑡)
metas(Π𝐴𝐵) = metas(𝐴) ∪ metas(𝐵)
metas(Σ𝐴𝐵) = metas(𝐴) ∪ metas(𝐵)
metas(Bool) = ∅
metas(Set) = ∅
metas(𝑐) = ∅
metas(⟨𝑡1, 𝑡2⟩) = metas(𝑡1) ∪ metas(𝑡2)

Figure 2.2: Metavariables occurring in a term

atoms(𝕒) = {𝕒}
atoms(𝛼) = ∅
atoms(𝑥) = ∅
atoms(if) = ∅
atoms(𝑓 𝑢) = atoms(𝑓) ∪ atoms(𝑢)
atoms(𝑓 .𝜋1) = atoms(𝑓)
atoms(𝑓 .𝜋2) = atoms(𝑓)
atoms(𝜆𝑡) = atoms(𝑡)
atoms(Π𝐴𝐵) = atoms(𝐴) ∪ atoms(𝐵)
atoms(Σ𝐴𝐵) = atoms(𝐴) ∪ atoms(𝐵)
atoms(Bool) = ∅
atoms(Set) = ∅
atoms(𝑐) = ∅
atoms(⟨𝑡1, 𝑡2⟩) = atoms(𝑡1) ∪ atoms(𝑡2)

Figure 2.3: Atoms occurring in a term

2.4. CONTEXTS 17

2.4 Contexts (Σ ⊢ Γ ctx)
A context is a list of types:

Γ,Δ,Ξ ∶∶= · empty context
| Γ,𝐴 context variable

Contexts are read from left to right; that is, a context is well-formed if all
its variables are well-typed with respect to the preceding binders.

Σ sig ctx-emptyΣ ⊢ · ctx

Σ ⊢ Γ ctx Σ;Γ ⊢ 𝐴 type ctx-varΣ ⊢ Γ,𝐴 ctx

What it means for a term to be a type (Σ;Γ ⊢ 𝐴 type) is explained in
Section 2.5.
Remark 2.13 (Context inversion). Let Γ = Γ1, Γ2. If Σ ⊢ Γ1, Γ2 ctx, then
Σ ⊢ Γ1 ctx. Also, if Σ ⊢ Γ,𝐴 ctx, then Σ ⊢ Γ ctx and Σ;Γ ⊢ 𝐴 type.

Definition 2.14 (Support of a context: |Γ|). The support of a context Γ is
the list of variables in a context. Because we use de Bruijn notation, it is solely
determined by its length.

• |·| = 0

• |Γ,𝐴| = 1 + |Γ|

Notation (Variable names in contexts Γ, 𝑥 ∶ 𝐴). The syntax for contexts
does not include variable names. A variable name in a context indicates the
de Bruijn index to which a later-occurring variable name refers. For instance,
“· ⊢ 𝑥 ∶ 𝔸, 𝑦 ∶ 𝔹 𝑥, 𝑧 ∶ ℂ 𝑥 𝑦 ctx” denotes the judgment “· ⊢ 𝔸, 𝔹 0, ℂ 1 0 ctx”.
Notation (Context concatenation: Γ1, Γ2). Contexts are syntactically lists of
types. The concatenation of two contexts Γ and Δ is written Γ,Δ. This is a
purely syntactic operation. It is not implied that Δ is well-formed on its own,
even if Γ and Γ,Δ are.

2.5 Types (Σ;Γ ⊢ 𝐴 type)
In a dependent type theory, terms and types share the same syntactic space.
However, as we have seen in the well-formedness rules for contexts and sig-
natures, only some terms can actually be used as the types of atoms and
variables. Those specific terms we call types.

Σ;Γ ⊢ 𝐴 ∶ Set typeΣ;Γ ⊢ 𝐴 type

Σ;Γ ⊢ 𝐴 ≡ 𝐵 ∶ Set type-eqΣ;Γ ⊢ 𝐴 ≡ 𝐵 type

18 CHAPTER 2. A DEPENDENTLY-TYPED LANGUAGE

What it means for a term 𝐴 to be of type Set (Γ ⊢ 𝐴 ∶ Set) is defined in
Section 2.11. Correspondingly, what it means for two terms of type Set to be
equal (Γ ⊢ 𝐴 ≡ 𝐵 ∶ Set) is defined in Section 2.12.
Remark 2.15 (There is only set). In this system, all terms of type Set are
considered types, and the only way for a term to be a type is to be of type Set.
Therefore, the judgments Σ;Γ ⊢ 𝐴 ∶ Set and Σ;Γ ⊢ 𝐴 type are equivalent for
any Σ, Γ and 𝐴; as are the judgments Σ;Γ ⊢ 𝐴 ≡ 𝐵 ∶ Set and Σ;Γ ⊢ 𝐴 ≡
𝐵 type.

Despite Remark 2.15, our goal is that (with few alterations) this develop-
ment can be applied to properly stratified theories with a hierarchy of universes
(e.g. Set0,Set1,Set2,…). In order to facilitate a stratification effort, we keep
distinct judgments for “𝐴 is a term of type Set” (Σ;Γ ⊢ 𝐴 ∶ Set) and “𝐴 is a
type” (Σ;Γ ⊢ 𝐴 type).

2.6 Context equality (Σ ⊢ Γ ≡ Γ′ ctx)
Equality of types extends pointwise to whole contexts.

Definition 2.16 (Equality of contexts). We say that two well-formed contexts
Σ ⊢ Γ1 ctx and Σ ⊢ Γ2 ctx are equal (written Σ ⊢ Γ1 ≡ Γ2 ctx) iff they have
the same length, and the types of the variables are equal point-wise.

ctx-empty-eqΣ ⊢ · ≡ ·

Σ ⊢ Γ1 ≡ Γ2 ctx Σ;Γ1 ⊢ 𝐴1 ≡ 𝐴2 type ctx-var-eqΣ ⊢ Γ1, 𝐴1 ≡ Γ2, 𝐴2 ctx

Remark 2.17 (Context equality inversion). Let Γ = Γ1, Γ2, Γ′ = Γ′
1, Γ′

2.
If Σ ⊢ Γ1, Γ2 ≡ Γ′

1, Γ′
2 ctx, then Σ ⊢ Γ1 ≡ Γ′

1 ctx. Also, if Σ ⊢ Γ,𝐴 ≡
Γ′, 𝐴′ ctx, then Σ ⊢ Γ ≡ Γ′ ctx and Σ;Γ ⊢ 𝐴 ≡ 𝐴′ type.

2.7 Binders and variables
As shown in Figure 2.1, the term representation uses de Bruijn indices. Thus,
variable names occurring in terms (e.g. 𝑥, 𝑦, 𝑧, …) stand for natural numbers
(e.g. 0, 1, 2, …). This convention has the benefit of giving the same represen-
tation to all α-equivalent terms. For instance, the informally written terms
⌈𝜆𝑥.𝜆𝑦.𝑥⌋ and ⌈𝜆𝑧.𝜆𝑥.𝑧⌋ are both represented by the term 𝜆.𝜆.1.
Notation (Names for de Bruijn indices). For the sake of readability, we will
use textual names when describing terms. Unless otherwise specified, which
binder each textual name refers to is indicated by writing the variable name
next to the corresponding binder (𝜆, Π or Σ). For instance, the syntax
𝜆𝑥.𝛼 𝑥 (𝜆𝑥.𝜆𝑦.𝑥) denotes the term 𝜆.𝛼 0 (𝜆.1). The binders for Π and Σ,
when given with a variable name, are written Π(𝑥 ∶ 𝐴)𝐵 and Σ(𝑥 ∶ 𝐴)𝐵,
respectively. Similarly, the expression Γ1, 𝑥 ∶ 𝐴, Γ2 ⊢ 𝑥 (𝜆𝑦.𝑥) ∶ 𝐵 denotes
Γ1, 𝐴, Γ2 ⊢ 𝑥 (𝜆.𝑥(+1)) ∶ 𝐵, where 𝑥 = |Γ2| and 𝑥(+1) = 1 + |Γ2|.

2.7. BINDERS AND VARIABLES 19

fv(𝑥) = {𝑥}

fv(𝛼) = ∅
fv(𝕒) = ∅
fv(if) = ∅

fv(𝑓 𝑒) = fv(𝑓) ∪ fv(𝑒)
fv(𝜆𝑡) = fv(𝑡) − 1
fv(Π𝐴𝐵) = fv(𝐴) ∪ (fv(𝐵) − 1)
fv(Σ𝐴𝐵) = fv(𝐴) ∪ (fv(𝐵) − 1)

fv(Bool) = ∅
fv(Set) = ∅
fv(𝑐) = ∅
fv(⟨𝑡1, 𝑡2⟩) = fv(𝑡1) ∪ fv(𝑡2)

fv(.𝜋1) = fv(.𝜋2) = ∅

Figure 2.4: Free variables in a term

Notation (N-ary binders: 𝜆 ⃗𝑥𝑛.𝑡, Π⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗(𝑥 ∶ 𝐴)
𝑛
𝐵). We may use vector notation

to bind several variables at the same time. For instance, 𝜆 ⃗𝑥𝑛.𝑡 denotes the
term 𝜆𝑥1.𝜆𝑥2.…𝜆𝑥𝑛.𝑡, and Π⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗(𝑥 ∶ 𝐴)

𝑛
𝐵 denotes the term Π(𝑥1 ∶ 𝐴1)Π(𝑥2 ∶

𝐴2)…Π(𝑥𝑛 ∶ 𝐴𝑛)𝐵. If 𝑛 = 0, then there are no binders: 𝜆 ⃗𝑥0.𝑡 ≝ 𝑡 and
Π⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗(𝑥 ∶ 𝐴)

0
𝐵 ≝ 𝐵.

Notation (Arrow notation for Π-types: (𝑥 ∶ 𝐴) → 𝐵, 𝐴 → 𝐵). We may use
(𝑥 ∶ 𝐴) → 𝐵 as an alternative syntax to Π(𝑥 ∶ 𝐴)𝐵. In cases where the bound
variable does not occur in 𝐵, we may use the syntax 𝐴 → 𝐵 instead.
Notation (Product notation for Σ-types: (𝑥 ∶ 𝐴) × 𝐵, 𝐴 × 𝐵). We may use
(𝑥 ∶ 𝐴) × 𝐵 as an alternative syntax to Σ(𝑥 ∶ 𝐴)𝐵. In cases where the bound
variable does not occur in 𝐵, we may use the syntax 𝐴×𝐵 instead.
Notation (Strengthening of a set of variables: 𝑋 − 1, 𝑋 − 𝑘). Given 𝑋 ⊆ ℕ,
the notation 𝑋 − 𝑘, 𝑘 ∈ ℕ denotes the set {𝑛 − 𝑘 | 𝑛 ∈ 𝑋, 𝑛 ≥ 𝑘}.
Definition 2.18 (Free variables in a term: fv(𝑡)). The free variables in a
term 𝑡 (written fv(𝑡)) are the set of variables which are not bound by a binder
(i.e. 𝜆, Π or Σ). The full definition of fv(𝑡) is given in Figure 2.4.

Definition 2.19 (Free variables of a context: fv(Δ)). Given a (partial) con-
text Δ, the set of free variables of Δ (written fv(Δ)) is defined as follows:

fv(·) = ∅
fv(𝐴,Δ) = fv(𝐴) ∪ (fv(Δ) − 1)

Notation (Membership of names in set of free variables). If 𝑡 is a term typed
in a context, then, in the expression 𝑥 ∈ fv(𝑡), 𝑥 refers to the de Bruijn index
of variable 𝑥 in the context in which 𝑡 is typed. The expressions fv(𝑡) ⊆ { ⃗𝑥}
are interpreted in the same way.

20 CHAPTER 2. A DEPENDENTLY-TYPED LANGUAGE

2.8 Renamings
When dealing with a terms, we often need to renumber the variables in them
so that a term can be used in a bigger or smaller context. To do this we define
a notion of renaming.

Definition 2.20 (Renaming). A renaming 𝜌 is a function 𝜌 ∶ 𝐴 → ℕ, where
𝐴 ⊆ ℕ.

Definition 2.21 (Inline renamings: [… ↦ …]). We denote renamings by pairs
[𝑥1, 𝑥2,… ↦ 𝑦1, 𝑦2,…] of (possibly infinite) sequences of de Bruijn indices.
Each index to the left of the arrow is mapped to the index in the corresponding
position to the right of the arrow.

Indices not mentioned in the left list are mapped to themselves.

Definition 2.22 (Weakening: (+n)). For 𝑛 ∈ ℕ, the renaming [0… ↦ 𝑛…]
maps variable 𝑥 to variable 𝑥 + 𝑛:

[0… ↦ 𝑛…] ∶ ℕ → ℕ
𝑥 ↦ 𝑥 + 𝑛

We denote this renaming by (+𝑛).
Definition 2.23 (Strengthening: (−𝑛)). The renaming [𝑛… ↦ 0…] (strength-
ening by 𝑛) is the following:

[𝑛… ↦ 0…] ∶ ℕ/{0,…, 𝑛 − 1} → ℕ
𝑥 ↦ 𝑥 − 𝑛

We denote this renaming by (−𝑛). It is not defined for inputs smaller than
𝑛.

Definition 2.24 (Weakening of renamings: (𝜌 + 𝑛)). Given a renaming 𝜌 ∶
𝐴 → ℕ, and 𝑛 ∈ ℕ, the renaming (𝜌 + 𝑛) is defined as follows:

(𝜌 + 𝑛) ∶ 0, 1, 2,…, 𝑛 − 1 ∪ {𝑥 + 𝑛 | 𝑥 ∈ 𝐴} → ℕ
𝑥 ↦ 𝑥   if   𝑥 < 𝑛
𝑥 ↦ 𝜌(𝑥 − 𝑛) + 𝑛   if   𝑥 ≥ 𝑛

Example 2.25 (Strengthening by a variable: ((−1) + 𝑛)). The renaming
((−1)+𝑛), named strengthening by variable 𝑛, maps each number larger than
𝑛 to its predecessor.

((−1) + 𝑛) ∶ ℕ − {𝑛} → ℕ
𝑖 ↦ 𝑖   if  𝑖 < 𝑛
𝑖 ↦ 𝑖 − 1   if  𝑖 > 𝑛

It is not defined for 𝑛, so it may only be applied to terms 𝑡 such that
𝑛 ∉ fv(𝑡). ◀
Definition 2.26 (Application of a renaming to a term: 𝑡 𝜌, 𝑡𝜌). Let 𝜌 ∶ 𝐴 → ℕ
be a renaming, and 𝑡 a term such that fv(𝑡) ⊆ 𝐴. Then 𝑡 𝜌 is a term where
each free variable is renumbered according to 𝜌. The full definition is stated

2.8. RENAMINGS 21

𝑥 𝜌 = 𝜌(𝑥)

𝛼𝜌 = 𝛼
𝕒 𝜌 = 𝕒
if 𝜌 = if

(𝑓 𝑒) 𝜌 = (𝑓 𝜌) (𝑒 𝜌)
(𝜆𝑡)𝜌 = 𝜆(𝑡(𝜌 + 1))
(Π𝐴𝐵)𝜌 = Π(𝐴𝜌)(𝐵(𝜌 + 1))
(Σ𝐴𝐵)𝜌 = Σ(𝐴𝜌)(𝐵(𝜌 + 1))

Bool 𝜌 = Bool
Set 𝜌 = Set
𝑐 𝜌 = 𝑐
⟨𝑡1, 𝑡2⟩𝜌 = ⟨𝑡1 𝜌, 𝑡2 𝜌⟩

(.𝜋1)𝜌 = .𝜋1
(.𝜋2)𝜌 = .𝜋2

Figure 2.5: Applying a renaming 𝜌 to a term.

in Figure 2.5.
For conciseness, we may sometimes write renaming applications as 𝑡𝜌 instead
of 𝑡 𝜌. The two notations have identical meanings.

Definition 2.27 (Renaming of a context: Γ 𝜌).

(·) 𝜌 = ·
(𝐴,Δ) 𝜌 = (𝐴 𝜌), (Δ (𝜌 + 1))

Remark 2.28 (Renaming and free variables). Applying a renaming to a term
(if defined) commutes with taking the free variables of that term. That is, if
𝜌 ∶ 𝐴 → ℕ and fv(𝑡) ⊆ 𝐴, then fv(𝑡 𝜌) = 𝜌(fv(𝑡)).
Notation (Composition of renamings: 𝜌1𝜌2). Let 𝜌1 ∶ 𝐴 → ℕ, 𝜌2 ∶ 𝐵 → ℕ
be renamings. Then 𝜌1𝜌2 denotes the composition of 𝜌1 and 𝜌2 (i.e. 𝜌1𝜌2 ∶
𝜌−1
1 (𝐵) → ℕ, with (𝜌1𝜌2)(𝑥) = 𝜌2(𝜌1(𝑥))).

Remark 2.29 (Composition of renamings). Let 𝑡 be a term, and 𝜌1 ∶ 𝐴 → ℕ,
𝜌2 ∶ 𝐵 → ℕ be renamings. Then, if fv(𝑡) ⊆ 𝜌−1

1 (𝐴), we have (𝑡𝜌1)𝜌2 = 𝑡(𝜌1𝜌2).
Remark 2.30 (Properties of renamings). Let 𝜌 be a renaming, and 𝑎, 𝑏 and 𝑐
be natural numbers. The following hold:

• (+𝑎)(+𝑏) = (+(𝑎 + 𝑏))
• ((𝜌 + 𝑎) + 𝑏) = (𝜌 + (𝑎 + 𝑏))
• For any term 𝑡, 𝑡(+0) = 𝑡.
• 𝜌(+𝑐) = (+𝑐)(𝜌 + 𝑐). In particular, (+1)(𝜌 + 1) = (𝜌)(+1), 𝜌 = (𝜌 + 0),

and ((+𝑎) + 𝑏)(+𝑐) = (+𝑐)((+𝑎) + (𝑏 + 𝑐)).

22 CHAPTER 2. A DEPENDENTLY-TYPED LANGUAGE

• Let 𝑡 be a term. If for all 𝑥 ∈ fv(𝑡), 𝑥 < 𝑎, then 𝑡(𝜌+𝑎) = 𝑡. In particular,
if fv(𝑡) = ∅, then 𝑡𝜌 = 𝑡.

• Let 𝑡 be a term. If for all 𝑥 ∈ fv(𝑡), 𝑥 ≥ 𝑎, then 𝑡(−𝑎)(+𝑏) = 𝑡(−𝑎+𝑏).

• Let 𝑡 be a term. If for all 𝑥 ∈ fv(𝑡), 𝑥 ≥ 𝑎, then 𝑡((+𝑏)+𝑎) = 𝑡(+𝑏).

2.9 Hereditary substitution and elimination
(𝑡[𝑢/𝑥], 𝑡 @ 𝑒)

In the syntax of terms we consider only a subset of the λ-terms, namely those
in β-normal form. Terms in β-normal form are those which do not contain
β-redexes. Examples of β-redexes (which are not valid terms according to our
syntax) are ⌈(𝜆.𝑡) 𝑢⌋, ⌈⟨𝑡, 𝑢⟩ .𝜋1⌋ and ⌈⟨𝑡, 𝑢⟩ .𝜋2⌋.

A definition of substitution which simply replaces each variable with its
respective term would create β-redexes. Because our syntax only allows for
β-normal terms, we need to define substitution in such a way that the result
is also in β-normal form: i.e. a hereditary substitution [10, 11].

Note that terms such as if 𝔸 true 𝕒 𝕓 and if 𝔸 false 𝕒 𝕓 are not considered
β-redexes, but are instead subject to δ-reduction (Section 2.13).

Definition 2.31 (Hereditary substitution: 𝑡[𝑢/𝑥] ⇓ 𝑟). Hereditary substitu-
tion is a relation 𝑡[𝑢/𝑥] ⇓ 𝑟, defined in Figure 2.6.

Notation (𝐵[𝑡]). The syntax 𝐵[𝑡] denotes 𝐵[𝑡/0].
Notation (⃗𝑒𝑛[𝑡/𝑥] ⇓ ⃗⃗⃗ ⃗⃗ ⃗𝑒′𝑛). We write ⃗𝑒𝑛[𝑡] ⇓ ⃗⃗⃗ ⃗⃗ ⃗𝑒′𝑛 if, for every 𝑖, 1 ≤ 𝑖 ≤ 𝑛, either:

• 𝑒𝑖 = 𝑒′𝑖 = .𝜋1, or

• 𝑒𝑖 = 𝑒′𝑖 = .𝜋2, or

• There are 𝑢, 𝑣 such that 𝑒𝑖 = 𝑢, 𝑒′𝑖 = 𝑣, and 𝑢[𝑡/𝑥] ⇓ 𝑣.

When defining hereditary substitution for a case such as (𝑥  ⃗𝑒)[𝑢/𝑥], one
has to apply the eliminators ⃗𝑒 to 𝑢, which may introduce β-redexes. Because
our syntax is restricted to β-normal terms, we need to ensure that the result
of such an application is β-normal. That is, we need to perform a hereditary
elimination.

Definition 2.32 (Hereditary elimination: 𝑡 @ 𝑒 ⇓ 𝑟). Hereditary elimination
is a relation 𝑡@𝑒 ⇓ 𝑟. The full definition is given Figure 2.6.

Notation (Hereditary substitution as a partial function: 𝑡[𝑢/𝑥]⇓, 𝑡[𝑢/𝑥]).
Hereditary substitution is defined recursively on the syntax of terms, with no
overlap among the different cases of the definition. This means that given 𝑡,
𝑢 and 𝑥, there exists at most one 𝑟 such that 𝑡[𝑢/𝑥] ⇓ 𝑟.

We will use the proposition 𝑡[𝑢/𝑥]⇓ as a shorthand for ∃𝑟.𝑡[𝑢/𝑥] ⇓ 𝑟. Fur-
thermore, if in a given proof context, if ∃𝑟.𝑡[𝑢/𝑥]⇓𝑟 holds, then we will denote
such an 𝑟 by 𝑡[𝑢/𝑥].

2.9. HEREDITARY SUBSTITUTION AND ELIMINATION 23

𝑥[𝑢/𝑥] ⇓ 𝑢
𝑦[𝑢/𝑥] ⇓ 𝑦   if   𝑥 > 𝑦
𝑦[𝑢/𝑥] ⇓ (𝑦 − 1)   if   𝑥 < 𝑦

𝛼[𝑢/𝑥] ⇓ 𝛼
𝕒[𝑢/𝑥] ⇓ 𝕒
if[𝑢/𝑥] ⇓ if

(𝑓 𝑡)[𝑢/𝑥] ⇓ 𝑟   if   𝑓[𝑢/𝑥] ⇓ 𝑟1 ∧ 𝑡[𝑢/𝑥] ⇓ 𝑟2 ∧ 𝑟1 @ 𝑟2 ⇓ 𝑟
(𝑓 .𝜋1)[𝑢/𝑥] ⇓ 𝑟   if   𝑓[𝑢/𝑥] ⇓ 𝑟1 ∧ 𝑟1 @ .𝜋1 ⇓ 𝑟
(𝑓 .𝜋2)[𝑢/𝑥] ⇓ 𝑟   if   𝑓[𝑢/𝑥] ⇓ 𝑟1 ∧ 𝑟1 @ .𝜋2 ⇓ 𝑟

(𝜆.𝑡)[𝑢/𝑥] ⇓ (𝜆.𝑟)   if   𝑡[𝑢(+1)/𝑥 + 1] ⇓ 𝑟
(Π𝐴𝐵)[𝑢/𝑥] ⇓ (Π𝐴′𝐵′)   if   𝐴[𝑢/𝑥] ⇓ 𝐴′ ∧ 𝐵[𝑢(+1)/𝑥 + 1] ⇓ 𝐵′

(Σ𝐴𝐵)[𝑢/𝑥] ⇓ (Σ𝐴′𝐵′)   if   𝐴[𝑢/𝑥] ⇓ 𝐴′ ∧ 𝐵[𝑢(+1)/𝑥 + 1] ⇓ 𝐵′

Bool[𝑢/𝑥] ⇓ Bool
Set[𝑢/𝑥] ⇓ Set
𝑐[𝑢/𝑥] ⇓ 𝑐
⟨𝑡1, 𝑡2⟩[𝑢/𝑥] ⇓ ⟨𝑡′1, 𝑡′2⟩   if   𝑡1[𝑢/𝑥] ⇓ 𝑡′1 ∧ 𝑡2[𝑢/𝑥] ⇓ 𝑡′2

(a) Hereditary substitution

ℎ  ⃗𝑒 @ 𝑒′ ⇓ (ℎ  ⃗𝑒 𝑒′)
⟨𝑡1, 𝑡2⟩ @ .𝜋1 ⇓ 𝑡1
⟨𝑡1, 𝑡2⟩ @ .𝜋2 ⇓ 𝑡2
𝜆.𝑡 @ 𝑢 ⇓ 𝑟   if   𝑡[𝑢/0] ⇓ 𝑟

(b) Hereditary elimination

Figure 2.6: Hereditary substitution and elimination. The syntax (𝑡(+1)) de-
notes the result of weakening 𝑡 by 1 (see Definition 2.22).

24 CHAPTER 2. A DEPENDENTLY-TYPED LANGUAGE

Notation (Hereditary elimination as a partial function: (𝑡 @ 𝑒)⇓, 𝑡 @ 𝑒). By
the same reasoning, for every term 𝑡 and eliminator 𝑒, there exists at most one
𝑟 such that 𝑡 @ 𝑒 ⇓ 𝑟.

We will use 𝑡 @ 𝑒⇓ as a shorthand for ∃𝑟.𝑡 @ 𝑒 ⇓ 𝑟. Furthermore, if in a
given context, ∃𝑟.𝑡 @ 𝑒 ⇓ 𝑟 holds, then we will denote such an 𝑟 by 𝑡 @ 𝑒.
Definition 2.33 (Iterated hereditary elimination: 𝑡 @ ⃗𝑒 ⇓ 𝑟, 𝑡 @ ⃗𝑒). We use
𝑡 @ 𝑒1 … 𝑒𝑛 ⇓ 𝑟 as a shorthand for ∃𝑡1,…, 𝑡𝑛−1.(𝑡 @ 𝑒1 ⇓ 𝑡1) ∧ (𝑡1 @ 𝑒2 ⇓
𝑡2) ∧ … ∧ (𝑡𝑛−1 @ 𝑒𝑛 ⇓ 𝑟). For 𝑛 = 0, 𝑡 @ 𝜀 ⇓ 𝑡, and, for 𝑛 = 1, 𝑡 @ ⃗𝑒1 ⇓ 𝑟 if
and only if 𝑡 @ 𝑒1 ⇓ 𝑟.

If 𝑡 @ 𝑒1 … 𝑒𝑛 ⇓ 𝑟 holds for some 𝑟, we denote such an 𝑟 by 𝑡 @ 𝑒1 … 𝑒𝑛.
Definition 2.34 (Iterated hereditary substitution: 𝑡[�⃗�/ ⃗𝑥] ⇓ 𝑟). Let ⃗𝑥𝑛 =
(𝑚+𝑛−1), (𝑚+𝑛−2),…, (𝑚+1),𝑚, and let �⃗�𝑛 be such that ∀𝑣 ∈ fv(𝑢𝑖).𝑣 ≥
𝑚. We use 𝑡[�⃗�/ ⃗𝑥𝑛] ⇓ 𝑟 as a shorthand for ∃𝑡1,…, 𝑡𝑛−1.(𝑡[𝑢(+(𝑛−1))

1 /𝑥1] ⇓ 𝑡1) ∧
(𝑡1[𝑢(+(𝑛−2))

2 /𝑥2] ⇓ 𝑡2) ∧…∧ (𝑡𝑛−1[𝑢(+0)
𝑛 /𝑥𝑛] ⇓ 𝑟). For 𝑛 = 0, 𝑡[𝜀/𝜀] ⇓ 𝑡, and, for

𝑛 = 1, 𝑡[�⃗�1/ ⃗𝑥1] ⇓ 𝑟 if and only if 𝑡[𝑢/𝑥] ⇓ 𝑟.
If 𝑡[�⃗�/ ⃗𝑥] ⇓ 𝑟 holds for some 𝑟, we denote such an 𝑟 by 𝑡[�⃗�/ ⃗𝑥].
We say 𝑡[�⃗�] ⇓ 𝑟 if and only if 𝑡[�⃗�/(𝑛 − 1),…, 0] ⇓ 𝑟.

Remark 2.35 (Iterated application as substitution on body). We have (𝜆𝑛.𝑡) @
�⃗�𝑛 ⇓ 𝑟 if and only if 𝑡[�⃗�] ⇓ 𝑟.
Proof. By induction on 𝑛.

• Case 0: Trivial.

• Case 𝑛 + 1: We have (𝜆𝑛+1.𝑡) @ �⃗�𝑛+1 ⇓ 𝑟 iff (𝜆𝑛+1.𝑡) @ 𝑢 ⇓ 𝑡1 and
𝑡1 @ �⃗�2,…,𝑛 ⇓ 𝑟 for some 𝑡1. By definition, 𝑡1 is of the form 𝜆𝑛.𝑟1, with
𝑡[𝑢/𝑛] ⇓ 𝑟1. By the IH, the latter is equivalent to 𝑟1[�⃗�2,…,𝑛] ⇓ 𝑟. By
definition, 𝑡[𝑢(+𝑛)/𝑛] ⇓ 𝑟1 and 𝑟1[�⃗�2,…,𝑛] ⇓ 𝑟 is equivalent to 𝑡[�⃗�] ⇓ 𝑟.

Remark 2.36 (Hereditary substitution by a neutral term: 𝑡[𝑓/𝑥]). Given a
term 𝑡, a neutral term 𝑓 and a variable 𝑥, we always have 𝑡[𝑓/𝑥] ⇓. Therefore,
we can always write 𝑡[𝑓/𝑥]. Furthermore, if 𝑔 is a neutral term, then 𝑔[𝑓/𝑥] is
also a neutral term.

Proof. Proceed by induction on 𝑡. In the base cases, (𝑥)[𝑓/𝑥] ⇓ 𝑓 , which is
neutral. For the inductive cases, note that, for every neutral term 𝑓 , (i) 𝑓 (+1)

is also neutral, and (ii) 𝑓 @ ⃗𝑒 ⇓ 𝑓  ⃗𝑒.
Remark 2.37 (Hereditary elimination of neutral terms: 𝑓 @ ⃗𝑒). Given a neutral
term 𝑓 and an eliminator 𝑒, by Definition 2.32 (hereditary elimination), 𝑓 @ 𝑒 ⇓
(𝑓 𝑒).

Given ⃗𝑒 and applying the above remark iteratively, we have 𝑓 @ ⃗𝑒 ⇓ (𝑓  ⃗𝑒).
Therefore, we can always write 𝑓 @ ⃗𝑒.
Definition 2.38 (Hereditary substitution for contexts: Δ[𝑢/𝑥] ⇓ Δ′). A sub-
stitution can be applied to a whole context as follows:

·[𝑢/𝑥] ⇓ ·
(𝐴,Δ)[𝑢/𝑥] ⇓ (𝐴′,Δ)   if   𝐴[𝑢/𝑥] ⇓ 𝐴′ and Δ′[𝑢(+1)/𝑥 + 1] ⇓ Δ′

2.9. HEREDITARY SUBSTITUTION AND ELIMINATION 25

Notation (Names for de Bruijn indices in hereditary substitution). A variable
name in a hereditary substitution denotes the de Bruijn index of that variable
in the context in which the term to which the substitution is applied appears.
For example, given a term Σ;Γ, 𝑥 ∶ 𝐴,Δ ⊢ 𝑡 ∶ 𝐵, the expressions Δ[𝑢/𝑥] ⇓ 𝑟
and 𝑡[𝑢/𝑥] ⇓ 𝑟 denote Δ[𝑢/0] ⇓ 𝑟 and 𝑡[𝑢/ |Δ|] ⇓ 𝑟, respectively.

Lemma 2.39 (Hereditary substitution and application commute with renam-
ing). Let 𝜌 be a renaming, 𝜌 ∶ ℕ → ℕ.

• If 𝜌 = 𝜌′ + 𝑥 and 𝑡[𝑢/𝑥]⇓, then 𝑡(𝜌+1)[𝑢𝜌/𝑥]⇓(𝑡[𝑢/𝑥]𝜌).

• If (𝑡 @ 𝑒) ⇓ 𝑢, then (𝑡𝜌 @ 𝑒𝜌) ⇓ 𝑢𝑝.

Proof. By induction on the derivation for 𝑡[𝑢/𝑥] ⇓ 𝑟. We enumerate some
representative cases:

• 𝑥[𝑢/𝑥] ⇓ 𝑢: Then 𝑥(𝜌+1) = 𝑥𝜌′+(𝑥+1) = 𝑥, with 𝑥𝜌+1[𝑢𝜌/𝑥] ⇓ 𝑢𝜌.

• 𝑦[𝑢/𝑥] ⇓ 𝑦, 𝑦 < 𝑥: Then 𝑦(𝜌+1) = 𝑦 and 𝑦𝜌 = 𝑦. Therefore, 𝑦(𝜌+1)[𝑢𝜌/𝑥] ⇓
𝑦𝜌.

• 𝑦[𝑢/𝑥] ⇓ (𝑦 − 1), 𝑦 > 𝑥: Then 𝑦(𝜌+1) = 𝜌′(𝑦 − 𝑥 − 1) + 𝑥 + 1 = 𝑦′ (for
some 𝑦′ > 𝑥). and (𝑦 − 1)𝜌 = 𝜌′(𝑦 − 1 − 𝑥) + 𝑥 = 𝑦′ − 1. By definition,
𝑦′[𝑢𝜌/𝑥] ⇓ (𝑦′ − 1). Therefore 𝑦(𝜌+1)[𝑢𝜌/𝑥] ⇓ (𝑦 − 1)𝜌.

• 𝑡 = 𝛼: 𝛼 = 𝛼(𝜌+1) = 𝛼𝜌. Thus 𝛼[𝑢𝜌/𝑥] ⇓ 𝛼.

• (𝑓 𝑡)[𝑢/𝑥] ⇓ 𝑟, with 𝑓[𝑢/𝑥] ⇓ 𝑟1, 𝑡[𝑢/𝑥] ⇓ 𝑟2 and (𝑟1 @ 𝑟2) ⇓ 𝑟: By the
second induction hypothesis, 𝑓 (𝜌+1)[𝑢𝜌/𝑥] ⇓ 𝑟𝜌1 and 𝑡(𝜌+1)[𝑢𝜌/𝑥] ⇓ 𝑟𝜌2. By
the first induction hypothesis, 𝑟𝜌1 @ 𝑟𝜌2⇓𝑟𝜌. Also, (𝑓 𝑡)(𝜌+1) = 𝑓 (𝜌+1) 𝑡(𝜌+1).
Therefore (𝑓 𝑡)(𝜌+1)[𝑢𝜌/𝑥] ⇓ 𝑟𝜌.

• (𝜆.𝑡)[𝑢/𝑥]⇓(𝜆.𝑟), with 𝑡[𝑢(+1)/𝑥+1]⇓𝑟: We have (𝜆.𝑡)(𝜌+1) = 𝜆.(𝑡(𝜌+2))
and (𝜆.𝑟)𝜌 = 𝜆.(𝑟(𝜌+1)). Because 𝜌 = 𝜌′ + 𝑥, (𝜌 + 1) = 𝜌′ + (𝑥 + 1). By
the induction hypothesis, we have 𝑡(𝜌+2)[(𝑢(+1))(𝜌+1)/𝑥+ 1] ⇓ 𝑟(𝜌+1). By
Remark 2.30 (properties of renamings), 𝑢(+1)(𝜌+1) = 𝑢𝜌(+1). Therefore
(𝜆.𝑡)𝜌+1[𝑢𝜌/𝑥] ⇓ (𝜆.𝑟)𝜌.

• ℎ  ⃗𝑒 @ 𝑒′ ⇓ (ℎ  ⃗𝑒 𝑒′): By definition (ℎ  ⃗𝑒 𝑒′)𝜌 = (ℎ  ⃗𝑒)𝜌 𝑒′𝜌. Therefore (ℎ  ⃗𝑒)𝜌 @
𝑒′𝜌 ⇓ (ℎ  ⃗𝑒 𝑒′)𝜌.

• 𝜆.𝑡 @ 𝑢 ⇓ 𝑟 with 𝑡[𝑢/0] ⇓ 𝑟: We have 𝜌 = 𝜌 + 0. By the induction hy-
pothesis, 𝑡(𝜌+1)[𝑢𝜌/0] ⇓ 𝑟𝜌. By definition, (𝜆.𝑡)𝜌 = 𝜆.(𝑡(𝜌+1)). Therefore
(𝜆.𝑡)𝜌 @ 𝑢𝜌 ⇓ 𝑟𝜌.

Lemma 2.40 (Correspondence between renaming and substitution). We have
𝑉 [𝑦/𝑥]⇓𝑉 [0,…, 𝑥−1, 𝑥, 𝑥+1,… ↦ 0,…, 𝑥−1, 𝑦, 𝑥,…]. In particular, 𝑉 [0/0]⇓
𝑉 [0,… ↦ 0, 0, 1, 2,…].

Additionally, 𝑉 [⃗𝑥𝑛] = 𝑉 […, 𝑛, (𝑛 − 1),…, 0 ↦ …, 1, 0, ⃗𝑥].

Proof. By induction on the structure of 𝑉 .

26 CHAPTER 2. A DEPENDENTLY-TYPED LANGUAGE

2.10 Head lookup (Σ;Γ ⊢ ℎ ⇒ 𝐴)
The types of the heads of neutral terms (for instance, variables, metavariables
and atoms) are determined by the signature and the context:

Σ ⊢ Γ ctx Γ = Γ1, 𝐴, Γ2 𝑛 = |Γ2| var
Σ;Γ ⊢ 𝑛 ⇒ 𝐴(+(𝑛+1))

Σ ⊢ Γ ctx 𝛼 ∶ 𝐴 ∈ Σ meta1Σ;Γ ⊢ 𝛼 ⇒ 𝐴

Σ ⊢ Γ ctx 𝛼 ≔ 𝑡 ∶ 𝐴 ∈ Σ meta2Σ;Γ ⊢ 𝛼 ⇒ 𝐴

Σ ⊢ Γ ctx 𝕒 ∶ 𝐴 ∈ Σ atomΣ;Γ ⊢ 𝕒 ⇒ 𝐴

Σ ⊢ Γ ctx ifΣ;Γ ⊢ if ⇒ Π(ΠBoolSet)(ΠBool(Π(1 true)(Π(2 false)(3 2))))
Remark. Using the binder syntax described in Section 2.7, we may write the
conclusion of the if rule as Σ;Γ ⊢ if ⇒ (𝑋 ∶ Bool → Set) → (𝑦 ∶ Bool) →
𝑋 true → 𝑋 false → 𝑋 𝑦.
Remark. In the conclusion of the rules atom, meta1, and meta2, because 𝐴
is closed, 𝐴(+|Γ|) = 𝐴.

2.11 Terms (Σ;Γ ⊢ 𝑡 ∶ 𝐴)
The judgement “term 𝑡 has type 𝐴 in context Γ under signature Σ” is written
Σ;Γ ⊢ 𝑡 ∶ 𝐴.
Notation (Implicit signature). In those rules where the signature Σ is omitted,
it is understood that all premises and the conclusion share the same signature
Σ. The rule then holds for any such Σ. For instance, consider the first typing
rule given below, the bool rule (left); and its implied full form (right).

Γ ctx boolΓ ⊢ Bool ∶ Set � Σ ⊢ Γ ctx boolΣ;Γ ⊢ Bool ∶ Set

Type constructors

Γ ctx boolΓ ⊢ Bool ∶ Set

Γ ⊢ 𝐴 ∶ Set Γ,𝐴 ⊢ 𝐵 ∶ Set piΓ ⊢ Π𝐴𝐵 ∶ Set

Γ ⊢ 𝐴 ∶ Set Γ,𝐴 ⊢ 𝐵 ∶ Set sigmaΓ ⊢ Σ𝐴𝐵 ∶ Set

Γ ctx setΓ ⊢ Set ∶ Set

2.11. TERMS 27

Term constructors

Γ ctx trueΓ ⊢ true ∶ Bool

Γ ctx falseΓ ⊢ false ∶ Bool

Γ,𝐴 ⊢ 𝑡 ∶ 𝐵 absΓ ⊢ 𝜆𝑡 ∶ Π𝐴𝐵

Γ ⊢ 𝑡 ∶ 𝐴 Γ,𝐴 ⊢ 𝐵 type 𝐵[𝑡]⇓ Γ ⊢ 𝑢 ∶ 𝐵[𝑡]
pairΓ ⊢ ⟨𝑡, 𝑢⟩ ∶ Σ𝐴𝐵

Neutral terms

Γ ⊢ ℎ ⇒ 𝐴 headΓ ⊢ ℎ ∶ 𝐴

Γ ⊢ 𝑓 ∶ Σ𝐴𝐵
proj1Γ ⊢ 𝑓 .𝜋1 ∶ 𝐴

Γ ⊢ 𝑓 ∶ Σ𝐴𝐵
proj2Γ ⊢ 𝑓 .𝜋2 ∶ 𝐵[𝑓 .𝜋1]

Γ ⊢ 𝑓 ∶ Π𝐴𝐵 Γ ⊢ 𝑡 ∶ 𝐴 𝐵[𝑡]⇓
appΓ ⊢ 𝑓 𝑡 ∶ 𝐵[𝑡]

Other rules

Γ ⊢ 𝑡 ∶ 𝐴 Γ ⊢ 𝐴 ≡ 𝐵 type convΓ ⊢ 𝑡 ∶ 𝐵

The Set ∶ Set judgment and non-termination

Terms in a theory where Σ;Γ ⊢ Set ∶ Set are not necessarily normalizing, as
described first by Girard [22] and then in a more succinct form by Hurkens [30].
Our theoretical description glosses over this fact.

Our intention when using Set ∶ Set is to simplify the exposition. The
algorithm is ultimately meant to be used with properly stratified theories where
all terms are normalizing. The postulates about types and terms that such a
theory needs to satisfy are given in Section 2.14. Note that these postulates
may not hold for the unstratified theory defined in this chapter.

28 CHAPTER 2. A DEPENDENTLY-TYPED LANGUAGE

2.12 Term equality (Σ;Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴)
The judgmental (or definitional1) equality for terms is written Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴,
and is given by the following deduction rules.

If for terms 𝑡 and 𝑢 we have Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴, we say that 𝑡 and 𝑢 are
judgmentally or definitionally equal. In particular, two types 𝐴 and 𝐵 are
definitionally equal if Γ ⊢ 𝐴 ≡ 𝐵 ∶ Set.

Γ ctx bool-eqΓ ⊢ Bool ≡ Bool ∶ Set

Γ ⊢ 𝐴 ≡ 𝐴′ ∶ Set Γ,𝐴 ⊢ 𝐵 ≡ 𝐵′ ∶ Set pi-eqΓ ⊢ Π𝐴𝐵 ≡ Π𝐴′𝐵′ ∶ Set

Γ ⊢ 𝐴 ≡ 𝐴′ ∶ Set Γ,𝐴 ⊢ 𝐵 ≡ 𝐵′ ∶ Set sigma-eqΓ ⊢ Σ𝐴𝐵 ≡ Σ𝐴′𝐵′ ∶ Set

Γ ctx set-eqΓ ⊢ Set ≡ Set ∶ Set

Γ ctx true-eqΓ ⊢ true ≡ true ∶ Bool

Γ ctx false-eqΓ ⊢ false ≡ false ∶ Bool

Γ,𝐴 ⊢ 𝑡 ≡ 𝑢 ∶ 𝐵 abs-eqΓ ⊢ 𝜆.𝑡 ≡ 𝜆.𝑢 ∶ Π𝐴𝐵

Γ,𝐴 ⊢ 𝐵 type 𝐵[𝑡1]⇓
Γ ⊢ 𝑡1 ≡ 𝑢1 ∶ 𝐴

Γ ⊢ 𝑡2 ≡ 𝑢2 ∶ 𝐵[𝑡1] pair-eqΓ ⊢ ⟨𝑡1, 𝑡2⟩ ≡ ⟨𝑢1, 𝑢2⟩ ∶ Σ𝐴𝐵

Elimination

Γ ⊢ ℎ ⇒ 𝐴 head-eqΓ ⊢ ℎ ≡ ℎ ∶ 𝐴

Γ ⊢ 𝑓 ≡ 𝑔 ∶ Σ𝐴𝐵 proj1-eqΓ ⊢ 𝑓 .𝜋1 ≡ 𝑔 .𝜋1 ∶ 𝐴

Γ ⊢ 𝑓 ≡ 𝑔 ∶ Σ𝐴𝐵 proj2-eqΓ ⊢ 𝑓 .𝜋2 ≡ 𝑔 .𝜋2 ∶ 𝐵[𝑓 .𝜋1]

Γ ⊢ 𝑓 ≡ 𝑔 ∶ Π𝐴𝐵 Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴 𝐵[𝑡]⇓ app-eqΓ ⊢ 𝑓 𝑡 ≡ 𝑔 𝑢 ∶ 𝐵[𝑡]

Remark. In the head-eq rule, ℎ stands for either (i) a variable “𝑥”, (ii) a
metavariable “𝛼” (iii) an atom “𝕒”, or (iv) the boolean recursor “if”.

1In an intensional type theory such as this one, the two notions coincide.

2.13. TERM REDUCTION 29

η-conversion

Γ ⊢ 𝑓 ∶ Π𝐴𝐵 eta-abs
Γ ⊢ 𝑓 ≡ 𝜆.𝑓 (+1) 0 ∶ Π𝐴𝐵

Γ ⊢ 𝑓 ∶ Σ𝐴𝐵 eta-pairΓ ⊢ 𝑓 ≡ ⟨𝑓 .𝜋1, 𝑓  .𝜋2⟩ ∶ Σ𝐴𝐵
Remark (η-conversion for general terms). Because all the terms are in β-normal
form, neutral terms are the only cases where η-expansion is relevant.

δ-conversion

Σ;Γ ⊢ 𝛼  ⃗𝑒 ∶ 𝑇 Σ; Γ ⊢ 𝑡′ ∶ 𝑇
𝛼 ≔ 𝑡 ∶ 𝐴 ∈ Σ
𝑡 @ ⃗𝑒 ⇓ 𝑡′ delta-metaΣ;Γ ⊢ 𝛼  ⃗𝑒 ≡ 𝑡′ ∶ 𝑇

Γ ⊢ if 𝐴 true 𝑢t 𝑢f  ⃗𝑒 ∶ 𝑇 Γ ⊢ 𝑢′ ∶ 𝑇 𝑢t @ ⃗𝑒 ⇓ 𝑢′
delta-if-trueΓ ⊢ if 𝐴 true 𝑢t 𝑢f  ⃗𝑒 ≡ 𝑢′ ∶ 𝑇

Γ ⊢ if 𝐴 false 𝑢t 𝑢f  ⃗𝑒 ∶ 𝑇 Γ ⊢ 𝑢′ ∶ 𝑇 𝑢f @ ⃗𝑒 ⇓ 𝑢′
delta-if-falseΓ ⊢ if 𝐴 false 𝑢t 𝑢f  ⃗𝑒 ≡ 𝑢′ ∶ 𝑇

Other rules

Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴 Γ ⊢ 𝐴 ≡ 𝐵 type conv-eqΓ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐵
Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴 Γ ⊢ 𝑢 ≡ 𝑣 ∶ 𝐴 transΓ ⊢ 𝑡 ≡ 𝑣 ∶ 𝐴

Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴 symΓ ⊢ 𝑢 ≡ 𝑡 ∶ 𝐴

2.13 Term reduction (⟶δη, ⟶⋆
δη)

Definition 2.41 (δη-normalization step: Σ;Γ ⊢ 𝑡 ⟶δη 𝑢 ∶ 𝑇). Let Σ be a
signature, Γ a context and 𝑇 a type. The relation ⟶δη is defined in Figure 2.7,
with the additional requirement that, whenever Σ;Γ ⊢ 𝑡 ⟶δη 𝑢 ∶ 𝑇 , then
Σ;Γ ⊢ 𝑡 ∶ 𝑇 .
Remark. There is deliberate overlap between the reduction rules. The order
in which different subterms are reduced depends ultimately on the unification
rules are applied by the unification algorithm (Section 5.1).
Remark. The rule app𝑛 is a family of rules, with one element for each 𝑛 ∈ ℕ,
𝑛 ≥ 1.
Definition 2.42 (Iterated δη-reduction: Σ;Γ ⊢ 𝑡 ⟶⋆

δη 𝑢 ∶ 𝐴). The relation
Σ;Γ ⊢ _⟶⋆

δη _ ∶ 𝐴 is the reflexive and transitive closure of Σ;Γ ⊢ _⟶δη _ ∶
𝐴.
Remark 2.43 (Free variables of δη-reduct). If Σ;Γ ⊢ 𝑡⟶δη𝑢 ∶ 𝐴, then fv(𝑢) ⊆
fv(𝑡).

30 CHAPTER 2. A DEPENDENTLY-TYPED LANGUAGE

(Π1) Σ; Γ ⊢ Π𝐴𝐵 ⟶δη Π𝐴′𝐵 ∶ 𝑇   if   Σ; Γ ⊢ 𝐴⟶δη 𝐴′ ∶ Set

(Π2) Σ; Γ ⊢ Π𝐴𝐵 ⟶δη Π𝐴𝐵′ ∶ 𝑇   if   Σ; Γ,𝐴 ⊢ 𝐵 ⟶δη 𝐵′ ∶ Set

(Σ1) Σ; Γ ⊢ Σ𝐴𝐵 ⟶δη Σ𝐴′𝐵 ∶ 𝑇   if   Σ; Γ ⊢ 𝐴⟶δη 𝐴′ ∶ Set
(Σ2) Σ; Γ ⊢ Σ𝐴𝐵 ⟶δη Σ𝐴𝐵′ ∶ 𝑇   if   Σ; Γ,𝐴 ⊢ 𝐵 ⟶δη 𝐵′ ∶ Set

(λ) Σ; Γ ⊢ 𝜆.𝑡⟶δη 𝜆.𝑡′ ∶ 𝑇   if   Σ; Γ ⊢ 𝑇 ≡ Π𝐴𝐵 type
and Σ;Γ,𝐴 ⊢ 𝑡⟶δη 𝑡′ ∶ 𝐵

(⟨,⟩1) Σ; Γ ⊢ ⟨𝑡, 𝑢⟩⟶δη ⟨𝑡′, 𝑢⟩ ∶ 𝑇   if   Σ; Γ ⊢ 𝑇 ≡ Σ𝐴𝐵 type
Σ;Γ ⊢ 𝑡⟶δη 𝑡′ ∶ 𝐴

Σ; Γ ⊢ ⟨𝑡, 𝑢⟩⟶δη ⟨𝑡, 𝑢′⟩ ∶ 𝑇   if   Σ; Γ ⊢ 𝑇 ≡ Σ𝐴𝐵 type
(⟨,⟩2) and 𝐵[𝑡]⇓

and Σ;Γ ⊢ 𝑢⟶δη 𝑢′ ∶ 𝐵[𝑡]

(η-Π) Σ; Γ ⊢ 𝑓 ⟶δη 𝜆.(𝑓 (+1)) 0 ∶ 𝑇   if   Σ; Γ ⊢ 𝑇 ≡ Π𝐴𝐵 type

(η-Σ) Σ; Γ ⊢ 𝑓 ⟶δη ⟨𝑓 .𝜋1, 𝑓  .𝜋2⟩ ∶ 𝑇   if   Σ; Γ ⊢ 𝑇 ≡ Σ𝐴𝐵 type

(app𝑛)Σ; Γ ⊢ ℎ  ⃗𝑒𝑛−1 𝑡  ⃗𝑒′ ⟶δη ℎ  ⃗𝑒 𝑢  ⃗𝑒′ ∶ 𝑇   if   Σ; Γ ⊢ ℎ  ⃗𝑒 ∶ Π𝑈𝑉
and Σ;Γ ⊢ 𝑡⟶δη 𝑢 ∶ 𝑈

(meta)Σ; Γ ⊢ 𝛼  ⃗𝑒⟶δη 𝑢 ∶ 𝑇   if   𝛼 ≔ 𝑡 ∶ 𝐴 ∈ Σ
and (𝑡 @ ⃗𝑒) ⇓ 𝑢

(if1) Σ; Γ ⊢ if 𝐴 true 𝑡 𝑢  ⃗𝑒⟶δη 𝑡′ ∶ 𝑇   if   (𝑡 @ ⃗𝑒) ⇓ 𝑡′

(if2) Σ; Γ ⊢ if 𝐴 false 𝑡 𝑢  ⃗𝑒⟶δη 𝑢′ ∶ 𝑇   if   (𝑢 @ ⃗𝑒) ⇓ 𝑢′

Figure 2.7: Cases for Definition 2.41 (δη-normalization step). For each recur-
sive occurrence of the form Σ;Γ ⊢ 𝑡⟶δη 𝑢 ∶ 𝑇 , there is an implicit condition
that Σ;Γ ⊢ 𝑡 ∶ 𝑇 .

2.14. PROPERTIES 31

2.14 Properties
Here are some properties of the dependent type system we have defined in the
previous sections. They will be useful when discussing the correctness of a
type checking algorithm for the system.

Those properties marked as postulates are assumed to hold without proof.
Some of these properties may not hold in the theory as described in this
chapter, but we expect they would all hold in a properly stratified version
thereof. A complete list of these assumptions may be found on page 216.

2.14.1 Judgments
For the sake of conciseness when stating properties we define a notion of judg-
ment. This allows for a homogeneous treatment of the judgments that have
been defined in this chapter.

Definition 2.44 (Judgment: Σ;Γ ⊢ 𝐽). A judgment 𝐽 has any of the following
forms: Δ ctx, Δ ⊢ 𝐴 type, Δ ⊢ 𝐴 ≡ 𝐵 type, Δ1 ≡ Δ2 ctx, Δ ⊢ 𝑡 ∶ 𝐴,
Δ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴, and 𝐽1 ∧ 𝐽2.

We write Σ;Γ ⊢ 𝐽 if any of the following hold:

• 𝐽 = Δ ctx, and Σ ⊢ Γ,Δ ctx.

• 𝐽 = Δ1 ≡ Δ2 ctx and Σ ⊢ Γ,Δ1 ≡ Γ,Δ2 ctx.

• 𝐽 = Δ ⊢ 𝐴 type and Σ;Γ,Δ ⊢ 𝐴 type.

• 𝐽 = Δ ⊢ 𝐴 ≡ 𝐵 type and Σ;Γ,Δ ⊢ 𝐴 ≡ 𝐵 type.

• 𝐽 = Δ ⊢ 𝑡 ∶ 𝐴 and Σ;Γ,Δ ⊢ 𝑡 ∶ 𝐴.

• 𝐽 = Δ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴 and Σ;Γ,Δ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴.

• 𝐽 = 𝐽1 ∧ 𝐽2, with Σ;Γ ⊢ 𝐽1 and Σ;Γ ⊢ 𝐽2.

Notation (Signature judgment: Σ ⊢ 𝐽). The statement Σ ⊢ 𝐽 is equivalent to
Σ; · ⊢ 𝐽 .

Judgments can be manipulated in similar ways as terms:

Definition 2.45 (Free variables of a scoped and typed term: fv(Δ ⊢ 𝑡 ∶ 𝐵),
fv(𝐽)). We can consider the variables free in an entire judgment:

fv(Δ ctx) = fv(Δ)
fv(Δ1 ≡ Δ2 ctx) = fv(Δ1) ∪ fv(Δ2)
fv(· ⊢ 𝐴 type) = fv(𝐴)
fv(· ⊢ 𝐴 ≡ 𝐵 type) = fv(𝐴) ∪ fv(𝐵)
fv(· ⊢ 𝑡 ∶ 𝐵) = fv(𝑡) ∪ fv(𝐵)
fv(· ⊢ 𝑡 ≡ 𝑢 ∶ 𝐵) = fv(𝑡) ∪ fv(𝑢) ∪ fv(𝐵)
fv(𝐴, 𝐽) = fv(𝐴) ∪ (fv(𝐽) − {0}) − 1
fv(𝐽1 ∧ 𝐽2) = fv(𝐽1) ∪ fv(𝐽2)

32 CHAPTER 2. A DEPENDENTLY-TYPED LANGUAGE

Definition 2.46 (Set of constants in a judgment: consts(𝐽)). We can con-
sider the set of constants occurring in a judgment:

consts(Δ1 ≡ Δ2 ctx) = consts(Δ1) ∪ fv(Δ2)
consts(· ⊢ 𝑡 ≡ 𝑢 ∶ 𝐵) = consts(𝑡) ∪ consts(𝑢) ∪ consts(𝐵)
consts(𝐴, 𝐽) = consts(𝐴) ∪ consts(𝐽)
consts(𝐽1 ∧ 𝐽2) = consts(𝐽1) ∪ consts(𝐽2)
…

The remaining cases follow analogously to Definition 2.45 (free variables of
a scoped and typed term).

Definition 2.47 (Renaming of a judgment: 𝐽 𝜌). A renaming can be applied
to an entire judgment:

(Δ ctx) 𝜌 = (Δ 𝜌) ctx
(Δ1 ≡ Δ2 ctx) 𝜌 = Δ1 𝜌 ≡ Δ2 𝜌 ctx
(· ⊢ 𝐴 type) 𝜌 = · ⊢ 𝐴 𝜌 type
(· ⊢ 𝐴 ≡ 𝐵 type) 𝜌 = · ⊢ 𝐴 𝜌 ≡ 𝐵 𝜌 type
(· ⊢ 𝑡 ∶ 𝐵) 𝜌 = · ⊢ 𝑡 𝜌 ∶ 𝐵 𝜌
(· ⊢ 𝑡 ≡ 𝑢 ∶ 𝐵) 𝜌 = · ⊢ 𝑡 𝜌 ≡ 𝑢 𝜌 ∶ 𝐵 𝜌
(𝐴, 𝐽) 𝜌 = (𝐴 𝜌), 𝐽  (𝜌 + 1)
(𝐽1 ∧ 𝐽2) 𝜌 = (𝐽1 𝜌) ∧ (𝐽2 𝜌)

Definition 2.48 (Hereditary substitution of judgments: 𝐽[𝑢/𝑥]). A variable
can be substituted hereditarily in an entire judgment. We explicitly define
hereditary substitution for judgments of the form (Δ ⊢ 𝑡 ∶ 𝐵); the remaining
cases are follow analogously to Definition 2.47.

(· ⊢ 𝑡 ∶ 𝐵)[𝑢/𝑥] ⇓ (· ⊢ 𝑡′ ∶ 𝐵′)   if   𝑡[𝑢/𝑥] ⇓ 𝑡′ and 𝐵[𝑢/𝑥] ⇓ 𝐵′

(𝐴, 𝐽)[𝑢/𝑥] ⇓ (𝐴′, 𝐽 ′)   if   𝐴[𝑢/𝑥] ⇓ 𝐴′ and 𝐽[𝑢(+1)/𝑥 + 1] ⇓ 𝐽 ′

…

2.14.2 Substitution and elimination
The following properties concern the behaviour of hereditary substitution and
elimination. As explained in the beginning of this section, we assume without
proof that those properties marked as postulates would hold, at least in a
properly stratified version of the theory.

Postulate 1 (Typing of hereditary substitution). If Γ, 𝑥 ∶ 𝐵,Δ ⊢ 𝑡 ∶ 𝐴 and Γ ⊢
𝑢 ∶ 𝐵, then Δ[𝑢/𝑥]⇓, 𝑡[𝑢(+|Δ|)/𝑥]⇓, 𝐴[𝑢(+|Δ|)/𝑥]⇓, and Γ,Δ[𝑢/𝑥] ⊢ 𝑡[𝑢(+|Δ|)/𝑥] ∶
𝐴[𝑢(+|Δ|)/𝑥].

Postulate 2 (Typing of hereditary application). If Σ;Γ ⊢ 𝑡 ∶ Π𝐴𝐵, and
Σ;Γ ⊢ 𝑣 ∶ 𝐴, then (𝑡 @ 𝑣)⇓, 𝐵[𝑣]⇓, and Σ;Γ ⊢ 𝑡 @ 𝑣 ∶ 𝐵[𝑣].

Postulate 3 (Typing of hereditary projection). If Σ;Γ ⊢ 𝑡 ∶ Σ𝐴𝐵, then
(𝑡 @ .𝜋1)⇓, with Σ;Γ ⊢ 𝑡 @ .𝜋1 ∶ 𝐴 and (𝑡 @ .𝜋2)⇓, with 𝐵[𝑡 @ .𝜋1]⇓ and
Σ;Γ ⊢ 𝑡 @ .𝜋2 ∶ 𝐵[𝑡 @ .𝜋1].

2.14. PROPERTIES 33

Postulate 4 (Congruence of hereditary substitution). If Σ;Γ, 𝑥 ∶ 𝐴,Δ ⊢ 𝑡1 ≡
𝑡2 ∶ 𝐵 and Σ;Γ ⊢ 𝑢1 ≡ 𝑢2 ∶ 𝐴, then Δ[𝑢1/𝑥]⇓, Δ[𝑢2/𝑥]⇓, 𝑡1[𝑢(+|Δ|)

1 /𝑥]⇓,
𝑡2[𝑢(+|Δ|)

2 /𝑥]⇓, 𝐵[𝑢(+|Δ|)
1 /𝑥]⇓, 𝐵[𝑢(+|Δ|)

2 /𝑥]⇓, Σ ⊢ Γ,Δ[𝑢1/𝑥], 𝐵[𝑢(+|Δ|)
1 /𝑥] ≡

Γ,Δ[𝑢2/𝑥], 𝐵[𝑢(+|Δ|)
2 /𝑥] ctx and Σ;Γ,Δ[𝑢1/𝑥] ⊢ 𝑡1[𝑢(+|Δ|)

1 /𝑥] ≡ 𝑡2[𝑢(+|Δ|)
2 /𝑥] ∶

𝐵[𝑢(+|Δ|)
1 /𝑥].

Remark 2.49 (Strengthening by substitution). If 𝑥 ∉ fv(𝐽), then 𝐽[𝑢/𝑥] =
𝐽 (−1)+𝑥.

Postulate 5 (Hereditary substitution commutes). Let Σ;Γ, 𝑈,Δ, 𝑉 , Ξ ⊢ 𝑡 ∶ 𝐴,
Σ;Γ, 𝑈,Δ ⊢ 𝑣 ∶ 𝑉 , Σ;Γ ⊢ 𝑢 ∶ 𝑈 , and |Δ| ∉ fv(𝑉 , Ξ ⊢ 𝑡 ∶ 𝐴).

Let (Δa, Ξa ⊢ 𝑡a ∶ 𝐴a) = (Δ, (Ξ ⊢ 𝑡 ∶ 𝐴)[𝑣])[𝑢]. Then Σ;Γ,Δ[𝑢], (𝑉 , Ξ ⊢ 𝑡 ∶
𝐴)(−1)+|Δ|, Σ;Γ,Δ[𝑢] ⊢ 𝑣[𝑢/ |Δ|] ∶ 𝑉 (−1)+|Δ|.

Also, let Δb = Δ[𝑢], and (Ξb ⊢ 𝑡b ∶ 𝐴b) = (Ξ ⊢ 𝑡 ∶ 𝐴)(−1)+|Δ|+1[𝑣[𝑢/ |Δ|]].
Then Σ ⊢ Γ,Δa, Ξa ≡ Γ,Δb, Ξb ctx, Σ ⊢ Γ,Δa, Ξa ⊢ 𝐴a ≡ 𝐴b type, and
Σ;Γ,Δa, Ξa ⊢ 𝑡a ≡ 𝑡b ∶ 𝐴a.

Postulate 6 (Congruence of hereditary application). If Σ;Γ ⊢ 𝑡 ≡ 𝑢 ∶ Π𝐴𝐵
and Σ;Γ ⊢ 𝑣1 ≡ 𝑣2 ∶ 𝐴, then (𝑡 @ 𝑣1)⇓, (𝑢 @ 𝑣2)⇓, 𝐵[𝑣1]⇓, and Σ;Γ ⊢ 𝑡 @ 𝑣1 ≡
𝑢 @ 𝑣2 ∶ 𝐵[𝑣1].

Postulate 7 (Congruence of hereditary projection). If Σ;Γ ⊢ 𝑡 ≡ 𝑢 ∶ Σ𝐴𝐵,
then:

(i) (𝑡 @ .𝜋1)⇓, (𝑢 @ .𝜋1)⇓ and Σ;Γ ⊢ 𝑡 @ .𝜋1 ≡ 𝑢 @ .𝜋1 ∶ 𝐴;

(ii) and also (𝑡 @ .𝜋2)⇓, (𝑢 @ .𝜋2)⇓, 𝐵[𝑡 @ .𝜋1]⇓, and Σ;Γ ⊢ 𝑡 @ .𝜋2 ≡
𝑢 @ .𝜋2 ∶ 𝐵[𝑡 @ .𝜋1].

Postulate 8 (No infinite chains). If Σ;Γ ⊢ 𝑡 ∶ 𝐴, then there is no infinite
chain of reductions Σ;Γ ⊢ _ ⟶δη _ ∶ 𝐴 that starts at 𝑡. That is, there does
not exist an infinite sequence of terms 𝑢0, 𝑢1, 𝑢2,… with 𝑢0 = 𝑡 such that, for
all 𝑖 ∈ ℕ, Σ;Γ ⊢ 𝑢𝑖 ⟶δη 𝑢𝑖+1 ∶ 𝐴.

Definition 2.50 (Set of free variables, strengthened: fv𝑥(𝑡)). The set of
free variables of 𝑡 strengthened by 𝑥 is denoted by fv𝑥(𝑡) and is defined as
fv𝑥(𝑡) ≝ {𝑦 − 1 | 𝑦 ∈ fv(𝑡), 𝑦 > 𝑥} ∪ {𝑦 | 𝑦 ∈ fv(𝑡), 𝑦 < 𝑥}.

Lemma 2.51 (Free variables in hereditary substitution). The following hold:

• If 𝑡[𝑢/𝑥] ⇓ 𝑟, then fv(𝑟) ⊆ fv𝑥(𝑡) ∪ fv(𝑢).

• If (𝑡 @ 𝑒) ⇓ 𝑟, then fv(𝑟) ⊆ fv(𝑡) ∪ fv(𝑒).

Proof. By mutual induction on the derivations.

• 𝑥[𝑢/𝑥] ⇓ 𝑢: fv(𝑢) ⊆ fv𝑥(𝑥) ∪ fv(𝑢).

• 𝑦[𝑢/𝑥] ⇓ 𝑦, 𝑦 < 𝑥: We have 𝑦 ∈ fv(𝑡) and 𝑦 < 𝑥; therefore, 𝑦 ∈ fv𝑥(𝑦).
Finally, fv(𝑦) ⊆ fv𝑥(𝑦) ⊆ fv𝑥(𝑦) ∪ fv(𝑢).

• 𝑦[𝑢/𝑥] ⇓ (𝑦 − 1), 𝑦 > 𝑥: We have 𝑦 ∈ fv(𝑡) and 𝑦 > 𝑥; therefore,
𝑦 − 1 ∈ fv𝑥(𝑦). Therefore, fv(𝑦 − 1) ⊆ fv𝑥(𝑦) ⊆ fv𝑥(𝑦) ∪ fv(𝑢).

34 CHAPTER 2. A DEPENDENTLY-TYPED LANGUAGE

• 𝑡 = 𝛼, 𝑡 = 𝕒, 𝑡 = if, 𝑡 = true, 𝑡 = false, 𝑡 = Bool or 𝑡 = Set: fv(𝑡) = ∅ ⊆
𝑆 ∪ fv(𝑢).

• (𝑓 𝑡)[𝑢/𝑥]⇓𝑟, with 𝑓[𝑢/𝑥]⇓𝑟1 and 𝑡[𝑢/𝑥]⇓𝑟2. By the induction hypothesis,
fv(𝑟1) ⊆ fv𝑥(𝑓)∪fv(𝑢), fv(𝑟2) ⊆ fv𝑥(𝑡)∪fv(𝑢), and fv(𝑟) ⊆ fv(𝑟1)∪
fv(𝑟2). Therefore, fv(𝑟) ⊆ fv𝑥(𝑓) ∪ fv𝑥(𝑡) ∪ fv(𝑢). By Definition 2.18
(free variables in a term), fv(𝑓 𝑡) = fv(𝑓) ∪ fv(𝑡). Thus, fv𝑥(𝑓 𝑡) =
fv𝑥(𝑓) ∪ fv𝑥(𝑡). Therefore, fv(𝑟) ⊆ fv𝑥(𝑓 𝑡) ∪ fv(𝑢).

• (𝑓 .𝜋1)[𝑢/𝑥] ⇓ 𝑟, with 𝑓[𝑢/𝑥] ⇓ 𝑟1 and (𝑟1 @ .𝜋1) ⇓ 𝑟. By the induc-
tion hypothesis, fv(𝑟) ⊆ fv(𝑟1), and fv(𝑟1) ⊆ fv𝑥(𝑓) ∪ fv(𝑢). By
Definition 2.18 (free variables in a term), fv(𝑓 .𝜋1) = fv(𝑓); therefore,
fv𝑥(𝑓 .𝜋1) = fv𝑥(𝑓). Thus, fv(𝑟) ⊆ fv𝑥(𝑓 .𝜋1) ∪ fv(𝑢).

• (𝑓 .𝜋2)[𝑢/𝑥] ⇓ 𝑟, with 𝑓[𝑢/𝑥] ⇓ 𝑟1 and (𝑟1 @ .𝜋2) ⇓ 𝑟: Analogously to the
previous case, replacing .𝜋1 by .𝜋2.

• (𝜆.𝑡)[𝑢/𝑥] ⇓ (𝜆.𝑟), with 𝑡[𝑢(+1)/𝑥 + 1] ⇓ 𝑟: By the induction hypothesis,
fv(𝑟) ⊆ fv𝑥+1(𝑡) ∪ fv(𝑢(+1)). By Definition 2.18 (free variables in a
term), fv(𝜆.𝑟) = fv(𝑟) − 1 and fv(𝜆.𝑡) = fv(𝑡) − 1. By definition,
fv𝑥(𝜆.𝑡) = fv𝑥+1(𝑡)−1. By Remark 2.28, fv(𝑢(+1))−1 = fv(𝑢)(+1)−
1 = fv(𝑢). Therefore, fv(𝜆.𝑟) = fv(𝑟) − 1 ⊆ (fv𝑥+1(𝑡) ∪ fv(𝑢(+1))) −
1 = (fv𝑥+1(𝑡) − 1) ∪ (fv(𝑢(+1)) − 1) = fv𝑥(𝜆.𝑡) ∪ fv(𝑢).

• (Π𝐴𝐵)[𝑢/𝑥] ⇓ (Π𝐴′𝐵′), with 𝐴[𝑢/𝑥] ⇓ 𝐴′ and 𝐵[𝑢(+1)/𝑥 + 1] ⇓ 𝐵′: By
the induction hypothesis, fv(𝐴′) ⊆ fv𝑥(𝐴) ∪ fv(𝑢), and fv(𝐵′) ⊆
fv𝑥+1(𝐵) ∪ fv(𝑢(+1)). By Definition 2.18 (free variables in a term),
fv(Π𝐴′𝐵′) = fv(𝐴′) ∪ (fv(𝐵′) − 1) ⊆ fv𝑥(𝐴) ∪ fv(𝑢) ∪ (fv𝑥+1(𝐵) −
1) ∪ (fv(𝑢(+1)) − 1) = fv𝑥(Π𝐴𝐵) ∪ fv(𝑢).

• (Σ𝐴𝐵)[𝑢/𝑥]⇓(Σ𝐴′𝐵′), with 𝐴[𝑢/𝑥]⇓𝐴′ and 𝐵[𝑢(+1)/𝑥+1]⇓𝐵′: Anal-
ogous to the previous case, replacing Π with Σ.

• ⟨𝑡1, 𝑡2⟩[𝑢/𝑥] ⇓ ⟨𝑡′1, 𝑡′2⟩, with 𝑡1[𝑢/𝑥] ⇓ 𝑡′1 and 𝑡2[𝑢/𝑥] ⇓ 𝑡′2. By the induc-
tion hypothesis, fv(𝑡′1) ⊆ fv𝑥(𝑡1) ∪ fv(𝑢) and fv(𝑡′2) ⊆ fv𝑥(𝑡2) ∪ fv(𝑢).
Therefore, fv(⟨𝑡′1, 𝑡′2⟩) = fv(𝑡′1) ∪ fv(𝑡′2) ⊆ fv𝑥(𝑡1) ∪ fv𝑥(𝑡2) ∪ fv(𝑢) =
fv𝑥(⟨𝑡1, 𝑡2⟩) ∪ fv(𝑢).

• ℎ  ⃗𝑒 @ 𝑒′ ⇓ (ℎ  ⃗𝑒 𝑒′): By Definition 2.18 (free variables in a term), we have
fv(ℎ  ⃗𝑒 𝑒′) = fv(ℎ  ⃗𝑒) ∪ fv(𝑒′).

• ⟨𝑡1, 𝑡2⟩ @ .𝜋1 ⇓ 𝑡1: fv(𝑡1) ⊆ fv(𝑡1) ∪ fv(𝑡2) ∪ ∅ = fv(⟨𝑡1, 𝑡2⟩) ∪ fv(.𝜋1).
• ⟨𝑡1, 𝑡2⟩ @ .𝜋2 ⇓ 𝑡2: fv(𝑡2) ⊆ fv(𝑡1) ∪ fv(𝑡2) ∪ ∅ = fv(⟨𝑡1, 𝑡2⟩) ∪ fv(.𝜋2).
• 𝜆.𝑡 @ 𝑢 ⇓ 𝑟 with 𝑡[𝑢/0] ⇓ 𝑟: By the induction hypothesis, fv(𝑟) ⊆

fv0(𝑡) ∪ fv(𝑢). By definition, fv0(𝑡) = fv(𝑡) − 1 = fv(𝜆.𝑡). Therefore,
fv(𝑟) ⊆ fv(𝜆.𝑡) ∪ fv(𝑢).

Postulate 9 (Commuting of hereditary substitution and application). As-
sume Σ;Γ, 𝑉 ⊢ 𝑢 ∶ Π ⃗𝐴𝐵, and ⃗𝑡 such that Σ;Γ, 𝑉 ⊢ 𝑡𝑖 ∶ 𝐴[⃗𝑡1,…,𝑖−1]. Finally, let
⃗𝑣 be such that Σ;Γ, 𝑉 ⊢ 𝑣 ∶ 𝑉 . Then (𝑢 @ ⃗𝑡)[𝑣] = (𝑢[𝑣] @ 𝑡1[𝑣] … 𝑡𝑛[𝑣]).

2.14. PROPERTIES 35

2.14.3 Typing and equality
Lemma 2.52 (Π inversion). If Σ;Γ ⊢ Π𝐴𝐵 ∶ 𝑇 , then Σ;Γ ⊢ 𝑇 ≡ Set type,
Σ;Γ ⊢ 𝐴 ∶ Set and Σ;Γ,𝐴 ⊢ 𝐵 ∶ Set. Also, by Remark 2.15 (there is only set),
if Σ;Γ ⊢ Π𝐴𝐵 type, then Σ;Γ ⊢ 𝐴 type and Σ;Γ,𝐴 ⊢ 𝐵 type.

Proof. By induction on the derivation:

• Case conv: By the premises of the rule, Σ;Γ ⊢ Π𝐴𝐵 ∶ 𝑇 ′ for some
𝑇 ′, and Σ;Γ ⊢ 𝑇 ′ ≡ 𝑇 type. By the induction hypothesis, Σ;Γ ⊢ 𝐴 ∶
Set, Σ;Γ,𝐴 ⊢ 𝐵 ∶ Set and Σ;Γ ⊢ 𝑇 ′ ≡ Set type. By transitivity and
symmetry of equality, Σ;Γ ⊢ 𝑇 ≡ Set type.

• Case pi: 𝑇 = Set, and by the premises of the rule, Σ;Γ ⊢ 𝐴 ∶ Set and
Σ;Γ,𝐴 ⊢ 𝐵 ∶ Set.

Postulate 10 (Injectivity of Π). If Σ;Γ ⊢ Π𝐴𝐵 ≡ Π𝐴′𝐵′ type, then Σ;Γ ⊢
𝐴 ≡ 𝐴′ type and Σ;Γ,𝐴 ⊢ 𝐵 ≡ 𝐵′ type. Also, by Remark 2.15 (there is
only set), if Σ;Γ ⊢ Π𝐴𝐵 ≡ Π𝐴′𝐵′ ∶ Set, then Σ;Γ ⊢ 𝐴 ≡ 𝐴′ ∶ Set and
Σ;Γ,𝐴 ⊢ 𝐵 ≡ 𝐵′ ∶ Set.

Lemma 2.53 (Σ inversion). If Σ;Γ ⊢ Σ𝐴𝐵 ∶ 𝑇 , then Σ;Γ ⊢ 𝑇 ≡ Set type
Σ;Γ ⊢ 𝐴 ∶ Set and Σ;Γ,𝐴 ⊢ 𝐵 ∶ Set. Also, by Remark 2.15 (there is only set),
if Σ;Γ ⊢ Σ𝐴𝐵 type, then Σ;Γ ⊢ 𝐴 type and Σ;Γ,𝐴 ⊢ 𝐵 type.

Proof. Analogous to the proof for Lemma 2.52 (Π inversion).

Postulate 11 (Injectivity of Σ). If Σ;Γ ⊢ Σ𝐴𝐵 ≡ Σ𝐴′𝐵′ type, then Σ;Γ ⊢
𝐴 ≡ 𝐴′ type and Σ;Γ,𝐴 ⊢ 𝐵 ≡ 𝐵′ type. Also, by Remark 2.15 (there is
only set), if Σ;Γ ⊢ Σ𝐴𝐵 ≡ Σ𝐴′𝐵′ ∶ Set, then Σ;Γ ⊢ 𝐴 ≡ 𝐴′ ∶ Set and
Σ;Γ,𝐴 ⊢ 𝐵 ≡ 𝐵′ ∶ Set.

Lemma 2.54 (Term equality is an equivalence relation). Judgmental equality
of terms (Σ;Γ ⊢ _ ≡ _ ∶ 𝐴 is a reflexive, symmetric and transitive relation.

• Reflexivity: If Σ;Γ ⊢ 𝑡 ∶ 𝐴, then Σ;Γ ⊢ 𝑡 ≡ 𝑡 ∶ 𝐴.

• Symmetry: If Σ;Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴, then Σ;Γ ⊢ 𝑢 ≡ 𝑡 ∶ 𝐴.

• Transitivity: If Σ;Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴 and Σ;Γ ⊢ 𝑢 ≡ 𝑣 ∶ 𝐴, then Σ;Γ ⊢ 𝑡 ≡ 𝑣 ∶
𝐴.

Proof. Reflexivity follows by induction on the typing derivation for 𝑡. Each
typing rule [x] is replaced by the corresponding equality rule [x]-eq.

Symmetry and transitivity are rules themselves.

Remark 2.55 (Type equality is an equivalence relation). Judgmental equality
of types (Σ;Γ ⊢ _ ≡ _ type is a reflexive, symmetric and transitive relation:

• Reflexivity: If Σ;Γ ⊢ 𝐴 type, then Σ;Γ ⊢ 𝐴 ≡ 𝐴 type.

• Symmetry: If Σ;Γ ⊢ 𝐴 ≡ 𝐵 type, then Σ;Γ ⊢ 𝐵 ≡ 𝐴 type.

36 CHAPTER 2. A DEPENDENTLY-TYPED LANGUAGE

• Transitivity: If Σ;Γ ⊢ 𝐴 ≡ 𝐵 ∶ type and Σ;Γ ⊢ 𝐵 ≡ 𝐶 type, then
Σ;Γ ⊢ 𝐴 ≡ 𝐶 type.

Proof. By Remark 2.15 (there is only set) and Lemma 2.54 (term equality is
an equivalence relation).

Lemma 2.56 (Neutral inversion).

• If Σ;Γ ⊢ 𝑓 𝑡  ⃗𝑒 ∶ 𝑇 , then Σ;Γ ⊢ 𝑓 ∶ Π𝐴𝐵 and Σ;Γ ⊢ 𝑡 ∶ 𝐴 for some 𝐴 and
𝐵, with 𝐵[𝑡]⇓.

• If Σ;Γ ⊢ 𝑓 .𝜋1  ⃗𝑒 ∶ 𝑇 then Σ;Γ ⊢ 𝑓 ∶ Σ𝐴𝐵.

• If Σ;Γ ⊢ 𝑓 .𝜋2  ⃗𝑒 ∶ 𝑇 , then Σ;Γ ⊢ 𝑓 ∶ Σ𝐴𝐵 for some 𝐴, 𝐵, with 𝐵[𝑓]⇓.

Proof. We consider the first case; the other two are analogous.
By induction on the derivation, we obtain that Σ;Γ ⊢ 𝑓 𝑡 ∶ 𝑇 , with app

being the last rule in the derivation. By the premises of the rule, Σ;Γ ⊢ 𝑓 ∶
Π𝐴𝐵 and Σ;Γ ⊢ 𝑡 ∶ 𝐴 for some 𝐴, 𝐵, and 𝐵[𝑡]⇓.

Lemma 2.57 (Type of 𝜆-abstraction). If Σ;Γ ⊢ 𝜆.𝑡 ∶ 𝑇 , then there are 𝐴, 𝐵
such that Σ;Γ ⊢ Π𝐴𝐵 ≡ 𝑇 type and Σ;Γ,𝐴 ⊢ 𝑡 ∶ 𝐵.

Proof. By induction on the derivation (as in the proof for Lemma 2.52), we
obtain that Σ;Γ ⊢ 𝜆.𝑡 ∶ Π𝐴𝐵, with abs being the last rule in the derivation,
and Σ;Γ ⊢ Π𝐴𝐵 ≡ 𝑇 type. By the premises of the rule, Σ;Γ,𝐴 ⊢ 𝑡 ∶ 𝐵.

Corollary 2.58 (Iterated 𝜆-inversion). If Σ;Γ ⊢ 𝜆𝑛.𝑡 ∶ 𝑇 , then Σ;Γ ⊢ 𝑇 ≡
Π ⃗⃗⃗⃗⃗⃗𝐴𝑛𝐵 type, with Σ;Γ, ⃗⃗ ⃗⃗ ⃗⃗𝐴𝑛 ⊢ 𝑡 ∶ 𝐵.

Proof. By induction on 𝑛, using Lemma 2.57.

Lemma 2.59 (Abstraction equality inversion). We have Σ;Γ ⊢ 𝜆𝑛.𝑡 ≡ 𝜆𝑛.𝑢 ∶
Π ⃗⃗⃗⃗ ⃗⃗𝐴𝑛𝐵, if and only if Σ;Γ, ⃗⃗ ⃗⃗ ⃗⃗𝐴 ⊢ 𝑡 ≡ 𝑢 ∶ 𝐵.

Proof. ⇒ By induction on 𝑛, using Postulate 2 (typing of hereditary applica-
tion).

⇐ By iterated application of the abs-eq rule.

Lemma 2.60 (Type of a pair). If Σ;Γ ⊢ 𝑡 ∶ 𝑇 , then there are 𝐴 and 𝐵 such
that Σ;Γ ⊢ Σ𝐴𝐵 ≡ 𝑇 type, Σ;Γ ⊢ 𝑡1 ∶ 𝐴. 𝐵[𝑡1] ⇓ and Σ;Γ ⊢ 𝑡2 ∶ 𝐵[𝑡1].

Proof. By induction on the derivation (as in the proof for Lemma 2.52), we
obtain that Σ;Γ ⊢ ⟨𝑡1, 𝑡2⟩ ∶ Σ𝐴𝐵, with pair being the last rule in the deriva-
tion, and Σ;Γ ⊢ Σ𝐴𝐵 ≡ 𝑇 type. By the premises of the rule, Σ;Γ ⊢ 𝑡1 ∶ 𝐴,
𝐵[𝑡1] ⇓ and Σ;Γ ⊢ 𝑡2 ∶ 𝐵[𝑡1].

2.14. PROPERTIES 37

2.14.4 Contexts
Adding new variables to a context does not invalidate existing judgments:
Remark 2.61 (Reflexivity of context equality). Context equality is reflexive
(i.e. if Σ ⊢ Γ ctx, then Σ ⊢ Γ ≡ Γ ctx).

Proof. By induction on the derivation of Σ ⊢ Γ ctx, using reflexivity of the
type equality (Remark 2.55).

Lemma 2.62 (Context weakening). Let 𝐽 be a judgment. If Σ;Γ1 ⊢ 𝐽 ,
Σ ⊢ Γ1, Γ2 ctx, and |Γ2| = 𝑛, then Σ;Γ1, Γ2 ⊢ 𝐽 (+𝑛).

Proof. By induction on the derivation of Σ;Γ1 ⊢ 𝐽 . For most cases, it suffices
to apply the induction hypothesis to the premises, and use the same rule to
derive the conclusion. We show a representative subset of cases below:

• ctx-empty: Then Γ1 = · and 𝐽 = · ctx. By the assumption, Σ ⊢
Γ1, Γ2 ctx. Note that ·(+𝑛) = ·. Therefore, Γ1, Γ2, ·(+𝑛) = Γ1, Γ2, thus
Σ ⊢ Γ1, Γ2, ·(+𝑛) ctx.

• ctx-var: Then 𝐽 = Δ,𝐴 ctx, Σ ⊢ Γ1,Δ,𝐴 ctx, with Σ;Γ1,Δ ⊢ 𝐴 type
and Σ ⊢ Γ1,Δ ctx. Let 𝑚 = |Δ|. By the induction hypothesis, we
have Σ;Γ1, Γ2, (Δ ⊢ 𝐴 type)(+𝑛). This gives Σ;Γ1, Γ2,Δ(+𝑛) ⊢
𝐴((+𝑛)+𝑚) type and Σ;Γ1, Γ2,Δ(+𝑛) ctx. By the ctx-var rule, we have
Σ ⊢ Γ1, Γ2,Δ(+𝑛), 𝐴((+𝑛)+𝑚) ctx; that is, Σ;Γ1, Γ2 ⊢ (Δ,𝐴 ctx)(+𝑛)

• type, type-eq: Apply the induction hypothesis to the premises, then
use the same derivation rule.

• ctx-empty-eq: Analogous to ctx-empty, use Remark 2.61 (reflexivity
of context equality) to show Σ ⊢ Γ2 ≡ Γ2 ctx.

• ctx-var-eq: Analogous to ctx-var.

• pair: (Σ;Γ1,Δ ⊢ ⟨𝑡, 𝑢⟩ ∶ Σ𝐴𝐵), with 𝐵[𝑡]⇓. Let 𝑚 = |Δ|. By
the induction hypothesis, Σ;Γ1, Γ2,Δ(+𝑛) ⊢ 𝑡(+𝑛)+𝑚 ∶ 𝐴(+𝑛)+𝑚,
Σ;Γ1, Γ2,Δ(+𝑛), 𝐴((+𝑛)+𝑚) ⊢ 𝐵((+𝑛)+𝑚) type, and Σ;Γ1, Γ2,Δ(+𝑛) ⊢
𝑢((+𝑛)+𝑚) ∶ 𝐵[𝑡]((+𝑛)+𝑚). By Lemma 2.39 (hereditary substitu-
tion and application commute with renaming), 𝐵[𝑡]((+𝑛)+𝑚) =
𝐵((+𝑛)+𝑚+1)[𝑡((+𝑛)+𝑚)]. By the pair rule and Definition 2.26 (ap-
plication of a renaming to a term), Σ;Γ1, Γ2,Δ(+𝑛) ⊢ ⟨𝑡, 𝑢⟩((+𝑛)+𝑚) ∶
(Σ𝐴𝐵)((+𝑛)+𝑚).

• head, then var: Σ;Γ1,Δ ⊢ 𝑥 ∶ 𝐴(+(𝑥 + 1)), with Σ;Γ1,Δ ⊢ 𝑥 ⇒
𝐴(+(𝑥 + 1)) for some 𝐴. We want to show Σ;Γ1, Γ2,Δ(+𝑛) ⊢ 𝑥((+𝑛)+𝑚) ∶
𝐴(+(𝑥 + 1))((+𝑛)+𝑚). Σ ⊢ Γ1,Δ ctx, so, by the induction hypothesis,
Σ;Γ1, Γ2 ⊢ Δ(+𝑛) ctx. Let 𝑚 = |Δ|.

– If 𝑥 < |Δ|: Then we have Σ;Γ1,Δ′, 𝐴,Δ″ ⊢ 𝑥 ⇒ 𝐴(+(𝑥 + 1)),
where 𝑥 = |Δ″|. By the var rule, Σ;Γ1, Γ2,Δ′(+𝑛), 𝐴((+𝑛)+∣Δ′∣),
Δ″((+𝑛)+∣Δ′∣+1) ⊢ 𝑥 ⇒ 𝐴((+𝑛)+∣Δ′∣)(+(𝑥+1)). Note that |Δ′| + 𝑥 + 1 =
𝑚. Therefore, this is the same as Σ;Γ1, Γ2,Δ(+𝑛) ⊢ 𝑥((+𝑛)+𝑚) ⇒
𝐴(+(𝑥+1))((+𝑛)+𝑚).

38 CHAPTER 2. A DEPENDENTLY-TYPED LANGUAGE

– If 𝑥 ≥ |Δ|: Then Σ;Γ′
1, 𝐴, Γ″

1 ,Δ ⊢ 𝑥 ⇒ 𝐴(+(𝑥+1)), where
𝑥 = |Γ″

1 ,Δ|. Also, by the var rule, Σ;Γ′
1, 𝐴, Γ″

1 , Γ2,Δ(+𝑛) ⊢
(𝑥+𝑛) ⇒ 𝐴(+(𝑥+𝑛+1)), which is the same as Σ;Γ′

1, 𝐴, Γ″
1 , Γ2,Δ(+𝑛) ⊢

𝑥((+𝑛)+𝑚) ⇒ 𝐴(+(𝑥+1))((+𝑛)+𝑚).

By the head rule, Σ;Γ1, Γ2,Δ(+𝑛) ⊢ 𝑥((+𝑛)+𝑚) ∶ 𝐴(+(𝑥+1))((+𝑛)+𝑚).

• delta-meta: Σ;Γ1,Δ ⊢ 𝛼  ⃗𝑒 ≡ 𝑡′ ∶ 𝑇 , with 𝛼 ∶= 𝑡 ∶ 𝐴 ∈ Σ,
Σ;Γ1,Δ ⊢ 𝛼  ⃗𝑒 ∶ 𝑇 , 𝑡 @ ⃗𝑒 ⇓ 𝑡′ and Σ;Γ1,Δ ⊢ 𝑡′ ∶ 𝑇 . By the in-
duction hypothesis, Σ;Γ1, Γ2,Δ(+𝑛) ⊢ (𝛼  ⃗𝑒)((+𝑛)+𝑚) ∶ 𝑇 ((+𝑛)+𝑚), that
is, Σ;Γ1, Γ2,Δ(+𝑛) ⊢ 𝛼  ⃗𝑒((+𝑛)+𝑚) ∶ 𝑇 ((+𝑛)+𝑚). Also by the induction
hypothesis, Σ;Γ1, Γ2,Δ(+𝑛) ⊢ 𝑡′((+𝑛)+𝑚) ∶ 𝑇 ((+𝑛)+𝑚).
By Lemma 2.39 (hereditary substitution and application commute with
renaming), 𝑡((+𝑛)+𝑚)  @   ⃗𝑒((+𝑛)+𝑚) ⇓ 𝑡′((+𝑛)+𝑚), that is, 𝑡  @   ⃗𝑒((+𝑛)+𝑚) ⇓
𝑡′((+𝑛)+𝑚).
By the delta-meta rule, Σ;Γ1, Γ2,Δ(+𝑛) ⊢ 𝛼  ⃗𝑒((+𝑛)+𝑚) ≡ 𝑡′((+𝑛)+𝑚) ∶
𝑇 ((+𝑛)+𝑚).

Lemma 2.63 (Preservation of judgments by type conversion). Let 𝐽 be a
judgment such that Σ;Γ ⊢ 𝐽 .

• If Σ ⊢ Γ ≡ Γ′ ctx, then Σ;Γ′ ⊢ 𝐽 .

• Furthermore, if 𝐽 = (𝑡 ∶ 𝐴) (or 𝐽 = (𝑡 ≡ 𝑢 ∶ 𝐴)), and Σ;Γ ⊢ 𝐴 ≡
𝐴′ type (that is, Σ ⊢ Γ,𝐴 ≡ Γ′, 𝐴′ ctx), then Σ;Γ′ ⊢ 𝑡 ∶ 𝐴′ (respectively,
Σ;Γ′ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴′).

Proof. We prove the simpler case where the type of only one variable changes
(that is, Γ = Γ1, 𝐴, Γ2, Γ′ = Γ1, 𝐴′, Γ2, and Σ;Γ1 ⊢ 𝐴 ≡ 𝐴′ type). For the
general case, we apply the lemma to each of the variables whose types differ
between Γ and Γ′.

We proceed by induction on the derivation of 𝐽 , applying the rules as is.
The change of the type of a variable is only relevant in two cases:

• Rule var: This rule is always followed by either head or head-eq. We
apply Lemma 2.62 (context weakening) Σ;Γ1 ⊢ 𝐴 ≡ 𝐴′ type, and then
use either the conv or the conv-eq rules to obtain a judgment in the
new context.

• Rule ctx-var-eq: By reflexivity, Σ;Γ1 ⊢ 𝐴′ ≡ 𝐴′ type.

Σ ⊢ Γ1 ≡ Γ1 ctx Σ;Γ1 ⊢ 𝐴′ ≡ 𝐴′ type ctx-var-eqΣ ⊢ Γ1, 𝐴′ ≡ Γ1, 𝐴′ ctx

For the second statement, we apply the conv or conv-eq rules to the
whole judgment.

Lemma 2.64 (Equality of contexts is an equivalence relation). Context equal-
ity is a reflexive, transitive and symmetric relation.

2.14. PROPERTIES 39

Proof. Reflexivity follows from Remark 2.61 (reflexivity of context equality).
Symmetry and transitivity follow by induction on the corresponding deriva-

tions, by applying Lemma 2.63 (preservation of judgments by type conversion),
and symmetry and transitivity of type equality (Remark 2.55).

Lemma 2.65 (No extraneous variables in term). If Σ;Γ ⊢ 𝑡 ∶ 𝐴, then fv(𝑡) ⊆
{0,…, |Γ| − 1}.

Proof. By induction on the derivation of Σ;Γ ⊢ 𝑡 ∶ 𝐴, for each variable 𝑥 freely
occurring in 𝑡 there will be an instance of the var rule of the following form:

Σ ⊢ Γ,Δ ctx Γ,Δ = Γ1, 𝐴, Γ2,Δ 𝑛 = |Γ2,Δ|
var

Σ;Γ ⊢ (𝑥 + |Δ|) ⇒ 𝐴(+(𝑛+1))

Because 𝑛 = 𝑥 + |Δ| = |Γ2| + |Δ|, we have 𝑥 = |Γ2| ∈ {0,…, |Γ| − 1}.

Corollary 2.66 (The signature is closed). Let Σ be a well-formed signature
(Σ sig). If 𝛼 ∶ 𝐴 ∈ Σ or 𝕒 ∶ 𝐴 ∈ Σ, then fv(𝐴) = ∅. Also, if 𝛼 ≔ 𝑡 ∶ 𝐴 ∈ Σ,
then fv(𝑡) = fv(𝐴) = ∅.

2.14.5 Signatures
Definition 2.67 (Signature subsumption: Σ ⊆ Σ′). If Σ sig, Σ′ sig, and all
the declarations in Σ are present in Σ′, then we say Σ ⊆ Σ′.

That is, we have Σ ⊆ Σ′ if, for every Σ1, Σ2:

(i) if Σ = Σ1, 𝕒 ∶ 𝐴,Σ2, there are Σ′
1 and Σ′

2 such that Σ′ = Σ′
1, 𝕒 ∶ 𝐴,Σ′

2.

(ii) and, if Σ = Σ1, 𝛼 ∶ 𝐴,Σ2, then there are Σ′
1 and Σ′

2 such that Σ′ =
Σ′

1, 𝛼 ∶ 𝐴,Σ′
2.

(iii) and, if Σ = Σ1, 𝛼 ≔ 𝑡 ∶ 𝐴,Σ2, then there are Σ′
1 and Σ′

2 such that
Σ′ = Σ′

1, 𝛼 ≔ 𝑡 ∶ 𝐴,Σ′
2.

Definition 2.68 (Well-formed reordering). We say that Σ is a well-formed
reordering of Σ′ if Σ ⊆ Σ′ and Σ′ ⊆ Σ.

Lemma 2.69 (Signature weakening). Let Σ, Σ′ be signatures such that Σ ⊆
Σ′, and 𝐽 a judgment. If Σ ⊢ 𝐽 , then Σ′ ⊢ 𝐽 .

Proof. By induction on the derivation. The constructed derivation for Σ′ ⊢ 𝐽
consists of the same rules as the derivation for Σ ⊢ 𝐽 .

Lemma 2.70 (Piecewise well-formedness of typing judgments). If a typing
or well-formedness judgment holds (i.e. has a derivation), then each of its
elements are themselves well-formed or well-typed.

More specifically:

(i) If Σ ⊢ Γ ctx, then Σ sig.

(ii) If Σ;Γ ⊢ ℎ ⇒ 𝐴, then Σ;Γ ⊢ 𝐴 type.

(iii) If Σ;Γ ⊢ 𝐴 type, then Σ ⊢ Γ ctx.

40 CHAPTER 2. A DEPENDENTLY-TYPED LANGUAGE

(iv) If Σ;Γ ⊢ 𝐴 ≡ 𝐵 type, then Σ;Γ ⊢ 𝐴 type and Σ;Γ ⊢ 𝐵 type.

(v) If Σ;Γ ⊢ 𝑡 ∶ 𝐴, then Σ;Γ ⊢ 𝐴 type.

(vi) If Σ;Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴, then Σ;Γ ⊢ 𝑡 ∶ 𝐴 and Σ;Γ ⊢ 𝑢 ∶ 𝐴.

Proof. The first two statements are proved individually by structural induction
on the derivation.

(i) If Σ ⊢ Γ ctx, then Σ sig.

• ctx-empty: By the premise, Σ sig.
• ctx-var: Then Γ = Γ′, 𝐴. By induction on Σ ⊢ Γ′ ctx, we have

Σ sig.

(ii) If Σ;Γ ⊢ ℎ ⇒ 𝐴, then Σ;Γ ⊢ 𝐴 type and Σ ⊢ Γ ctx.
In all five cases (var, meta1, meta2, atom and if), by the premises of
the rule, Σ ⊢ Γ ctx. It remains to show Σ;Γ ⊢ 𝐴 type.

• var: By Remark 2.13 (context inversion), Σ;Γ1 ⊢ 𝐴 type. By
Lemma 2.62 (context weakening), Σ;Γ ⊢ 𝐴 type.

• meta1, meta2, atom: By Remark 2.5 (signature inversion), Σ =
Σ1, Σ2 with Σ1; · ⊢ 𝐴 type. By Lemma 2.69 (signature weakening),
Σ; · ⊢ 𝐴 type. By Lemma 2.62, Σ;Γ ⊢ 𝐴 type.

• if: By the pi, bool, set, var, head, true, false and app rules,
and then the type rule, Σ;Γ ⊢ (𝑋 ∶ Bool → Set) → (𝑦 ∶ Bool) →
𝑋 true → 𝑋 false → 𝑋 𝑦 type.

For the rest, we prove a stronger version using mutual induction.

iii) If Σ;Γ ⊢ 𝐴 type, then Σ ⊢ Γ ctx.
By mutual induction on the depth of the derivation.

• type: Follows by induction on Σ;Γ ⊢ 𝐴 ∶ Set.

iv) If Σ;Γ ⊢ 𝐴 ≡ 𝐵 type, then Σ;Γ ⊢ 𝐴 type, Σ;Γ ⊢ 𝐵 type, and Σ ⊢
Γ ctx.
By mutual induction on the depth of the derivation.

• type-eq: By induction on Σ;Γ ⊢ 𝐴 ≡ 𝐵 ∶ Set, we have Σ;Γ ctx,
Σ;Γ ⊢ 𝐴 ∶ Set and Σ;Γ ⊢ 𝐵 ∶ Set. By the type rule, Σ;Γ ⊢ 𝐴 type
and Σ;Γ ⊢ 𝐵 type.

v) If Σ;Γ ⊢ 𝑡 ∶ 𝐴, then Σ;Γ ⊢ 𝐴 type and Σ ⊢ Γ ctx.

• bool, set: By the premises, Σ ⊢ Γ ctx. By the set and type
rules, Σ;Γ ⊢ Set type.

• pi, sigma: By induction on Σ;Γ ⊢ 𝐴 ∶ Set.
• true, false: By the premises, Σ ⊢ Γ ctx. By the bool and type

rules, Σ;Γ ⊢ Set type.

2.14. PROPERTIES 41

• abs: By induction, Σ ⊢ Γ,𝐴 ctx and Σ;Γ,𝐴 ⊢ 𝐵 type. By Re-
mark 2.13 (context inversion), Σ ⊢ Γ ctx and Σ;Γ ⊢ 𝐴 type. By
Remark 2.15, Σ;Γ ⊢ 𝐴 ∶ Set and Σ;Γ,𝐴 ⊢ 𝐵 ∶ Set. By the pi and
type rules, Σ;Γ ⊢ Π𝐴𝐵 type.

• pair: By induction, Σ ⊢ Γ ctx and Σ;Γ ⊢ 𝐴 type. By Re-
mark 2.15, Σ;Γ ⊢ 𝐴 ∶ Set. By the premises, Σ;Γ ⊢ 𝐵 ∶ Set. By the
sigma and type rules, Σ;Γ ⊢ Σ𝐴𝐵 type.

• head: Follows by the premise Σ;Γ ⊢ ℎ ⇒ 𝐴 and (ii).
• proj1: By induction, Σ ⊢ Γ ctx and Σ;Γ ⊢ Σ𝐴𝐵 type. By Lemma

2.53 (Σ inversion) and Remark 2.15, Σ;Γ ⊢ 𝐴 type.
• proj2: By induction and lemma 2.53 (Σ inversion), Σ ⊢ Γ ctx, and

Σ;Γ,𝐴 ⊢ 𝐵 type. By Remark 2.15, Σ;Γ,𝐴 ⊢ 𝐵 ∶ Set. By the
proj1 rule, Σ;Γ ⊢ 𝑓 .𝜋1 ∶ 𝐴. By Postulate 1 and the type rule,
Σ;Γ ⊢ 𝐵[𝑓 .𝜋1] type.

• app: By induction and lemma 2.52 (Π inversion), Σ ⊢ Γ ctx, and
Σ;Γ,𝐴 ⊢ 𝐵 type. By Remark 2.15, Σ;Γ,𝐴 ⊢ 𝐵 ∶ Set. By the
premise, Σ;Γ ⊢ 𝑡 ∶ 𝐴. By Postulate 1 and the type rule, Σ;Γ ⊢
𝐵[𝑓 .𝜋1] type.

• conv: By induction on Σ;Γ ⊢ 𝐴 ≡ 𝐵 type, we have Σ ⊢ Γ ctx.
Σ;Γ ⊢ 𝐵 type.

vi) If Σ;Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴, then Σ;Γ ⊢ 𝑡 ∶ 𝐴, Σ;Γ ⊢ 𝑢 ∶ 𝐴, Σ;Γ ⊢ 𝐴 type and
Σ ⊢ Γ ctx.

• bool-eq (resp. set-eq): By the bool (resp. set) rule, Σ;Γ ⊢
Bool ∶ Set (resp. Σ;Γ ⊢ Set ∶ Set). By the premise, Σ ⊢ Γ ctx. By
the set and type rules, Σ;Γ ⊢ Set type.

• pi-eq, sigma-eq: By the induction hypothesis, Σ;Γ ⊢ 𝐴 ∶ Set and
Σ;Γ,𝐴 ⊢ 𝐵 ∶ Set. By the pi (resp. sigma) rule, Σ;Γ ⊢ Π𝐴𝐵 ∶ Set
(resp. Σ;Γ ⊢ Σ𝐴𝐵 ∶ Set). Analogously, Σ;Γ ⊢ Π𝐴′𝐵′ ∶ Set (resp.
Σ;Γ ⊢ Σ𝐴′𝐵′ ∶ Set). By induction, Σ;Γ ⊢ Set type and Σ ⊢ Γ ctx.

• true-eq (resp. false-eq): By the true (resp. false) rule, Σ;Γ ⊢
true ∶ Bool (resp. Σ;Γ ⊢ false ∶ Bool). By the premise, Σ ⊢ Γ ctx.
By the bool and type rules, Σ;Γ ⊢ Bool ∶ type.

• abs-eq: By the induction hypothesis, Σ;Γ ⊢ 𝑡 ∶ 𝐵, Σ;Γ,𝐴 ⊢
𝐵 type and Σ ⊢ Γ,𝐴 ctx. By the abs rule, Σ;Γ ⊢ 𝜆.𝑡 ∶ Π𝐴𝐵.
Analogously, Σ;Γ ⊢ 𝜆.𝑢 ∶ Π𝐴𝐵.
By Remark 2.13 (context inversion), Σ ⊢ Γ ctx and Σ;Γ ⊢ 𝐴 type.
By Remark 2.15 and the pi rule, Σ;Γ ⊢ Π𝐴𝐵 type.

• pair-eq: By the induction hypothesis, Σ;Γ ⊢ 𝑡1 ∶ 𝐴 and Σ;Γ ⊢ 𝑡2 ∶
𝐵[𝑡1]. By rule pair, Σ;Γ ⊢ ⟨𝑡1, 𝑡2⟩ ∶ Σ𝐴𝐵.
By the premise, Σ;Γ,𝐴 ⊢ 𝐵 type. By Remark 2.15, By reflexivity,
Σ;Γ,𝐴 ⊢ 𝐵 ≡ 𝐵 ∶ Set. By the premise, Σ;Γ ⊢ 𝑡1 ≡ 𝑢1 ∶ 𝐴. By
Postulate 4, Σ;Γ ⊢ 𝐵[𝑡1] ≡ 𝐵[𝑢1] ∶ Set, which, by the type rule
gives Σ;Γ ⊢ 𝐵[𝑡1] ≡ 𝐵[𝑢1] ∶ Set.

42 CHAPTER 2. A DEPENDENTLY-TYPED LANGUAGE

By the induction hypothesis, Σ;Γ ⊢ 𝑢1 ∶ 𝐴 and Σ;Γ ⊢ 𝑢2 ∶ 𝐵[𝑡1].
By the conv rule, Σ;Γ ⊢ 𝑢2 ∶ 𝐵[𝑢1]. By the pair rule, Σ;Γ ⊢
⟨𝑢1, 𝑢2⟩ ∶ Σ𝐴𝐵.
Also by the induction hypothesis, Σ ⊢ Γ ctx and Σ;Γ ⊢ 𝐴 type.
By Remark 2.15 and the sigma rule, Σ;Γ ⊢ Σ𝐴𝐵 type.

• head-eq: By the premise, Σ;Γ ⊢ ℎ ⇒ 𝐴. By item (ii), Σ;Γ ⊢
𝐴 type and Σ ⊢ Γ ctx. By the head rule, Σ;Γ ⊢ ℎ ∶ 𝐴.

• app-eq (Σ;Γ ⊢ 𝑓 𝑡 ≡ 𝑔 𝑢 ∶ 𝐵[𝑡]): By the induction hypothesis,
Σ;Γ ⊢ 𝑓 ∶ Π𝐴𝐵 and Σ;Γ ⊢ 𝑡 ∶ 𝐴. By the app rule, Σ;Γ ⊢ 𝑓 𝑡 ∶ 𝐵[𝑡].
Analogously, Σ;Γ ⊢ 𝑔 𝑢 ∶ 𝐵[𝑢].
By the induction hypothesis, Σ;Γ ⊢ Π𝐴𝐵 type and Σ;Γ ctx. By
Remark 2.15, Σ;Γ ⊢ Π𝐴𝐵 ∶ Set. By Lemma 2.52 (Π inversion),
Σ;Γ,𝐴 ⊢ 𝐵 ∶ Set. By reflexivity, Σ;Γ,𝐴 ⊢ 𝐵 ≡ 𝐵 ∶ Set. By
Postulate 1 (typing of hereditary substitution), Σ;Γ ⊢ 𝐵[𝑡] ∶ Set. By
Postulate 4 (congruence of hereditary substitution), Σ;Γ ⊢ 𝐵[𝑡] ≡
𝐵[𝑢] ∶ Set. By the sym and conv rules, Σ;Γ ⊢ 𝑔 𝑢 ∶ 𝐵[𝑢].

• proj1-eq (Γ ⊢ 𝑓 .𝜋1 ≡ 𝑔 .𝜋1 ∶ 𝐴): By the induction hypothesis,
Σ;Γ ⊢ 𝑓 ∶ Σ𝐴𝐵 with Σ;Γ ⊢ Σ𝐴𝐵 type and Σ ⊢ Γ ctx. By the
proj1 rule, Σ;Γ ⊢ 𝑓 .𝜋1 ∶ 𝐴. Analogously, Σ;Γ ⊢ 𝑔 .𝜋1 ∶ 𝐴.
By Lemma 2.53 (Σ inversion) and Remark 2.15, Σ;Γ ⊢ 𝐴 type.

• proj2-eq (Γ ⊢ 𝑓 .𝜋2 ≡ 𝑔 .𝜋2 ∶ 𝐵[𝑓 .𝜋1]): By the induction hypothe-
sis, Σ;Γ ⊢ 𝑓 ∶ Σ𝐴𝐵 with Σ;Γ ⊢ Σ𝐴𝐵 type and Σ ⊢ Γ ctx. By the
proj2 rule, Σ;Γ ⊢ 𝑓 .𝜋2 ∶ 𝐵[𝑓 .𝜋1].
By Remark 2.15 and Lemma 2.53 (Σ inversion), Σ;Γ,𝐴 ⊢ 𝐵 ∶ Set.
By the proj1 rule, Σ;Γ ⊢ 𝑓 .𝜋1 ∶ 𝐴. By Postulate 1 (typing of
hereditary substitution), Σ;Γ ⊢ 𝐵[𝑓 .𝜋1] ∶ Set. By Remark 2.15,
Σ;Γ ⊢ 𝐵[𝑓 .𝜋1] ∶ type.
Because Σ;Γ ⊢ 𝑓 ≡ 𝑔 ∶ Σ𝐴𝐵, by the proj1-eq rule, Σ;Γ ⊢ 𝑓 .𝜋1 ≡
𝑔 .𝜋1 ∶ 𝐴. By reflexivity, Σ;Γ,𝐴 ⊢ 𝐵 ≡ 𝐵 ∶ Set. By Postulate 4
(congruence of hereditary substitution), Σ;Γ ⊢ 𝐵[𝑓 .𝜋1] ≡ 𝐵[𝑔 .𝜋1] ∶
Set. Analogously to Σ;Γ ⊢ 𝑓 .𝜋2 ∶ 𝐵[𝑓 .𝜋1], Σ;Γ ⊢ 𝑔 .𝜋2 ∶ 𝐵[𝑔 .𝜋1].
By the sym and conv rules, Σ;Γ ⊢ 𝑔 .𝜋2 ∶ 𝐵[𝑓 .𝜋1].

• eta-abs (Σ;Γ ⊢ 𝑓 ≡ 𝜆.(𝑓 (+1)) 0 ∶ Π𝐴𝐵): From the rule premise,
Σ;Γ ⊢ 𝑓 ∶ Π𝐴𝐵. By the induction hypothesis, Σ;Γ ⊢ Π𝐴𝐵 type
and Σ ⊢ Γ ctx. By Lemma 2.52 (Π inversion) and Remark 2.15,
Σ;Γ ⊢ 𝐴 type, which means Σ ⊢ Γ,𝐴 ctx.
By the rule premise and Lemma 2.62 (context weakening), Σ;Γ,𝐴 ⊢
𝑓 (+1) ∶ Π𝐴𝐵. By the var and head rules, Σ;Γ,𝐴 ⊢ 0 ∶ 𝐴. By the
app rule, Σ;Γ,𝐴 ⊢ 𝑓 0 ∶ 𝐵. By the abs rule, Σ;Γ ⊢ 𝜆.(𝑓 (+1)) 0 ∶
Π𝐴𝐵.

• eta-pair (Σ;Γ ⊢ 𝑓 ≡ ⟨𝑓 .𝜋1, 𝑓  .𝜋2⟩ ∶ Σ𝐴𝐵): From the rule premise,
Σ;Γ ⊢ 𝑓 ∶ Σ𝐴𝐵. By the induction hypothesis, Σ;Γ ⊢ Σ𝐴𝐵 type
and Σ ⊢ Γ ctx.
By Remark 2.15 and Lemma 2.53 (Σ inversion), Σ;Γ,𝐴 ⊢ 𝐵 type.
By the proj1 and proj2 rules, Σ;Γ ⊢ 𝑓 .𝜋1 ∶ 𝐴 and Σ;Γ ⊢ 𝑓 .𝜋2 ∶
𝐵[𝑓 .𝜋1].

2.14. PROPERTIES 43

By Remark 2.36 (hereditary substitution by a neutral term),
𝐵[𝑓 .𝜋1]⇓.
By the pair rule, Σ;Γ ⊢ ⟨𝑓 .𝜋1, 𝑓  .𝜋2⟩ ∶ Σ𝐴𝐵.

• delta-meta, delta-if-true, delta-if-false (Σ;Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴):
By the premises, Σ;Γ ⊢ 𝑡 ∶ 𝐴 and Σ;Γ ⊢ 𝑢 ∶ 𝐴. By induction on the
premises, Σ ⊢ Γ ctx and Σ;Γ ⊢ 𝐴 type.

• conv-eq (Σ;Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐵): By the induction hypothesis, Σ;Γ ⊢ 𝑡 ∶
𝐴 and Σ;Γ ⊢ 𝑢 ∶ 𝐴. By the conv rule, Σ;Γ ⊢ 𝑡 ∶ 𝐵 and Σ;Γ ⊢ 𝑢 ∶ 𝐵.
By item iv), Σ;Γ ⊢ 𝐵 type and Σ ⊢ Γ ctx.

• trans (Σ;Γ ⊢ 𝑡 ≡ 𝑣 ∶ 𝐴): By induction on Σ;Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴, we
have Σ;Γ ⊢ 𝑡 ∶ 𝐴, Σ;Γ ⊢ 𝐴 type and Σ ⊢ Γ ctx. By induction on
Σ;Γ ⊢ 𝑢 ≡ 𝑣 ∶ 𝐴, we have Σ;Γ ⊢ 𝑣 ∶ 𝐴.

• sym (Σ;Γ ⊢ 𝑢 ≡ 𝑡 ∶ 𝐴): Follows by induction on Σ;Γ ⊢ 𝑡 ≡ 𝑢.

Lemma 2.69 (signature weakening) shows that judgments may hold in
larger signatures. We postulate that there is a converse property in the other
direction; namely, that judgments also hold in smaller signatures as long as
they only use constants present in the smaller signature.

Postulate 12 (Signature strengthening). Assume Σ ⊆ Σ′, and let 𝐽 be a
judgment. If Σ′ ⊢ 𝐽 and consts(𝐽) ⊆ decls(Σ), then Σ ⊢ 𝐽 .

We also postulate that an analogous property holds for variables in a con-
text:

Postulate 13 (Context strengthening). If Σ;Γ, 𝑥 ∶ 𝐴 ⊢ 𝐽 and 𝑥 ∉ fv(𝐽),
then Σ;Γ ⊢ 𝐽(−1).
Lemma 2.71 (Variables of irrelevant type). Let 𝐵 be such that Σ;Γ ⊢ 𝐵 type.
If Σ;Γ, 𝑥 ∶ 𝐴 ⊢ 𝐽 , and 𝑥 ∉ fv(𝐽), then Σ;Γ, 𝑥 ∶ 𝐵 ⊢ 𝐽 .

Proof. By Postulate 13, Lemma 2.62 (context weakening), and the fact that,
if 0 ∉ fv(𝐽), then 𝐽(−1)(+1) = 𝐽 .

Lemma 2.72 (No extraneous constants). If Σ ⊢ 𝐽 , then consts(𝐽) ⊆
decls(Σ).
Proof. By induction on the typing derivation, if Σ;Γ ⊢ 𝑡 ∶ 𝐴 then consts(𝑡) ⊆
decls(Σ).

Given a judgment 𝐽 , we use Lemma 2.70 (piecewise well-formedness of
typing judgments), induction on the corresponding derivations and the above
result to show consts(𝐽) ⊆ decls(Σ).

Remark 2.73 (Signature piecewise well-formed). By Corollary 2.66, all the
terms involved in a well-formed signature are closed terms. By Remark 2.5
(signature inversion), Lemma 2.69 (signature weakening) and Lemma 2.62
(context weakening), for any context Γ with Σ ⊢ Γ ctx, we have:

• If 𝕒 ∶ 𝐴 ∈ Σ, then Σ;Γ ⊢ 𝐴 type.

44 CHAPTER 2. A DEPENDENTLY-TYPED LANGUAGE

• If 𝛼 ∶ 𝐴 ∈ Σ, then Σ;Γ ⊢ 𝐴 type.

• If 𝛼 ≔ 𝑡 ∶ 𝐴 ∈ Σ, then Σ;Γ ⊢ 𝐴 type and Σ;Γ ⊢ 𝑡 ∶ 𝐴.

Remark 2.74 (Simplified delta-meta rule: delta-meta0). The following rule
is admissible:

Σ ⊢ Γ ctx 𝛼 ≔ 𝑡 ∶ 𝐴 ∈ Σ delta-meta0Σ;Γ ⊢ 𝛼 ≡ 𝑡 ∶ 𝐴

Proof. By Lemma 2.70 (piecewise well-formedness of typing judgments),
Σ sig. By the meta1 and head rules, Σ;Γ ⊢ 𝛼 ∶ 𝐴. By Remark 2.73
(signature piecewise well-formed), Σ;Γ ⊢ 𝑡 ∶ 𝐴. By Definition 2.33
(iterated hereditary elimination), 𝑡 @ 𝜀 ⇓ 𝑡. By the delta-meta rule,
Σ;Γ ⊢ 𝛼 ≡ 𝑡 ∶ 𝐴.

Lemma 2.75 (Uniqueness of typing for neutrals). Let 𝑓 be a neutral term
such that Σ;Γ ⊢ 𝑓 ∶ 𝐴 and Σ;Γ ⊢ 𝑓 ∶ 𝐵. Then Σ;Γ ⊢ 𝐴 ≡ 𝐵 type.

Proof. By induction on the structure of derivations for Σ;Γ ⊢ 𝑓 ∶ 𝐴 and
Σ;Γ ⊢ 𝑓 ∶ 𝐵.

We proceed by case analysis on the derivations:

• One of the derivations ends in a conv rule. Then, either:

• Σ;Γ ⊢ 𝑓 ∶ 𝐴′, with Σ;Γ ⊢ 𝐴′ ≡ 𝐴 type By the induction hy-
pothesis, Σ;Γ ⊢ 𝐴′ ≡ 𝐵 type. By transitivity and symmetry,
Σ;Γ ⊢ 𝐴 ≡ 𝐵 type.

• Σ;Γ ⊢ 𝑓 ∶ 𝐵′, with Σ;Γ ⊢ 𝐵′ ≡ 𝐵 type By the induction hypothe-
sis, Σ;Γ ⊢ 𝐴 ≡ 𝐵′ type. By transitivity, Σ;Γ ⊢ 𝐴 ≡ 𝐵 type.

• Both derivations end in a head rule: Necessarily, 𝐴 = 𝐵. By Lemma
2.70 (piecewise well-formedness of typing judgments), Σ;Γ ⊢ 𝐴 type.
By reflexivity, Σ;Γ ⊢ 𝐴 ≡ 𝐵 type.

• Both derivations end in an app rule: Then 𝑓 = 𝑓 ′ 𝑡, with Σ;Γ ⊢ 𝑓 ′ ∶ Π𝑈1𝑉1,
𝑉1[𝑡] ⇓ 𝐴, and Σ;Γ ⊢ 𝑓 ′ ∶ Π𝑈2𝑉2 with 𝑉2[𝑡] ⇓ 𝐵. Also, Σ;Γ ⊢ 𝑡 ∶ 𝑈1. By
the induction hypothesis, Σ;Γ ⊢ Π𝑈1𝑉1 ≡ Π𝑈2𝑉2 type. By Postulate 10
(injectivity of Π), Σ;Γ, 𝑈1 ⊢ 𝑉1 ≡ 𝑉2 type. By Postulate 4 (congruence
of hereditary substitution) and reflexivity, Σ;Γ ⊢ 𝑉1[𝑡] ≡ 𝑉2[𝑡] type,
that is, Σ;Γ ⊢ 𝐴 ≡ 𝐵 type.

• Both derivations end in a proj1 or proj2 rule: Analogous to the previous
case, using Postulate 11 (injectivity of Σ) instead.

Corollary 2.76 (Uniqueness of typing for equality of neutrals). Suppose that
Σ;Γ ⊢ ℎ  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒1 ≡ ℎ  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒2 ∶ 𝐵, and either Σ;Γ ⊢ ℎ  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒1 ∶ 𝐵′ or Σ;Γ ⊢ ℎ  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒2 ∶ 𝐵′. Then
Σ;Γ ⊢ ℎ  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒1 ≡ ℎ  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒2 ∶ 𝐵′.

Corollary 2.77 (Uniqueness of typing for heads). Assume that Σ;Γ ⊢ ℎ ∶ 𝐵.
Then Σ;Γ ⊢ ℎ ⇒ 𝐴, and Σ;Γ ⊢ 𝐴 ≡ 𝐵 type.

2.14. PROPERTIES 45

Proof. By induction on the typing derivation for Σ;Γ ⊢ ℎ ∶ 𝐵, we obtain
Σ;Γ ⊢ ℎ ⇒ 𝐴 (there are two possible cases, conv and head).

By the head rule, Σ;Γ ⊢ ℎ ∶ 𝐴. Because ℎ is a neutral term, by Lemma
2.75, Σ;Γ ⊢ 𝐴 ≡ 𝐵 type.

Lemma 2.78 (Variable types say everything). Suppose Σ;Γ′, 𝑦 ∶ 𝐴, Γ″, 𝑥 ∶
𝐴′ ⊢ 𝐽 holds, with Σ;Γ′, 𝑦 ∶ 𝐴, Γ″, 𝑥 ∶ 𝐴′ ⊢ 𝑥 ∶ 𝐴(+∣𝐴,Γ″,𝐴′∣). Then Σ;Γ′, 𝑦 ∶
𝐴, Γ″, 𝑥 ∶ 𝐴′ ⊢ 𝐽[𝑥 ↦ 𝑦]. (Note that, by Definition 2.21, the renaming [𝑥 ↦ 𝑦]
is such that it leaves all variables except 𝑥 unchanged.)

Proof. By Lemma 2.75 (uniqueness of typing for neutrals), Σ;Γ′, 𝑦 ∶ 𝐴, Γ″, 𝑥 ∶
𝐴′ ⊢ 𝐴′(+1) ≡ 𝐴(+∣𝐴,Γ″,𝐴′∣) type. By Postulate 13 (context strengthening) and
Remark 2.30, Σ;Γ′, 𝑦 ∶ 𝐴, Γ″ ⊢ 𝐴′ ≡ 𝐴(+(1+∣Γ″∣)) type.

Let Γ = Γ′, 𝑦 ∶ 𝐴, Γ″, 𝑥 ∶ 𝐴(+(1+∣Γ″∣)). By Lemma 2.63 (preservation of
judgments by type conversion), Σ;Γ ⊢ 𝐽 .

Σ;Γ ⊢ 𝐽[𝑥 ↦ 𝑦] follows by induction on the derivation for Σ;Γ ⊢ 𝐽 . We
detail the case for the head rule followed by the var rule:

Σ;Γ,Δ ctx var
Σ;Γ,Δ ⊢ 𝑥 ⇒ 𝐴(+(1+∣Γ″∣))(+(1+|Δ|))

head
Σ;Γ,Δ ⊢ 𝑥 ∶ 𝐴(+(1+∣Γ″∣))(+(1+|Δ|))

We need to show Σ;Γ,Δ[𝑥 ↦ 𝑦] ⊢ 𝑥[𝑥 ↦ 𝑦] ∶ 𝐴(+(1+∣Γ″∣))(+(1+|Δ|))[𝑥 ↦ 𝑦].
By Remark 2.28 (renaming and free variables) and Remark 2.30 (properties of
renamings) this is equivalent to Σ;Γ,Δ[𝑥 ↦ 𝑦] ⊢ 𝑦 ∶ 𝐴(+(2+∣Γ″∣+|Δ|))[𝑥 ↦ 𝑦].

By the induction hypothesis, Σ;Γ ⊢ Δ[𝑥 ↦ 𝑦] ctx; that is, Σ;Γ ⊢ Δ[𝑥 ↦
𝑦] ctx. Therefore, by the var and head rules, we have:

Σ ⊢ Γ,Δ[𝑥 ↦ 𝑦] ctx
var

Σ;Γ,Δ ⊢ 𝑦 ⇒ 𝐴(+(2+∣Γ″∣+|Δ|))
head

Σ;Γ,Δ ⊢ 𝑦 ∶ 𝐴(+(2+∣Γ″∣+|Δ|))

Finally, from Σ;Γ ⊢ 𝐽[𝑥 ↦ 𝑦], by Lemma 2.63 (preservation of judgments
by type conversion), we have Σ;Γ′, 𝑦 ∶ 𝐴, Γ″, 𝑥 ∶ 𝐴′ ⊢ 𝐽[𝑥 ↦ 𝑦].

Lemma 2.79 (Typing and congruence of elimination). Assume Σ;Γ ⊢ 𝑓  ⃗𝑒𝑛 ∶
𝑇 , with Σ;Γ ⊢ 𝑓 ∶ 𝐴.

Then, for every 𝑡, 𝑢 such that Σ;Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴, there exist 𝑡′ and 𝑢′ such
that 𝑡 @ ⃗𝑒 ⇓ 𝑡′, 𝑢 @ ⃗𝑒 ⇓ 𝑢′, and Σ;Γ ⊢ 𝑡′ ≡ 𝑢′ ∶ 𝑇 .

In particular, by reflexivity, for every 𝑡 such that Σ;Γ ⊢ 𝑡 ∶ 𝐴, we have
𝑡 @ ⃗𝑒 ⇓ 𝑡′ and Σ;Γ ⊢ 𝑡′ ∶ 𝑇 .

Proof. By induction on the length of ⃗𝑒𝑛.

• 0: By Definition 2.33 (iterated hereditary elimination), 𝑡′ = 𝑡 and 𝑢′ = 𝑢.
By Lemma 2.75 (uniqueness of typing for neutrals), Σ;Γ ⊢ 𝑇 ≡ 𝐴 type.
By the conv-eq rule, Σ;Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝑇 ; that is, Σ;Γ ⊢ 𝑡′ ≡ 𝑢′ ∶ 𝑇 .

46 CHAPTER 2. A DEPENDENTLY-TYPED LANGUAGE

• 𝑛 + 1: We do the case where ⃗𝑒 = ⃗𝑒′ 𝑣. The cases for ⃗𝑒 = ⃗𝑒′ .𝜋1 and
⃗𝑒 = ⃗𝑒′ .𝜋2 are similar, but use Postulate 7 (congruence of hereditary

projection) instead.
By Lemma 2.56 (neutral inversion), Σ;Γ ⊢ 𝑓  ⃗𝑒′ ∶ Π𝑈𝑉 , Σ;Γ ⊢ 𝑣 ∶ 𝑈
and 𝑉 [𝑣] ⇓. By the app rule, Σ;Γ ⊢ 𝑓  ⃗𝑒′ 𝑣 ∶ 𝑉 [𝑣]. By Lemma 2.75,
Σ;Γ ⊢ 𝑉 [𝑣] ≡ 𝑇 type.
By the induction hypothesis, (𝑡 @ ⃗𝑒′)⇓, (𝑢 @ ⃗𝑒′)⇓, and Σ;Γ ⊢ 𝑡 @ ⃗𝑒′ ≡
𝑢 @ ⃗𝑒′ ∶ Π𝑈𝑉 . By Postulate 6 (congruence of hereditary application),
there exist 𝑡′ and 𝑢′ such that (𝑡 @ ⃗𝑒′) 𝑣⇓𝑡′, (𝑢 @ ⃗𝑒′) 𝑣⇓𝑢′, and Σ;Γ ⊢
𝑡′ ≡ 𝑢′ ∶ 𝑉 [𝑣]. By the conv-eq rule, Σ;Γ ⊢ 𝑡′ ≡ 𝑢′ ∶ 𝑇 .

2.14.6 Admissible rules
Lemma 2.80 (Simplified app, app-eq: app0, app-eq0). The following rules
are admissible:

Γ ⊢ 𝑓 ∶ Π𝐴𝐵 Γ ⊢ 𝑡 ∶ 𝐴 app0Γ ⊢ 𝑓 𝑡 ∶ 𝐵[𝑡]

Γ ⊢ 𝑓 ≡ 𝑔 ∶ Π𝐴𝐵 Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴 app-eq0Γ ⊢ 𝑓 𝑡 ≡ 𝑔 𝑢 ∶ 𝐵[𝑡]

Proof. Use Lemma 2.52 (Π inversion), Postulate 1 (typing of hereditary sub-
stitution), and Lemma 2.70 (piecewise well-formedness of typing judgments)
to derive 𝐵[𝑡]⇓. The consequent follows by app and app-eq, respectively.

Remark 2.81 (Cancellation of weakening with substitution). For every term
𝑡, 𝑡((+1) + 1 + 𝑥)[𝑥/𝑥]⇓𝑡. (Note that, by Remark 2.36, for any term 𝑢 and
variable 𝑥, 𝑢[𝑥/𝑥]⇓.)

Proof. By induction on the structure of 𝑡.

Lemma 2.82 (λ inversion). If Σ;Γ ⊢ 𝜆.𝑡 ∶ Π𝐴𝐵, then Σ;Γ,𝐴 ⊢ 𝑡 ∶ 𝐵.

Proof. By Lemma 2.70 (piecewise well-formedness of typing judgments), Σ ⊢
Γ ctx and Σ;Γ ⊢ Π𝐴𝐵 type. By Lemma 2.52 (Π inversion), Σ;Γ ⊢ 𝐴 type
and Σ;Γ,𝐴 ⊢ 𝐵 type. By the ctx-var rule, Σ ⊢ Γ,𝐴 ctx.

By Lemma 2.62 (context weakening), we have Σ;Γ,𝐴 ⊢ 𝜆.(𝑡((+1)+1)) ∶
Π𝐴(+1)𝐵((+1)+1). By the head and var rules, Σ;Γ,𝐴 ⊢ 0 ∶ 𝐴(+1).

By Remark 2.81 (cancellation of weakening with substitution),
𝑡((+1)+1)[0/0] ⇓ 𝑡 and 𝐵((+1)+1)[0/0] ⇓ 𝐵. Thus, by Definition 2.32 (hereditary
elimination), (𝜆.(𝑡((+1)+1))) @ 0 ⇓ 𝑡. By Postulate 2 (typing of hereditary
application), Σ;Γ,𝐴 ⊢ 𝑡 ∶ 𝐵.

Lemma 2.83 (Injectivity of 𝜆). If Σ;Γ ⊢ 𝜆.𝑡 ≡ 𝜆.𝑢 ∶ Π𝐴𝐵, then Σ;Γ,𝐴 ⊢ 𝑡 ≡
𝑢 ∶ 𝐵.

2.14. PROPERTIES 47

Proof. As in the proof for Lemma 2.82 (λ inversion), Σ ⊢ Γ,𝐴 ctx. By
Lemma 2.62 (context weakening), Σ;Γ,𝐴 ⊢ 𝜆.(𝑡((+1)+1)) ≡ 𝜆.(𝑢((+1)+1)) ∶
Π𝐴(+1)𝐵((+1)+1). By the var and the head-eq rules, Σ;Γ, 𝑥 ∶ 𝐴 ⊢ 0 ≡ 0 ∶
𝐴(+1).

As in the proof of Lemma 2.82, (𝜆.(𝑡((+1)+1)) @ 0)⇓𝑡, (𝜆.(𝑢((+1)+1)) @ 0)⇓𝑢,
and 𝐵((+1)+1)[0/0] ⇓𝐵. By Postulate 6 (congruence of hereditary application),
Σ;Γ,𝐴 ⊢ 𝑡 ≡ 𝑢 ∶ 𝐵.

Lemma 2.84 (⟨,⟩-inversion). If Σ;Γ ⊢ ⟨𝑡, 𝑢⟩ ∶ Σ𝐴𝐵, then Σ;Γ ⊢ 𝑡 ∶ 𝐴, 𝐵[𝑡]⇓,
and Σ;Γ ⊢ 𝑢 ∶ 𝐵[𝑡].
Proof. By Definition 2.32 (hereditary elimination), ⟨𝑡, 𝑢⟩ @ .𝜋1 ⇓ 𝑡 and ⟨𝑡, 𝑢⟩ @
.𝜋2 ⇓ 𝑢.

By Postulate 3 (typing of hereditary projection), Σ;Γ ⊢ 𝑡 ∶ 𝐴, 𝐵[𝑡]⇓ and
Σ;Γ ⊢ 𝑢 ∶ 𝐵[𝑡].
Lemma 2.85 (Injectivity of ⟨,⟩). If Σ;Γ ⊢ ⟨𝑡1, 𝑡2⟩ ≡ ⟨𝑢1, 𝑢2⟩ ∶ Σ𝐴𝐵, then
Σ;Γ ⊢ 𝑡1 ≡ 𝑢1 ∶ 𝐴, 𝐵[𝑡1]⇓ and Σ;Γ ⊢ 𝑡2 ≡ 𝑢2 ∶ 𝐵[𝑡1].
Proof. By Definition 2.32 (hereditary elimination), ⟨𝑡1, 𝑡2⟩ @ .𝜋1 ⇓ 𝑡1,
⟨𝑢1, 𝑢2⟩ @ .𝜋1 ⇓ 𝑡1, ⟨𝑡1, 𝑡2⟩ @ .𝜋2 ⇓ 𝑡2, ⟨𝑢1, 𝑢2⟩ @ .𝜋2 ⇓ 𝑢2.

By Postulate 7 (congruence of hereditary projection), Σ;Γ ⊢ 𝑡1 ≡ 𝑢1 ∶ 𝐴,
𝐵[𝑡1]⇓ and Σ;Γ ⊢ 𝑡2 ≡ 𝑢2 ∶ 𝐵[𝑡1].

2.14.7 Term reduction
Lemma 2.86 (Equality of δη-reduct). If Σ;Γ ⊢ 𝑡 ∶ 𝐴 and Σ;Γ ⊢ 𝑡⟶⋆

δη 𝑢 ∶ 𝐴,
then Σ;Γ ⊢ 𝑢 ∶ 𝐴 and Σ;Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴.

Proof. By structural induction on the derivation of Σ;Γ ⊢ 𝑡⟶⋆
δη 𝑢 ∶ 𝐴.

We postulate that δη-reduction characterizes term equality: that is, two
terms are equal if and only if they can be reduced to a common form.

Postulate 14 (Existence of a common reduct). Given Σ;Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴, there
exists 𝑣 such that Σ;Γ ⊢ 𝑡⟶⋆

δη 𝑣 ∶ 𝐴 and Σ;Γ ⊢ 𝑢⟶⋆
δη 𝑣 ∶ 𝐴.

Definition 2.87 (Full normal form: Σ;Γ ⊢ 𝑡��⟶δη ∶ 𝐴). We say that a term
𝑡 is in full normal form (written Σ;Γ ⊢ 𝑡��⟶δη ∶ 𝐴), if Σ;Γ ⊢ 𝑡 ∶ 𝐴 and there is
no 𝑣 such that Σ;Γ ⊢ 𝑡⟶δη 𝑣 ∶ 𝐴.

Postulate 15 (Existence of a unique full normal form). If Σ;Γ ⊢ 𝑡 ∶ 𝐴, then
there exists 𝑣 such that Σ;Γ ⊢ 𝑡⟶⋆

δη 𝑣 ∶ 𝐴, and Σ;Γ ⊢ 𝑣��⟶δη ∶ 𝐴.

Remark 2.88 (Existence of a common normal form). Given Σ;Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴,
there exists 𝑣 such that Σ;Γ ⊢ 𝑡 ⟶⋆

δη 𝑣 ∶ 𝐴, Σ;Γ ⊢ 𝑢 ⟶⋆
δη 𝑣 ∶ 𝐴, and

Σ;Γ ⊢ 𝑣��⟶δη ∶ 𝐴.

Proof. By Postulate 15 and Postulate 14.

Remark (Uniqueness of full normal form). Let 𝑣1, 𝑣2 be terms such that Σ;Γ ⊢
𝑣1��⟶δη ∶ 𝐴 and Σ;Γ ⊢ 𝑣2��⟶δη ∶ 𝐴.

(i) If Σ;Γ ⊢ 𝑣1 ≡ 𝑣2 ∶ 𝐴, then 𝑣1 = 𝑣2.

48 CHAPTER 2. A DEPENDENTLY-TYPED LANGUAGE

(ii) If there is 𝑡 such that Σ;Γ ⊢ 𝑡⟶δη 𝑣1 ∶ 𝐴 and Σ;Γ ⊢ 𝑡⟶δη 𝑣2 ∶ 𝐴, then
𝑣1 = 𝑣2.

Proof. Statement (i) follows from Postulate 14. Statement (ii) follows from
Lemma 2.86, symmetry and transitivity of judgmental equality, and (i).

Remark 2.89 (Disjointness of primitive types). For any 𝑇 , it is not possible
to have more than one of Σ;Γ ⊢ 𝑇 ≡ Set ∶ Set Σ;Γ ⊢ 𝑇 ≡ Π𝐴1𝐵1 ∶ Set and
Σ;Γ ⊢ 𝑇 ≡ Σ𝐴2𝐵2 ∶ Set for any 𝐴1, 𝐴2, 𝐵1 and 𝐵2.

Proof. Proceed by contradiction. If more than one of the equalities hold (in
particular, two of them) then, by Lemma 2.54 (term equality is an equivalence
relation) and Postulate 14 (existence of a common reduct), this means there
exists 𝑟 such that two of the following hold Σ;Γ ⊢ Set ⟶⋆

δη 𝑟 ∶ Set, Σ;Γ ⊢
Bool⟶⋆

δη 𝑟 ∶ Set, Σ;Γ ⊢ Π𝐴1𝐵1 ⟶⋆
δη 𝑟 ∶ Set, and Σ;Γ ⊢ Σ𝐴2𝐵2 ⟶⋆

δη 𝑟 ∶ Set.
For the first and second cases, none of the rules in Definition 2.41 (δη-

normalization step) apply, so 𝑟 = Set and 𝑟 = Bool respectively. In the third
case, only the rules Π1 and Π2 apply, which means that 𝑟 = Π𝐴′

1𝐵′
1 for some 𝐴′

1
and 𝐵′

1. Similarly, in the fourth case, only the rules Σ1 and Σ2 apply, therefore
𝑟 = Σ𝐴′

2𝐵′
2 for some 𝐴′

2 and 𝐵′
2. All of these alternatives are incompatible;

therefore at most one of the equalities holds.

Lemma 2.90 (Reduction under equal context). If Σ;Γ ⊢ 𝑡 ⟶𝑛
δη 𝑢 ∶ 𝑇 and

Σ ⊢ Γ, 𝑇 ≡ Γ′, 𝑇 ′ ctx, then Σ;Γ′ ⊢ 𝑡⟶𝑛
δη 𝑢 ∶ 𝑇 ′.

Proof. The case with one step follows by induction on the structure of the
derivation. The general case follows by induction on the number of steps.

Remark 2.91 (Inversion of reduction under 𝜆). If Σ;Γ ⊢ 𝜆.𝑓⟶𝑛
δη 𝜆.𝑔 ∶ 𝑇 , then

there are 𝐴, 𝐵 such that Σ;Γ,𝐴 ⊢ 𝑓 ⟶𝑛
δη 𝑔 ∶ 𝐵 and Σ;Γ ⊢ 𝑇 ≡ Π𝐴𝐵 type.

In fact, for any 𝐴′, 𝐵′ such that Σ;Γ ⊢ 𝑇 ≡ Π𝐴′𝐵′ type, Σ;Γ,𝐴′ ⊢
𝑓 ⟶𝑛

δη 𝑔 ∶ 𝐵′.

Proof. We proceed by induction on 𝑛.

• 0: By Lemma 2.57 (type of 𝜆-abstraction), Σ;Γ ⊢ 𝑇 ≡ Π𝐴𝐵 type for
some 𝐴, 𝐵. By definition, Σ;Γ,𝐴 ⊢ 𝑓 ⟶0

δη 𝑓 ∶ 𝐵.

• 𝑛 + 1: We have Σ;Γ ⊢ 𝜆.𝑓 ⟶δη 𝜆.𝑓0 ∶ 𝑇 and Σ;Γ ⊢ 𝜆.𝑓0 ⟶𝑛
δη 𝜆.𝑔 ∶ 𝑇

By case analysis, the only possible rule for Σ;Γ ⊢ 𝜆.𝑓 ⟶δη 𝜆.𝑓0 ∶ 𝑇 is
λ. Therefore, there are 𝐴, 𝐵 such that Σ;Γ,𝐴 ⊢ 𝑓 ⟶δη 𝑓0 ∶ 𝐵 and
Σ;Γ ⊢ 𝑇 ≡ Π𝐴𝐵 type.
By the induction hypothesis, Σ;Γ,𝐴′ ⊢ 𝑓0 ⟶𝑛

δη 𝑔 ∶ 𝐵′ for some 𝐴′ and
𝐵′, with Σ;Γ ⊢ 𝑇 ≡ Π𝐴′𝐵′ type. By Postulate 10 (injectivity of Π),
Σ ⊢ Γ,𝐴,𝐵 ≡ Γ,𝐴′, 𝐵′ ctx. By Lemma 2.90 (reduction under equal
context), Σ;Γ,𝐴 ⊢ 𝑓0 ⟶𝑛

δη 𝑔 ∶ 𝐵. Therefore, Σ;Γ,𝐴 ⊢ 𝑓 ⟶𝑛+1
δη 𝑔 ∶ 𝐵.

By Postulate 10 and Lemma 2.90, the property holds for any 𝐴′, 𝐵′ such
that Σ;Γ ⊢ 𝑇 ≡ Π𝐴′𝐵′ type.

2.15. WEAK HEAD NORMALIZATION 49

Remark 2.92 (Inversion of reduction under ⟨, ⟩). If Σ;Γ ⊢ ⟨𝑓1, 𝑓2⟩⟶𝑛
δη⟨𝑔1, 𝑔2⟩ ∶

𝑇 , then there are 𝐴, 𝐵 such that Σ;Γ ⊢ 𝑇 ≡ Σ𝐴𝐵 type, Σ;Γ ⊢ 𝑓1⟶𝑚1
δη 𝑔1 ∶ 𝐴

and Σ;Γ ⊢ 𝑓2 ⟶𝑚2
δη 𝑔2 ∶ 𝐵[𝑓1], with 𝑚1 +𝑚2 = 𝑛.

In fact, for any 𝐴′, 𝐵′ such that Σ;Γ ⊢ 𝑇 ≡ Σ𝐴′𝐵′ type, there exist 𝑚′
1

and 𝑚′
2 such that Σ;Γ ⊢ 𝑓1 ⟶𝑚′

1
δη 𝑔1 ∶ 𝐴′ and Σ;Γ ⊢ 𝑓2 ⟶𝑚′

2
δη 𝑔2 ∶ 𝐵′[𝑓2], with

𝑚′
1 +𝑚′

2 = 𝑛.

Proof. The proof is analogous to Remark 2.91 (inversion of reduction under
𝜆).

Remark 2.93 (Strengthening of hereditary substitution and elimination). For
all 𝑥, 𝑡, 𝑢, with 𝑥 ∉ fv(𝑡), 𝑥 ∉ fv(𝑢), 𝑥 ≥ 𝑦, if 𝑡[𝑢/𝑦] ⇓ 𝑣 for some 𝑣, then
𝑡(−1)+𝑥[𝑢(−1)+𝑥/𝑦] ⇓ 𝑣(−1)+𝑥.

For all 𝑥, 𝑡 and ⃗𝑒, with 𝑥 ∉ fv(𝑡) and 𝑥 ∉ fv(⃗𝑒), if 𝑡 @ ⃗𝑒 ⇓ 𝑢 for some 𝑢,
then 𝑡(−1)+𝑥 @ ⃗𝑒(−1)+𝑥 ⇓ 𝑢(−1)+𝑥.

Proof. By mutual induction on the derivations (see Definition 2.31 (hereditary
substitution) and Definition 2.32 (hereditary elimination)).

Remark 2.94 (Strengthening of reduction). If Σ;Γ,𝐴,Δ ⊢ 𝑡⟶𝑚
δη 𝑡′ ∶ 𝐵, |Δ| ∉

fv(𝑡) and |Δ| ∉ fv(𝐵), then Σ;Γ,Δ(−1) ⊢ 𝑡(−1)+|Δ| ⟶𝑚
δη 𝑡′(−1)+|Δ| ∶ 𝐵(−1)+|Δ|.

Proof. By Remark 2.43 (free variables of δη-reduct), |Δ| ∉ fv(𝑡′) ⊆ fv(𝑡).
By induction on 𝑚, then by induction on the derivation (see Definition 2.41

(δη-normalization step)), using Postulate 13 (context strengthening) and Re-
mark 2.93.

2.15 Weak head normalization (↘)

In this section we define a special case of δη-reduction, which is i) fully de-
terministic, and ii) can be performed with knowledge of just the signature in
which the term is typed, but not necessarily the context or the type.

WHNF is used for defining type application (Definition 2.104), and for
determining which unification rule to apply in the unification algorithm (Sec-
tion 5.1).

Definition 2.95 (Weak head normal form: Σ ⊢ 𝑡 ↘ 𝑢). Given a signature
Σ, the relation Σ ⊢ 𝑡 ↘ 𝑢 is inductively defined as follows (the signature Σ is
implicit):

50 CHAPTER 2. A DEPENDENTLY-TYPED LANGUAGE

Bool ↘ Bool
Σ𝐴𝐵 ↘ Σ𝐴𝐵
Π𝐴𝐵 ↘ Π𝐴𝐵

Set ↘ Set
𝑐 ↘ 𝑐

𝜆.𝑡 ↘ 𝜆.𝑡
⟨𝑡, 𝑢⟩ ↘ ⟨𝑡, 𝑢⟩
𝑥  ⃗𝑒 ↘ 𝑥  ⃗𝑒
𝕒  ⃗𝑒 ↘ 𝕒  ⃗𝑒
𝛼  ⃗𝑒 ↘ 𝑢′   if   𝛼 ≔ 𝑡 ∶ 𝐴 ∈ Σ and (𝑡 @ ⃗𝑒) ⇓ 𝑢

and 𝑢↘ 𝑢′

𝛼  ⃗𝑒 ↘ 𝛼  ⃗𝑒   if   𝛼 is uninstantiated in Σ
if  ⃗𝑒𝑛 ↘ if  ⃗𝑒   if   𝑛 ≤ 3

if 𝐴 𝑏 𝑡 𝑢  ⃗𝑒 ↘ 𝑡″   if   𝑏 ↘ true and (𝑡 @ ⃗𝑒) ⇓ 𝑡′ and 𝑡′ ↘ 𝑡″
if 𝐴 𝑏 𝑡 𝑢  ⃗𝑒 ↘ 𝑢″   if   𝑏 ↘ false and (𝑢 @ ⃗𝑒) ⇓ 𝑢′

and 𝑢′ ↘𝑢″

if 𝐴 𝑏 𝑡 𝑢  ⃗𝑒 ↘ if 𝐴 𝑏′ 𝑡 𝑢  ⃗𝑒   if   𝑏 ↘ 𝑏′ and 𝑏′ ≠ true and 𝑏′ ≠ false

Remark 2.96 (WHNF reduction is deterministic). If Σ ⊢ 𝑡↘𝑢1, and Σ ⊢ 𝑡↘𝑢2,
then 𝑢1 = 𝑢2.

Proof. By induction on the derivations, noting that given a signature Σ and a
term 𝑡 (typed or untyped), there is always at most one case in Definition 2.95
(weak head normal form) which applies to 𝑡.

Remark 2.97 (WHNF reduction is δη-reduction). If Σ;Γ ⊢ 𝑡 ∶ 𝐴 and Σ ⊢ 𝑡↘𝑢,
then Σ;Γ ⊢ 𝑡⟶⋆

δη 𝑢 ∶ 𝐴

Proof. By induction on the derivation for Σ ⊢ 𝑡↘ 𝑢.

Lemma 2.98 (Equality of WHNF). If Σ;Γ ⊢ 𝑡 ∶ 𝐴 then there is 𝑢 such that
Σ ⊢ 𝑡↘ 𝑢, with Σ;Γ ⊢ 𝑢 ∶ 𝐴 and Σ;Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴.

Proof. We first show the following property: If Σ;Γ ⊢ 𝑡 ∶ 𝐴 and ∄𝑣.Σ ⊢ 𝑡 ↘ 𝑣,
then there exists 𝑢 such that Σ;Γ ⊢ 𝑡⟶δη𝑢 ∶ 𝐴, Σ;Γ ⊢ 𝑢 ∶ 𝐴 and ∄𝑣.Σ ⊢ 𝑢↘𝑣.

We proceed by induction on 𝑡, and the fact that ∄𝑣.Σ ⊢ 𝑡 ↘ 𝑣, we are in
either one of these four cases:

• Case 𝑡 = 𝛼  ⃗𝑒, with 𝛼 ≔ 𝑡 ∶ 𝑇 ∈ Σ. By postulates Postulate 2 (typing
of hereditary application), Postulate 3 (typing of hereditary projection),
(𝑡 @ ⃗𝑒) ⇓ 𝑢. By meta, Σ;Γ ⊢ 𝑡 ⟶δη 𝑢 ∶ 𝑇 , which by Lemma 2.86
(equality of δη-reduct) means Σ;Γ ⊢ 𝑢 ∶ 𝑇 . Because ∄𝑣.Σ ⊢ 𝑡 ↘ 𝑣, by
Definition 2.95 (weak head normal form), then ∄𝑣.Σ ⊢ 𝑢↘ 𝑣.

• Case 𝑡 = if 𝐴 𝑏 𝑡0 𝑢0  ⃗𝑒, with ∄𝑏′.Σ ⊢ 𝑏 ↘ 𝑏′: By Lemma 2.56 (neutral
inversion), Σ;Γ ⊢ 𝑏 ∶ Bool. By induction, there exists 𝑏′ such that
Σ;Γ ⊢ 𝑏 ⟶δη 𝑏′ ∶ Bool, Σ;Γ ⊢ 𝑏′ ∶ Bool, and ∄𝑏″.Σ ⊢ 𝑏′ ↘ 𝑏″. Let
𝑢 = if 𝐴 𝑏′ 𝑡0 𝑢0  ⃗𝑒. By app𝑛, we have Σ;Γ ⊢ 𝑡⟶δη 𝑢 ∶ 𝐴. And, because
∄𝑏″.Σ ⊢ 𝑏′ ↘ 𝑏″ and the form of 𝑢, ∄𝑣.Σ ⊢ 𝑢↘ 𝑣.

2.15. WEAK HEAD NORMALIZATION 51

• Case 𝑡 = if 𝐴 𝑏 𝑡0 𝑢0  ⃗𝑒, with Σ ⊢ 𝑏 ↘ true, 𝑡 = if 𝐴 𝑏 𝑡0 𝑢0  ⃗𝑒, with Σ ⊢
𝑏↘ false: They are analogous to the case for 𝑡 = 𝛼  ⃗𝑒, with 𝛼 ≔ 𝑡 ∶ 𝑇 ∈ Σ.

Note that the 𝑢 in the property fulfills the same conditions as 𝑡. Therefore,
given Σ;Γ ⊢ 𝑡 ∶ 𝐴 and ∄𝑣.Σ ⊢ 𝑡 ↘ 𝑣, we can construct an infinite chain of
reductions starting from 𝑡. This contradicts Postulate 8 (no infinite chains).
Therefore, if Σ;Γ ⊢ 𝑡 ∶ 𝐴, then there is 𝑢 such that Σ ⊢ 𝑡↘ 𝑢.

By Remark 2.97 (WHNF reduction is δη-reduction), Σ ⊢ 𝑡 ↘ 𝑢 implies
Σ;Γ ⊢ 𝑡 ⟶⋆

δη 𝑢 ∶ 𝐴; and by Lemma 2.86 (equality of δη-reduct), this means
that Σ;Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴.

Lemma 2.99 (Term in WHNF). Assume that Σ;Γ ⊢ 𝑡 ∶ 𝐴, and Σ ⊢ 𝑡 ↘ 𝑢.
Then, either:

• 𝑢 = Bool.

• 𝑢 = Σ𝐴𝐵 for some 𝐴, 𝐵.

• 𝑢 = Π𝐴𝐵 for some 𝐴, 𝐵.

• 𝑢 = Set.

• 𝑢 = 𝑐.

• 𝑢 = 𝜆.𝑢′ for some term 𝑢′.

• 𝑢 = ⟨𝑢1, 𝑢2⟩ for some term 𝑢1 and 𝑢2.

• 𝑢 = 𝑥  ⃗𝑒 for some variable 𝑥, and vector of eliminators ⃗𝑒.

• 𝑢 = 𝕒  ⃗𝑒 for some atom 𝕒, and vector of eliminators ⃗𝑒.

• 𝑢 = 𝛼  ⃗𝑒 for some metavariable 𝛼 such that 𝛼 is not instantiated in Σ.

• 𝑢 = if  ⃗𝑒𝑛, where 𝑛 ≤ 3.

• 𝑢 = if 𝐴 𝑏 𝑡 𝑢  ⃗𝑒, where neither Σ;Γ ⊢ 𝑏 ≡ true ∶ Bool nor Σ;Γ ⊢ 𝑏 ≡
false ∶ Bool.

Proof. By induction on the derivation for Σ ⊢ 𝑡↘𝑢, and the typing rules.

Definition 2.100 (Head of a term: Set, Σ, Π, Bool, 𝜆, ℎ, 𝑐, ⟨_,_⟩). When
discussing terms, we will often refer to the “head” of a term. The head of a
term or type is its “top-most” syntactic element. More specifically, the head
of a term can be any of Set, Σ, Π, Bool, 𝜆, ℎ, 𝑐, or the pair constructor ⟨_,_⟩.

The weak-head normal form determines the head of term. In particular:

Lemma 2.101 (Nose of weak-head normal form). Let 𝑇 be a term such that
Σ;Γ ⊢ 𝑇 ∶ Set.

(i) If Σ;Γ ⊢ 𝑇 ≡ Π𝐴𝐵 ∶ Set, then there are 𝐴′, 𝐵′ such that Σ ⊢ 𝑇↘Π𝐴′𝐵′.

(ii) If Σ;Γ ⊢ 𝑇 ≡ Σ𝐴𝐵 ∶ Set, then there are 𝐴′, 𝐵′ such that Σ ⊢ 𝑇↘Σ𝐴′𝐵′.

52 CHAPTER 2. A DEPENDENTLY-TYPED LANGUAGE

Proof.

(i) By Lemma 2.98 (equality of WHNF), there is 𝑈 such that Σ ⊢ 𝑇↘𝑈 and
Σ;Γ ⊢ 𝑇 ≡ 𝑈 ∶ Set. By transitivity, this means Σ;Γ ⊢ 𝑈 ≡ Π𝐴𝐵 ∶ Set.
By Postulate 14 (existence of a common reduct), there is 𝑉 such that
Σ;Γ ⊢ 𝑈 ⟶⋆

δη 𝑉 ∶ Set and Σ;Γ ⊢ Π𝐴𝐵⟶⋆
δη 𝑉 ∶ Set. By Definition 2.41

(δη-normalization step), 𝑉 is necessarily of the form Π𝐴″𝐵″.
By Lemma 2.99 (term in WHNF), and the fact that Σ;Γ ⊢ 𝑈 ⟶⋆

δη
Π𝐴″𝐵″ ∶ Set, we have that 𝑈 is necessarily of the form Π𝐴′𝐵′ for some
𝐴′ and 𝐵′, as it is the only alternative listed in Lemma 2.99 (term in
WHNF) which can reduce to a Π-headed term.

(ii) Same as the proof for (i), replacing Π with Σ.

Remark 2.102 (Preservation of free variables by WHNF). If Σ ⊢ 𝑡 ↘ 𝑢, then
fv(𝑢) ⊆ fv(𝑡).

Proof. By induction on the derivation.

2.16 Type elimination (@̂)
The type of a neutral term is fully determined by the head and its type. We
now give a deterministic procedure to obtain this type given a signature and
a context.

Definition 2.103 (Type elimination: Σ;Γ ⊢ (ℎ ∶) @̂ ⃗𝑒 ⇓ 𝑈). In a signature Σ
and context Γ, the elimination of the type of a head ℎ by a spine ⃗𝑒, resulting
in a type 𝑈 (written Σ;Γ ⊢ (ℎ ∶) @̂ ⃗𝑒 ⇓ 𝑈) is defined as follows:

Σ;Γ ⊢ (ℎ ∶) @̂ 𝜀 ⇓ 𝑇   if   Σ; Γ ⊢ ℎ ⇒ 𝑇
Σ;Γ ⊢ (ℎ ∶) @̂ ⃗𝑒 𝑢 ⇓ 𝑈   if   Σ; Γ ⊢ (ℎ ∶) @̂ ⃗𝑒 ⇓ 𝑇 and

Σ ⊢ 𝑇 ↘Π𝐴𝐵 and
Σ;Γ ⊢ 𝑢 ∶ 𝐴 and
𝐵[𝑢] ⇓ 𝑈

Σ; Γ ⊢ (ℎ ∶) @̂ ⃗𝑒 .𝜋1 ⇓ 𝐴   if   Σ; Γ ⊢ (ℎ ∶) @̂ ⃗𝑒 ⇓ 𝑇 and
Σ ⊢ 𝑇 ↘Σ𝐴𝐵

Σ;Γ ⊢ (ℎ ∶) @̂ ⃗𝑒 .𝜋2 ⇓ 𝐵[ℎ  ⃗𝑒]   if   Σ; Γ ⊢ (ℎ ∶) @̂ ⃗𝑒 ⇓ 𝑇 and
Σ ⊢ 𝑇 ↘Σ𝐴𝐵

If the elimination spine ⃗𝑒 consists only of terms (i.e. ⃗𝑒 = ⃗𝑡), then Σ;Γ ⊢
(ℎ ∶) @̂ ⃗𝑡 only depends on the type 𝑇 such that Σ;Γ ⊢ ℎ ⇒ 𝑇 . Therefore:

Definition 2.104 (Type application: Σ;Γ ⊢ 𝑇 @̂ ⃗𝑡 ⇓ 𝑈). In a signature Σ
and context Γ, elimination of a type 𝑇 by a spine ⃗𝑡, resulting in a type 𝑈
(written 𝑇 @̂ ⃗𝑡 ⇓ 𝑈) is defined as follows:

2.16. TYPE ELIMINATION 53

Σ;Γ ⊢ 𝑇 @̂ 𝜀 ⇓ 𝑇
Σ; Γ ⊢ 𝑇 @̂ ⃗𝑡 𝑢 ⇓ 𝑈   if   Σ; Γ ⊢ 𝑇 @̂ ⃗𝑡 ⇓ 𝑇 ′ and

Σ ⊢ 𝑇 ′ ↘Π𝐴𝐵 and
Σ;Γ ⊢ 𝑢 ∶ 𝐴 and
𝐵[𝑢] ⇓ 𝑈

Remark 2.105 (Type elimination without projections). If Σ;Γ ⊢ ℎ ⇒ 𝑇 , then
Σ;Γ ⊢ (ℎ ∶) @̂ ⃗𝑡 ⇓ 𝑇 ′ if and only if Σ;Γ ⊢ 𝑇 @̂ ⃗𝑡 ⇓ 𝑇 ′.

The relation @̂ is consistent with the typing rules.

Lemma 2.106 (Type elimination). If Σ;Γ ⊢ (ℎ ∶) @̂ ⃗𝑒⇓𝐵, then Σ;Γ ⊢ ℎ  ⃗𝑒 ∶ 𝐵.

Proof. By induction on the derivation of Σ;Γ ⊢ (ℎ ∶) @̂ ⃗𝑒 ⇓ 𝐵. Use Lemma
2.98 (equality of WHNF) and the conv rule.

Lemma 2.107 (Type elimination inversion). Assume that Σ;Γ ⊢ ℎ  ⃗𝑒 ∶ 𝐵.
Then Σ;Γ ⊢ (ℎ ∶) @̂ ⃗𝑒 ⇓ 𝐵′ with Σ;Γ ⊢ 𝐵′ ≡ 𝐵 type.

Proof. By induction on the derivation for Σ;Γ ⊢ ℎ  ⃗𝑒 ∶ 𝐵.

• head (base case): Then ⃗𝑒 = 𝜀, and, by the rule’s premises, Σ;Γ ⊢ ℎ ⇒ 𝐵.
By Definition 2.103 (type elimination), Σ;Γ ⊢ (ℎ ∶) @̂ 𝜀 ⇓ 𝐵.

• conv: By the premises, Σ;Γ ⊢ ℎ  ⃗𝑒 ∶ 𝐵″ for some 𝐵″ with Σ;Γ ⊢ 𝐵″ ≡
𝐵 type.
By the induction hypothesis, Σ;Γ ⊢ (ℎ ∶) @̂ ⃗𝑒 ⇓ 𝐵′ for some 𝐵′, with
Σ;Γ ⊢ 𝐵″ ≡ 𝐵′ type.
By symmetry and transitivity, Σ;Γ ⊢ 𝐵′ ≡ 𝐵 type.

• app: Then ⃗𝑒 = ⃗𝑒′ 𝑢, and we have Σ;Γ ⊢ ℎ  ⃗𝑒 ∶ Π𝐴′𝐵′ for some 𝐴′ and
𝐵′, with Σ;Γ ⊢ 𝑢 ∶ 𝐴 and 𝐵 = 𝐵′[𝑢].
By the induction hypothesis, Σ;Γ ⊢ (ℎ ∶) @̂ ⃗𝑒 ⇓ 𝑈 , with Σ;Γ ⊢ 𝑈 ≡
Π𝐴′𝐵′ type.
By Lemma 2.101 (nose of weak-head normal form), Σ ⊢ 𝑈 ↘Π𝐴0𝐵0 for
some 𝐴0 and 𝐵0. By Lemma 2.98 (equality of WHNF) and transitivity,
Σ;Γ ⊢ Π𝐴′𝐵′ ≡ Π𝐴0𝐵0 type.
By Postulate 10 (injectivity of Π), Σ ⊢ Γ,𝐴′, 𝐵′ ≡ Γ,𝐴0, 𝐵0 ctx. By the
conv rule and Postulate 1 (typing of hereditary substitution), 𝐵0[𝑢]⇓.
Thus, by Definition 2.103 (type elimination), Σ;Γ ⊢ (ℎ ∶) @̂ ⃗𝑒′ 𝑢 ⇓𝐵0[𝑢].
Finally, by Postulate 4 (congruence of hereditary substitution), Σ;Γ ⊢
𝐵0[𝑢] ≡ 𝐵′[𝑢] type; that is, Σ;Γ ⊢ 𝐵0[𝑢] ≡ 𝐵 type.

• proj1, proj2: Analogous to the app case.

Remark 2.108 (Uniqueness of head type lookup). If Σ;Γ ⊢ ℎ ⇒ 𝐴 and Σ;Γ ⊢
ℎ ⇒ 𝐴′, then 𝐴 = 𝐴′.

54 CHAPTER 2. A DEPENDENTLY-TYPED LANGUAGE

Proof. By case analysis on the derivations of Σ;Γ ⊢ ℎ ⇒ 𝐴 and Σ;Γ ⊢ ℎ ⇒
𝐴′.

Lemma 2.109 (Type application inversion). Assume that Σ;Γ ⊢ ℎ �⃗� ∶ 𝐵.
Then there is a unique 𝐴 and a 𝐵′ such that Σ;Γ ⊢ ℎ ⇒ 𝐴, Σ;Γ ⊢ 𝐴 @̂ �⃗� ⇓ 𝐵′,
and Σ;Γ ⊢ 𝐵′ ≡ 𝐵 ∶ Set.

Proof. Analogous to the proof of Lemma 2.107 (type elimination inversion).
Uniqueness follows from Remark 2.108 (uniqueness of head type lookup).

Lemma 2.110 (Type of hereditary application). Assume Σ;Γ ⊢ 𝑡 ∶ 𝐴, and
Σ;Γ ⊢ 𝐴 @̂ �⃗� ⇓ 𝐴′. Then 𝑡 @ �⃗� ⇓ 𝑡′, and Σ;Γ ⊢ 𝑡′ ∶ 𝐴′ Additionally, if
Σ;Γ ⊢ 𝑡1 ≡ 𝑡2 ∶ 𝐴, then 𝑡1 @ �⃗� ⇓ 𝑡′1, 𝑡2 @ �⃗� ⇓ 𝑡′2, and Σ;Γ ⊢ 𝑡′1 ≡ 𝑡′2 ∶ 𝐴′.

Proof. By induction on the length of �⃗�, using Postulate 2 (typing of hereditary
application) and case analysis on Σ;Γ ⊢ 𝐴 @̂ �⃗� ⇓ 𝐴′ to build the typing
derivation. For the second part, by induction on the length of 𝑢 and using
Postulate 6 (congruence of hereditary application).

Lemma 2.111 (Application inversion). If Σ;Γ ⊢ ℎ  ⃗𝑒 𝑢  ⃗𝑒′ ∶ 𝑇 , then there are
𝐴, 𝑈 and 𝑉 such that Σ;Γ ⊢ (ℎ ∶) @̂ ⃗𝑒 ⇓ 𝐴, Σ ⊢ 𝐴↘Π𝑈𝑉 and Σ;Γ ⊢ 𝑢 ∶ 𝑈 .
Also, Σ;Γ ⊢ 𝐴 ≡ Π𝑈𝑉 type and Σ;Γ ⊢ ℎ  ⃗𝑒 ∶ Π𝑈𝑉 . Furthermore, if Σ;Γ ⊢
ℎ  ⃗𝑒 ∶ Π𝑈 ′𝑉 ′, then Σ;Γ ⊢ 𝑈 ≡ 𝑈 ′ type, then Σ;Γ, 𝑈 ⊢ 𝑉 ≡ 𝑉 ′ type, and
Σ;Γ ⊢ 𝑢 ∶ 𝑈 ′ type.

Proof. By Lemma 2.107 (type elimination inversion), Σ;Γ ⊢ (ℎ ∶) @̂ ⃗𝑒 𝑢  ⃗𝑒′ ⇓𝑇0
for some 𝑇0.

By induction on the derivation of Σ;Γ ⊢ (ℎ ∶) @̂ ⃗𝑒 𝑢  ⃗𝑒′⇓, we have Σ;Γ ⊢
(ℎ ∶) @̂ ⃗𝑒 ⇓ 𝐶 and Σ ⊢ 𝐶 ↘ Π𝑈𝑉 . By Lemma 2.98 (equality of WHNF),
Σ;Γ ⊢ 𝐶 ≡ Π𝑈𝑉 type. By Lemma 2.106 (type elimination) and the conv
rule, Σ;Γ ⊢ ℎ  ⃗𝑒 ∶ Π𝑈𝑉 .

By induction on the derivation of Σ;Γ ⊢ ℎ  ⃗𝑒 𝑢  ⃗𝑒′ ∶ 𝑇 , we have Σ;Γ ⊢ ℎ  ⃗𝑒 ∶
Π𝐴𝐵 and Σ;Γ ⊢ 𝑢 ∶ 𝐴.

By Lemma 2.75 (uniqueness of typing for neutrals), Σ;Γ ⊢ Π𝐴𝐵 ≡
Π𝑈𝑉 type. By Postulate 10 (injectivity of Π), Σ;Γ ⊢ 𝐴 ≡ 𝑈 type. By the
conv rule, Σ;Γ ⊢ 𝑢 ∶ 𝑈 .

By Lemma 2.98 (equality of WHNF), Σ;Γ ⊢ 𝐴 ≡ Π𝑈𝑉 type; and by
Lemma 2.106 (type elimination), Σ;Γ ⊢ ℎ  ⃗𝑒 ∶ Π𝑈𝑉 .

By Lemma 2.75 (uniqueness of typing for neutrals), and Postulate 10 (in-
jectivity of Π), Σ;Γ ⊢ 𝑈 ≡ 𝑈 ′ type and Σ;Γ, 𝑈 ⊢ 𝑉 ≡ 𝑉 ′ type. By the conv
rule, Σ;Γ ⊢ 𝑢 ∶ 𝑈 ′ type.

Lemma 2.112 (Iterated application inversion). Assume Σ;Γ ⊢ ℎ �⃗�𝑛 ∶ 𝑇 .
Then there exist ⃗𝐴 and 𝐵 such that Σ;Γ ⊢ 𝑇 ≡ Π ⃗𝐴𝐵 type and Σ;Γ ⊢ ℎ �⃗�𝑛 ∶
Π ⃗𝐴𝐵.

Proof. By induction on 𝑛 and Lemma 2.111 (application inversion).

Lemma 2.113 (Projection inversion). If Σ;Γ ⊢ ℎ  ⃗𝑒 .𝜋1  ⃗𝑒′ ∶ 𝑇 or Σ;Γ ⊢
ℎ  ⃗𝑒 .𝜋2  ⃗𝑒′ ∶ 𝑇 , then there are 𝐴, 𝑈 and 𝑉 such that Σ;Γ ⊢ (ℎ ∶) @̂ ⃗𝑒 ⇓ 𝐴 and
Σ ⊢ 𝐴↘Σ𝑈𝑉 . In particular, Σ;Γ ⊢ 𝐴 ≡ Σ𝑈𝑉 type, and Σ;Γ ⊢ ℎ  ⃗𝑒 ∶ Σ𝑈𝑉 .

2.16. TYPE ELIMINATION 55

Proof. Analogous to the proof of Lemma 2.111 (application inversion).

Definition 2.114 (Type application, reversed: Σ;Γ ⊢ 𝑇 @̂R ⃗𝑡 ⇓ 𝑈). Given
a signature Σ and context Γ, reverse elimination of a type 𝑇 by a spine ⃗𝑡,
resulting in a type 𝑈 (written 𝑇 @̂ ⃗𝑡 ⇓ 𝑈) is defined as follows:

Σ;Γ ⊢ 𝑇 @̂R 𝜀 ⇓ 𝑇
Σ; Γ ⊢ 𝑇 @̂R 𝑢  ⃗𝑡 ⇓ 𝑇 ′   if   Σ ⊢ 𝑇 ↘Π𝐴𝐵 and

Σ;Γ ⊢ 𝑢 ∶ 𝐴 and
𝐵[𝑢] ⇓ 𝐵′ and
Σ;Γ ⊢ 𝐵′ @̂R ⃗𝑡 ⇓ 𝑇 ′

Lemma 2.115 (Type application, reversed). We have Σ;Γ ⊢ 𝑇 @̂ ⃗𝑡 ⇓ 𝑈 if
and only if Σ;Γ ⊢ 𝑇 @̂R ⃗𝑡 ⇓ 𝑈 .

Proof. We show the following, stronger property: “For all 𝑉 , we have Σ;Γ ⊢
𝑇 @̂ ⃗𝑡 ⇓ 𝑉 and Σ;Γ ⊢ 𝑉 @̂R �⃗� ⇓ 𝑈 if and only if Σ;Γ ⊢ 𝑇 @̂R ⃗𝑡 �⃗� ⇓ 𝑈 .”

By induction on the derivation of Σ;Γ ⊢ 𝑇 @̂ ⃗𝑡 ⇓ 𝑉 :

• Case Σ;Γ ⊢ 𝑇 @̂ ⃗𝜀 ⇓ 𝑉 : Then by Definition 2.104 (type application),
necessarily 𝑇 = 𝑉 , and the property holds trivially.

• Case Σ;Γ ⊢ 𝑇 @̂ ⃗𝑡 𝑣 ⇓ 𝑉 : By Definition 2.104 (type application), Σ;Γ ⊢
𝑇 @̂ ⃗𝑡 𝑣 ⇓ 𝑉 and Σ;Γ ⊢ 𝑉 @̂R �⃗� ⇓ 𝑈 are equivalent to having Σ;Γ ⊢
𝑇 @̂ ⃗𝑡 ⇓ 𝑉 ′, Σ ⊢ 𝑉 ′↘Π𝐴𝐵, Σ ⊢ 𝑣 ∶ 𝐴, 𝐵[𝑢]⇓𝐵′ (and Σ;Γ ⊢ 𝑉 @̂R �⃗� ⇓ 𝑈),
for some 𝐴, 𝐵. By Definition 2.114 (type application, reversed), this is
equivalent to (Σ;Γ ⊢ 𝑇 @̂ ⃗𝑡 ⇓ 𝑉 ′ and) Σ;Γ ⊢ 𝑉 ′ @̂R 𝑣 �⃗� ⇓ 𝑈 . By the
induction hypothesis, this is equivalent to Σ;Γ ⊢ 𝑇 @̂R ⃗𝑡 𝑣 �⃗� ⇓ 𝑈 .

The lemma follows from the property by taking �⃗� ≔ 𝜀 and 𝑉 ≔ 𝑇 .

Lemma 2.116 (Free variables in type application). If Σ;Γ ⊢ 𝑇 @̂ ⃗𝑡 ⇓ 𝐴, or
Σ;Γ ⊢ 𝑇 @̂R ⃗𝑡 ⇓ 𝐴 then fv(𝑇) ∪ fv(𝑡) ⊇ 𝐴.

Proof. By Lemma 2.115 (type application, reversed), it suffices to show the
property for the case Σ;Γ ⊢ 𝑇 @̂ ⃗𝑡 ⇓ 𝐴. We proceed by induction on the
derivation of Σ;Γ ⊢ 𝑇 @̂ ⃗𝑡 ⇓ 𝐴, using Remark 2.102 (preservation of free vari-
ables by WHNF) and Lemma 2.51 (free variables in hereditary substitution)
for the inductive step.

Lemma 2.117 (Commuting of renamings with hereditary substitution and
elimination). The following hold:

(i) If 𝑡[𝑢/𝑥] ⇓ 𝑟, then 𝑡(𝜌+𝑥+1)[𝑢(𝜌+𝑥)/𝑥] ⇓ 𝑟(𝜌+𝑥).

(ii) If (𝑡 @ ⃗𝑒) ⇓ 𝑢, then (𝑡𝜌 @ ⃗𝑒𝜌) ⇓ 𝑢𝜌.

Proof. By mutual induction on the derivations.

Lemma 2.118 (Commuting of renamings with WHNF). Let 𝜌 be a renaming,
if Σ ⊢ 𝑡↘ 𝑢, then Σ ⊢ 𝑡𝜌 ↘𝑢𝜌.

56 CHAPTER 2. A DEPENDENTLY-TYPED LANGUAGE

Proof. By induction on the derivation, using Lemma 2.117 (commuting of
renamings with hereditary substitution and elimination).

Lemma 2.119 (Commuting of renaming with reversed type application). The
following hold:

(i) Assume Σ;Γ′ ⊢ 𝐴 type. If Σ;Γ′, Γ″ ⊢ 𝑇 @̂R �⃗�⇓𝑈 , then Σ;Γ′, 𝐴, Γ″(+1) ⊢
𝑇 (+1)+∣Γ″∣ @̂R �⃗�(+1)+∣Γ″∣ ⇓ 𝑈 (+1)+∣Γ″∣.

(ii) If Σ;Γ′, 𝑦 ∶ 𝐴, Γ″, 𝑥 ∶ 𝐴′, Γ‴ ⊢ 𝑇 @̂R �⃗� ⇓ 𝑈 , with Σ;Γ′, 𝑦 ∶ 𝐴, Γ″, 𝑥 ∶
𝐴′ ⊢ 𝑥 ∶ 𝐴(+∣𝐴,Γ″,𝐴′∣), then Σ;Γ′, 𝑦 ∶ 𝐴, Γ″, 𝑥 ∶ 𝐴′, Γ‴[𝑥 ↦ 𝑦] ⊢ 𝑇 [𝑥 ↦
𝑦] @̂R �⃗�[𝑥 ↦ 𝑦] ⇓ 𝑈[𝑥 ↦ 𝑦].

Proof. By induction on the derivations, using Lemma 2.98 (equality of WHNF)
Lemma 2.118 (commuting of renamings with WHNF), Lemma 2.78 (variable
types say everything) and Lemma 2.62 (context weakening).

The following lemma is key for ensuring that metavariable solutions are
well-typed:

Lemma 2.120 (Typing of metavariable bodies). Assume we have 𝛼 ∶ 𝐴 ∈ Σ,
with Σ;Γ ⊢ 𝛼  ⃗𝑥𝑛 ∶ 𝐵, where all the variables in the vector ⃗𝑥 are pairwise
distinct. Let 𝑡 be a term such that Σ;Γ ⊢ 𝑡 ∶ 𝐵, and fv(𝑡) ⊆ { ⃗𝑥}. Then,
Σ; · ⊢ 𝜆 ⃗𝑦𝑛.𝑡[⃗⃗⃗𝑥 ↦ ⃗𝑦] ∶ 𝐴 and (𝜆 ⃗𝑦𝑛.𝑡[⃗⃗ ⃗⃗𝑥 ↦ ⃗𝑦]) @ ⃗𝑥 ⇓ 𝑡.

Proof. We show the following (stronger) property:
For all Δ′ = ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑇 ′

y with ⃗⃗⃗ ⃗⃗ ⃗𝑦′ = (|Δ′| − 1),…, 0; Γ = ⃗⃗⃗⃗⃗ ⃗⃗ ⃗𝑇z with ⃗𝑧 = (|Γ| − 1),…, 0,
{ ⃗𝑥} ⊆ { ⃗𝑧} with all variables in ⃗𝑥 pairwise distinct, 𝐴′, 𝐵′ and 𝑡, suppose:

(i) Σ;Δ′ ⊢ 𝐴′ type,

(ii) Σ;Δ′, Γ ⊢ 𝐴′(+|Γ|) @̂R ⃗𝑥𝑛 ⇓ 𝐵′,

(iii) Σ;Δ′, Γ ⊢ 𝑡 ∶ 𝐵′,

(iv) fv(𝐴′) ⊆ {⃗⃗⃗ ⃗⃗ ⃗𝑦′} and

(v) fv(𝑡) ∪ fv(𝐵′) ⊆ {⃗⃗⃗⃗𝑥} ∪ {⃗⃗⃗ ⃗⃗ ⃗𝑦′(+|Γ|)}.

Then there exists Δ = ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑇y
𝑛

with ⃗𝑦 = (|Δ| − 1),…, 0 such that Σ;Δ′ ⊢
ΠΔ(𝐵′[⃗⃗⃗ ⃗⃗ ⃗𝑦′(+|Γ|), ⃗𝑥 ↦ ⃗⃗⃗ ⃗⃗ ⃗𝑦′(+|Δ|), ⃗𝑦]) ≡ 𝐴′ type, and Σ;Δ′,Δ ⊢ 𝑡[⃗⃗⃗ ⃗⃗ ⃗𝑦′(+|Γ|), ⃗𝑥 ↦
⃗⃗⃗ ⃗⃗ ⃗𝑦′(+|Δ|), ⃗𝑦] ∶ 𝐵′[⃗⃗⃗ ⃗⃗ ⃗𝑦′(+|Γ|), ⃗𝑥 ↦ ⃗⃗⃗ ⃗⃗ ⃗𝑦′(+|Δ|), ⃗𝑦].

The proof proceeds by induction on ⃗𝑥.
In all cases, note that the variables in ⃗𝑥 must be pairwise distinct for the

renaming “[⃗⃗⃗ ⃗⃗ ⃗𝑦′(+|Γ|), ⃗𝑥 ↦ ⃗⃗⃗ ⃗⃗ ⃗𝑦′(+|Δ|), ⃗𝑦]” to be well-formed.

• 𝜀: Take Δ = ·. Σ;Δ′, Γ ⊢ 𝐴′(+|Γ|) @̂R 𝜀 ⇓ 𝐵′ implies 𝐵′ = 𝐴′(+|Γ|). Also,
𝐵′[⃗⃗⃗ ⃗⃗ ⃗𝑦′(+|Γ|), ⃗𝑥 ↦ ⃗⃗⃗ ⃗⃗ ⃗𝑦′(+|Δ|), ⃗𝑦] = 𝐵′[⃗⃗⃗ ⃗⃗ ⃗𝑦′(+|Γ|) ↦ ⃗⃗⃗ ⃗⃗ ⃗𝑦′] = 𝐵′(−|Γ|) = 𝐴′(+|Γ|)(−|Γ|) =
𝐴′. Thus, by reflexivity, Σ;Δ′ ⊢ 𝐵′[⃗⃗⃗ ⃗⃗ ⃗𝑦′(+|Γ|), ⃗𝑥 ↦ ⃗⃗⃗ ⃗⃗ ⃗𝑦′(+|Δ|), ⃗𝑦] ≡ 𝐴′ type.

By the assumptions fv(𝐴′) ⊆ {⃗⃗⃗ ⃗⃗ ⃗𝑦′} and fv(𝑡) ∪ fv(𝐵′) ⊆ 𝜀 ∪ {⃗⃗⃗ ⃗⃗ ⃗𝑦′(+|Γ|)}.

2.16. TYPE ELIMINATION 57

By Postulate 13 (context strengthening), Σ;Δ′ ⊢ 𝑡(−Γ) ∶ 𝐵′(−Γ). By con-
struction, 𝑡[⃗⃗⃗ ⃗⃗ ⃗𝑦′(+|Γ|) ↦ ⃗⃗⃗ ⃗⃗ ⃗𝑦′(+|Δ|)] = 𝑡[⃗⃗⃗ ⃗⃗ ⃗𝑦′(+|Γ|) ↦ ⃗⃗⃗ ⃗⃗ ⃗𝑦′] = 𝑡(−Γ), and, as shown
earlier, 𝐵′[⃗⃗⃗ ⃗⃗ ⃗𝑦′(+|Γ|) ↦ ⃗⃗⃗ ⃗⃗ ⃗𝑦′(+|Δ|)] = 𝐵′(−Γ). Therefore, Σ;Δ′ ⊢ 𝑡[⃗⃗⃗ ⃗⃗ ⃗𝑦′(+|Γ|) ↦
⃗⃗⃗ ⃗⃗ ⃗𝑦′(+|Δ|)] ∶ 𝐵′[⃗⃗⃗ ⃗⃗ ⃗𝑦′(+|Γ|) ↦ ⃗⃗⃗ ⃗⃗ ⃗𝑦′(+|Δ|)].

• 𝑥′  ⃗𝑥𝑛: By Definition 2.114 (type application, reversed), we have (i) Σ ⊢
𝐴′(+|Γ|) ↘ Π𝑈𝑉 , (ii) Σ;Δ′, Γ ⊢ 𝑥′ ∶ 𝑈 , (iii) 𝑉 [𝑥′]⇓ and (iv) Σ;Δ′, Γ ⊢
𝑉 [𝑥′] @̂R ⃗𝑥𝑛 ⇓ 𝐵′; where Γ = Γ′, 𝑈 ′, Γ″ for some 𝑈 ′, and 𝑥′ = |Γ″|. Let
𝑥0 ≝ 0; thus 𝑥′ = 𝑥(+∣Γ″∣)

0 .

Because fv(𝐴′) ⊆ {⃗⃗⃗ ⃗⃗ ⃗𝑦′(+|Γ|)}, by Remark 2.102 (preservation of free
variables by WHNF) then also fv(𝑈) ⊆ {⃗⃗⃗ ⃗⃗ ⃗𝑦′(+|Γ|)}. Therefore, 𝑈 (−|Γ|)

is well-defined, and, by Postulate 13 (context strengthening), Σ;Δ′ ⊢
𝑈 (−|Γ|) type.
By Lemma 2.62 (context weakening) Σ;Δ′, 𝑦0 ∶ 𝑈 (−|Γ|), Γ(+1) ⊢
𝑡(+1)+|Γ| ∶ 𝐵′(+1)+|Γ|, that is, Σ;Δ′, 𝑦0 ∶ 𝑈 (−|Γ|), Γ′(+1), 𝑈 ′((+1)+∣Γ′∣),
(Γ″((+1)+∣Γ′,𝑈′∣)) ⊢ 𝑡(+1)+|Γ| ∶ 𝐵′(+1)+|Γ|, Let 𝑦0 ≝ 0.
From Σ;Δ′, Γ ⊢ 𝑥′ ∶ 𝑈 and by Postulate 13 (context strengthen-
ing), Σ;Δ′, Γ′, 𝑥0 ∶ 𝑈 ′ ⊢ 𝑥0 ∶ 𝑈 (−∣Γ″∣). By Remark 2.30 (proper-
ties of renamings), Σ;Δ′, Γ′, 𝑥0 ∶ 𝑈 ′ ⊢ 𝑥0 ∶ 𝑈 (−|Γ|)(+∣Γ′,𝑈′∣). By
Lemma 2.62 (context weakening), Σ;Δ′, 𝑦0 ∶ 𝑈 (−|Γ|), Γ′(+1), 𝑥0 ∶
𝑈 ′(+1)+∣Γ′∣ ⊢ 𝑥0 ∶ 𝑈 (−|Γ|)(+∣Γ′,𝑈′∣)((+1)+∣Γ′,𝑈′∣). By Remark 2.30,
Σ;Δ′, 𝑦0 ∶ 𝑈 (−|Γ|), Γ′(+1), 𝑥0 ∶ 𝑈 ′(+1)+∣Γ′∣ ⊢ 𝑥0 ∶ 𝑈 (−|Γ|)(+∣𝑈,Γ′,𝑈′∣).
By Lemma 2.78 (variable types say everything) Σ;Δ′, 𝑦0 ∶ 𝑈 (−|Γ|), Γ0 ⊢
𝑡0 ∶ 𝐵0, where Γ0 = Γ′(+1), 𝑈 ′((+1)+∣Γ′∣), (Γ″((+1)+∣Γ′,𝑈′∣))[𝑥0 ↦ 𝑦(+∣Γ′,𝑈′∣)

0],
𝑡0 = 𝑡((+1)+|Γ|)[𝑥(+∣Γ″∣)

0 ↦ 𝑦(+∣Γ′,𝑈′,Γ″∣)
0], and 𝐵0 = 𝐵′((+1)+|Γ|)[𝑥(+∣Γ″∣)

0 ↦
𝑦(+∣Γ′,𝑈′,Γ″∣)
0].

Note that |Γ′, 𝑈 ′, Γ″| = |Γ| = |Γ0|. By Remark 2.102 (preservation of
free variables by WHNF), fv(𝑉) ⊆ {0} ∪ (fv(𝐴′(+|Γ|)) + 1) ⊆ {0} ∪
{⃗⃗⃗ ⃗⃗ ⃗𝑦′(+(1+|Γ|))}.
By Postulate 13 (context strengthening), Σ;Δ′, Γ′, 𝑥′ ∶ 𝑈 ′ ⊢ 𝑥′ ∶
𝑈 (−∣Γ″∣). By Lemma 2.62 (context weakening), Σ;Δ′, 𝑈 (−|Γ|), Γ′(+1),
𝑈 ′((+1)+∣Γ′∣) ⊢ 𝑥((+1)+∣Γ′,𝑈′∣)

0 ∶ 𝑈 (−∣Γ″∣)((+1)+∣Γ′,𝑈′∣). Note that fv(𝑈) ⊆
{|Δ′, Γ| − 1‚…, |Γ|}, i.e. fv(𝑈 (−∣Γ″∣)) ⊆ {|Δ′, Γ′, 𝑈 ′| − 1‚…, |Γ′, 𝑈 ′|}.
Therefore, 𝑈 (−∣Γ″∣)((+1)+∣Γ′,𝑈′∣) = 𝑈 (−∣Γ″∣)((+1)). By Remark 2.30 (prop-
erties of renamings), 𝑈 (−∣Γ″∣)((+1)) = 𝑈 (−|Γ|)((+∣𝑈,Γ′,𝑈′∣)). Therefore,
Σ;Δ′, 𝑈 (−|Γ|), Γ′(+1), 𝑈 ′((+1)+∣Γ′∣) ⊢ 𝑥0 ∶ 𝑈 (−|Γ|)(+∣𝑈,Γ′,𝑈′∣).
Thus, by Lemma 2.119 (Commuting of renaming with reversed type
application, (i) and then (ii)), Σ;Δ′, 𝑈 (−|Γ|), Γ0 ⊢ 𝑉0 @̂R ⃗𝑥𝑛 ⇓ 𝐵0, where
𝑉0 = 𝑉 [𝑥(+∣Γ″∣)

0]((+1)+|Γ|)[𝑥(+∣Γ″∣)
0 ↦ 𝑦(+|Γ|)

0].
Similarly, by Lemma 2.62 (context weakening) and then Lemma 2.78
(variable types say everything), Σ;Δ′, 𝑈 (−|Γ|), Γ0 ⊢ 𝑉0 type. Note that

58 CHAPTER 2. A DEPENDENTLY-TYPED LANGUAGE

∀𝑥 ∈ fv(𝑉0).𝑥 ≥ |Γ0|. By Postulate 13 (context strengthening) (and
noting |Γ| = |Γ0|), Σ;Δ′, 𝑈 (−|Γ0|) ⊢ 𝑉 (−|Γ0|)

0 type.
By Lemma 2.40 (correspondence between renaming and substi-
tution) and Remark 2.29 (composition of renamings), 𝑉0 =
𝑉 [⃗⃗⃗ ⃗⃗ ⃗𝑦′(+∣Γ,𝑈′∣), ⃗𝑧(+1), 0 ↦ ⃗⃗⃗ ⃗⃗ ⃗𝑦′(+|𝑈,Γ|), ⃗𝑧, 𝑦(+Γ)

0]. Note that { ⃗𝑧(+1)}∩fv(𝑉) = 0.
By Remark 2.29, Definition 2.23 (strengthening), Definition 2.22
(weakening) and Definition 2.24 (weakening of renamings), 𝑉0 =
𝑉 ((−|Γ|)+1)(+|Γ|).
By Remark 2.28 (renaming and free variables) we have fv(𝑉0) ⊆
(fv(𝑉))((−|Γ|)+1)(+|Γ|) = ({0} ∪ {⃗⃗⃗ ⃗⃗ ⃗𝑦′(+(1+|Γ|))})((−|Γ|)+1)(+|Γ|) = {(⃗⃗⃗ ⃗⃗ ⃗𝑦′(+1),
𝑦0)(+|Γ|)}. By Remark 2.28 and Remark 2.30 (properties of renamings),
fv(𝑉 (−|Γ0|)

0) ⊆ {(⃗⃗⃗ ⃗⃗ ⃗𝑦′(+1), 𝑦0)}.

Similarly, fv(𝑡0) ∪ fv(𝐵0) ⊆ {⃗⃗⃗⃗𝑥} ∪ {(⃗⃗⃗ ⃗⃗ ⃗𝑦′(+1), 𝑦0)(+|Γ|)}.
By the induction hypothesis (instantiating Δ′ ≔ (Δ′, 𝑈 (−|Γ0|))), Γ ≔ Γ0,
𝐴′ ≔ 𝑉 (−|Γ0|)

0 , 𝐵′ ≔ 𝐵0 and 𝑡 ≔ 𝑡0, thus ⃗⃗⃗ ⃗⃗ ⃗𝑦′ = (⃗⃗⃗ ⃗⃗ ⃗𝑦′(+1), 𝑦0)), there
exists Δ1 with |Δ1| = 𝑛 such that Σ;Δ′, 𝑈 (−|Γ|) ⊢ ΠΔ1𝐵1 ≡ 𝑉1 type
and Σ;Δ′, 𝑈 (−|Γ|),Δ1 ⊢ 𝑡1 ∶ 𝐵1 where ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑦(1) = (|Δ1| − 1),…, 0, 𝐵1 =
𝐵0[(⃗⃗⃗ ⃗⃗ ⃗𝑦′

(+1), 𝑦0)(+|Γ0|), ⃗⃗ ⃗⃗𝑥 ↦ ⃗⃗⃗ ⃗⃗ ⃗𝑦′(+|Δ|), ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑦(1)], 𝑡1 = 𝑡0[(⃗⃗⃗ ⃗⃗ ⃗𝑦′
(+1), 𝑦0)(+|Γ0|), ⃗⃗ ⃗⃗𝑥 ↦

⃗⃗⃗ ⃗⃗ ⃗𝑦′(+|Δ|), ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑦(1)] and 𝑉1 = 𝑉 (−|Γ|)
0 .

Note that |Γ0| = |Γ|. Take Δ ≝ (𝑈 (−|Γ|),Δ1) and ⃗𝑦 ≝ (𝑦(+|Δ1|)
0 , ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑦(1)) =

((|Δ| − 1),…, 0).

By Remark 2.29 (composition of renamings), 𝐵1 = 𝐵′[⃗⃗⃗ ⃗⃗ ⃗𝑦′(+|Γ|), 𝑥′, ⃗𝑥 ↦
⃗⃗⃗ ⃗⃗ ⃗𝑦′(+|Δ|), ⃗𝑦], 𝑡1 = 𝑡[⃗⃗⃗ ⃗⃗ ⃗𝑦′(+|Γ|), 𝑥′, ⃗𝑥 ↦ ⃗⃗⃗ ⃗⃗ ⃗𝑦′(+|Δ|), ⃗𝑦]. (Note that all the variables
in (𝑥′, ⃗𝑥) are distinct and smaller than |Γ|, so the renaming is indeed
well-formed).

This gives Σ;Δ′,Δ ⊢ 𝑡[⃗⃗⃗ ⃗⃗ ⃗𝑦′(+|Γ|), 𝑥′, ⃗𝑥 ↦ ⃗⃗⃗ ⃗⃗ ⃗𝑦′(+|Δ|), ⃗𝑦] ∶ 𝐵′[⃗⃗⃗ ⃗⃗ ⃗𝑦′(+|Γ|), 𝑥′, ⃗𝑥 ↦
⃗⃗⃗ ⃗⃗ ⃗𝑦′(+|Δ|), ⃗𝑦].
As shown above, Σ;Δ′, 𝑈 (−|Γ|) ⊢ ΠΔ1𝐵1 ≡ 𝑉1 type. By Remark 2.30
(properties of renamings), 𝑉1 = 𝑉 (−|Γ|)+1. By reflexivity and the pi-eq
rule, Σ;Δ′ ⊢ ΠΔ𝐵1 ≡ Π𝑈 (−Γ)(𝑉 (−|Γ|)+1) type.
By Lemma 2.62 (context weakening), Σ;Δ′ ⊢ 𝐴′(+|Γ|) type. Because
Σ ⊢ 𝐴′(+|Γ|) ↘ Π𝑈𝑉 , by Lemma 2.98 (equality of WHNF), Σ;Δ′ ⊢
𝐴′(+|Γ|) ≡ Π𝑈𝑉 type. By Postulate 13 (context strengthening), Σ;Δ′ ⊢
𝐴′ ≡ (Π𝑈𝑉)(−|Γ|) type.
By Definition 2.20 (renaming), transitivity and symmetry of equality,
Σ;Δ′ ⊢ ΠΔ(𝐵′[⃗⃗⃗ ⃗⃗ ⃗𝑦′(+|Γ|), 𝑥0, ⃗𝑥 ↦ ⃗⃗⃗ ⃗⃗ ⃗𝑦′(+|Δ|), ⃗𝑦]) ≡ 𝐴′ type.

We now use the property to prove the main theorem.
By the meta1 rule, Σ;Γ ⊢ 𝛼 ⇒ 𝐴(+|Γ|). By Lemma 2.109 (type application

inversion) and Lemma 2.115 (type application, reversed), Σ;Γ ⊢ 𝐴(+|Γ|) @̂R

⃗𝑥 ⇓ 𝐵′ for some 𝐵′, and Σ;Γ ⊢ 𝐵 ≡ 𝐵′ type. By the conv rule, Σ;Γ ⊢ 𝑡 ∶

2.17. METASUBSTITUTIONS 59

𝐵′. Because Σ sig, we have Σ1; · ⊢ 𝐴 type for some Σ1. By Lemma 2.65
(no extraneous variables in term), this means fv(𝐴) = ∅. By Remark 2.28
(renaming and free variables), fv(𝐴(+|Γ|)) = ∅. By Lemma 2.116 (free variables
in type application), fv(𝐵′) ⊆ { ⃗𝑥} ∪ fv(𝐴(+|Γ|)) ⊆ { ⃗𝑥} ∪ ∅.

By applying the above-proven property with Δ′ ≔ 𝜀, ⃗⃗⃗ ⃗⃗ ⃗𝑦′ ≔ 𝜀, Γ ≔ Γ,
𝐵′ ≔ 𝐵′, 𝐴′ ≔ 𝐴, 𝑡 ≔ 𝑡, ⃗⃗⃗ ⃗⃗ ⃗⃗𝑥′ ≔ ⃗⃗⃗⃗⃗ ⃗⃗𝑥′, we have Σ; · ⊢ ΠΔ(𝐵′[⃗𝑥 ↦ ⃗𝑦]) ≡ 𝐴 type,
and Σ;Δ ⊢ 𝑡[⃗𝑥 ↦ ⃗𝑦] ∶ 𝐵′[⃗𝑥 ↦ ⃗𝑦], where Δ = ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑇y

𝑛
and ⃗𝑦 = (|Δ| − 1),…, 0. By

the abs rule, Σ; · ⊢ 𝜆 ⃗𝑦𝑛.𝑡[⃗𝑥 ↦ ⃗𝑦] ∶ ΠΔ(𝐵′[⃗𝑥 ↦ ⃗𝑦]), which by the conv-eq rule
gives Σ; · ⊢ 𝜆 ⃗𝑦𝑛.𝑡[⃗𝑥 ↦ ⃗𝑦] ∶ 𝐴.

Finally, by induction on 𝑛, using Definition 2.33 (iterated hereditary elimi-
nation), Definition 2.32 (hereditary elimination), Lemma 2.40 (correspondence
between renaming and substitution) and Remark 2.29 (composition of renam-
ings), 𝜆 ⃗𝑦𝑛.(𝑡[⃗⃗⃗𝑥 ↦ ⃗𝑦]) @ ⃗⃗⃗⃗𝑥 ⇓ 𝑡.

2.17 Metasubstitutions (Θ)
Metasubstitutions are signatures which instantiate all the metavariables with
terms containing no metavariables.

Definition 2.121. Metasubstitution: (Θ)

Θ ∶∶= · empty metasubstitution
| Θ, 𝕒 ∶ 𝐴 atom
| Θ, 𝛼 ≔ 𝑡 ∶ 𝐴 metavariable instantiation

Definition 2.122 (Well-formed metasubstitution: Θwf). A metasubstitution
Θ is well-formed (written Θwf) if it is well-formed as a signature, and none
of the types and terms in it contain any metavariables:

empty·wf

Θwf
𝕒 is fresh in Θ Θ; · ⊢ 𝐴 type metas(𝐴) = ∅

subst-axiomΘ, 𝕒 ∶ 𝐴wf

Θwf
𝛼 is fresh in Θ Θ; · ⊢ 𝑡 ∶ 𝐴 metas(𝑡) = metas(𝐴) = ∅

subst-metaΘ,𝛼 ≔ 𝑡 ∶ 𝐴wf

Remark 2.123 (Metasubstitutions are signatures). Given a metasubstitution
Θ, if Θwf then Θ sig.

Furthermore, if Θ is a metasubstitution such that, for all 𝕒 ∶ 𝐴 ∈ Θ,
metas(𝐴) = ∅; and, for all 𝛼 ≔ 𝑡 ∶ 𝐴 ∈ Θ, metas(𝑡) ∪ metas(𝐴) = ∅; and
Θ sig, then Θwf.

(Note that, by Lemma 2.70 (piecewise well-formedness of typing judg-
ments), if Θ; · ⊢ 𝑡 ∶ 𝐴 then Θ; · ⊢ 𝐴 type).

Definition 2.124 (Metasubstitution subsumption: Θ ⊆ Θ′). We say Θ ⊆ Θ′

if Θwf, Θ′ wf, and, when taking Θ and Θ′ as signatures, Θ ⊆ Θ′.

60 CHAPTER 2. A DEPENDENTLY-TYPED LANGUAGE

Definition 2.125 (Compatible metasubstitution: Θ ⊨ Σ). We say that Θ is
compatible with Σ (written Θ ⊨ Σ) if Θwf, Σ sig, decls(Θ) = decls(Σ),
and, for every judgment 𝐽 , if Σ ⊢ 𝐽 , then Θ ⊢ 𝐽 .

Definition 2.126 (Declaration: (𝐷)). Each of the elements of a signature is
a declaration. If 𝐷 is a declaration, then either 𝐷 = 𝕒 ∶ 𝐴, 𝐷 = 𝛼 ∶ 𝐴 or
𝐷 = 𝛼 ≔ 𝑡 ∶ 𝐴.

Definition 2.127 (Compatibility of a metasubstitution with a declaration: Θ
compatible with 𝐷). We say that a metasubstitution Θ is compatible with a
declaration 𝐷 if any of the following hold:

• 𝐷 = 𝕒 ∶ 𝐴, and Θ; · ⊢ 𝕒 ∶ 𝐴.

• 𝐷 = 𝛼 ∶ 𝐴, and Θ; · ⊢ 𝛼 ∶ 𝐴.

• 𝐷 = 𝛼 ≔ 𝑢 ∶ 𝐴, and Θ; · ⊢ 𝛼 ≡ 𝑢 ∶ 𝐴.

Remark 2.128 (Compatibility with a declaration as a judgment: 𝐽 = 𝐷).
Given a declaration 𝐷, there is a judgment 𝐽 such that, for any metasubsti-
tution Θ, Θ is compatible with 𝐷 if and only if Θ ⊢ 𝐽 .

Proof.

• If 𝐷 = 𝕒 ∶ 𝐴, then 𝐽 = · ⊢ 𝕒 ∶ 𝐴.

• If 𝐷 = 𝛼 ∶ 𝐴, then 𝐽 = · ⊢ 𝛼 ∶ 𝐴.

• If 𝐷 = 𝛼 ≔ 𝑢 ∶ 𝐴, then 𝐽 = · ⊢ 𝛼 ≡ 𝑢 ∶ 𝐴.

Remark 2.129 (Alternative characterization of compatibility of a metasubsti-
tution with a declaration). A well-formed metasubstitution Θwf is compatible
with a declaration 𝐷 iff any of the following hold:

i) 𝐷 = 𝕒 ∶ 𝐴, and there is 𝕒 ∶ 𝐵 ∈ Θ such that Θ; · ⊢ 𝐵 ≡ 𝐴 type.

ii) 𝐷 = 𝛼 ∶ 𝐴, and there is 𝛼 ≔ 𝑡 ∶ 𝐵 ∈ Θ and Θ; · ⊢ 𝐵 ≡ 𝐴 type.

iii) 𝐷 = 𝛼 ≔ 𝑡 ∶ 𝐴, and there is 𝛼 ≔ 𝑢 ∶ 𝐵 ∈ Θ such that Θ; · ⊢ 𝐵 ≡ 𝐴 type
and Θ; · ⊢ 𝑡 ≡ 𝑢 ∶ 𝐵.

Proof.

⇐. Follows from the typing rules.

⇒. Follows by induction on the derivation of Θwf.

Lemma 2.130 (Alternative characterization of a compatible metasubstitu-
tion). Let Θ be a well-formed metasubstitution, and Σ be a well-formed sig-
nature. We have Θ ⊨ Σ if and only if decls(Θ) = decls(Σ), and, for each
declaration 𝐷 ∈ Σ, 𝐷 is compatible with Θ.

2.17. METASUBSTITUTIONS 61

Proof.

⇒. Assume Θ ⊨ Σ.

• 𝕒 ∶ 𝐴 ∈ Σ. By the rules atom and head, Σ; · ⊢ 𝕒 ∶ 𝐴. Because
Θ ⊨ Σ, we have Θ; · ⊢ 𝕒 ∶ 𝐴.

• 𝛼 ∶ 𝐴 ∈ Σ. By the rules meta1 and head, Σ; · ⊢ 𝛼 ∶ 𝐴. Because
Θ ⊨ Σ, we have Θ; · ⊢ 𝛼 ∶ 𝐴.

• 𝛼 ≔ 𝑡 ∶ 𝐴 ∈ Σ. By the rule delta-meta0, Σ; · ⊢ 𝛼 ≡ 𝑡 ∶ 𝐴. By the
assumption, Θ; · ⊢ 𝛼 ≡ 𝑡 ∶ 𝐴.

⇐. We need to show that, if Σ ⊢ 𝐽 , then Θ ⊢ 𝐽 . We do induction on the
structure of 𝐽 (in case 𝐽 is a conjunction of judgments), and, for the
base cases, induction on the derivation of the corresponding judgment.
We do analysis on the lowest rule of the derivation tree. For those rules
which do not involve the signature, we apply the induction hypothesis
to the premise and use the same rule.
There are three rules that involve the signature: head, head-eq and
delta-meta.

a) head:

Σ;Γ ⊢ ℎ ⇒ 𝐴 headΣ;Γ ⊢ ℎ ∶ 𝐴
• If ℎ = 𝛼, then necessarily 𝛼 ∶ 𝐴 ∈ Σ or 𝛼 ≔ 𝑡 ∶ 𝐴 ∈ Σ. By the

assumption, Θ is compatible with 𝛼 ∶ 𝐴; therefore Θ; · ⊢ 𝛼 ∶ 𝐴.
By Lemma 2.62 (context weakening), Θ;Γ ⊢ 𝛼 ∶ 𝐴.

• If ℎ = 𝕒, then, analogously to the previous case, Θ;Γ ⊢ 𝕒 ∶ 𝐴.
• If ℎ = 𝑥 or ℎ = if, and Σ;Γ ⊢ ℎ ⇒ 𝐴, then also Θ;Γ ⊢ ℎ ⇒ 𝐴.

By the head rule, Θ;Γ ⊢ ℎ ∶ 𝐴.
b) head-eq:

Σ;Γ ⊢ ℎ ⇒ 𝐴 head-eqΣ;Γ ⊢ ℎ ≡ ℎ ∶ 𝐴
By the same reasoning as above, Θ;Γ ⊢ ℎ ∶ 𝐴. By reflexivity of
equality, Θ;Γ ⊢ ℎ ≡ ℎ ∶ 𝐴.

c) delta-meta:

Σ;Γ ⊢ 𝛼  ⃗𝑒 ∶ 𝑇 Σ; Γ ⊢ 𝑡′ ∶ 𝑇
𝛼 ≔ 𝑡 ∶ 𝐴 ∈ Σ
𝑡 @ ⃗𝑒 ⇓ 𝑡′ delta-metaΣ;Γ ⊢ 𝛼  ⃗𝑒 ≡ 𝑡′ ∶ 𝑇

By the assumption, Θ is compatible with 𝛼 ≔ 𝑡 ∶ 𝐴; therefore, Θ; · ⊢
𝛼 ≡ 𝑡 ∶ 𝐴. By Lemma 2.62 (context weakening), Θ;Γ ⊢ 𝛼 ≡ 𝑡 ∶ 𝐴.
By definition, (𝛼 @ ⃗𝑒) ⇓ 𝛼  ⃗𝑒. By the assumption, (𝑡 @ ⃗𝑒)⇓𝑡′. By
Lemma 2.79 (typing and congruence of elimination), Θ;Γ ⊢ 𝑡′ ∶ 𝑇
and Θ;Γ ⊢ 𝛼  ⃗𝑒 ≡ 𝑡′ ∶ 𝑇 .

62 CHAPTER 2. A DEPENDENTLY-TYPED LANGUAGE

Remark 2.131 (Compatibility of extended metasubstitutions with declara-
tions). Let Σ sig be a well-formed signature, and Θwf a well-formed meta-
substitution such that Θ ⊨ Σ. Let Θ′ be a metasubstitution such that Θ′ wf,
and Θ ⊆ Θ′. Then, for every 𝐷 ∈ Σ, Θ′ is compatible with 𝐷.

Proof. By the assumption, Θ ⊨ Σ. By Lemma 2.130, therefore, Θ is compatible
with 𝐷. Because Θ ⊆ Θ′, by Remark 2.128 (compatibility with a declaration
as a judgment), and Lemma 2.69 (signature weakening), Θ′ is compatible with
𝐷.

Definition 2.132 (Restriction of a metasubstitution to a set of metavari-
ables). The restriction of Θ to a set 𝑆 (written Θ𝑆) is a metasubstitution
which assigns the same metavariable values as Θ, but only to those metavari-
ables in 𝑆.

(·)𝑆 = ·
(Θ, 𝕒 ∶ 𝐴)𝑆 = Θ𝑆, 𝕒 ∶ 𝐴
(Θ, 𝛼 ≔ 𝑡 ∶ 𝐴)𝑆 = Θ𝑆, 𝛼 ≔ 𝑡 ∶ 𝐴   if  𝛼 ∈ 𝑆
(Θ, 𝛼 ≔ 𝑡 ∶ 𝐴)𝑆 = Θ𝑆 otherwise

We overload the notation so that, when restricting metasubstitutions, sig-
natures stand for the set of metavariables they declare (ΘΣ = Θsupport(Σ)), and
terms stand for the set of metavariables they contain (Θ𝑡 = Θmetas(𝑡)). The
union of signatures, terms and sets stands for the union of the corresponding
sets (e.g. ΘΣ∪𝑡 = Θsupport(Σ)∪metas(𝑡)).

Remark 2.133 (Restriction to a compatible signature). Whenever support(Θ) =
support(Σ) (for instance, because Θ ⊨ Σ), then we have ΘΣ = Θ.

Proof. If Θ ⊨ Σ, by Definition 2.125 (compatible metasubstitution),
decls(Θ) = decls(Σ), which by Remark 2.9 (atoms and metavariables are
disjoint), gives support(Θ) = support(Σ).

The property follows by induction on Θ, using Definition 2.6 (support of
a signature) and Definition 2.132 (restriction of a metasubstitution to a set of
metavariables).

Remark 2.134 (Subsumption of restriction). For any well-formed metasubsti-
tution Θwf and set of metavariables 𝑆, Θ𝑆 wf and Θ𝑆 ⊆ Θ. In particular, for
any signature Σ, ΘΣ wf and ΘΣ ⊆ Θ.

Proof. By Postulate 12 (signature strengthening), and the fact that, by Defi-
nition 2.122 (well-formed metasubstitution), terms in a well-formed metasub-
stitution do not contain metavariables.

Remark 2.135 (Declarations in a metasubstitution restriction). Given a
metasubstitution Θ and a set 𝑆, AtomDecls(Θ) = AtomDecls(Θ𝑆)
and support(Θ𝑆) = support(Θ) ∩ 𝑆. In particular, given a sig-
nature Σ, AtomDecls(Θ) = AtomDecls(ΘΣ) and support(ΘΣ) =
support(Θ) ∩ support(Σ).
Remark 2.136 (Nested metasubstitution restriction). Let Θ be a metasubstitu-
tion, and 𝑆 and 𝑆′ sets of metavariables such that 𝑆 ⊆ 𝑆′. Then (Θ𝑆′)𝑆 = Θ𝑆.

2.18. CLOSING METASUBSTITUTION 63

Remark 2.137 (Metasubstitution weakening). Let Θ, Θ′ be metasubstitutions
such that Θ ⊆ Θ′, and 𝐽 a judgment. (For instance, if Θ = Θ′

Σ.) If Θ ⊢ 𝐽 ,
then Θ′ ⊢ 𝐽 .

Proof. By Remark 2.123 (metasubstitutions are signatures) and Lemma 2.69
(signature weakening).

Remark 2.138 (Metasubstitution strengthening). Assume Θwf, Θ ⊆ Θ′.
Let 𝐽 be a judgment. If Θ′ ⊢ 𝐽 and consts(𝐽) ⊆ decls(Θ), then Θ ⊢ 𝐽 .

Proof. By Remark 2.123 (metasubstitutions are signatures) and Postulate 12
(signature strengthening).

2.18 Closing metasubstitution (close(Σ))
Definition 2.139 (Closed signature). Let Σ be a signature. We say that Σ
is closed if it assigns a term to every metavariable it declares. In other words,
there are no 𝛼 and 𝐴 such that 𝛼 ∶ 𝐴 ∈ Σ.

Definition 2.140 (Normalization to meta-free terms: Σ ⊢ 𝑡 ⇘̂ 𝑢). Given a
closed signature Σ and a term Σ;Γ ⊢ 𝑡 ∶ 𝐴, we say that 𝑢 is the metavariable-
free normal form of term 𝑡 (written Σ ⊢ 𝑡 ⇘̂ 𝑢) if 𝑢 is the result of replacing
all metavariables occurring in 𝑡 by their bodies given in Σ. (See Figure 2.8.)

Lemma 2.141 (Existence of meta-free normal form). Given a closed signature
Σ, and a term Σ;Γ ⊢ 𝑡 ∶ 𝐴, there exists a unique term 𝑢 such that Σ ⊢ 𝑡⇘̂𝑢. For
this 𝑢, we have metas(𝑢) = ∅, consts(𝑢) ⊆ consts(𝑡), and Σ;Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴.

Proof. By induction on the structure of 𝑡 and Definition 2.140 (normalization
to meta-free terms), we have Σ ⊢ 𝑡 ⇘̂ 𝑢 with consts(𝑢) ⊆ consts(𝑡) and
metas(𝑢) = ∅. The induction is well-founded because the cases of ⇘̂ corre-
spond to reduction rules, and Postulate 8 prevents infinite chains of reductions.
The relation is deterministic because all the cases are disjoint, and each case
only depends (inductively) on deterministic relations. Note that, if Σ ⊢ 𝑡 ⇘̂𝑢,
then Σ;Γ ⊢ 𝑡⟶⋆

δη 𝑢 ∶ 𝐴. Therefore, Σ;Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴.

Remark 2.142 (Metavariable-free term). Let Σ sig be a closed signature. By
Lemma 2.141 (existence of meta-free normal form), if Σ; · ⊢ 𝑡 ∶ 𝐴, then there
are unique 𝑡′ and 𝐴′ such that Σ ⊢ 𝑡 ⇘̂ 𝑡′, Σ ⊢ 𝐴 ⇘̂ 𝐴′, metas(𝐴′) =
metas(𝑡′) = ∅, Σ; · ⊢ 𝐴′ ≡ 𝐴 type, Σ; · ⊢ 𝑡′ ≡ 𝑡 ∶ 𝐴′. Also, by Remark 2.15
(there is only set), if Σ; · ⊢ 𝐴 type, there is 𝐴′ such that Σ ⊢ 𝐴 ⇘̂ 𝐴′,
Σ; · ⊢ 𝐴 type, and Σ; · ⊢ 𝐴′ ≡ 𝐴 type.

Remark. If metas(𝑡) = ∅, then for any signature Σ, Σ ⊢ 𝑡 ⇘̂ 𝑡.

Definition 2.143 (Closing metasubstitution: close(Σ) ⇓Θ). Given a closed
signature Σ, whether a metasubstitution Θ is a closing metasubstitution for Σ
(written close(Σ) ⇓ Θ) is inductively defined as follows:

64 CHAPTER 2. A DEPENDENTLY-TYPED LANGUAGE

Σ ⊢ Bool ⇘̂ Bool
Σ ⊢ Π𝐴𝐵 ⇘̂ Π𝐴′𝐵′   if   Σ ⊢ 𝐴 ⇘̂ 𝐴′

and Σ ⊢ 𝐵 ⇘̂ 𝐵′

Σ ⊢ Σ𝐴𝐵 ⇘̂ Σ𝐴′𝐵′   if   Σ ⊢ 𝐴 ⇘̂ 𝐴′

and Σ ⊢ 𝐵 ⇘̂ 𝐵′

Σ ⊢ Set ⇘̂ Set
Σ ⊢ 𝑐 ⇘̂ 𝑐

Σ ⊢ 𝜆.𝑡 ⇘̂ 𝜆.𝑡′   if   Σ ⊢ 𝑡 ⇘̂ 𝑡′

Σ ⊢ ⟨𝑡, 𝑢⟩ ⇘̂ ⟨𝑡′, 𝑢′⟩   if   Σ ⊢ 𝑡 ⇘̂ 𝑡′
and Σ ⊢ 𝑢 ⇘̂ 𝑢′

Σ ⊢ 𝛼  ⃗𝑒𝑛 ⇘̂ 𝑣   if   𝛼 ≔ 𝑡 ∶ 𝐴 ∈ Σ
and 𝑡 @ ⃗⃗⃗ ⃗⃗ ⃗𝑒′ ⇓ 𝑣′
and Σ ⊢ 𝑣′ ⇘̂ 𝑣

Σ ⊢ ℎ  ⃗𝑒𝑛 ⇘̂ ℎ  ⃗⃗⃗ ⃗⃗ ⃗𝑒′   if   (ℎ = 𝑥  or  ℎ = 𝕒  or  ℎ = if)
and ∀𝑖 ∈ {1,…, 𝑛}.

𝑒′𝑖 ∶= 𝑒𝑖 = .𝜋1
  or  𝑒′𝑖 ∶= 𝑒𝑖 = .𝜋2
  or  (𝑒𝑖 = 𝑡𝑖

and Σ ⊢ 𝑡𝑖 ⇘̂ 𝑢𝑖
and 𝑒′𝑖 ∶= 𝑢𝑖)

Figure 2.8: Inductive definition of the meta-free normal form of a term

2.19. EQUALITY OF METASUBSTITUTIONS 65

close(·) ⇓ ·
close(Σ, 𝕒 ∶ 𝐴) ⇓ (Θ, 𝕒 ∶ 𝐴′)   if   close(Σ) ⇓ Θ

and Σ ⊢ 𝐴 ⇘̂ 𝐴′

close(Σ, 𝛼 ≔ 𝑡 ∶ 𝐴) ⇓ (Θ, 𝛼 ≔ 𝑡′ ∶ 𝐴′)   if   close(Σ) ⇓ Θ
and Σ ⊢ 𝐴 ⇘̂ 𝐴′

and Σ ⊢ 𝑡 ⇘̂ 𝑡′

Lemma 2.144 (Compatibility of closing metasubstitution). If Σ sig is closed,
then there is a unique metasubstitution Θ such that close(Σ) ⇓ Θ, Θwf and
Θ ⊨ Σ.

Proof. By induction on Σ. In all cases, we use Lemma 2.130 (alternative
characterization of a compatible metasubstitution) to show Θ ⊨ Σ.

i) Σ = ·: Take Θ = ·. Then close(·) ⇓ ·, Θwf and Θ ⊨ Σ.

ii) Σ′, 𝕒 ∶ 𝐴: By the induction hypothesis, there is Θ′ such that close(Σ′) ⇓
Θ′, Θ′ wf and Θ′ ⊨ Σ′.
Because Σ sig, we have Σ′ ⊢ 𝐴 type. By Remark 2.142 (metavariable-
free term), there exists a unique 𝐴′ such that Σ′ ⊢ 𝐴 ⇘̂ 𝐴′, Σ′; · ⊢
𝐴′ type, Σ′; · ⊢ 𝐴′ ≡ 𝐴 type.
Take Θ = Θ, 𝕒 ∶ 𝐴′ Because Θ′ ⊨ Σ′, Θ′; · ⊢ 𝐴′ type. Therefore Θwf.
Because Θ′ ⊨ Σ′, for any declaration 𝐷 ∈ Σ′, Θ′ is compatible with 𝐷.
By Remark 2.128 (compatibility with a declaration as a judgment) and
Lemma 2.69 (signature weakening), Θ is compatible with 𝐷. Because
Θ′ ⊨ Σ′ and Σ′; · ⊢ 𝐴′ ≡ 𝐴 type, we have Θ′; · ⊢ 𝐴′ ≡ 𝐴 type. By
Lemma 2.69, Θ; · ⊢ 𝐴′ ≡ 𝐴 type. By meta2, head and conv rules,
Θ; · ⊢ 𝕒 ∶ 𝐴.

iii) Σ′, 𝛼 ≔ 𝑡 ∶ 𝐴: By the induction hypothesis, there is Θ′ such that
close(Σ′) ⇓ Θ′, Θ′ wf and Θ′ ⊨ Σ′.
Because Σ sig, we have Σ′ ⊢ 𝑡 ∶ 𝐴. By Remark 2.142 (metavariable-free
term), there exist unique 𝑡′ and 𝐴′ such that Σ′ ⊢ 𝑡 ⇘̂ 𝑡′, Σ′ ⊢ 𝐴 ⇘̂ 𝐴′,
Σ′; · ⊢ 𝑡′ ≡ 𝑡 ∶ 𝐴′, Σ′; · ⊢ 𝐴′ ≡ 𝐴 type. Let Θ = Θ′, 𝛼 ∶ 𝑡′ ∶ 𝐴′. It
suffices to show that Θ; · ⊢ 𝛼 ≡ 𝑡 ∶ 𝐴, which follows analogously to the
previous case.

2.19 Equality of metasubstitutions (Θ1 ≡ Θ2)
Definition 2.145 (Equality of metasubstitutions: Θ ≡ Θ′). We say that
metasubstitutions Θ and Θ′ are equal (written Θ ≡ Θ′) if Θwf, Θ′ wf,
decls(Θ) = decls(Θ′), and each declaration in Θ is judgmentally equal to a
corresponding declaration in Θ′ (and vice versa).

More precisely, it is the transitive closure of the following relation:

66 CHAPTER 2. A DEPENDENTLY-TYPED LANGUAGE

Θ1, 𝕒 ∶ 𝐴,Θ2 ≡ Θ1, 𝕒 ∶ 𝐴′, Θ2   if   Θ1; · ⊢ 𝐴 ≡ 𝐴′ type
Θ1, 𝛼 ≔ 𝑡 ∶ 𝐴,Θ2 ≡ Θ1, 𝛼 ≔ 𝑡 ∶ 𝐴′, Θ2   if   Θ1; · ⊢ 𝐴 ≡ 𝐴′ type
Θ1, 𝛼 ≔ 𝑡 ∶ 𝐴,Θ2 ≡ Θ1, 𝛼 ≔ 𝑡′ ∶ 𝐴,Θ2   if   Θ1; · ⊢ 𝑡 ≡ 𝑡′ ∶ 𝐴

Θ ≡ Θ′   if  Θ′ is a well-formed reordering of Θ

Lemma 2.146 (Metasubstitution equality is an equivalence relation).

Proof. Transitivity and reflexivity follow by definition. Symmetry follows by
Lemma 2.54 (term equality is an equivalence relation).

Lemma 2.147 (Compatibility respects equality). If Θ1 ≡ Θ2 and Θ1 ⊨ Σ,
then Θ2 ⊨ Σ.

Proof. By induction on the proof for Θ1 ≡ Θ2, using Lemma 2.69 (signature
weakening) and Lemma 2.130 (alternative characterization of a compatible
metasubstitution).

Lemma 2.148 (Uniqueness of closing metasubstitution). Let Σ be a closed
signature, and Θ1, Θ2 metasubstitutions such that Θ1 ⊨ Σ, Θ2 ⊨ Σ. Then
Θ1 ≡ Θ2.

Proof. We show the following stronger property:
Given metasubstitutions Θ0, Θ1, Θ such that (Θ0, Θ1)wf, (Θ0, Θ)wf,

Θ0, Θ1 ⊨ Σ and close(Σ) ⇓ (Θ0, Θ), we have Θ0, Θ1 ≡ Θ0, Θ.
Note that, if close(Σ)⇓(Θ0, Θ), then we have Σ = Σ0, Σ′ and close(Σ0)⇓

(Θ0).
We proceed by induction on the length of Θ.

• Case Θ = ·: Because decls(Θ0, Θ1) = decls(Σ) = decls(Θ0, Θ), then
Θ1 = ·. By reflexivity, Θ0 ≡ Θ0.

• Case Θ = 𝛼 ≔ 𝑡0 ∶ 𝐴0, Θ′:
Because close(Σ) ⇓ (Θ0, Θ), we have Σ = Σ0, 𝛼 ≔ 𝑡 ∶ 𝐴,Σ′ and
close(Σ0) ⇓ Θ0.
By Lemma 2.130 (alternative characterization of a compatible meta-
substitution), Θ0, Θ is compatible with 𝛼 ≔ 𝑡 ∶ 𝐴 ∈ Σ. Therefore,
Θ0, Θ; · ⊢ 𝐴0 ≡ 𝐴 type, and Θ0, Θ; · ⊢ 𝑡0 ≡ 𝑡 ∶ 𝐴0.
Because Θ0, Θ is well-formed, by Lemma 2.72 (no extraneous constants)
consts(𝐴0) ⊆ decls(Θ0) and consts(𝑡0) ⊆ decls(Θ0). Because
Σ0, 𝛼 ≔ 𝑡 ∶ 𝐴 sig, by Lemma 2.72, we also have consts(𝐴) ⊆ decls(Θ0)
and consts(𝑡) ⊆ decls(𝑡0). By Postulate 12 (signature strengthening),
Θ0; · ⊢ 𝐴0 ≡ 𝐴 type and Θ0; · ⊢ 𝑡0 ≡ 𝑡 ∶ 𝐴0.
Because Θ0, Θ1 ⊨ Σ, we have 𝛼 ≔ 𝑡1 ∶ 𝐴1 ∈ Θ0, Θ1. In fact,
from Θ0, Θwf, we know that 𝛼 is fresh in Θ0, so 𝛼 ≔ 𝑡1 ∶
𝐴1 ∈ Θ1. Because Θ0, Θ1 ⊨ Σ, we have that Θ0, Θ1; · ⊢ 𝐴1 ≡
𝐴 type, and Θ0, Θ1; · ⊢ 𝑡1 ≡ 𝑡 ∶ 𝐴1. Let Θ1

1 and Θ1
2 be such

that Θ1 = Θ1
1, 𝛼 ≔ 𝑡1 ∶ 𝐴1, Θ1

2. Because Θ0, Θ1 wf, we have
consts(𝐴1) ⊆ decls(Θ0, Θ1

1) and consts(𝑡1) ⊆ decls(Θ0, Θ1
1).

As shown above, consts(𝐴) ⊆ decls(Θ0) ⊆ decls(Θ0, Θ1
1). and

2.19. EQUALITY OF METASUBSTITUTIONS 67

consts(𝑡) ⊆ decls(Θ0) ⊆ decls(Θ0, Θ1
1) By Postulate 12 (signature

strengthening), Θ0, Θ1
1; · ⊢ 𝐴1 ≡ 𝐴 type and Θ0, Θ1

1; · ⊢ 𝑡1 ≡ 𝑡 ∶ 𝐴1.

By Lemma 2.69 (signature weakening), Θ0, Θ1
1; · ⊢ 𝐴0 ≡ 𝐴 type, and

Θ0, Θ1
1; · ⊢ 𝑡0 ≡ 𝑡 ∶ 𝐴0. By Lemma 2.146 (metasubstitution equality is

an equivalence relation) Θ0, Θ1
1; · ⊢ 𝐴1 ≡ 𝐴0 type. This means that

Θ0, Θ1 = Θ0, Θ1
1, 𝛼 ≔ 𝑡1 ∶ 𝐴1, Θ1

2 ≡ Θ0, Θ1
1, 𝛼 ≔ 𝑡1 ∶ 𝐴0, Θ1

2. By the
conv-eq rule, Θ0, Θ1

1; · ⊢ 𝑡1 ≡ 𝑡 ∶ 𝐴0. By transitivity and symmetry of
equality, Θ0, Θ1

1; · ⊢ 𝑡1 ≡ 𝑡0 ∶ 𝐴0. Therefore, Θ0, Θ1
1, 𝛼 ≔ 𝑡1 ∶ 𝐴0, Θ1

2 ≡
Θ0, Θ1

1, 𝛼 ≔ 𝑡0 ∶ 𝐴0, Θ1
2.

Because consts(Α0) ⊆ decls(Θ0), and consts(𝑡0) ⊆ decls(Θ0),
Θ0, 𝛼 ≔ 𝑡0 ∶ 𝐴0, Θ1

1, Θ1
2 is a well-formed reordering of Θ0, Θ1

1, 𝛼 ≔ 𝑡0 ∶
𝐴0, Θ1

2. Therefore, (Θ0, Θ1
1, 𝛼 ≔ 𝑡0 ∶ 𝐴0, Θ1

2) ≡ (Θ0, 𝛼 ≔ 𝑡0 ∶ 𝐴0, Θ1
1, Θ1

2).
Because Θ0, 𝛼 ≔ 𝑡0 ∶ 𝐴0 wf, one can show by induction on the derivation
for Θ0, Θ1

1, 𝛼 ≔ 𝑡0 ∶ 𝐴0, Θ1
2 wf that Θ0, Θ1

1, 𝛼 ≔ 𝑡0 ∶ 𝐴0, Θ1
2 wf (use

Lemma 2.69 (signature weakening) for the declarations in Θ1
1, and the

fact that typing judgments do not rely on the order of declarations in
the signature, only on their well-formedness).

By transitivity Θ0, Θ1 ≡ Θ0, 𝛼 ≔ 𝑡0 ∶ 𝐴0, Θ1
1, Θ1

2. By Lemma 2.147
(compatibility respects equality), Θ0, 𝛼 ≔ 𝑡0 ∶ 𝐴0, Θ1

1, Θ1
2 ⊨ Σ.

By applying the induction hypothesis to Θ0, 𝛼 ≔ 𝑡0 ∶ 𝐴0, Θ1
1, Θ1

2 and Θ′

we have ((Θ0, 𝛼 ≔ 𝑡0 ∶ 𝐴0),Θ1
1, Θ1

2) ≡ ((Θ0, 𝛼 ≔ 𝑡0 ∶ 𝐴0),Θ′) = Θ0, Θ.

By Lemma 2.146 (metasubstitution equality is an equivalence relation),
Θ0, Θ1 ≡ Θ0, Θ.

• Case Θ = 𝕒 ∶ 𝐴0, Θ′:

Because close(Σ)⇓ (Θ0, Θ), we have Σ = Σ0, 𝕒 ∶ 𝐴,Σ′, close(Σ0)⇓Θ0.

By Lemma 2.144 (compatibility of closing metasubstitution), Θ0, Θ ⊨ Σ.
By Lemma 2.130 (alternative characterization of a compatible metasub-
stitution), Θ0, Θ is compatible with 𝕒 ∶ 𝐴 ∈ Σ. Therefore, Θ0, Θ; · ⊢
𝐴0 ≡ 𝐴 type, and Θ0, Θ; · ⊢ 𝑡0 ≡ 𝑡 ∶ 𝐴0.

Because Θ0, 𝕒 ∶ 𝐴0 wf is well-formed, by Lemma 2.72 (no extraneous
constants), consts(𝐴0) ⊆ decls(Θ0). By the definition of close(Σ),
we have that Σ0; · ⊢ 𝐴 type. By Lemma 2.72 (no extraneous constants),
we also have consts(𝐴) ⊆ decls(Σ0) = decls(Θ0). By Postulate 12
(signature strengthening), Θ0; · ⊢ 𝐴0 ≡ 𝐴 type.

Because Θ0, Θ1 ⊨ Σ, we have 𝕒 ∶ 𝐴1 ∈ Θ0, Θ1. In fact, from Θ0, Θwf,
we know that 𝕒 is fresh in Θ0, so 𝕒 ∶ 𝐴1 ∈ Θ1. Because Θ0, Θ1 ⊨ Σ,
we have that Θ0, Θ1; · ⊢ 𝐴1 ≡ 𝐴 type. More specifically, Θ1 = Θ1

1, 𝕒 ∶
𝐴1, Θ1

2. Because Θ0, Θ1 wf, we have consts(𝐴1) ⊆ decls(Θ0, Θ1
1). As

we explained above, consts(𝐴) ⊆ decls(Θ0) ⊆ decls(Θ0, Θ1
1). By

Postulate 12 (signature strengthening), Θ0, Θ1
1; · ⊢ 𝐴1 ≡ 𝐴 type.

By Lemma 2.69 (signature weakening), Θ0, Θ1
1; · ⊢ 𝐴0 ≡ 𝐴 type. By

transitivity and symmetry, Θ0, Θ1
1; · ⊢ 𝐴1 ≡ 𝐴0 type. This means that

Θ0, Θ1 = Θ0, Θ1
1, 𝕒 ∶ 𝐴1, Θ1

2 ≡ Θ0, Θ1
1, 𝕒 ∶ 𝐴0, Θ1

2.

68 CHAPTER 2. A DEPENDENTLY-TYPED LANGUAGE

Because consts(Α0) ⊆ decls(Θ0), we have that Θ0, 𝕒 ∶ 𝐴0, Θ1
1, Θ1

2 is
a well-formed reordering of Θ0, Θ1

1, 𝕒 ∶ 𝐴0, Θ1
2. Therefore, (Θ0, Θ1

1, 𝕒 ∶
𝐴0, Θ1

2) ≡ (Θ0, 𝕒 ∶ 𝐴0, Θ1
1, Θ1

2).
By applying the induction hypothesis to Θ0, 𝕒 ∶ 𝐴0, Θ1

1, Θ1
2 and Θ′ we

have (Θ0, 𝕒 ∶ 𝐴0),Θ1
1, Θ1

2) ≡ (Θ0, 𝕒 ∶ 𝐴0),Θ′) = Θ (the required well-
formedness and compatibility conditions are shown analogously to the
previous case).

By Lemma 2.146 (metasubstitution equality is an equivalence relation),
Θ0, Θ1 ≡ Θ0, Θ.

Because Σ sig and Σ is closed, by Lemma 2.144 (compatibility of closing
metasubstitution), there is Θ such that close(Σ) ⇓ Θ. By taking Θ0 ≔ ·
and Θ1 ≔ Θ1, we obtain Θ1 ≡ Θ. By taking Θ0 ≔ · and Θ1 ≔ Θ2, we
obtain Θ2 ≡ Θ. By Lemma 2.146 (metasubstitution equality is an equivalence
relation), Θ1 ≡ Θ2.

Corollary 2.149 (Solution to closed signature). Let Σ be a closed signature.
Then close(Σ) ⇓ Θ, Θ ⊨ Σ, and, for any other Θ′ such that Θ′ ⊨ Σ, we have
Θ ≡ Θ′.

Proof. By Lemma 2.144 (compatibility of closing metasubstitution) and
Lemma 2.148 (uniqueness of closing metasubstitution).

Lemma 2.150 (Equality of restricted metasubstitutions). If Θ1 ≡ Θ2, then
(Θ1)Σ wf, (Θ2)Σ wf and (Θ1)Σ ≡ (Θ2)Σ.

Proof. By induction on the derivations of Θ1 wf, Θ2 wf, Θ1 ≡ Θ2, using Pos-
tulate 12 (signature strengthening).

2.20 Signature extensions (Σ ⊑ Σ′)

During type checking, the initial signature may be extended with new
metavariables, and existing metavariables may be instantiated. The end goal
is to obtain an extension of the original signature in which all metavariables
are instantiated (i.e. a closed signature) and in which the terms provided by
the user are well-typed.

We say that Σ′ is an extension of Σ (written Σ ⊑ Σ′) if Σ′ contains all the
declarations in Σ. The signature Σ′ may instantiate some metavariables that
are not already instantiated in Σ, and/or replace some types and terms in Σ
by equal ones; but Σ′ must not declare any new atoms (i.e. AtomDecls(Σ) =
AtomDecls(Σ′)). More formally:

Definition 2.151 (Signature extension: Σ ⊑ Σ′). Consider the signatures Σ
and Σ′. We say that Σ′ extends Σ (written Σ′ ⊒ Σ or Σ ⊑ Σ′), if Σ sig,
Σ′ sig, and it does so inductively in any of the following cases:

2.20. SIGNATURE EXTENSIONS 69

Declarations
Σ1, Σ2 ⊑ Σ1, 𝛼 ∶ 𝐴,Σ2

Σ1, 𝛼 ∶ 𝐴,Σ2 ⊑ Σ1, 𝛼 ≔ 𝑡 ∶ 𝐴,Σ2

Composition
Σ1 ⊑ Σ3   if   Σ1 ⊑ Σ2 and Σ2 ⊑ Σ3

Normalization
Σ1, 𝕒 ∶ 𝐴,Σ2 ⊑ Σ1, 𝕒 ∶ 𝐴′, Σ2   if   Σ1; · ⊢ 𝐴 ≡ 𝐴′ type
Σ1, 𝛼 ∶ 𝐴,Σ2 ⊑ Σ1, 𝛼 ∶ 𝐴′, Σ2   if   Σ1; · ⊢ 𝐴 ≡ 𝐴′ type

Σ1, 𝛼 ≔ 𝑡 ∶ 𝐴,Σ2 ⊑ Σ1, 𝛼 ≔ 𝑡 ∶ 𝐴′, Σ2   if   Σ1; · ⊢ 𝐴 ≡ 𝐴′ type
Σ1, 𝛼 ≔ 𝑡 ∶ 𝐴,Σ2 ⊑ Σ1, 𝛼 ≔ 𝑡′ ∶ 𝐴,Σ2   if   Σ1; · ⊢ 𝑡 ≡ 𝑡′ ∶ 𝐴

Permutation
Σ ⊑ Σ′   if  Σ′ is a well-formed reordering of Σ

Remark 2.152 (Signature extension is reflexive and transitive). The relation
− ⊑ − is reflexive and transitive.
Remark 2.153 (Signature extension declarations). If Σ ⊑ Σ′, then
AtomDecls(Σ) = AtomDecls(Σ′) and support(Σ) ⊆ support(Σ′).
Remark 2.154 (Metasubstitution restriction to extension). If Σ ⊑ Σ′,
then by Remark 2.153 (signature extension declarations), support(Σ) ⊆
support(Σ′). Therefore, by Remark 2.136 (ΘΣ′)Σ = ΘΣ.

The key insight is that extending the signature preserves all relevant prop-
erties about contexts, terms, types and constraints.

Lemma 2.155 (Preservation of judgments under signature extensions). Let
Σ ⊑ Σ′, and 𝐽 be a judgment. If Σ ⊢ 𝐽 , then Σ′ ⊢ 𝐽 .

Proof. By induction on the derivation of Σ ⊑ Σ′.

• Rules for declarations are proven by induction on 𝐽 , using the same rules
as in the original derivation of 𝐽 .

• The rule for composition is handled inductively.

• For the normalization rules, we proceed by induction on the derivation of
the judgment, using conv, conv-eq and laws of equality as appropriate,
similarly to the proof of Lemma 2.130 (alternative characterization of a
compatible metasubstitution).

• The rule for permutation is a special case of Lemma 2.69 (signature
weakening).

Corollary 2.156 (Horizontal composition of extensions). Let Σ = Σ1, Σ2,
Σ sig, and Σ′

1 such that Σ1 ⊑ Σ′
1 (in particular, Σ′

1 sig). Also, decls(Σ′
1) ∩

decls(Σ2) = ∅. (that is, all the new declarations in Σ′
1 are fresh in Σ2). Then

Σ1, Σ2 ⊑ Σ′
1, Σ2 (in particular, Σ′

1, Σ2 sig).

70 CHAPTER 2. A DEPENDENTLY-TYPED LANGUAGE

Proof. By induction on the length of Σ2. Use Lemma 2.155 (preservation of
judgments under signature extensions) to prove the well-formedness of each
declaration in Σ2.

Lemma 2.157 (Restriction of a metasubstitution to an extended signature).
Let Θ be a metasubstitution, and Σ and Σ′ signatures such that Σ ⊑ Σ′ and
Θ ⊨ Σ′. Then ΘΣ wf and ΘΣ ⊨ Σ.

Proof. By Remark 2.134 (subsumption of restriction), ΘΣ wf. By Def-
inition 2.125 (compatible metasubstitution), it suffices to show that
decls(ΘΣ) = decls(Σ), and that for every signature judgment 𝐽 , if Σ ⊢ 𝐽
then ΘΣ ⊢ 𝐽 .

decls(ΘΣ) = Definition 2.8
AtomDecls(ΘΣ) ∪ support(ΘΣ) = Remark 2.135

AtomDecls(Θ) ∪ (support(Θ) ∩ support(Σ)) = Θ ⊨ Σ′, Remark 2.9
AtomDecls(Σ′) ∪ (support(Σ′) ∩ support(Σ)) = Remark 2.153

AtomDecls(Σ) ∪ support(Σ) = Definition 2.8
decls(Σ)

Let 𝐽 be a judgment such that Σ ⊢ 𝐽 . By Lemma 2.69 (signature weaken-
ing), for each judgment 𝐽 such that Σ ⊢ 𝐽 , we have Σ′ ⊢ 𝐽 . Because Θ ⊨ Σ′,
we also have Θ ⊢ 𝐽 .

By Lemma 2.72 (no extraneous constants), consts(𝐽) ⊆ decls(Σ) =
decls(ΘΣ). By construction, ΘΣ ⊆ Θ. By Postulate 12 (signature strength-
ening), ΘΣ ⊢ 𝐽 .

2.21 Non-reducible terms
A key step in our unification algorithm is simplifying constraints into new
constraints involving smaller terms. For instance, one may reduce equating
two neutral terms ℎ  ⃗𝑒 and ℎ  ⃗𝑒′ to pointwise equating each of the eliminators
(e.g. Rule schema 14). In order to ensure that we do not lose solutions, we
need to restrict which terms such a transformation may be applied to.

Definition 2.158 (Strongly neutral term). A strongly neutral term is a neu-
tral term of one of the following forms:

• 𝑥  ⃗𝑒.
• 𝕒  ⃗𝑒.
• if  ⃗𝑒𝑛, where either 𝑛 < 2, or 𝑒2 is a strongly neutral term.

Remark 2.159 (Prefixes of strongly neutral terms). Prefixes of strongly neutral
terms are strongly neutral. That is, if ℎ  ⃗𝑒1  ⃗𝑒2 is strongly neutral, then ℎ  ⃗𝑒1 is
also strongly neutral.
Remark 2.160 (Closure of strongly neutral terms). If 𝑓 is a strongly neutral
term, then:

(i) If 𝜌 is a renaming, then 𝑓𝜌 is strongly neutral.

2.21. NON-REDUCIBLE TERMS 71

(i) If 𝑡 is a strongly neutral term, then then 𝑓 𝑡 is strongly neutral.

(i) If 𝑒 = .𝜋1 or 𝑒 = .𝜋2, and Σ;Γ ⊢ 𝑓 𝑒 ∶ 𝑇 for some type 𝑇 , then 𝑓 𝑒 is
strongly neutral.

Proof. From Definition 2.158 (strongly neutral term). For 2.160, observe that,
by Lemma 2.56 (neutral inversion) and Lemma 2.75 (uniqueness of typing for
neutrals), the terms if 𝐴 .𝜋1 and if 𝐴 .𝜋2 can never be well typed.

Remark 2.161 (Intermediate steps of reduction of strong neutrals). Assume
Σ;Γ ⊢ 𝑓0 ⟶δη 𝑡 ∶ 𝑇 , and Σ;Γ ⊢ 𝑡⟶⋆

δη 𝑓1 ∶ 𝑇 , where 𝑓0 is a strongly neutral
term. Then 𝑡 is a neutral term.

Proof. By Definition 2.41 (δη-normalization step), there are only three possible
cases for Σ;Γ ⊢ 𝑓0 ⟶δη 𝑡 ∶ 𝑇 :

(η-Π) Σ; Γ ⊢ 𝑓 ⟶δη 𝜆.𝑓 (+1) 0 ∶ 𝑇   if   Σ; Γ ⊢ 𝑇 ≡ Π𝐴𝐵 type

(η-Σ) Σ; Γ ⊢ 𝑓 ⟶δη ⟨𝑓 .𝜋1, 𝑓  .𝜋2⟩ ∶ 𝑇   if   Σ; Γ ⊢ 𝑇 ≡ Σ𝐴𝐵 type

(app𝑛) Σ; Γ ⊢ ℎ  ⃗𝑒𝑛−1 𝑢  ⃗𝑒′ ⟶δη ℎ  ⃗𝑒 𝑣  ⃗𝑒′ ∶ 𝑇   if   Σ; Γ ⊢ ℎ  ⃗𝑒 ∶ Π𝑈𝑉
and Σ;Γ ⊢ 𝑢⟶δη 𝑣 ∶ 𝑈

However, if 𝑡 was of the form 𝜆.𝑡0 or ⟨𝑡1, 𝑡2⟩, and Σ;Γ ⊢ 𝑡⟶⋆
δη 𝑢 ∶ 𝑇 , then

necessarily 𝑢 is of the form 𝜆.𝑢0 or ⟨𝑢1, 𝑢2⟩. But Σ;Γ ⊢ 𝑡 ⟶⋆
δη 𝑓1 ∶ 𝑇 , where

𝑓1 is a neutral term. Therefore, we must be in case app𝑛, where 𝑡 is also a
neutral term.

Remark 2.162 (Reduction preserves strongly neutral terms). If 𝑓 is strongly
neutral, and Σ;Γ ⊢ 𝑓 ⟶⋆

δη 𝑓 ′ ∶ 𝑇 , where 𝑓 ′ is a neutral term, then 𝑓 ′ is also
strongly neutral.

Proof. Consider the case with a single step, Σ;Γ ⊢ 𝑓 ⟶δη 𝑓 ′ ∶ 𝑇 . We proceed
by induction on the structure of the derivation.

Observe that the only rule that reduces a strongly neutral term to another
neutral term is app𝑖 for some 𝑖. If 𝑓 = ℎ  ⃗𝑒, then 𝑓 ′ = ℎ  ⃗⃗⃗ ⃗⃗ ⃗𝑒′.

• If ℎ = 𝑥 or ℎ = 𝕒, then 𝑓 ′ is strongly neutral.

• If ℎ = if and 𝑖 ≠ 2, then 𝑓 ′ is strongly neutral.

• If 𝑖 = 2, we have Σ;Γ ⊢ 𝑒2⟶δη𝑒′2 ∶ 𝑈 for some type 𝑈 . By the induction
hypothesis, 𝑒′2 is strongly neutral; therefore, 𝑓 ′ is also strongly neutral.

By Remark 2.161, the intermediate steps in the reduction are necessar-
ily neutral terms. Therefore, the general case follows from induction on the
number of steps.

Lemma 2.163 (Injectivity of elimination for strongly neutral terms). Assume
that 𝑓 and 𝑔 are strongly neutral terms, with 𝑓 = ℎ1  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒1

𝑛
and 𝑔 = ℎ2  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒2

𝑛
, and

Σ;Γ ⊢ 𝑓 ≡ 𝑔 ∶ 𝑇 . Then, ℎ1 = ℎ2, and for each 𝑖 ∈ 1,…, 𝑛:

72 CHAPTER 2. A DEPENDENTLY-TYPED LANGUAGE

• If 𝑒1𝑖 = 𝑡 and 𝑒2𝑖 = 𝑢, then there are 𝑈 and 𝑉 such that Σ;Γ ⊢
ℎ1  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒11,…,𝑖−1 ≡ ℎ2  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒21,…,𝑖−1 ∶ Π𝑈𝑉 and Σ;Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝑈 .

• If 𝑒1𝑖 = 𝑒2𝑖 = .𝜋1 or 𝑒1𝑖 = 𝑒2𝑖 = .𝜋2, then there are 𝑈 and 𝑉 such that
Σ;Γ ⊢ ℎ1  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒11,…,𝑖−1 ≡ ℎ2  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒21,…,𝑖−1 ∶ Σ𝑈𝑉 .

Note that, by Lemma 2.75 (uniqueness of typing for neutrals)
and Postulate 10 (injectivity of Π), the above hold for any 𝑈 , 𝑉
such that Σ;Γ ⊢ ℎ1  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒11,…,𝑖−1 ≡ ℎ2  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒21,…,𝑖−1 ∶ Π𝑈𝑉 (first case) or
Σ;Γ ⊢ ℎ1  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒11,…,𝑖−1 ≡ ℎ2  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒11,…,𝑖−1 ∶ Σ𝑈𝑉 (second case).

Proof. By Postulate 14 (existence of a common reduct), there exists 𝑣 such
that Σ;Γ ⊢ 𝑓⟶𝑀

δη 𝑣 ∶ 𝑇 and Σ;Γ ⊢ 𝑔⟶𝑁
δη 𝑣 ∶ 𝑇 . We show by induction on the

sum of 𝑀 and 𝑁 that for all 𝑀 , 𝑁 , and for all 𝑓 , 𝑔 such that Σ;Γ ⊢ 𝑓⟶𝑀
δη𝑣 ∶ 𝑇

and Σ;Γ ⊢ 𝑔 ⟶𝑁
δη 𝑣 ∶ 𝑇 , the consequences of the theorem hold.

• 𝑀 = 𝑁 = 0: Then 𝑓 = 𝑔. The result follows by Lemma 2.56 (neutral
inversion), and reflexivity.

• 𝑀 > 0 or 𝑁 > 0: We proceed by case analysis on the derivations. Note
that, for any 𝑓 which is strongly neutral, only the reduction rules η-Π,
η-Σ, and app𝑛 for some 𝑛 can be applied to it.

– app𝑗 for 𝑓 : Σ;Γ ⊢ 𝑓 ⟶δη 𝑓 ′ ⟶𝑀−1
δη 𝑣 ∶ 𝑇 , where 𝑓 ′ = ℎ1 ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑒′1,

such that, for some 𝑗, ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑒′1 = ⃗⃗⃗⃗⃗ ⃗⃗𝑒11,…,𝑗−1 𝑒′1𝑗   ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒1𝑗+1,…,𝑛, with Σ;Γ ⊢
ℎ1  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒11,…,𝑗−1 ∶ Π𝑈𝑉 and Σ;Γ ⊢ 𝑒1𝑗 ⟶δη 𝑒′1𝑗 ∶ 𝑈 .
By Remark 2.162 (reduction preserves strongly neutral terms), 𝑓 ′

is strongly neutral. There are two possible cases:
1. 𝑖 ≠ 𝑗: Then 𝑒1𝑖 = 𝑒′1𝑖 . By Lemma 2.86 (equality of δη-reduct)

and transitivity of equality, Σ;Γ ⊢ 𝑓 ′ ≡ 𝑔 ∶ 𝑇 , and Σ;Γ ⊢
𝑓 ′ ⟶𝑀−1

δη 𝑣 ∶ 𝑇 .
By the induction hypothesis, we have that ℎ1 = ℎ2, and:

∗ If 𝑒1𝑖 = 𝑒′1𝑖 = 𝑡 and 𝑒2𝑖 = 𝑢, then there are 𝑈 , 𝑉 , 𝑇 ″ such
that Σ;Γ ⊢ ℎ1 ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑒′11,…,𝑖−1 ≡ ℎ2  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒21,…,𝑖−1 ∶ 𝑇 ″, 𝑇 ″ = Π𝑈𝑉 ,
and Σ;Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝑈 .

∗ If 𝑒1𝑖 = 𝑒′1𝑖 = 𝑒2𝑖 = .𝜋1 or 𝑒1𝑖 = 𝑒′1𝑖 = 𝑒2𝑖 = .𝜋2, then there are
𝑈 , 𝑉 , 𝑇 ″ such that 𝑇 ″ = Σ𝑈𝑉 and Σ;Γ ⊢ ℎ1 ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑒′11,…,𝑖−1 ≡
ℎ2  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒21,…,𝑖−1 ∶ 𝑇 ″.

If 𝑖 ≠ 𝑗, then either 𝑖 < 𝑗, or 𝑖 > 𝑗:
∗ If 𝑖 < 𝑗, then ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒11,…,𝑖−1 = ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑒′11,…,𝑖−1, and the lemma is

proven.
∗ If 𝑗 < 𝑖, then, by Lemma 2.56 (neutral inversion)

and the app𝑗 rule, we have Σ;Γ ⊢ ℎ1  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒11,…,𝑖−1 ⟶δη
ℎ1 ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑒′11,…,𝑖−1 ∶ 𝑇 ′. By Lemma 2.86, this gives Σ;Γ ⊢
ℎ1  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒11,…,𝑖−1 ≡ ℎ1 ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑒′11,…,𝑖−1 ∶ 𝑇 ′. By Lemma 2.75,
Σ;Γ ⊢ ℎ1  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒11,…,𝑖−1 ≡ ℎ1 ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑒′11,…,𝑖−1 ∶ 𝑇 ″, and, by transitivity

2.21. NON-REDUCIBLE TERMS 73

Σ;Γ ⊢ ℎ1  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒11,…,𝑖−1 ≡ ℎ2  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒21,…,𝑖−1 ∶ 𝑇 ″. Then the lemma is
proven.

2. 𝑖 = 𝑗: Then Σ;Γ ⊢ 𝑡 ⟶δη 𝑒′1𝑗 ∶ 𝑈 , which, by Lemma 2.86
(equality of δη-reduct), gives Σ;Γ ⊢ 𝑡 ≡ 𝑒′1𝑗 ∶ 𝑈 .
By the induction hypothesis, ℎ1 = ℎ2, Σ;Γ ⊢ ℎ1  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒11,…,𝑖−1 ≡
ℎ2  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒21,…,𝑖−1 ∶ Π𝑈𝑉 and Σ;Γ ⊢ 𝑒′1𝑗 ≡ 𝑢 ∶ 𝑈 . By transitivity,
Σ;Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝑈 .

– app𝑗 for 𝑔: Symmetric to the previous case.
– None of the above apply, the first reduction for 𝑓 is η-Π:

By Remark 2.89 (disjointness of primitive types), we cannot have
both Σ;Γ ⊢ 𝑇 ≡ Π𝐴𝐵 ∶ Set and Σ;Γ ⊢ 𝑇 ≡ Σ𝐴′𝐵′ ∶ Set for some
𝐴, 𝐴′, 𝐵 and 𝐵′. Then, necessarily, the first reduction for 𝑔 is
also η-Π, Σ;Γ ⊢ 𝑓 ⟶δη 𝜆.(𝑓(+1)) 0 ⟶𝑀−1

δη 𝜆.𝑣′ ∶ 𝑇 , and Σ;Γ ⊢
𝑔 ⟶δη 𝜆.(𝑔(+1)) 0 ⟶𝑁−1

δη 𝜆.𝑣′ ∶ 𝑇 , where Σ;Γ ⊢ 𝑇 ≡ Π𝐴𝐵 type
for some 𝐴 and 𝐵.
By Remark 2.91 (inversion of reduction under 𝜆), Σ;Γ,𝐴 ⊢
𝑔(+1) 0 ⟶𝑁−1

δη 𝑣′ ∶ 𝐵, and Σ;Γ,𝐴 ⊢ 𝑓 (+1) 0 ⟶𝑀−1
δη 𝑣′ ∶ 𝐵. By

Remark 2.160 (closure of strongly neutral terms), if 𝑓 and 𝑔 are
strongly neutral, then so are 𝑓 (+1) 0 and 𝑔(+1) 0.
1. 𝑒1𝑖 = 𝑡 and 𝑒2𝑖 = 𝑢:

By the induction hypothesis, (ℎ1)(+1) = (ℎ2)(+1), (i.e. ℎ1 =
ℎ2), Σ;Γ,𝐴 ⊢ (ℎ1  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒11,…,𝑖−1)(+1) ≡ (ℎ2  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒21,…,𝑖−1)(+1) ∶ Π𝑈𝑉 , and
Σ;Γ,𝐴 ⊢ 𝑡(+1) ≡ 𝑢(+1) ∶ 𝑈 .
By Lemma 2.56 (neutral inversion), Σ;Γ ⊢ ℎ1  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒11,…,𝑖−1 ∶
Π𝑈 ′𝑉 ′. By Lemma 2.62 (context weakening), Σ;Γ,𝐴 ⊢
(ℎ1  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒11,…,𝑖−1)(+1) ∶ (Π𝑈 ′𝑉 ′)(+1). By Lemma 2.75 (uniqueness
of typing for neutrals), Σ;Γ,𝐴 ⊢ Π𝑈𝑉 ≡ (Π𝑈 ′𝑉 ′)(+1) type.
By Postulate 10 (injectivity of Π), Σ;Γ,𝐴 ⊢ 𝑈 ≡ 𝑈 ′(+1) type.
By the conv-eq rule, we have Σ;Γ,𝐴 ⊢ (ℎ1  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒11,…,𝑖−1)(+1) ≡
(ℎ2  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒21,…,𝑖−1)(+1) ∶ (Π𝑈 ′𝑉 ′)(+1), and Σ;Γ,𝐴 ⊢ 𝑡(+1) ≡ 𝑢(+1) ∶
𝑈 ′(+1).
By Postulate 13 (context strengthening), we have Σ;Γ ⊢
(ℎ1  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒11,…,𝑖−1)(+1)(−1) ≡ (ℎ2  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒21,…,𝑖−1)(+1)(−1) ∶ (Π𝑈 ′𝑉 ′)(+1)(−1),
and Σ;Γ ⊢ 𝑡(+1)(−1) ≡ 𝑢(+1)(−1) ∶ 𝑈 ′(+1)(−1), that is, Σ;Γ ⊢
ℎ1  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒11,…,𝑖−1 ≡ ℎ2  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒21,…,𝑖−1 ∶ Π𝑈 ′𝑉 ′, and Σ;Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝑈 ′.

2. 𝑒1𝑖 = 𝑒2𝑖 = .𝜋1 or 𝑒1𝑖 = 𝑒2𝑖 = .𝜋2. Analogous to the previous
case.

– None of the above apply, and the first reduction for 𝑓 is η-Σ:
As in the previous case, necessarily, the first reduction for 𝑔 is η-Σ,
Σ;Γ ⊢ 𝑓 ⟶δη ⟨𝑓 .𝜋1, 𝑓  .𝜋2⟩ ⟶𝑀−1

δη ⟨𝑣′1, 𝑣′2⟩ ∶ 𝑇 , and Σ;Γ ⊢ 𝑔 ⟶δη
⟨𝑓 .𝜋1, 𝑓  .𝜋2⟩⟶𝑁−1

δη ⟨𝑣′1, 𝑣′2⟩ ∶ 𝑇 .
The proof is similar to the above case, using Remark 2.92 (inversion
of reduction under ⟨, ⟩).

74 CHAPTER 2. A DEPENDENTLY-TYPED LANGUAGE

Definition 2.164 (Irreducible terms). A strongly neutral term is irreducible
if it is in one of the following forms:

• 𝑥  ⃗𝑒.

• 𝕒  ⃗𝑒.

• if 𝑒1 𝑒2  ⃗𝑒, where 𝑒2 is a strongly neutral term.

Remark 2.165 (Extensions of irreducible terms). If 𝑓 is an irreducible term,
then so is 𝑓  ⃗𝑒.

Lemma 2.166 (Reduction at Π-type). Assume Σ;Γ ⊢ 𝑓 ∶ Π ⃗𝑈𝑛𝑉 for some
⃗𝑈 , 𝑉 . Then there is 𝑣 such that Σ;Γ ⊢ 𝜆 ⃗𝑧𝑛.𝑓   ⃗𝑧𝑛 ⟶⋆

δη 𝜆 ⃗𝑧𝑛.𝑣 ∶ Π ⃗⃗⃗ ⃗⃗ ⃗𝑈𝑛𝑉 , and
Σ;Γ ⊢ 𝜆 ⃗𝑧𝑛.𝑣��⟶δη ∶ Π ⃗⃗⃗ ⃗⃗ ⃗𝑈𝑛𝑉 .

Proof. By the eta-abs rule, we have Σ;Γ ⊢ 𝑓 ≡ 𝜆 ⃗𝑧𝑛.𝑓   ⃗𝑧𝑛 ∶ Π⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑧 ∶ 𝑈𝑛𝑉 . By
Postulate 15 (existence of a unique full normal form), there is 𝑟 such that
Σ;Γ ⊢ 𝜆 ⃗𝑧𝑛.𝑓   ⃗𝑧𝑛 ⟶⋆

δη 𝑟 ∶ Π ⃗⃗⃗ ⃗⃗ ⃗𝑈𝑛𝑉 , and Σ;Γ ⊢ 𝑟��⟶δη ∶ Π ⃗⃗⃗ ⃗⃗ ⃗𝑈𝑉 . Note that, by
Definition 2.41 (δη-normalization step), for any 𝑡, if Σ;Γ ⊢ 𝜆 ⃗𝑧𝑛.𝑡 ⟶δη 𝑟0 ∶
Π ⃗⃗⃗ ⃗⃗ ⃗𝑈𝑛𝑉 , then only λ applies (recursively, perhaps), so necessarily 𝑟0 = 𝜆 ⃗𝑧𝑛.𝑡′
for some 𝑡′.

By induction on the derivation, 𝑟 = 𝜆 ⃗𝑧𝑛.𝑣 for some 𝑣, and therefore there
is 𝑣 such that Σ;Γ ⊢ 𝜆 ⃗𝑧𝑛.𝑓   ⃗𝑧𝑛 ⟶⋆

δη 𝜆 ⃗𝑧𝑛.𝑣 ∶ Π ⃗⃗⃗ ⃗⃗ ⃗𝑈𝑛𝑉 , and Σ;Γ ⊢ 𝜆 ⃗𝑧𝑛.𝑣��⟶δη ∶
Π ⃗⃗⃗ ⃗⃗ ⃗𝑈𝑉 .

Lemma 2.167 (Characterization of normal forms). Suppose that Θ;Γ ⊢ 𝑣 ∶ 𝑉
and Θ;Γ ⊢ 𝑣��⟶δη ∶ 𝑉 . Then 𝑣 is of the form 𝑣nf for some 𝑣nf generated by
the following grammar:

𝑡nf, 𝑢nf, 𝑣nf, 𝐴nf, 𝐵nf ∶∶= Set
| Bool
| Π𝐴nf𝐵nf

| Σ𝐴nf𝐵nf

| 𝑐
| 𝜆.𝑡nf

| ⟨𝑡nf, 𝑢nf⟩
| ℎ ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑒nf   if  ℎ ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑒nf is strongly neutral

𝑒nf ∶∶= 𝑡nf | .𝜋1 | .𝜋2

Note that the converse does not hold; for instance:

𝔸 ∶ Set; 𝑥 ∶ 𝔸 → 𝔸 ⊢ 𝑥⟶δη 𝜆𝑦.𝑥 𝑦 ∶ 𝔸 → 𝔸

Proof. Assume that 𝑣 is not of the form 𝑣nf. Then, by induction, show that it
can be subjected to at least one reduction step.

2.22. RIGIDLY OCCURRING TERMS 75

2.22 Rigidly occurring terms (𝑡⟦𝑢⟧)
A subterm occurs rigidly in a term if the occurrence cannot be made to “disap-
pear” from the term by normalizing it (c.f. Definition 2.41, δη-normalization
step).

Definition 2.168 (Rigid occurrence). Let 𝑡 and 𝑢 be terms. Whether 𝑢
occurs rigidly in 𝑡 under 𝑛 binders (written 𝑡⟦𝑢⟧𝑛) is defined recursively on 𝑡
as follows:

(r-id) 𝑢⟦𝑢⟧0
(r-Π1) (Π𝐴𝐵)⟦𝑢⟧𝑛   if   𝐴⟦𝑢⟧𝑛
(r-Π2) (Π𝐴𝐵)⟦𝑢⟧1+𝑛   if   𝐵⟦𝑢⟧𝑛
(r-Σ1) (Σ𝐴𝐵)⟦𝑢⟧𝑛   if   𝐴⟦𝑢⟧𝑛
(r-Σ2) (Σ𝐴𝐵)⟦𝑢⟧1+𝑛   if   𝐵⟦𝑢⟧𝑛
(r-λ) (𝜆.𝑡)⟦𝑢⟧1+𝑛   if   𝑡⟦𝑢⟧𝑛

(r-⟨,⟩1) (⟨𝑡1, 𝑡2⟩)⟦𝑢⟧𝑛   if   𝑡1⟦𝑢⟧𝑛
(r-⟨,⟩2) (⟨𝑡1, 𝑡2⟩)⟦𝑢⟧𝑛   if   𝑡2⟦𝑢⟧𝑛

(r-irred) (𝑓  ⃗𝑒)⟦𝑓⟧0   if   𝑓 is an irreducible term
(r-strong)(ℎ  ⃗𝑒)⟦𝑢⟧𝑛   if   ℎ  ⃗𝑒 is strongly neutral

and there is 𝑡 ∈ ⃗𝑒 such that 𝑡⟦𝑢⟧𝑛

Note that the term 𝑢 is not weakened when the definition goes under a binder.
Instead, the superindex 𝑛 keeps track of the number of binders above 𝑢.

Definition 2.169 (Typed rigid occurrence). Let 𝑡 and 𝑢 be terms. We say that
𝑢 occurs rigidly with type 𝑈 and context Δ (written Σ;Γ ⊢ 𝑡⟦Δ ⊢ 𝑢 ∶ 𝑈⟧ ∶ 𝑇)
if Σ;Γ ⊢ 𝑡 ∶ 𝑇 , Σ;Γ,Δ ⊢ 𝑢 ∶ 𝑈 , and Σ;Γ ⊢ 𝑡⟦Δ ⊢ 𝑢 ∶ 𝑈⟧′ ∶ 𝑇 , where the latter
is defined as follows:

(tr-id) Σ; Γ ⊢ 𝑢⟦· ⊢ 𝑢 ∶ 𝑈⟧′ ∶ 𝑇   if   Σ; Γ ⊢ 𝑈 ≡ 𝑇 type

(tr-Π1) Σ; Γ ⊢ (Π𝐴𝐵)⟦Δ ⊢ 𝑢 ∶ 𝑈⟧′ ∶ 𝑇   if   Σ; Γ ⊢ 𝐴⟦Δ ⊢ 𝑢 ∶ 𝑈⟧ ∶ Set

(tr-Π2) Σ; Γ ⊢ (Π𝐴𝐵)⟦𝐴′,Δ ⊢ 𝑢 ∶ 𝑈⟧′ ∶ 𝑇   if   Σ; Γ ⊢ 𝐴′ ≡ 𝐴 type
and Σ;Γ,𝐴 ⊢ 𝐵⟦Δ ⊢ 𝑢 ∶ 𝑈⟧ ∶ Set

(tr-Σ1) Σ; Γ ⊢ (Σ𝐴𝐵)⟦Δ ⊢ 𝑢 ∶ 𝑈⟧′ ∶ 𝑇   if   Σ; Γ ⊢ 𝐴⟦Δ ⊢ 𝑢 ∶ 𝑈⟧ ∶ Set

(tr-Σ2) Σ; Γ ⊢ (Σ𝐴𝐵)⟦𝐴′,Δ ⊢ 𝑢 ∶ 𝑈⟧′ ∶ 𝑇   if   Σ; Γ ⊢ 𝐴′ ≡ 𝐴 type
and Σ;Γ,𝐴 ⊢ 𝐵⟦Δ ⊢ 𝑢 ∶ 𝑈⟧ ∶ Set

(tr-λ) Σ; Γ ⊢ (𝜆.𝑡)⟦𝐴,Δ ⊢ 𝑢 ∶ 𝑈⟧′ ∶ 𝑇   if   Σ; Γ ⊢ Π𝐴𝐵 ≡ 𝑇 type
and Σ;Γ,𝐴 ⊢ 𝑡⟦Δ ⊢ 𝑢 ∶ 𝑈⟧ ∶ 𝐵

76 CHAPTER 2. A DEPENDENTLY-TYPED LANGUAGE

(tr-⟨,⟩1) Σ; Γ ⊢ (⟨𝑡1, 𝑡2⟩)⟦Δ ⊢ 𝑢 ∶ 𝑈⟧′ ∶ 𝑇   if   Σ; Γ ⊢ Σ𝐴𝐵 ≡ 𝑇 type
and Σ;Γ ⊢ 𝑡1⟦Δ ⊢ 𝑢 ∶ 𝑈⟧ ∶ 𝐴

(tr-⟨,⟩2) Σ; Γ ⊢ (⟨𝑡1, 𝑡2⟩)⟦Δ ⊢ 𝑢 ∶ 𝑈⟧′ ∶ 𝑇   if   Σ; Γ ⊢ Σ𝐴𝐵 ≡ 𝑇 type
and Σ;Γ ⊢ 𝑡2⟦Δ ⊢ 𝑢 ∶ 𝑈⟧ ∶ 𝐵[𝑡1]

(tr-irred) Σ; Γ ⊢ (𝑓  ⃗𝑒)⟦· ⊢ 𝑓 ∶ 𝑈⟧′ ∶ 𝑇   if   𝑓 is an irreducible term

(tr-strong)Σ; Γ ⊢ (ℎ  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒1 𝑡  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒2)⟦Δ ⊢ 𝑢 ∶ 𝑈⟧′ ∶ 𝑇   if   Σ; Γ ⊢ ℎ  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒1 ∶ Π𝐴𝐵
and Σ;Γ ⊢ 𝑡⟦Δ ⊢ 𝑢 ∶ 𝑈⟧ ∶ 𝐴

and ℎ  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒1 𝑡  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒2 is strongly neutral

Lemma 2.170 (Typing of rigid occurrences). Suppose Σ;Γ ⊢ 𝑡 ∶ 𝑇 and 𝑡⟦𝑢⟧𝑛.
Then there exist Δ and 𝑈 , |Δ| = 𝑛, such that Σ;Γ ⊢ 𝑡⟦Δ ⊢ 𝑢 ∶ 𝑈⟧ ∶ 𝑇 .

Proof. By induction on the derivation of 𝑡⟦𝑢⟧, and using the corresponding
inversion lemmas (i.e. Lemma 2.53 (Σ inversion), Lemma 2.52 (Π inversion),
Lemma 2.57 (type of 𝜆-abstraction) and Lemma 2.82 (λ inversion), Lemma
2.60 (type of a pair) and Lemma 2.84 (⟨,⟩-inversion), or Lemma 2.111 (appli-
cation inversion), respectively).

Remark 2.171 (Free variables of rigid occurrence). If Σ;Γ ⊢ 𝑡⟦Δ ⊢ 𝑢 ∶ 𝑈⟧ ∶ 𝑇
then fv(𝑢) − |Δ| ⊆ fv(𝑡).

Lemma 2.172 (Free variables in reduction of rigid occurrences). Let 𝑡 and
𝑢 be terms such that Σ;Γ ⊢ 𝑡⟦Δ ⊢ 𝑢 ∶ 𝑈⟧ ∶ 𝑇 . If there is 𝑟 such that
Σ;Γ ⊢ 𝑡 ⟶⋆

δη 𝑟 ∶ 𝑇 , then there is 𝑣 such that Σ;Γ,Δ ⊢ 𝑢 ≡ 𝑣 ∶ 𝑈 , and
fv(𝑣) − |Δ| ⊆ fv(𝑟).

Proof. First, we show the following lemmas by mutual induction on 𝑛. For all
Γ, 𝑡, 𝑢, 𝑇 , 𝐴, 𝐵, 𝑢1, 𝑢2, 𝑓 , ⃗𝑒, ℎ, ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒1, ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒2 and 𝑡′:

(i) If Σ;Γ ⊢ Π𝐴𝐵 ⟶𝑛
δη 𝑡 ∶ 𝑇 then there is 𝐴′ and 𝑚 ≤ 𝑛 such that Σ;Γ ⊢

𝐴⟶𝑚
δη 𝐴′ ∶ Set and fv(𝐴′) ⊆ fv(𝑡).

(ii) If Σ;Γ ⊢ Π𝐴𝐵⟶𝑛
δη 𝑡 ∶ 𝑇 then there is 𝐵′ and 𝑚 ≤ 𝑛 such that Σ;Γ,𝐴 ⊢

𝐵 ⟶𝑚
δη 𝐵′ ∶ Set and fv(𝐵′) − 1 ⊆ fv(𝑡).

(iii) If Σ;Γ ⊢ Σ𝐴𝐵 ⟶𝑛
δη 𝑡 ∶ 𝑇 then there is 𝐴′ and 𝑚 ≤ 𝑛 such that Σ;Γ ⊢

𝐴⟶𝑚
δη 𝐴′ ∶ Set and fv(𝐴′) ⊆ fv(𝑡).

(iv) If Σ;Γ ⊢ Σ𝐴𝐵⟶𝑛
δη 𝑡 ∶ 𝑇 then there is 𝐵′ and 𝑚 ≤ 𝑛 such that Σ;Γ,𝐴 ⊢

𝐵 ⟶𝑚
δη 𝐵′ ∶ Set and fv(𝐵′) − 1 ⊆ fv(𝑡).

(v) If Σ;Γ ⊢ 𝜆.𝑢⟶𝑛
δη 𝑡 ∶ 𝑇 and Σ;Γ ⊢ 𝑇 ≡ Π𝐴𝐵 type then there is 𝑢′ and

𝑚 ≤ 𝑛 such that Σ;Γ,𝐴 ⊢ 𝑢⟶𝑚
δη 𝑢′ ∶ 𝐵 and fv(𝑢′) − 1 ⊆ fv(𝑡).

2.22. RIGIDLY OCCURRING TERMS 77

(vi) If Σ;Γ ⊢ ⟨𝑢1, 𝑢2⟩⟶𝑛
δη 𝑡 ∶ 𝑇 and Σ;Γ ⊢ 𝑇 ≡ Σ𝐴𝐵 type then there is 𝑢′

1
and 𝑚 ≤ 𝑛 such that Σ;Γ ⊢ 𝑢1 ⟶𝑚

δη 𝑢′
1 ∶ 𝐴, and fv(𝑢′

1) ⊆ fv(𝑡).

(vii) If Σ;Γ ⊢ ⟨𝑢1, 𝑢2⟩⟶𝑛
δη 𝑡 ∶ 𝑇 and Σ;Γ ⊢ 𝑇 ≡ Σ𝐴𝐵 type then there is 𝑢′

2
and 𝑚 ≤ 𝑛 such that Σ;Γ ⊢ 𝑢2 ⟶𝑚

δη 𝑢′
2 ∶ 𝐵[𝑢1] and fv(𝑢′

2) ⊆ fv(𝑡).

(viii) If Σ;Γ ⊢ 𝑓  ⃗𝑒⟶𝑛
δη 𝑡 ∶ 𝑇 , with 𝑓 irreducible, and Σ;Γ ⊢ 𝑓 ∶ 𝐵′ then there

is 𝑓 ′ and 𝑚 ≤ 𝑛 such that Σ;Γ ⊢ 𝑓 ⟶𝑚
δη 𝑓 ′ ∶ 𝐵′ and fv(𝑓 ′) ⊆ fv(𝑡).

(ix) If Σ;Γ ⊢ ℎ  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒1 𝑢  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒2 ⟶𝑛
δη 𝑡 ∶ 𝐵, with ℎ  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒1 𝑢  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒2 strongly neutral, and Σ;Γ ⊢

ℎ  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒1 ∶ Π𝑈𝑉 then there is 𝑢′ such that Σ;Γ ⊢ 𝑢⟶𝑚
δη 𝑢′ ∶ 𝑈 , 𝑚 ≤ 𝑛 and

fv(𝑢′) ⊆ fv(𝑡).

Here we do one case of (viii):

• Case where Σ;Γ ⊢ 𝑓  ⃗𝑒⟶𝑛+1
δη 𝑡 ∶ 𝑇 and the first step is η-Π:

In this case, Σ;Γ ⊢ 𝑓  ⃗𝑒⟶δη𝜆.(𝑓  ⃗𝑒)(+1) 0 ∶ 𝑇 , and Σ;Γ ⊢ 𝜆.(𝑓  ⃗𝑒)(+1) 0⟶𝑛
δη

𝑡 ∶ 𝑇 .
By Lemma 2.56 (neutral inversion), there is 𝐵′ such that Σ;Γ ⊢ 𝑓 ∶ 𝐵′.
Because Σ;Γ ⊢ 𝜆.(𝑓  ⃗𝑒)(+1) 0 ∶ 𝑇 , by Lemma 2.57 (type of 𝜆-abstraction),
then Σ;Γ ⊢ Π𝐴𝐵 ≡ 𝑇 type.
By (v), there is 𝑡′ and 𝑚′ such that Σ;Γ,𝐴 ⊢ (𝑓  ⃗𝑒)(+1) 0 ⟶𝑚′

δη 𝑡′ ∶ 𝐵,
with fv(𝑡′)−1 ⊆ fv(𝑡) and 𝑚′ ≤ 𝑛. If 𝑓 is irreducible, then 𝑓 (+1) is also
irreducible.
By Lemma 2.62 (context weakening), Σ;Γ,𝐴 ⊢ 𝑓 (+1) ∶ 𝐵′(+1). By (viii),
there is 𝑓 ′ such that Σ;Γ,𝐴 ⊢ 𝑓 (+1)⟶𝑚

δη𝑓 ′ ∶ 𝐵′(+1), 𝑚 ≤ 𝑚′ ≤ 𝑛 ≤ 𝑛+1
and fv(𝑓 ′) ⊆ fv(𝑡′). By Remark 2.94 (strengthening of reduction),
Σ;Γ ⊢ 𝑓 ⟶𝑚

δη 𝑓 ′(−1) ∶ 𝐵′.
As shown earlier, 𝑚 ≤ 𝑛 + 1 and fv(𝑓 ′) ⊆ fv(𝑡′). The latter gives
fv(𝑓 ′(−1)) ⊆ fv(𝑡′) − 1. Note that fv(𝑡′) − 1 ⊆ fv(𝑡); therefore
fv(𝑓 ′(−1)) ⊆ fv(𝑡).

Then, proceed by induction on Σ;Γ ⊢ 𝑡⟦Δ ⊢ 𝑢 ∶ 𝑈⟧ ∶ 𝑇 . We do a few
representative cases:

• Case (tr-id): Then Σ;Γ ⊢ 𝑢⟦· ⊢ 𝑢 ∶ 𝑈⟧ ∶ 𝑇 , Σ;Γ ⊢ 𝑢 ⟶⋆
δη 𝑟 ∶ 𝑇 ,

and Σ;Γ ⊢ 𝑈 ≡ 𝑇 type. Take 𝑣 = 𝑟. By Lemma 2.86 (equality of
δη-reduct) and the conv-eq rule, Σ;Γ ⊢ 𝑢 ≡ 𝑣 ∶ 𝑈 . By construction,
fv(𝑣) − 0 ⊆ fv(𝑣) = fv(𝑟).

• Case (tr-Π2): Then Δ = 𝐴′,Δ′ and Σ;Γ ⊢ (Π𝐴𝐵)⟦𝐴′,Δ′ ⊢ 𝑢 ∶ 𝑈⟧ ∶ 𝑇 ,
with Σ;Γ,𝐴 ⊢ 𝐵⟦Δ′ ⊢ 𝑢 ∶ 𝑈⟧ ∶ Set and Σ;Γ ⊢ Π𝐴𝐵 ⟶⋆

δη 𝑟 ∶ 𝑇 , By (ii),
there is 𝐵′ such that Σ;Γ,𝐴 ⊢ 𝐵 ⟶⋆

δη 𝐵′ ∶ 𝑇 , and fv(𝐵′) − 1 ⊆ fv(𝑟).
By the induction hypothesis, there is 𝑣 such that Σ;Γ,𝐴,Δ′ ⊢ 𝑢 ≡ 𝑣 ∶ 𝑈
and fv(𝑣) − |Δ′| ⊆ fv(𝐵′), that is, fv(𝑣) − |Δ| ⊆ fv(𝐵′) − 1 ⊆ fv(𝑟).

78 CHAPTER 2. A DEPENDENTLY-TYPED LANGUAGE

Corollary 2.173 (Preservation of head variable). If Σ;Γ ⊢ 𝑥  ⃗𝑒 ≡ 𝑡 ∶ 𝑈 , then
𝑥 ∈ fv(𝑡).

Proof. By Postulate 14 (existence of a common reduct) and Remark 2.43 (free
variables of δη-reduct), there is 𝑟 such that Σ;Γ ⊢ 𝑥  ⃗𝑒 ⟶δη 𝑟 ∶ 𝑈 and Σ;Γ ⊢
𝑡⟶δη 𝑟 ∶ 𝑈 , with fv(𝑟) ⊆ fv(𝑡).

By property (viii) in the proof of Lemma 2.172 (free variables in reduction
of rigid occurrences), there exists 𝑓 ′ such that Σ;Γ ⊢ 𝑥  ⃗𝑒⟶𝑚

δη 𝑓 ′ ∶ 𝑈 for some
𝑚, and fv(𝑓 ′) ⊆ fv(𝑡).

By Definition 2.41 (δη-normalization step), at each of the 𝑚 reduction
steps, only the app𝑗 rule may be applied (for perhaps a different 𝑗 at each step)
and thus 𝑓 ′ = 𝑥  ⃗⃗⃗ ⃗⃗ ⃗𝑒′ for some ⃗⃗⃗ ⃗⃗ ⃗𝑒′. Therefore, 𝑥 ∈ fv(𝑓 ′), and thus, 𝑥 ∈ fv(𝑡).

Lemma 2.174 (Rigidity of substitution by neutral terms in normal forms).
Given a vector ⃗𝑓 of irreducible neutral terms, a normal form term 𝑣nf, and
a vector ⃗𝑥 of variables fulfilling the hypothesis of Definition 2.34 (iterated
hereditary substitution). Then we have 𝑣nf[⃗𝑓/ ⃗𝑥] ⇓ 𝑢 for some 𝑢, and, for all
𝑖 ∈ {1,…, 𝑛}, if 𝑥𝑖 ∈ fv(𝑣nf), then there is 𝑚 such that 𝑢⟦𝑓 (+𝑚)

𝑖 ⟧𝑚.

Proof. By Remark 2.36 (hereditary substitution by a neutral term), 𝑢 exists.
By induction on 𝑣nf and Definition 2.31 (hereditary substitution), 𝑢⟦𝑓 (+𝑚)⟧𝑚.

Lemma 2.175 (Preservation of irreducibles by normal forms). Suppose that
Θ;Γ, ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑥 ∶ 𝑈𝑛 ⊢ 𝑣 ∶ 𝑉 , and Θ;Γ, ⃗⃗⃗ ⃗⃗ ⃗𝑈 ⊢ 𝑣��⟶δη ∶ 𝑉 .

Let ⃗𝑓𝑛 be a vector of irreducible terms, such that, for all 𝑖 = 1,…, 𝑛,
𝑓𝑖 = ℎ𝑖  ⃗⃗⃗ ⃗⃗ ⃗𝑒𝑖, and, for some ℎ, Θ;Γ ⊢ ℎ ∶ Π ⃗𝑈𝑛𝐵, and Θ;Γ ⊢ ℎ  ⃗𝑓 ∶ 𝐵[⃗𝑓].

Take 𝑖 ∈ {1,…, 𝑛} such that 𝑥𝑖 ∈ fv(𝑣). If Θ;Γ ⊢ 𝑣[⃗𝑓] ≡ 𝑢 ∶ 𝑇 for some
term 𝑢 and type 𝑇 , and ℎ𝑖 = 𝑦, then 𝑦 ∈ fv(𝑢).

Proof. By Lemma 2.167 (characterization of normal forms), 𝑣 is of the form
𝑣nf.

By Lemma 2.174 (rigidity of substitution by neutral terms in normal
forms), we have that 𝑣[⃗𝑓]⟦𝑓 (+𝑚)

𝑖 ⟧𝑚 for some 𝑚, which, by Lemma 2.170
(typing of rigid occurrences), gives Θ;Γ ⊢ 𝑣nf[⃗𝑓]⟦Δ ⊢ 𝑓 (+|Δ|)

𝑖 ∶ 𝑈⟧ ∶ 𝑇 for some
Δ, 𝑈 , with |Δ| = 𝑚.

Because Θ;Γ ⊢ 𝑣[⃗𝑓] ≡ 𝑢 ∶ 𝑇 , by Postulate 14 (existence of a common
reduct), there is a term 𝑟 such that Θ;Γ ⊢ 𝑣[⃗𝑓] ⟶⋆

δη 𝑟 ∶ 𝑇 , and Θ;Γ ⊢
𝑢⟶⋆

δη 𝑟 ∶ 𝑇 .
Because Θ;Γ ⊢ 𝑣nf[⃗𝑓]⟦Δ ⊢ 𝑓 (+|Δ|)

𝑖 ∶ 𝑈⟧ ∶ 𝑇 and Θ;Γ ⊢ 𝑣[⃗𝑓] ⟶⋆
δη 𝑟 ∶ 𝑇 , by

Lemma 2.172 (free variables in reduction of rigid occurrences) and Remark 2.28
(renaming and free variables), there is �̃� such that Θ;Γ,Δ ⊢ 𝑓 (+|Δ|)

𝑖 ≡ �̃� ∶ 𝑈
and fv(�̃�) − |Δ| ⊆ fv(𝑟).

By Corollary 2.173 (preservation of head variable), ℎ(+|Δ|)
𝑖 = 𝑦(+|Δ|) ∈

fv(�̃�), therefore ℎ𝑖 = 𝑦 ∈ fv(�̃�) − |Δ| ⊆ fv(𝑟).
Because Θ;Γ ⊢ 𝑢⟶⋆

δη 𝑟 ∶ 𝑇 , by Remark 2.43 (free variables of δη-reduct),
ℎ𝑖 = 𝑦 ∈ fv(𝑢).

2.22. RIGIDLY OCCURRING TERMS 79

Lemma 2.176 (Injectivity of normal forms with respect to irreducibles). Sup-
pose that Θ;Γ, ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑥 ∶ 𝑈𝑛 ⊢ 𝑣 ∶ 𝑉 , and Θ;Γ, ⃗𝑈 ⊢ 𝑣��⟶δη ∶ 𝑉 .

Let ⃗𝑓𝑛 and ⃗⃗⃗ ⃗⃗ ⃗⃗𝑓 ′𝑛 be two vectors of irreducible terms, such that, for all 𝑖 =
1,…, 𝑛, 𝑓𝑖 = ℎ𝑖  ⃗⃗⃗ ⃗⃗ ⃗𝑒𝑖, 𝑓 ′

𝑖 = ℎ′
𝑖  ⃗⃗⃗ ⃗⃗ ⃗𝑒′𝑖, and, for some ℎ, Θ;Γ ⊢ ℎ ∶ Π ⃗𝑈𝐵, Θ;Γ ⊢ ℎ  ⃗𝑓 ∶

𝐵[⃗𝑓], Θ;Γ ⊢ ℎ  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑓 ′ ∶ 𝐵[⃗⃗⃗ ⃗⃗ ⃗⃗𝑓 ′].
Let 𝑖 ∈ {1,…, 𝑛} such that 𝑥𝑖 ∈ fv(𝑣). If Θ;Γ ⊢ 𝑣[⃗⃗⃗⃗𝑓] ≡ 𝑣[⃗⃗⃗ ⃗⃗ ⃗⃗𝑓 ′] ∶ 𝑉 [⃗𝑓], then

ℎ𝑖 = ℎ′
𝑖.

Proof. Because Θ;Γ, ⃗𝑈 ⊢ 𝑣��⟶δη ∶ 𝑉 , by Lemma 2.167 (characterization of
normal forms), 𝑣 is of the form 𝑣nf for some 𝑣nf.

Let ⃗𝑥𝑛 = 𝑛 − 1,…, 0. It suffices to show the following, stronger property,
and taking Δ = ·:
For all Δ and 𝑢nf if 𝑥(+|Δ|)

𝑖 ∈ fv(𝑢nf) and for some 𝑇 , Θ;Γ,Δ ⊢
𝑢nf[⃗⃗⃗ ⃗𝑓 (+|Δ|)/ ⃗𝑥(+|Δ|)] ≡ 𝑢nf[⃗⃗⃗ ⃗⃗ ⃗⃗𝑓 ′(+|Δ|)/ ⃗𝑥(+|Δ|)] ∶ 𝑇 , then ℎ(+|Δ|)

𝑖 = ℎ′(+|Δ|)
𝑖 .

By induction on 𝑢nf:

(a) Case 𝑢nf = 𝑥(+|Δ|)
𝑖  ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑒nf: By Definition 2.34 (iterated hereditary

substitution) and Remark 2.36 (hereditary substitution by a neu-
tral term), we have 𝑢nf[⃗⃗⃗ ⃗𝑓 (+|Δ|)/ ⃗𝑥(+|Δ|)] = 𝑓 (+|Δ|)

𝑖  ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑒nf[⃗⃗⃗ ⃗𝑓 (+|Δ|)/ ⃗𝑥(+|Δ|)],
𝑢nf[⃗⃗⃗ ⃗⃗ ⃗⃗𝑓 ′(+|Δ|)/ ⃗𝑥(+|Δ|)] = 𝑓 ′(+|Δ|)

𝑖  ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑒nf[⃗⃗⃗ ⃗⃗ ⃗⃗𝑓 ′(+|Δ|)/ ⃗𝑥(+|Δ|)]. By the assumption,

𝑓𝑖 and 𝑓 ′
𝑖 are irreducible. By construction, ⃗⃗⃗ ⃗⃗ ⃗𝑓𝑖

(+|Δ|)
and ⃗⃗⃗ ⃗⃗ ⃗⃗𝑓 ′

𝑖
(+|Δ|)

are
also irreducible. By Remark 2.165 (extensions of irreducible terms),
because ⃗⃗⃗ ⃗⃗ ⃗𝑓𝑖

(+|Δ|)
and ⃗⃗⃗ ⃗⃗ ⃗⃗𝑓 ′

𝑖
(+|Δ|)

are irreducible, 𝑓 (+|Δ|)
𝑖  ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑒nf[⃗⃗⃗ ⃗𝑓 (+|Δ|)/ ⃗𝑥(+|Δ|)]

and 𝑓 ′(+|Δ|)
𝑖  ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑒nf[⃗⃗⃗ ⃗⃗ ⃗⃗𝑓 ′(+|Δ|)/ ⃗𝑥(+|Δ|)] are irreducible, and therefore strongly

neutral. By Lemma 2.163 (injectivity of elimination for strongly neutral
terms), ℎ(+|Δ|)

𝑖 = ℎ′(+|Δ|)
𝑖 .

(b) Case 𝑢nf = 𝑥𝑗 ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑒nf (𝑥𝑗 ∈ ⃗𝑥, 𝑗 ≠ 𝑖): By Remark 2.165 (extensions of irre-

ducible terms), 𝑓 (+|Δ|)
𝑗  ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑒nf[⃗⃗⃗ ⃗𝑓 (+|Δ|)/ ⃗𝑥(+|Δ|)] and 𝑓 ′(+|Δ|)

𝑗  ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑒nf[⃗⃗⃗ ⃗⃗ ⃗⃗𝑓 ′(+|Δ|)/ ⃗𝑥(+|Δ|)]
are irreducible, and therefore strongly neutral. The proof follows as
above.

(c) Case 𝑢nf = ℎ ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑒nf, ℎ = 𝑦, 𝑦 ∉ ⃗𝑥(+|Δ|): Then 𝑢nf[⃗⃗⃗ ⃗𝑓 (+|Δ|)/ ⃗𝑥(+|Δ|)] =
𝑦′ ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑒nf[⃗⃗⃗ ⃗𝑓 (+|Δ|)/ ⃗𝑥(+|Δ|)] and 𝑢nf[⃗⃗⃗ ⃗⃗ ⃗⃗𝑓 ′(+|Δ|)/ ⃗𝑥(+|Δ|)] = 𝑦′ ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑒nf[⃗⃗⃗ ⃗⃗ ⃗⃗𝑓 ′(+|Δ|)/ ⃗𝑥(+|Δ|)] for
some 𝑦′.
If 𝑥(+|Δ|)

𝑖 ∈ fv(𝑢nf) and ℎ ≠ 𝑥(+|Δ|)
𝑖 , then 𝑥(+|Δ|)

𝑖 ∈ fv(𝑒nf
𝑗) for some

𝑗. By the assumption and Lemma 2.163 (injectivity of elimination
for strongly neutral terms), we have Θ;Γ,Δ ⊢ 𝑒nf

𝑗 [⃗⃗⃗ ⃗𝑓 (+|Δ|)/ ⃗𝑥(+|Δ|)] ≡
𝑒nf
𝑗 [⃗⃗⃗ ⃗⃗ ⃗⃗𝑓 ′(+|Δ|)/ ⃗𝑥(+|Δ|)] ∶ 𝑈 for some 𝑈 . By the induction hypothesis,
ℎ(+|Δ|)
𝑖 = ℎ′(+|Δ|)

𝑖 .

(d) Case 𝑢nf = ℎ ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑒nf, ℎ = 𝕒: Then 𝑢nf[⃗⃗⃗ ⃗𝑓 (+|Δ|)/ ⃗𝑥(+|Δ|)] = ℎ ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑒nf[⃗⃗⃗ ⃗𝑓 (+|Δ|)/ ⃗𝑥(+|Δ|)]
𝑢nf[⃗⃗⃗ ⃗⃗ ⃗⃗𝑓 ′(+|Δ|)/ ⃗𝑥(+|Δ|)] = ℎ ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑒nf[⃗⃗⃗ ⃗⃗ ⃗⃗𝑓 ′(+|Δ|)/ ⃗𝑥(+|Δ|)], The proof follows as in
case (c).

80 CHAPTER 2. A DEPENDENTLY-TYPED LANGUAGE

(e) Case 𝑢nf = ℎ ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑒nf, ℎ = if, 𝑢nf strongly neutral: The proof follows as in
case (d).

(f) Case 𝑢nf = 𝑐: Then fv(𝑐) = ∅ ∌ 𝑥𝑖. This case holds vacuously.

(g) Case 𝑢nf = 𝜆.𝑡nf: Follows by Lemma 2.83 (injectivity of 𝜆) and the
induction hypothesis.

(h) Case 𝑢nf = ⟨𝑡nf
1 , 𝑡nf

2 ⟩: Follows by Lemma 2.85 (injectivity of ⟨,⟩) and the
induction hypothesis.

(i) Case 𝑢nf = Π𝐴nf𝐵nf: . Follows by Postulate 10 (injectivity of Π) and
the induction hypothesis.

(j) Case 𝑢nf = Σ𝐴nf𝐵nf: Analogous to case (i).

(k) Case 𝑢nf = Bool or 𝑢nf = Set: Analogous to case (f).

2.23 Out of scope features
The theoretical description is a subset of the actual implementation. Our focus
is on the metavariable solving aspect of dependent type checking. Our goal is
to provide a unification algorithm which will only produce well-typed terms
throughout its operation. We have thus side-lined some equally important,
but mostly orthogonal aspects of dependent type checking.

2.23.1 Inductive definitions and inductive families
Recursive definitions or pattern matching are not described in the theory. We
do this to avoid cluttering the exposition with redundant details.

In the implementation, expansion of definitions is performed analogously
to metavariable expansion, and pattern matching for inductive families is a
generalization of the recursor for booleans (if).

2.23.2 Identity types
The implementation also includes a built-in identity type (i), the corresponding
constructor (ii), the 𝐽 axiom (iii) and its computation rule (iv).

Σ ⊢ Γ ctx (i)Σ;Γ ⊢ 𝕀𝕕 ∶ (𝑋 ∶ Set) → 𝑋 → 𝑋 → Set

Σ;Γ ⊢ 𝑡 ∶ 𝑇 (ii)Σ;Γ ⊢ 𝕣𝕖𝕗𝕝 ∶ 𝕀𝕕 𝑇  𝑡 𝑡

Σ ⊢ Γ ctx (iii)Σ;Γ ⊢ 𝕁 ∶ (𝑋 ∶ Set) → (𝑥1 ∶ 𝑋) → (𝑥2 ∶ 𝑋) →
(𝑌 ∶ (𝑥1 ∶ 𝑋) → (𝑥2 ∶ 𝑋) → 𝕀𝕕 𝑋 𝑥1 𝑥2 → Set)
((𝑥 ∶ 𝑋) → 𝑌  𝑥 𝑥 𝕣𝕖𝕗𝕝) →
(𝑧 ∶ 𝕀𝕕 𝑋 𝑥1 𝑥2) → 𝑌  𝑥1 𝑥2 𝑧

2.23. OUT OF SCOPE FEATURES 81

Σ;Γ ⊢ 𝕁 𝑇  𝑡 𝑡 𝑈  𝑣 𝕣𝕖𝕗𝕝⟶δη 𝑣 𝑡 ∶ 𝑈  𝑡 𝑡 𝕣𝕖𝕗𝕝 (iv)

2.23.3 Generalized records with η
We include a dependent sum type (Σ) with η-equality in the theoretical presen-
tation. The implementation includes record types with an arbitrary number
of fields, and η-equality.

• Records with more than two fields can be modelled in the theoretical
system as nested Σ-types.

• Record types with no fields (i.e. the unit type with η-equality) can how-
ever not be modelled easily in the theoretical system.
In fact, η-expansion for a record type with no fields can be particularly
challenging to handle rigorously. In the implementation we adopt a prag-
matic approach, where we reduce the power of our unification rules in
order to preserve completeness (Section 4.7.1).

82 CHAPTER 2. A DEPENDENTLY-TYPED LANGUAGE

Chapter 3

Unification for type
checking

We are interested in the problem of dependent type checking with metavari-
ables, or, more succinctly, the type checking problem.

When describing a type checking problem, we use metavariables to repre-
sent those subterms omitted by the user. Specifically, each omitted term is
replaced by a fresh metavariable applied to all the variables that are in scope
at that particular point in the term. The result is a term with holes.

Definition 3.1 (Term with holes). Consider a signature Σ and context Γ,
such that Σ ⊢ Γ ctx.

We say that 𝑡 is a term with holes in signature Σ and context Γ if, for each
metavariable 𝛼 occurring in 𝑡 (𝛼 ∈ metas(𝑡)), either:

(a) 𝛼 ∈ decls(Σ), or

(b) 𝛼 occurs only once in 𝑡, and it occurs applied to all variables in the scope
of its occurrence.

More precisely, if we define the relation “holes(_,_,_) ⇓ _” as in Fig-
ure 3.1, we say that a term 𝑡 is a term with holes in signature Σ and context
Γ if (holes(Σ, |Γ| , 𝑡) ⇓ 𝐻) and metas(𝑡) ⊆ support(Σ) ∪ 𝐻.

Definition 3.2 (Well-formed type checking problem: Σ;Γ ⊢? 𝑡 ∶ 𝐴). Consider
a signature Σ and context Γ, such that Σ ⊢ Γ ctx, and a type 𝐴 such that
Σ;Γ ⊢ 𝐴 type. Let 𝑡 be a term with holes in signature Σ and context Γ. Then
Σ;Γ ⊢? 𝑡 ∶ 𝐴 is a well-formed type checking problem.

Definition 3.3 (Solution to a type checking problem: Θ ⊨ Σ;Γ ⊢? 𝑡 ∶ 𝐴).
We say that a metasubstitution Θ is a solution to the type checking problem
Σ;Γ ⊢? 𝑡 ∶ 𝐴 (written Θ ⊨ Σ;Γ ⊢? 𝑡 ∶ 𝐴), if Θwf, ΘΣ ⊨ Σ, decls(Θ) =
decls(Σ) ∪ holes(Σ, |Γ| , 𝑡), and Θ;Γ ⊢ 𝑡 ∶ 𝐴.

Definition 3.4 (Unique solution to a type checking problem). In our develop-
ment we are interested in finding a unique solution; namely, a metasubstitution
Θ such that i) Θ ⊨ Σ;Γ ⊢? 𝑡 ∶ 𝐴, and ii) for any other metasubstitution Θ′

such that Θ′ ⊨ Σ; Γ ⊢? 𝑡 ∶ 𝐴, we have Θ ≡ Θ′.

83

84 CHAPTER 3. UNIFICATION FOR TYPE CHECKING

holes(Σ, 𝑛, Set) ⇓ ∅
holes(Σ, 𝑛,Bool) ⇓ ∅
holes(Σ, 𝑛,Π𝐴𝐵) ⇓ (𝐻1 ∪𝐻2)   if   holes(Σ, 𝑛,𝐴) ⇓ 𝐻1

and holes(Σ, 𝑛 + 1,𝐵) ⇓ 𝐻2
and 𝐻1 ∩𝐻2 = ∅

holes(Σ, 𝑛,Σ𝐴𝐵) ⇓ (𝐻1 ∪𝐻2)   if   holes(Σ, 𝑛,𝐴) ⇓ 𝐻1
and holes(Σ, 𝑛 + 1,𝐵) ⇓ 𝐻2
and 𝐻1 ∩𝐻2 = ∅

holes(Σ, 𝑛, 𝑐) ⇓ ∅
holes(Σ, 𝑛, 𝜆.𝑡) ⇓ 𝐻   if   holes(Σ, 𝑛 + 1, 𝑡) ⇓ 𝐻
holes(Σ, 𝑛, ⟨𝑡1, 𝑡2⟩) ⇓ (𝐻1 ∪𝐻2)   if   holes(Σ, 𝑛, 𝑡1) ⇓ 𝐻1

and holes(Σ, 𝑛, 𝑡2) ⇓ 𝐻2
and 𝐻1 ∩𝐻2 = ∅

holes(Σ, 𝑛, 𝛼 (𝑛 − 1) (𝑛 − 2) … 0) ⇓ {𝛼}   if   𝛼 ∉ decls(Σ)
holes(Σ, 𝑛, ℎ  ⃗𝑒𝑚) ⇓ (⋃𝑚

𝑖=1 𝐻𝑖)   if  ∀𝑖 ∈ {1,…,𝑚}.holes(Σ, 𝑛, 𝑒𝑖) ⇓ 𝐻𝑖
and ∀𝑖, 𝑗.𝑖 ≠ 𝑗.𝐻𝑖 ∩𝐻𝑗 = ∅
and (ℎ = 𝛼, 𝛼 ∈ decls(Σ)

  or  ℎ = 𝑥  or  ℎ = 𝕒  or  ℎ = if)

holes(Σ, 𝑛, .𝜋1) ⇓ ∅
holes(Σ, 𝑛, .𝜋2) ⇓ ∅

Figure 3.1: Recursive definition of the set of holes in a term

3.1. FROM TYPE CHECKING TO UNIFICATION 85

This is one simple example of a type checking problem:

Example 3.5 (Dependent type checking with metavariables, unique solution).
Consider Σ = 𝔸 ∶ Set, 𝕔 ∶ (𝐴 ∶ Set) → 𝐴 → 𝐴. We have Σ sig, Σ ⊢ · ctx, and
Σ; · ⊢ 𝔸 → 𝔸 type.

Take 𝑡 = 𝜆𝑥.𝕔 (𝛼 𝑥) 𝑥. The metavariable 𝛼 does not occur in the signature
Σ, and is applied to all the variables in scope (here, only 𝑥, because Γ is empty).
By Definition 3.1 (term with holes), 𝑡 is a term with holes in signature Σ and
context Γ, and the following is a well-formed type checking problem:

Σ; · ⊢? 𝜆𝑥.𝕔 (𝛼 𝑥) 𝑥 ∶ 𝔸 → 𝔸
If we take Θ = 𝔸 ∶ Set, 𝕔 ∶ (𝐴 ∶ Set) → 𝐴 → 𝐴,𝛼 ≔ 𝜆𝑥.𝔸 ∶ 𝔸 → Set, then

ΘΣ ⊨ Σ, and Θ; · ⊢ 𝑡 ∶ 𝔸 → 𝔸. Therefore, Θ is a solution to the type checking
problem Σ; · ⊢? 𝑡 ∶ 𝔸 → 𝔸.

Let Θ′ be another solution to the given problem.

(i) Θ′ ⊨ Σ, therefore Θ′; · ⊢ 𝔸 ∶ Set and 𝕔 ∶ (𝐴 ∶ Set) → 𝐴 → 𝐴.

(ii) By Lemma 2.82 (λ inversion), Lemma 2.56 (neutral inversion), and
Lemma 2.52 (Π inversion), Θ′; · ⊢ 𝛼 ∶ 𝔸 → Set and Θ′; · ⊢ 𝛼 𝑥 ≡ 𝔸 ∶ Set.
By Lemma 4.36 (Miller’s pattern condition), Θ′; · ⊢ 𝛼 ≡ 𝜆𝑥.𝔸 ∶ 𝔸 → Set.

By Lemma 2.130 (alternative characterization of a compatible metasubstitu-
tion), Θ′ ⊨ Θ. By Lemma 2.148 (uniqueness of closing metasubstitution),
Θ′ ≡ Θ. Therefore, Θ is a unique solution to the given type checking prob-
lem. ◀

Example 3.6 (Dependent type checking with metavariables, no unique solu-
tion). Take the same type checking problem as in Example 3.5:

Σ; · ⊢? 𝜆𝑥.𝕔 (𝛼 𝔸) 𝑥 ∶ 𝔸 → 𝔸
Both Θ1 and Θ2 (below) are solutions:

Θ1 = 𝔸 ∶ Set, 𝕔 ∶ (𝐴 ∶ Set) → 𝐴 → 𝐴,𝛼 ≔ 𝜆𝑥.𝔸 ∶ 𝔸 → Set
Θ2 = 𝔸 ∶ Set, 𝕔 ∶ (𝐴 ∶ Set) → 𝐴 → 𝐴,𝛼 ≔ 𝜆𝑥.𝑥 ∶ 𝔸 → Set

However, by postulate Postulate 14 (existence of a common reduct),
⌈Θ1; · ⊢ 𝛼 ≢ 𝜆𝑥.𝑥 ∶ Set⌋ thus ⌈Θ1 ⊭ Θ2⌋. By Lemma 2.147 (compatibility
respects equality) this means ⌈Θ1 ≢ Θ2⌋. Therefore neither Θ1 nor Θ2 are
unique solutions. ◀

3.1 From type checking to unification
In this section we give an account of an elaboration algorithm proposed by
Mazzoli and Abel [36], which reduces a type checking problem to a higher-
order unification problem.

86 CHAPTER 3. UNIFICATION FOR TYPE CHECKING

Definition 3.7 (Basic constraint). A basic constraint is a well-typed equation
between two terms and their types.

Γ ⊢ 𝑡 ∶ 𝐴 ≅ 𝑢 ∶ 𝐵
A basic constraint is well-formed in a signature Σ (written Σ;Γ ⊢ 𝑡 ∶ 𝐴 ≅

𝑢 ∶ 𝐵wf) when each of the two sides is well-typed.

Σ;Γ ⊢ 𝑡 ∶ 𝐴 Σ; Γ ⊢ 𝑢 ∶ 𝐵
Σ; Γ ⊢ 𝑡 ∶ 𝐴 ≅ 𝑢 ∶ 𝐵wf

Basic constraints thus defined are heterogeneous: each side may have a
different type.

Definition 3.8 (Solution to a basic constraint: Θ ⊨ Σ;Γ ⊢ 𝑡 ∶ 𝐴 ≅ 𝑢 ∶ 𝐵). A
metasubstitution Θ is a solution to a well-formed basic constraint Σ;Γ ⊢ 𝑡 ∶
𝐴 ≅ 𝑢 ∶ 𝐵wf (written Θ ⊨ Σ;Γ ⊢ 𝑡 ∶ 𝐴 ≅ 𝑢 ∶ 𝐵) if Θ ⊨ Σ, Θ;Γ ⊢ 𝐴 ≡ 𝐵 ∶ Set
and Θ;Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴.

Given a set of basic constraints in a common signature, we can formulate
a dependent unification problem.

Problem 3.9 (Unification of dependently-typed terms). Given a signature
Σ and a set of basic constraints of the form Σ;Γ𝑖 ⊢ 𝑡𝑖 ∶ 𝐴𝑖 ≅ 𝑢𝑖 ∶ 𝐵𝑖 (𝑖 ∈
{1, ..., 𝑛}), is there a metasubstitution Θ such that Θ ⊨ Σ, and for each 𝑖 ∈
{1, ..., 𝑛}, Θ is a solution to Σ;Γ𝑖 ⊢ 𝑡𝑖 ∶ 𝐴𝑖 ≅ 𝑢𝑖 ∶ 𝐵𝑖?

An elaboration algorithm reduces a type checking problem to a unification
problem:

Definition 3.10 (Elaboration algorithm). An elaboration algorithm takes as
input a type-checking problem Σ;Γ ⊢? 𝑡 ∶ 𝐴 (Definition 3.2) and produces a
signature Σ′, a term 𝑢, and a set of basic constraints ⃗⃗ ⃗⃗ ⃗𝒞.

Definition 3.11 (Well-formedness of an elaboration algorithm). We say that
the elaboration algorithm is well-formed if, for any well-formed type check-
ing problem Σ;Γ ⊢? 𝑡 ∶ 𝐴, the algorithm produces a signature Σ′, a term
𝑢 and a set of basic constraints ⃗⃗ ⃗⃗ ⃗𝒞, such that Σ ⊆ Σ′, AtomDecls(Σ) =
AtomDecls(Σ′), support(Σ′) ⊇ metas(𝑡), Σ′ sig, Σ′; Γ ⊢ 𝑢 ∶ 𝐴, and each
of the basic constraints 𝒞 ∈ ⃗⃗⃗⃗⃗𝒞 is well-formed.

For an elaboration algorithm to be correct, the solutions to the constraints
must be in correspondence with the solutions to the original type checking
problem:

Definition 3.12 (Correctness of an elaboration algorithm). We say that an
elaboration algorithm is correct if it is well-formed, sound and complete. That
is, given a well-formed type checking problem Σ;Γ ⊢? 𝑡 ∶ 𝐴, if Σ′ is the
signature produced by the elaboration algorithm, 𝑢 the term, and ⃗⃗ ⃗⃗ ⃗𝒞 the basic
constraints, then the following hold:

Soundness Let Θ be such that Θ ⊨ Σ′ and Θ ⊨ ⃗𝒞. Then ΘΣ∪𝑡 wf, ΘΣ∪𝑡 ⊨
Σ; Γ ⊢? 𝑡 ∶ 𝐴, and Θ;Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴.

3.1. FROM TYPE CHECKING TO UNIFICATION 87

Completeness Let Θ be a metasubstitution such that Θ ⊨ Σ;Γ ⊢? 𝑡 ∶ 𝐴.
Then there is a metasubstitution Θ̃ such that Θ̃Σ∪𝑡 = Θ, Θ̃ ⊨ Σ′, and
Θ̃ ⊨ ⃗⃗⃗⃗⃗𝒞.

The algorithm proposed by Mazzoli and Abel [36] thus elaborates a type
checking problem (Definition 3.2) to Problem 3.9 (unification of dependently-
typed terms). Both those subterms omitted by the user, and those subterms
which cannot be immediately type-checked are replaced by metavariables of
the appropriate type. The signature Σ is thus extended into a signature Σ′,
which adds declarations for any metavariables used in the term 𝑡 and the type
𝐴. A term 𝑢 of type 𝐴, and a set of basic constraints ⃗𝒞 is returned. These
are such that, when the constraints are such that, when the constraints ⃗𝒞 are
solved, the term 𝑢 becomes judgmentally equal to the term 𝑡.

We describe some of the cases of their algorithm in Algorithm 1; namely
the cases for holes, 𝜆-abstraction, application and atoms.
Example 3.13 (Elaboration of a type checking problem with metavariables).
Consider again the type-checking problem of Example 3.5 (dependent type
checking with metavariables, unique solution):

Σ; · ⊢? 𝑡 ∶ 𝔸 → 𝔸
where
Σ ≝ 𝔸 ∶ Set, 𝕔 ∶ (𝑋 ∶ Set) → 𝑋 → 𝑋
𝑡 ≝ 𝜆𝑥.𝕔 (𝛼 𝑥) 𝑥

Solving the type-checking problem involves i) finding a type and a body
for 𝛼, such that ii) the term 𝑡 has type 𝔸 → 𝔸 in the empty context (·).

If we apply Algorithm 1 to the problem Σ; · ⊢? 𝑡 ∶ 𝔸 → 𝔸, we obtain the
constraints below, and the elaborated term 𝑢 = 𝛼0. Note how each output
constraint corresponds to one level in the syntax of the term 𝑡.

Σ,
𝛼0 ∶ 𝔸 → 𝔸, 𝛾1 ∶ Set, 𝛾2 ∶ 𝛾1 → Set
𝛼1 ∶ (𝑥 ∶ 𝛾1) → 𝛾2 𝑥,
𝛾3 ∶ 𝛾1 → Set,
𝛾4 ∶ (𝑥 ∶ 𝛾1) → (𝑧 ∶ 𝛾3 𝑥) → Set
𝛼2 ∶ 𝛾1 → 𝛾3𝑥
𝛼3 ∶ (𝑥 ∶ 𝛾1) → (𝑧 ∶ 𝛾3 𝑥) → 𝛾4 𝑥 𝑧,
𝛾5 ∶ 𝛾1 → Set,
𝛾6 ∶ (𝑥 ∶ 𝛾1) → (𝑧 ∶ 𝛾5 𝑥) → Set
𝛼 ∶ (𝑥 ∶ 𝛾1) → 𝛾5𝑥
𝛼4 ∶ (𝑥 ∶ 𝛾1) → (𝑧 ∶ 𝛾5 𝑥) → 𝛾6 𝑥 𝑧
 ;
· ⊢ 𝛼0 ∶ 𝔸 → 𝔸 ≅ 𝜆𝑥.(𝛼1 𝑥) ∶ (𝑥 ∶ 𝛾1) → (𝛾2 𝑥)
∧ 𝑥 ∶ 𝛾1 ⊢ 𝛼1 𝑥 ∶ 𝛾2 𝑥 ≅ (𝛼3𝑥) (𝛼2𝑥) ∶ 𝛾4 𝑥 (𝛼2 𝑥)
∧ 𝑥 ∶ 𝛾1 ⊢ 𝛼2 𝑥 ∶ 𝛾3 𝑥 ≅ 𝑥 ∶ 𝛾1
∧ 𝑥 ∶ 𝛾1 ⊢ 𝛼3 𝑥 ∶ (𝑧 ∶ 𝛾3 𝑥) → 𝛾4 𝑥 𝑧 ≅ (𝛼4 𝑥) (𝛼 𝑥) ∶ 𝛾6 𝑥 (𝛼 𝑥)
∧ 𝑥 ∶ 𝛾1 ⊢ 𝛼4 𝑥 ∶ (𝑧 ∶ 𝛾5 𝑥) → 𝛾6 𝑥 𝑧 ≅ 𝕔 ∶ (𝑦 ∶ Set) → 𝑦 → 𝑦

88 CHAPTER 3. UNIFICATION FOR TYPE CHECKING

◀
Remark 3.14. The elaboration process generates many metavariables and con-
straints. In particular, given a term of the form ℎ  ⃗𝑒𝑛, 𝑛 metavariables with
corresponding constraints will be generated, which will then need to be solved.
In Section 5.5.2, we explain the shortcuts that we take to reduce the number
of constraints when elaborating neutral terms.

We consider a proof of the correctness of the elaboration out of the scope
of this work, as the unification approach described in Chapter 4 (unifying
without order) does not depend on the particular details of the elaboration.

Once we have elaborated the type checking problem into an extended sig-
nature and a set of basic constraints, finding a solution to all the constraints
will give us values for each metavariable; in particular, to those corresponding
to the holes in the original type checking problem.

The solution to the unification problem in Example 3.13 is:

Θ ≝ Σ,
𝛼0 ∶= 𝜆𝑥.𝕔 𝔸 𝑥 ∶ 𝔸 → 𝔸,
𝛾1 ∶= 𝔸 ∶ Set,
𝛾2 ∶= 𝜆𝑥.𝔸 ∶ 𝔸 → Set
𝛼1 ∶= 𝜆𝑥.𝕔 𝔸 𝑥 ∶ 𝔸 → 𝔸
𝛾3 ∶= 𝜆𝑥.𝔸 ∶ 𝔸 → Set,
𝛾4 ∶= 𝜆𝑥.𝜆𝑦.𝔸 ∶ 𝔸 → 𝔸 → Set
𝛼2 ∶= 𝜆𝑥.𝑥 ∶ 𝔸 → 𝔸
𝛼3 ∶= 𝜆𝑥.𝕔 𝔸 ∶ 𝔸 → 𝔸 → 𝔸,
𝛾5 ∶= 𝜆𝑥.Set ∶ 𝔸 → Set,
𝛾6 ∶= 𝜆𝑥.𝜆𝑧.(𝑧 → 𝑧) ∶ 𝔸 → (𝑧 ∶ Set) → Set
𝛼 ∶= 𝜆𝑥.𝔸 ∶ 𝔸 → Set
𝛼4 ∶= 𝜆𝑥.𝕔 ∶ 𝔸 → (𝑧 ∶ Set) → 𝑧 → 𝑧

Note how, if we substitute 𝛼 for 𝜆𝑥.𝔸 in the original term, we obtain a
well-typed term: Σ; · ⊢ 𝜆𝑥.𝕔 𝔸 𝑥 ∶ 𝔸 → 𝔸. The term that the user omitted is 𝔸.

Finding a solution to the above constraints is an instance of higher-order
unification. A review of how this problem has been approached both histori-
cally and in the context of dependent types follows. The specific approach we
adopt is explained in Chapter 4.

Note that we are interested in solutions to the unification problem only
when they are unique. What it means for two solutions to be equal is described
in Definition 2.145 (equality of metasubstitutions).

3.1. FROM TYPE CHECKING TO UNIFICATION 89

Algorithm 1: Elaborate
input : Type-checking problem Σ;Γ ⊢? 𝑡 ∶ 𝐴
output : Signature Σ′

Elaborated term 𝑢
Constraints ⃗𝒞

Let Σ′ ≔ Σ;
Let ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑧 ∶ 𝑇 = Γ;
if 𝑡 = 𝛼  ⃗𝑧 for some 𝛼, 𝛼 ∉ support(Σ) then

Σ′ ≔ Σ′, 𝛼 ∶ Π ⃗𝑇𝐴;
𝑢 ≔ 𝛼  ⃗𝑧;
⃗𝒞 ≔ □;

return
Let 𝛼0 be fresh in Σ;
Σ′ ≔ Σ,𝛼0 ∶ Π ⃗𝑇𝐴;
𝑢 ≔ 𝛼0  ⃗𝑧;
switch 𝑡 do

case 𝜆.𝑡1 for some 𝑡1 do
Let 𝛾1, 𝛾2 be fresh in Σ′;
Σ′ ≔ Σ′, 𝛾1 ∶ ⃗⃗⃗ ⃗⃗𝑇 → Set, 𝛾2 ∶ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑧 ∶ 𝑇 → 𝛾1  ⃗𝑧 → Set;
Σ′, 𝑢′, ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝒞′ ≔ Elaborate(Σ′; Γ, 𝑥 ∶ 𝛾1  ⃗𝑧 ⊢? 𝑡1 ∶ 𝛾2  ⃗𝑧 𝑥);
⃗⃗ ⃗⃗ ⃗𝒞 ≔ Γ ⊢ 𝑢 ∶ 𝐴 ≅ 𝜆.𝑢′ ∶ (𝑥 ∶ 𝛾1  ⃗𝑧) → 𝛾2  ⃗𝑧 𝑥 ∧ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝒞′;
return

case 𝑓 𝑡1 for some 𝑓 and 𝑡1 do
Let 𝛾1, 𝛾2 be fresh in Σ;
Σ′ ≔ Σ′, 𝛾1 ∶ ⃗⃗⃗ ⃗⃗𝑇 → Set, 𝛾2 ∶ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑧 ∶ 𝑇 → 𝛾1  ⃗𝑧 → Set;
Σ′, 𝑢1, ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝒞′ ≔ Elaborate(Σ′; Γ ⊢? 𝑡1 ∶ 𝛾1  ⃗𝑧);
Σ′, 𝑢2, ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝒞″ ≔ Elaborate(Σ′; Γ ⊢? 𝑓 ∶ (𝑥 ∶ 𝛾1  ⃗𝑧) → 𝛾2  ⃗𝑧 𝑥);
⃗𝒞 ≔ Γ ⊢ 𝑢 ∶ 𝐴 ≅ (𝑢2 @ 𝑢1) ∶ 𝛾2  ⃗𝑧 𝑢1 ∧ ⃗⃗⃗⃗⃗ ⃗⃗ ⃗𝒞′ ∧ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝒞″;

return
case 𝕓 for some 𝕓 with 𝕓 ∶ 𝐵 ∈ Σ do

⃗⃗ ⃗⃗ ⃗𝒞 ≔ Γ ⊢ 𝑢 ∶ 𝐴 ≅ 𝕓 ∶ 𝐵;
return

90 CHAPTER 3. UNIFICATION FOR TYPE CHECKING

3.2 Higher-order unification
The problems of first-order and higher-order unification were initially of inter-
est because of the immediate application to theorem proving over first-order
(respectively higher-order) logic.

Unification can be stated for any language with a notion of equality between
terms. For instance, unification can be considered in the context of simply-
typed λ-terms, where equality is given by the η and β-rules.
Notation (Terms and constraints). In the rest of this chapter we consider
unification constraints of the form Γ ⊢ 𝑡 ≈ 𝑢 ∶ 𝑇 , which are satisfied in a
signature Σ when Σ;Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝑇 ,

Unification is first-order when the types of metavariables are all first-order
(e.g. 𝛼 ∶ 𝔸1 → … → 𝔸𝑛, with all 𝔸𝑖 atomic types). First-order unification was
independently shown to be decidable by Guard [24] and Robinson [53].

Example 3.15 (First-order problem). Consider the following first-order prob-
lem:

𝛼 ∶ Set, 𝔽 ∶ Set → Set, 𝕒 ∶ Set; · ⊢ 𝔽 𝛼 ≈ 𝔽 𝕒 ∶ Set

The problem has the solution Θ ≝ 𝔽 ∶ Set → Set, 𝕒 ∶ Set, 𝛼 ≔ 𝕒 ∶ Set.
Indeed, replacing all occurrences of 𝛼 by 𝕒 in 𝔽 𝛼 gives 𝔽 𝕒. ◀

Unification is higher-order when the types of metavariables are higher-
order, that is, the arguments of a metavariable may in turn be of function
type. This more general version of unification is the one we need to elaborate
our dependently-typed language, where metavariables of function type may
appear in types; and thus the unifier must be aware of the workings of β-
reduction.

Example 3.16 (Higher-order problem). Consider the following higher-order
problem:

𝛼 ∶ Set → Set → Set, 𝔽 ∶ Set → Set; 𝑥 ∶ Set, 𝑦 ∶ Set ⊢ 𝛼 𝑥 𝑦 ≈ 𝔽 𝑥 ∶ Set

Note that 𝛼 is of function type, and in fact occurs at the head of a term
(𝛼 𝑥 𝑦). The problem has the solution Θ ≝ 𝔽 ∶ Set → Set, 𝛼 ≔ 𝜆𝑥.𝜆𝑦.𝔽 𝑥 ∶
Set. Finding this solution requires accounting for the fact that substituting
𝜆𝑥.𝜆𝑦.𝔽 𝑥 for 𝛼 is not a purely syntactic substitution, which would give the
(ungrammatical) term ⌈(𝜆𝑥.𝜆𝑦.𝔽 𝑥) 𝑥 𝑦⌋; but instead also involves a computa-
tion step (resulting in 𝔽 𝑥). ◀

3.3 (Un)decidability of higher order unification
Deciding whether a solution to a higher-order unification problem exists is
undecidable, as shown by Huet [28]. Huet shows the undecidability of higher-
order unification by encoding the (undecidable) Post correspondence problem
[50] as a higher-order unification problem. In this section we sketch Huet’s
argument, adapting the notation to our setting, and generalizing it to show

3.4. MILLER PATTERN UNIFICATION 91

the undecidability of not only the existence of a solution, but also of whether
a given solution is unique.

Given a Post correspondence problem for words {𝑎𝑖, 𝑏𝑖}𝑛𝑖=1 over the alpha-
bet {x, y}, consider the corresponding higher-order unification problem:

𝔸 ∶ Set,
𝛼 ∶ (𝔸 → 𝔸) → …𝑛 → (𝔸 → 𝔸) → (𝔸 → 𝔸),
𝛽 ∶ (𝔸 → 𝔸) → (𝔸 → 𝔸) ;
𝑥, 𝑦 ∶ 𝔸 → 𝔸 ⊢ 𝛼 𝑎1 … 𝑎𝑛 ≈ 𝛼 𝑏1 … 𝑏𝑛 ∶ 𝔸
𝑥 ∶ 𝔸 → 𝔸 ⊢ 𝛼 𝑥 …𝑛 𝑥 ≈ 𝜆𝑧.𝑥 (𝛽 𝑥 𝑧) ∶ 𝔸 → 𝔸

The tilde …̃ over a word denotes its encoding as a list of variables. For
example, the encoding of the word xyx is x̃yx = 𝜆𝑧.(𝑥 (𝑦 (𝑥 𝑧))).

By a combinatorial argument, because of the type of metavariable 𝛼, in all
well-typed solutions to the problem, the body of 𝛼, when fully η-expanded,
is of the form 𝜆𝑤1…𝜆𝑤𝑛.𝜆𝑧. 𝑤𝑖1(…(𝑤𝑖𝑝𝑧)). The indices 𝑖1,…, 𝑖𝑝 encode one
candidate solution to the Post correspondence problem. Given a solution, the
first constraint ensures that concatenating the words 𝑎𝑖1 ,…, 𝑎𝑖𝑝 will yield the
same result as concatenating 𝑏𝑖1 ,…, 𝑏𝑖𝑝 . The second constraint of the problem
guarantees that 𝑝 > 0.

Conversely, any solution to the Post correspondence problem can be trans-
lated into a solution to the unification problem. Therefore, deciding whether
there is a solution to an instance of the Post correspondence problem cor-
responds to deciding whether the corresponding unification problem has a
solution.

Note that whether a unique solution exists is also undecidable. To show
this, observe that, if we drop the metavariable 𝛽 and the second equation,
the problem always has at least one solution, namely, Θ ≝ 𝔸 ∶ Set, 𝛼 ≔
𝜆𝑤1…𝜆𝑤𝑛𝜆𝑧. 𝑧 ∶ (𝔸 → 𝔸) → …𝑛 → (𝔸 → 𝔸) → 𝔸 → 𝔸. This solution is unique
if and only if the matching Post correspondence problem has no solution.

3.4 Miller pattern unification
Even if higher-order unification is in general not decidable, some particular
instances of this problem can be solved.
Example 3.17 (Solvable higher-order unification problem). Consider the fol-
lowing higher-order unification problem:

𝔸 ∶ Set,
𝛼 ∶ (𝔸 → 𝔸) → (𝔸 → 𝔸) → 𝔸 → 𝔸;
𝑢 ∶ 𝔸 → 𝔸, 𝑣 ∶ 𝔸 → 𝔸 ⊢ 𝛼 𝑢 𝑣 ≈ 𝜆𝑧. 𝑣 (𝑣 (𝑢 𝑧))

This problem has the following solution:

Θ = 𝔸 ∶ Set, 𝛼 ≔ (𝜆𝑢.𝜆𝑣.𝜆𝑠. 𝑣 (𝑣 (𝑢 𝑠))) ∶ (𝔸 → 𝔸) → (𝔸 → 𝔸) → 𝔸 → 𝔸
◀

92 CHAPTER 3. UNIFICATION FOR TYPE CHECKING

Note that all the metavariables in Example 3.17 are applied only to dis-
tinct variables. This means that the unification problem is in the pattern
fragment as described by Miller [41]. Problems in this fragment always have
a unique, most-general solution (see Lemma 4.36, Miller’s pattern condition).
Paraphrasing Gundry and McBride [25], the behaviour of a metavariable is
fully characterized by its application to distinct variables.

3.5 Dynamic pattern unification
It may be the case that, in a problem, some but not all constraints are in the
pattern fragment. For example, the following problem is not entirely in the
pattern fragment, because the first argument to 𝛼, (𝛽 𝑥 𝑦), is not a variable.

𝔸 ∶ Set, 𝛼 ∶ 𝔸 → 𝔸 → 𝔸, 𝛽 ∶ 𝔸 → 𝔸 → 𝔸;
𝑥, 𝑦 ∶ 𝔸 ⊢ 𝛼 (𝛽 𝑥 𝑦) 𝑦 ≈ 𝑦 ∶ 𝔸
𝑥, 𝑦 ∶ 𝔸 ⊢ 𝛽 𝑥 𝑦 ≈ 𝑥 ∶ 𝔸

However, the second constraint is in the pattern fragment. This means that,
in any solution to the problem, 𝛽 is necessarily instantiated to the term 𝜆𝑥.𝜆𝑦.𝑥
(or a term judgmentally equal to said term). Following this assignment, the
first constraint becomes 𝑥 ∶ 𝔸, 𝑦 ∶ 𝔸 ⊢ 𝛼 𝑥 𝑦 ≈ 𝑦 ∶ 𝔸, which is in the pattern
fragment, and necessitates ⌈𝑥 ∶ 𝔸, 𝑦 ∶ 𝔸 ⊢ 𝛼 𝑥 𝑦 ≡ 𝑦 ∶ 𝔸⌋. This means that the
unique solution is 𝔸 ∶ Set, 𝛼 ≔ 𝜆𝑥. 𝜆𝑦. 𝑥 ∶ 𝔸 → 𝔸 → 𝔸, 𝛽 ≔ 𝜆𝑥.𝜆𝑦.𝑦 ∶ 𝔸 → 𝔸 →
𝔸.

As Michaylov and Pfenning [40] observed, by postponing certain con-
straints, we can solve problems which are not strictly in the pattern fragment.

Furthermore, by using pruning (see Section 4.5.9), it is possible to use infor-
mation in one constraint to remove certain arguments from a metavariable in
another constraint, thus bringing more constraints into the pattern fragment.

The use of constraint postponement and pruning constitutes dynamic pat-
tern unification and is treated rigorously by Reed [52] in the context of depen-
dent types.

3.6 Extension to product types
So far we have discussed unification for the simply typed λ-calculus. The
pattern fragment can be extended to accommodate terms with product types
(×), including pairs ⟨𝑡, 𝑢⟩, projections (.𝜋1, .𝜋2) and the corresponding η-
equality.

For example, the following problem is not in the pattern fragment, because
the arguments are projected variables:

𝔸 ∶ Set, 𝔹 ∶ Set,
𝛼 ∶ 𝔸 → 𝔹 → 𝔹;
𝑥 ∶ 𝐴 × 𝐵 ⊢ 𝛼 (𝑥 .𝜋1) (𝑥 .𝜋2) ≈ (𝑥 .𝜋2) ∶ 𝔹

3.7. INTERLEAVING TYPE CHECKING WITH UNIFICATION 93

Duggan [19] observes that this is not a problem, as long as the projections
applied to a given variable are distinct.

In fact, we can obtain an equivalent problem which is in the pattern frag-
ment by “currying” the context variable 𝑥 ∶ 𝔸 × 𝔹 into two separate variables
𝑥1 ∶ 𝔸 and 𝑥2 ∶ 𝔹, with 𝑥 = ⟨𝑥1, 𝑥2⟩.

𝔸 ∶ Set, 𝔹 ∶ Set,
𝛼 ∶ 𝔸 → 𝔹 → 𝔹;
𝑥1 ∶ 𝔸, 𝑥2 ∶ 𝔹 ⊢ 𝛼 𝑥1 𝑥2 ≈ 𝑥2 ∶ 𝔹

Similarly, the following problem is also not in the pattern fragment, because
the argument is not a single variable, but a pair:

𝔸 ∶ Set, 𝔹 ∶ Set,
𝛼 ∶ 𝔸 × 𝔹 → 𝔹;
𝑥 ∶ 𝔸, 𝑦 ∶ 𝔹 ⊢ 𝛼 ⟨𝑥, 𝑦⟩ ≈ 𝑦 ∶ 𝔹

However, because all the components of the pair are distinct variables, this
does not preclude a unique solution either. In this case, we can curry the
first argument of 𝛼. The problem then becomes the following, which is in the
pattern fragment:

𝔸 ∶ Set, 𝔹 ∶ Set,
𝛼′ ∶ 𝔸 → 𝔹 → 𝔹,
𝛼 ≔ 𝜆𝑥.𝛼′ (𝑥 .𝜋1) (𝑥 .𝜋2) ∶ 𝔸 × 𝔹 → 𝔹;
𝑥 ∶ 𝔸, 𝑦 ∶ 𝔹 ⊢ 𝛼′ 𝑥 𝑦 ≈ 𝑦 ∶ 𝔹

Because of η-equality, a term of record type is determined by its projec-
tions, therefore the set of possible solutions for 𝛼 stays unchanged after this
transformation. The resulting constraint implies that any solution must fulfill
𝑥 ∶ 𝔸, 𝑦 ∶ 𝔹 ⊢ 𝛼′ 𝑥 𝑦 ≡ 𝑦 ∶ 𝔹. Because 𝑥 and 𝑦 are distinct, then, for any solu-
tion Θ, Θ; · ⊢ 𝛼′ ≡ 𝜆𝑥.𝜆𝑦.𝑦 ∶ 𝔸 → 𝔹 → 𝔹 (see Lemma 4.36, Miller’s pattern
condition). In fact, the new problem has the following unique solution:

Θ ≝ 𝔸 ∶ Set, 𝔹 ∶ Set, 𝛼 ≔ 𝜆𝑥.(𝑥 .𝜋2) ∶ 𝔸 × 𝔹 → 𝔹,𝛼′ ≔ 𝜆𝑥.𝜆𝑦.𝑦 ∶ 𝔸 → 𝔹 → 𝔹

Therefore the original problem has the unique solution Θ{𝛼} = (𝔸 ∶ Set, 𝔹 ∶
Set, 𝛼 ≔ 𝜆𝑥. 𝑥.𝜋2 ∶ 𝔸 × 𝔹 → 𝔹).

Abel and Pientka [3] extensively elaborate on this insight to extend dy-
namic pattern unification for a theory containing both dependent function
(Π) and record (Σ) types.

3.7 Interleaving type checking with unification
In dependent type checking with metavariables, the type of all terms is not
known in the beginning, as it may depend on uninstantiated metavariables.

94 CHAPTER 3. UNIFICATION FOR TYPE CHECKING

At the same time, some unification problems require awareness of the types of
terms in order to be solved. For example, see Section 3.6 (extension to product
types).

Approaches for interleaving type checking with unification must deal with
the fact that some terms might not be well-typed until some constraints are
solved.

Reed [52] and Abel and Pientka [3] use a formulation of typing modulo
constraints. This formulation relies on the fact that in their case, unsolvable
constraints do not jeopardize the correctness of normalization. More specifi-
cally, in their system, metavariables in types can only appear as parameters
to atomic type families.

In section 3.4 of Norell’s thesis [44], an example is given where a non-
recursive, yet non-terminating term can be typed. This failure to prevent
non-normalizing terms leads to non-termination in the type checker. 1

For Agda, where metavariables may appear anywhere in a type, Norell and
Coquand [44] designed the system in such a way that certain subterms are
blocked from being reduced until the constraints ensuring their well-typedness
are solved. This restriction is quite robust in practice, but one can still create
ill-typed terms under certain circumstances [33].

In the elaboration algorithm described in Section 3.1 (from type checking to
unification), subterms which cannot be immediately type-checked are replaced
by metavariables of the appropriate type. These metavariables take a role
similar to Norell and Coquand’s guarded constants [44]: in the same way that
a guarded constant prevents a term from normalizing until a constraint is
solved, a metavariable effectively prevents a term from normalizing until the
metavariable is instantiated.

3.8 The Π problem
A unification problem can sometimes be solved by breaking down the con-
straints into smaller ones, until they can either be dismissed as trivial, or
solved by instantiating a metavariable.

A difficulty with solving heterogeneous constraints appears when attempt-
ing to simplify a constraint involving binders, like Π, Σ, or 𝜆.

For example, consider a basic constraint which unifies two Π-types: Π(𝑥 ∶
𝐴)𝐵 and Π(𝑥 ∶ 𝐴′)𝐵′. In order to obtain constraints that we can be solved,
we may want to simplify (⇝) the given constraint into two new constraints,
one that unifies 𝐴 and 𝐴′, and another which unifies 𝐵 and 𝐵′:

Σ;Γ ⊢ Π(𝑥 ∶ 𝐴)𝐵 ∶ Set ≅ Π(𝑥 ∶ 𝐴′)𝐵′ ∶ Set ⇝
Σ;Γ ⊢ 𝐴 ∶ Set ≅ 𝐴′ ∶ Set ∧

Γ, 𝑥 ∶ ⌈?⌋ ⊢ 𝐵 ≅ 𝐵′ ∶ Set

The question is, in the second constraint, what the type ⌈?⌋ of the new
variable 𝑥 should be. If the type is 𝐴, then the right side of the constraint
may not be well-formed; mutatis mutandis for 𝐴′.

1In Agda and Coq, non-terminating recursive definitions are disallowed by a termination
checker.

3.9. STRICTLY ORDERED, HOMOGENEOUS CONSTRAINTS 95

3.9 Strictly ordered, homogeneous constraints
The approach suggested by Mazzoli and Abel [36] sidesteps the Π problem by
having both sides of the constraints have the same type. Such constraints are
called homogeneous.

Definition 3.18 (Homogeneous constraint). A homogeneous constraint is of
the form Σ;Γ ⊢ 𝑡 ≈ 𝑢 ∶ 𝐴. Such a constraint is well-formed if and only if
Σ;Γ ⊢ 𝑡 ∶ 𝐴 and Σ;Γ ⊢ 𝑢 ∶ 𝐴.

In their implementation, each well-formed basic constraint Σ;Γ ⊢ 𝑡 ∶ 𝐴 ≅
𝑢 ∶ 𝐵 is translated into two homogeneous internal constraints; namely Σ;Γ ⊢
𝐴 ≈ 𝐵 ∶ Set and Σ;Γ ⊢ 𝑡 ≈ 𝑢 ∶ 𝐴. Note that the second constraint is not
necessarily well-formed, because it might not be the case that Σ;Γ ⊢ 𝑢 ∶ 𝐴.
Solving the second constraint before the first constraint is solved could lead to
inconsistencies [4].

However, once an extension Σ′ ⊒ Σ is found such that Σ′; Γ ⊢ 𝐴 ≡ 𝐵 ∶ Set,
then the second constraint will be well-formed in this extended signature:
Σ′; Γ ⊢ 𝑡 ≈ 𝑢 ∶ 𝐴, and can be solved.

Unifying types and then terms sequentially help ensure well-formedness of
constraints throughout the algorithm, but, at the same time, prevents using
information which could help unify types.

Example 3.19 (Limitations of sequential solving). Given metavariables 𝛼 ∶
Set → Set and 𝛽 ∶ 𝛼 Bool, consider the constraint 𝑥 ∶ Set ⊢ ⟨𝛼 𝑥, true⟩ ∶
Set × Bool ≈ ⟨Bool, 𝛽⟩ ∶ Set ×𝛼 Bool. This constraint has the unique solution
𝛼 ≔ 𝜆𝑥.Bool ∶ Set, 𝛽 ≔ true ∶ Bool.

A strictly ordered approached based on homogeneous constraints would
first solve 𝑥 ∶ Set ⊢ Set × Bool ≈ Set × 𝛼 Bool ∶ Set, and once it is solved (and
only then), attempt 𝑥 ∶ Set ⊢ ⟨𝛼 𝑥, true⟩ ≈ ⟨Bool, 𝛽⟩ ∶ Set×Bool. However, the
first constraint has two possible, incompatible solutions: 𝛼 ≔ 𝜆𝑥.Bool ∶ Set
and 𝛼 ≔ 𝜆𝑥.𝑥 ∶ Set.

In order to determine that the first alternative is the right one, we need
information from the second constraint. However, this information is inacces-
sible until the first constraint is solved. ◀

3.10 Heterogeneous constraints using twin
variables

Gundry and McBride [25] propose considering, as internal constraints, con-
straints with a twin context: that is, a context where each variable has two
possible types.

Γ ∶∶= · empty twin context
| Γ, 𝑥 ∶ 𝐴 variable of simple type
| Γ, ̂𝑥 ∶ 𝐴1‡𝐴2 variable of twin type

Each occurrence of the variable in the rest of the constraint is annotated
with either an acute ()́ or a grave ()̀ accent, depending on whether that variable
should have the left or the right type, respectively.

96 CHAPTER 3. UNIFICATION FOR TYPE CHECKING

In our particular type system, this would correspond to extending the
syntax of terms in this way:

ℎ ∶∶= … neutral heads
| �́� left twin variable
| ̀𝑥 right twin variable

The rule var is replace by the following two rules:

var-leftΓ, 𝑥 ∶ 𝐴‡𝐴′,Δ ⊢ �́� ⇒ 𝐴

var-rightΓ, 𝑥 ∶ 𝐴‡𝐴′,Δ ⊢ ̀𝑥 ⇒ 𝐴′

In this new setting, the basic constraint from Section 3.8 is simplified in
this manner, where the type 𝐵[𝑥 ↦ �́�] (respectively 𝐵′[𝑥 ↦ ̀𝑥]) is the result
of syntactically replacing each occurrence of 𝑥 in 𝐵 by �́� (respectively, each
occurrence of 𝑥 in 𝐵′ by ̀𝑥):

Σ;Γ ⊢ Π(𝑥 ∶ 𝐴)𝐵 ∶ Set ≅ Π(𝑥 ∶ 𝐴′)𝐵′ ∶ Set ⇝
Σ;Γ ⊢ 𝐴 ∶ Set ≅ 𝑢 ∶ 𝐴′ ∶ Set ∧

Σ;Γ, 𝑥 ∶ 𝐴‡𝐴′ ⊢ 𝐵[𝑥 ↦ �́�] ∶ Set ≅ 𝐵′[𝑥 ↦ ̀𝑥] ∶ Set

In Chapter 4 we build on this approach to implement a unification algo-
rithm.

Chapter 4

Unifying without order

In this chapter we present an unordered, heterogeneous approach to unifica-
tion.

Our goal is to specify an algorithm that can be easily implemented for
an existing dependent type checker, such as Agda. Our approach builds on
Gundry and McBride’s [25]. We both simplify and extend their unification
algorithm to make it easier for us to implement side-by-side with Mazzoli
et al.’s prototype type checker [37].

There are three main differences with respect to Gundry and McBride’s [25]
approach:

• In Gundry and McBride’s [25] approach, variables on any side of the
constraint may refer to either side of the context, depending on an anno-
tation which is added to the variable. See Section 4.1 (two-sided internal
constraints) for more details.
These twin variable annotations would eventually need to be removed in
case of successful unification, impacting performance. In case of error,
they would need to be displayed to the user, possibly resulting in confu-
sion. In our approach, variables on the left or right side of the constraint
may only refer to the left or right side of the context, respectively; thus
rendering twin variable annotations superfluous.

• A constraint can be deemed solved even before the both sides of the
context or the types are equal, thanks to a more general notion of equality
(see Definition 4.12, heterogeneous equality).
This allows for a syntactic equality check (see Rule schema 1, syntactic
equality) which only checks the terms. This way constraints where the
terms on both sides are syntactically equal can be solved as directly
as in a homogeneous setting. This syntactic equality check can lead to
improved performance in some cases, as shown in Section 5.6.1.

• All rules can be applied to terms which are not in δ-normal form. Exces-
sive normalization may affect both readability [2] and performance [12].
Being able to handle partially-normalized terms may be a useful tool in
order to obtain a well-performing type checker.

97

98 CHAPTER 4. UNIFYING WITHOUT ORDER

4.1 Two-sided internal constraints
The constraints in the problem are all basic constraints (Definition 3.7). How-
ever, in order to solve the Π problem (Section 3.8) without enforcing a strict
ordering of constraints (Section 3.9), we use Gundry and McBride’s [25] notion
of contexts, where each variable may have two different types: one for each
side of the constraint.

Definition 4.1 (Twin contexts). A twin context Γ1‡Γ2 is a pair of contexts
Γ1 and Γ2, such that |Γ1| = |Γ2|.

A twin context is well-formed if each of the sides Γ1 and Γ2 are well-formed.
The precondition |Γ1| = |Γ2| follows from the use of the syntax Γ1‡Γ2. For
the sake of clarity, we reiterate it in the derivation rule.

Σ ⊢ Γ1 ctx Σ ⊢ Γ2 ctx (|Γ1| = |Γ2|)
Σ ⊢ Γ1‡Γ2 wf

Notation (Twin context). Given a well-formed twin context Γ1‡Γ2, it can also
be viewed as a context where each variable has two types:

Γ1‡Γ2 ∶∶= · empty twin context
| Γ1‡Γ2, 𝐴1‡𝐴2 variable of twin type

Twin contexts can be concatenated by concatenating each of their sides.
Notation (Twin context concatenation). The concatenation of two twin-
contexts Γ1‡Γ2 and Δ1‡Δ2 is written (Γ1‡Γ2), (Δ1‡Δ2), and corresponds to
the twin context (Γ1,Δ1) ‡ (Γ2,Δ2). Writing (Γ1‡Γ2), (Δ1‡Δ2) instead of
(Γ1,Δ1)‡(Γ2,Δ2) indicates that |Γ1| = |Γ2| and |Δ1| = |Δ2|.

Internal constraints extend the notion of basic constraint by replacing the
context with a twin context. In contrast to Gundry and McBride [25], we do
not extend the syntax of terms with twin variables (see Section 3.10). Instead,
the variables on the left (or right) side of the constraint only reference those
on the left (respectively right) side of the context.

Definition 4.2 (Well-formed internal constraint). Given a twin context
Γ1‡Γ2, two terms 𝑡 and 𝑢, and two types 𝐴 and 𝐵, an internal constraint is a
5-tuple of the form Γ1‡Γ2 ⊢ 𝑡 ≈ 𝑢 ∶ 𝐴‡𝐵.

An internal constraint 𝒞 is well-formed in a signature Σ (written Σ;𝒞wf)
if and only if each side of the constraint is well-typed in the corresponding side
of the context.

Σ ⊢ Γ1‡Γ2 wf Σ;Γ1 ⊢ 𝑡 ∶ 𝐴 Σ; Γ2 ⊢ 𝑢 ∶ 𝐵
Σ; Γ1‡Γ2 ⊢ 𝑡 ≈ 𝑢 ∶ 𝐴‡𝐵wf

A unification problem is a set of constraints sharing the same signature:

Definition 4.3 (Unification problem). Given a signature Σ and a sequence
of constraints ⃗𝒞, a unification problem is a pair of the form Σ; ⃗𝒞, where ⃗𝒞 is a
vector of internal constraints.

𝒞,𝒟, ℰ ∶∶= Γ1‡Γ2 ⊢ 𝑡 ≈ 𝑢 ∶ 𝐴‡𝐵 internal constraint

4.1. TWO-SIDED INTERNAL CONSTRAINTS 99

Notation. The vector ⃗𝒞 may be understood as a conjunction of constraints;
therefore we use ∧ as the element separator:

⃗𝒞𝑛 = 𝒞1 ∧… ∧ 𝒞𝑛

An empty vector of constraints is denoted by “□”:

⃗𝒞0 = □

Definition 4.4 (Set of constants in a constraint or a vector of constraints:
consts(𝒞),consts(⃗𝒞)).

consts(Γ1‡Γ2 ⊢ 𝑡 ≈ 𝑢 ∶ 𝐴‡𝐵) = consts(Γ1) ∪ consts(Γ2)
∪ consts(𝑡) ∪ consts(𝑢)
∪ consts(𝐴) ∪ consts(𝐵)

consts(⃗𝒞𝑛) = ⋃𝑛
𝑖=1 consts(𝒞𝑖)

Definition 4.5 (Well-formed unification problem). A unification problem Σ; ⃗𝒞
is well-formed if Σ is well-formed, and each of the constraints in ⃗𝒞 is well-
formed in Σ.

Σ sig ∀𝒞 ∈ ⃗𝒞,Σ; 𝒞wf
Σ; ⃗𝒞wf

Remark 4.6 (No extraneous constants in constraint). If Σ;𝒞wf, then
consts(𝒞) ⊆ decls(Σ). Also, if Σ; ⃗𝒞wf, then consts(⃗⃗ ⃗⃗⃗𝒞) ⊆ decls(Σ).

Proof. By definition Definition 4.2 (well-formed internal constraint), Defini-
tion 4.5 (well-formed unification problem), and Lemma 2.72 (no extraneous
constants).

Remark 4.7 (Well-formed unification constraint is a judgment: 𝐽 = 𝒞). Given
an internal constraint 𝒞, there is a judgment 𝐽 such that, for any well-formed
signature Σ, Σ;𝒞wf if and only if Σ ⊢ 𝐽 ; and consts(𝐽) = consts(𝒞).
Namely, 𝐽 = (Γ1 ⊢ 𝑡 ∶ 𝐴) ∧ (Γ2 ⊢ 𝑢 ∶ 𝐵).
Remark 4.8 (Well-formed unification problem is a judgment: 𝐽 = ⃗𝒞). Given
a vector of internal constraints ⃗⃗ ⃗⃗ ⃗𝒞, there is a judgment such that, for any well-
formed signature Σ, we have Σ; ⃗⃗⃗⃗⃗𝒞wf if and only if Σ ⊢ 𝐽 , and consts(𝐽)
includes only those constants mentioned in ⃗⃗ ⃗⃗ ⃗𝒞. Namely, the judgment 𝐽 is the
conjunction of the judgments given by Remark 4.7 (well-formed unification
constraint is a judgment). If ⃗⃗ ⃗⃗ ⃗𝒞 = □, then let 𝐽 be a judgment that holds in
any signature, such as 𝐽 ≝ · ctx.

Definition 4.9 (Solution to a constraint: Θ ⊨ 𝒞, Θ ⊨ ⃗𝒞). Let Θ be a meta-
substitution, and 𝒞 = Γ1‡Γ2 ⊢ 𝑡 ≈ 𝑢 ∶ 𝐴‡𝐵 be an internal constraint.

We say that Θ is a solution to 𝒞 (written Θ ⊨ 𝒞) iff Θ;𝒞wf, Θ ⊢ Γ1, 𝐴 ≡
Γ2, 𝐵 ctx and Θ;Γ1 ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴 (or, equivalently, Θ ⊢ Γ1 ≡ Γ2 ctx, Θ;Γ1 ⊢
𝐴 ≡ 𝐵 type and Θ;Γ1 ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴).

If ⃗𝒞 is a vector of constraints, we say that Θ ⊨ ⃗𝒞 if, for each 𝒞 ∈ ⃗𝒞, Θ ⊨ 𝒞.

100 CHAPTER 4. UNIFYING WITHOUT ORDER

Remark 4.10 (Solution to a constraint as a judgment). Let 𝒞 be a constraint,
𝒞 = Γ1‡Γ2 ⊢ 𝑡 ≈ 𝑢 ∶ 𝐴‡𝐵. Then there is a judgment 𝐽 , 𝐽 = (Γ1, 𝐴 ≡
Γ2, 𝐵 ctx) ∧ (Γ1 ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴) such that consts(𝐽) = consts(𝒞) and, for any
well-formed metasubstitution Θwf, Θ ⊨ 𝒞 if and only if Θ ⊢ 𝐽 .

A solution to a problem is a metasubstitution which is compatible with the
problem signature, such that each of the problem constraints is satisfied in the
metasubstitution.

Definition 4.11 (Solution to a unification problem: Θ ⊨ Σ; ⃗𝒞). Let Σ; ⃗𝒞 be
a well-formed unification problem, and Θ a well-formed metasubstitution. We
say that Θ is a solution to Σ; ⃗𝒞 (written Θ ⊨ Σ; ⃗𝒞) if we have Θ ⊨ Σ and Θ ⊨ ⃗𝒞.

4.2 Heterogeneous equality
A key point in the flexibility of Gundry and McBride’s approach [25] is the
possibility of partially solving a constraint before the types of both sides have
been deemed equal. For instance, one can unify the first projections of two
pairs as long as the types of the first projections are equal, and then use this
information to unify the types of the second projections.

We take this idea a step further, and define an equality for terms which may
have distinct types. This equality allows us to implement the type-agnostic
Rule schema 1 (syntactic equality), which results in a significant impact in
performance for some examples (Section 5.6.1).

Definition 4.12 (Heterogeneous equality: Σ;Γ‡Δ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴‡𝐵). Two
terms Σ;Γ ⊢ 𝑡 ∶ 𝐴 and Σ;Δ ⊢ 𝑢 ∶ 𝐵 are heterogeneously equal (written
Σ;Γ‡Δ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴‡𝐵), iff there exists a term 𝑣 such that (1a) Σ;Γ ⊢ 𝑡 ≡ 𝑣 ∶ 𝐴,
(1b) Σ;Δ ⊢ 𝑢 ≡ 𝑣 ∶ 𝐵, and (2) fv(𝑣) ⊆ fv(𝑡) ∩ fv(𝑢).

Given such a witness 𝑣, we can write Σ;Γ‡Δ ⊢ 𝑡 ≡{𝑣}≡ 𝑢 ∶ 𝐴‡𝐵.

Condition (2) ensures that the witness 𝑣 only uses those variables that
are used by both 𝑡 and 𝑢. This is helpful when extending the heterogeneous
equality to whole contexts, as done in Definition 4.37 (heterogeneously equal
contexts modulo variables) and Lemma 4.38 (typing in heterogeneously equal
contexts).

The notion of an equality with intermediate witness is inspired by the
ternary equality relation due to Gundry and McBride [25], but different in two
key aspects: the types 𝐴 and 𝐵 are not necessarily equal, and the witness 𝑣 is
not necessarily a fully-normalized term.

The heterogeneous notion of equality generalizes the judgmental equality:
In other words, if the contexts and types on both sides are equal, then the two
notions are equivalent:

Lemma 4.13 (Homogenization). Assume that Σ ⊢ Γ1, 𝐴1 ≡ Γ2, 𝐴2 ctx.
Then, we have Σ;Γ1‡Γ2 ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴1‡𝐴2 iff Σ;Γ1 ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴1.

Proof. ⇒ By assumption, Σ;Γ1‡Γ2 ⊢ 𝑡 ≡{𝑣}≡ 𝑢 ∶ 𝐴1‡𝐴2
By Lemma 2.63 (preservation of judgments by type conversion),
Σ;Γ1‡Γ1 ⊢ 𝑡 ≡{𝑣}≡ 𝑢 ∶ 𝐴1‡𝐴1. By transitivity and symmetry of
homogeneous equality, Σ;Γ1 ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴1.

4.2. HETEROGENEOUS EQUALITY 101

⇐ By Postulate 14 (existence of a common reduct), we have 𝑣 such that
Σ;Γ1 ⊢ 𝑡 ⟶⋆

δη 𝑣 ∶ 𝐴1, Σ;Γ1 ⊢ 𝑢 ⟶⋆
δη 𝑣 ∶ 𝐴1. By Remark 2.43 (free

variables of δη-reduct), fv(𝑣) ⊆ fv(𝑡)∩fv(𝑢). By Lemma 2.86 (equality
of δη-reduct), Σ;Γ1 ⊢ 𝑡 ≡ 𝑣 ∶ 𝐴1 and Σ;Γ1 ⊢ 𝑢 ≡ 𝑣 ∶ 𝐴1.
Because Σ ⊢ Γ1, 𝐴1 ≡ Γ2, 𝐴2 ctx, by Lemma 2.63 (preservation of judg-
ments by type conversion), Σ;Γ2 ⊢ 𝑢 ≡ 𝑣 ∶ 𝐴2.
By Definition 4.12 (heterogeneous equality), Σ;Γ1‡Γ2 ⊢ 𝑡 ≡{𝑣}≡ 𝑢 ∶
𝐴1‡𝐴2.

Example 4.14 shows that the heterogeneous equality is strictly stronger
than the judgmental equality of the underlying theory:

Example 4.14 (Heterogeneous equality).

𝔸 ∶ Set, 𝕒 ∶ 𝔸, 𝛼 ∶ 𝔸 → Set;
𝑥 ∶ 𝔸 → 𝔸‡(𝛼 𝕒), 𝑧 ∶ (𝛼 𝕒)‡𝔸 → 𝔸
⊢
⟨𝑥, 𝜆𝑦.𝑧 𝑦⟩ ≡{⟨𝑥, 𝑧⟩}≡ ⟨𝜆𝑦.𝑥 𝑦, 𝑧⟩ ∶
(𝛼 𝕒 × (𝔸 → 𝔸))‡((𝔸 → 𝔸) × 𝛼 𝕒)

Note that each side of the heterogeneous equality is equal to the witness
(⟨𝑥, 𝑧⟩) but both sides are not judgmentally equal to each other at either of
their respective types. ◀

Like the judgmental equality, the heterogeneous equality is reflexive and
symmetric relation:
Remark 4.15 (Reflexivity of heterogeneous equality). Heterogeneous equality
is reflexive. That is, given Σ;Γ ⊢ 𝑡 ∶ 𝐴 and Σ;Δ ⊢ 𝑡 ∶ 𝐵, we have Σ;Γ ‡ Δ ⊢
𝑡 ≡{𝑡}≡ 𝑡 ∶ 𝐴 ‡ 𝐵 (even if Γ ≠ Δ).
Remark 4.16 (Symmetry of heterogeneous equality). Heterogeneous equality
is symmetric. That is, given Σ;Γ‡Δ ⊢ 𝑡 ≡{𝑣}≡ 𝑢 ∶ 𝐴 ‡ 𝐵, we also have
Σ;Δ‡Γ ⊢ 𝑢 ≡{𝑣}≡ 𝑡 ∶ 𝐵 ‡ 𝐴.

For our development, we are not concerned with whether the heterogeneous
equality is transitive.

The heterogeneous equality is used to define when a constraint is satisfied
in a given signature.

Definition 4.17 (Constraint satisfaction: Σ ∣≈ 𝒞, Σ ∣≈ ⃗𝒞). Let Σ be a
signature, and 𝒞 an internal constraint, 𝒞 = Γ‡Δ ⊢ 𝑡 ≈ 𝑢 ∶ 𝐴‡𝐵. We say
that 𝒞 is satisfied in Σ (written Σ ∣≈ 𝒞), if Σ;𝒞wf and the two sides of the
constraint are heterogeneously equal. That is, Σ;Γ‡Δ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴‡𝐵.

We say that the constraints ⃗𝒞 are satisfied in signature Σ (written Σ ∣≈ ⃗𝒞),
if, Σ is well-formed and for each 𝒞 ∈ ⃗𝒞, Σ ∣≈ 𝒞.

Remark (Relationship between constraint solution and constraint satisfaction).
Constraint satisfaction is a weaker notion than Definition 4.9 (solution to a
constraint). If Θ ⊨ ⃗𝒞, then, in particular, Θ ∣≈ ⃗𝒞.

102 CHAPTER 4. UNIFYING WITHOUT ORDER

When we can go in the other direction (that is, Θ ∣≈ ⃗𝒞 implies Θ ⊨ ⃗𝒞), we
say that ⃗𝒞 is an essentially homogeneous set of constraints. That is, even if each
constraint is not necessarily homogeneous (e.g. Γ1‡Γ2 ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴1‡𝐴2 ∈ ⃗𝒞
with Γ1 ≠ Γ2 and/or 𝐴1 ≠ 𝐴2) both sides of the context and of the type are
equal in any solution Θ to the problem (i.e. Θ ⊢ Γ1, 𝐴1 ≡ Γ2, 𝐴2 ctx):

Definition 4.18 (Essentially homogeneous set of constraints). Let ⃗𝒞 be a
vector of constraints. We say that ⃗𝒞 is an essentially homogeneous set of
constraints iff for every metasubstitution Θ, such that Θ ∣≈ ⃗𝒞 we have Θ ⊨ ⃗𝒞.

Definition 4.19 (Essentially homogeneous problem). A problem Σ; ⃗𝒞 is es-
sentially homogeneous iff ⃗𝒞 is an essentially homogeneous set of constraints.

As we show in Lemma 4.23 (well-formedness of elaboration into internal
constraints), all problems resulting from type checking will be essentially ho-
mogeneous.

Solving constraints is done by extending the signature. It is thus critical
that extending a signature does not invalidate previously solved constraints:

Lemma 4.20 (Constraint satisfaction in extended signature). Assume Σ ⊑
Σ′, and Σ ∣≈ ⃗𝒞. Then Σ′ ∣≈ ⃗𝒞.

Proof. By Definition 4.17 (constraint satisfaction), it suffices to show that, for
any Γ‡Δ ⊢ 𝑡 ≈ 𝑢 ∶ 𝐴‡𝐵 ∈ ⃗𝒞, if Σ;Γ‡Δ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴‡𝐵, then Σ′; Γ‡Δ ⊢ 𝑡 ≡ 𝑢 ∶
𝐴‡𝐵.

Let Σ;Γ‡Δ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴‡𝐵. By Definition 4.12 (heterogeneous equality),
there exists a term 𝑣 such that Σ;Γ ⊢ 𝑡 ≡ 𝑣 ∶ 𝐴, Σ;Δ ⊢ 𝑢 ≡ 𝑣 ∶ 𝐵, and
fv(𝑣) ⊆ fv(𝑡) ∩ fv(𝑢).

By Lemma 2.69 (signature weakening), Σ′; Γ ⊢ 𝑡 ≡ 𝑣 ∶ 𝐴 and Σ′;Δ ⊢ 𝑢 ≡
𝑣 ∶ 𝐵. Therefore, Σ′; Γ‡Δ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴‡𝐵.

Lemma 4.21 (Constraint satisfaction by compatible metasubstitution). As-
sume Θ ⊨ Σ and Σ ∣≈ ⃗𝒞. Then Θ ∣≈ ⃗𝒞.

Proof. By Definition 4.17 (constraint satisfaction), it suffices to show that, for
any Γ‡Δ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴‡𝐵, if Σ;Γ‡Δ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴‡𝐵, then Θ;Γ‡Δ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴‡𝐵.

Let Σ;Γ‡Δ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴‡𝐵. By Definition 4.12 (heterogeneous equality),
there exists a term 𝑣 such that Σ;Γ ⊢ 𝑡 ≡ 𝑣 ∶ 𝐴, Σ;Δ ⊢ 𝑢 ≡ 𝑣 ∶ 𝐵, and
fv(𝑣) ⊆ fv(𝑡) ∩ fv(𝑢).

By Definition 2.125 (compatible metasubstitution), Θ;Γ ⊢ 𝑡 ≡ 𝑣 ∶ 𝐴 and
Θ;Δ ⊢ 𝑢 ≡ 𝑣 ∶ 𝐵. Therefore, Θ;Γ‡Δ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴‡𝐵.

In general terms, the unification algorithm (Algorithm 2) works by ex-
tending the signature step by step until the resulting signature satisfies all
the constraints in the original problem. The solution to the original problem
is obtained as a restriction of the closing metasubstitution of the resulting
signature (see Theorem 4.31, correctness of unification).

4.3. FROM TYPE CHECKING TO INTERNAL CONSTRAINTS 103

4.3 From type checking to internal constraints
With the notions at hand we can give a precise description of how a type
checking problem is reduced to a set of internal constraints.

Definition 4.22 (Elaboration into internal constraints). Let Σ;Γ ⊢? 𝑡 ∶ 𝐴 be
a type checking problem, to which an elaboration algorithm is applied (Defini-
tion 3.10). Let Σ′; ⃗𝒞 be a unification problem, where Σ′ is a signature produced
by the elaboration algorithm and ⃗𝒞 contains, for each basic constraint of the
form Γ ⊢ 𝑢 ∶ 𝐴 ≅ 𝑣 ∶ 𝐵 produced by the elaboration algorithm, the internal
constraints Γ‡Γ ⊢ 𝐴 ≈ 𝐵 ∶ Set‡Set and Γ‡Γ ⊢ 𝑢 ≈ 𝑣 ∶ 𝐴‡𝐵. Then we say
that Σ′; ⃗𝒞 is the elaboration of Σ;Γ ⊢? 𝑡 ∶ 𝐴 into internal constraints by said
elaboration algorithm.

Lemma 4.23 (Well-formedness of elaboration into internal constraints). Let
Σ;Γ ⊢? 𝑡 ∶ 𝐴 be a type checking problem, and Σ′; ⃗𝒞 its elaboration into internal
constraints by a well-formed elaboration algorithm.
Then, the following hold:

Well-formedness The problem Σ′; ⃗𝒞 is well-formed, Σ ⊆ Σ′ and
decls(Σ′) ⊇ decls(Σ) ∪ metas(𝑡).

Essential homogeneity The set of constraints ⃗𝒞 is essentially homogeneous.

Proof.

Well-formedness By construction.

Essential homogeneity Assume Θ ∣≈ ⃗𝒞,
Let 𝒞 ∈ ⃗𝒞, Let 𝒞 = Γ1‡Γ2 ⊢ 𝑡 ≈ 𝑢 ∶ 𝐴‡𝐵.
There are two possible cases:

i) 𝒞 = Γ‡Γ ⊢ 𝐴 ≈ 𝐵 ∶ Set‡Set: Assume Θ;Γ‡Γ ⊢ 𝐴 ≡{𝑉 }≡ 𝐵 ∶
Set‡Set. This implies Θ;Γ ⊢ 𝐴 ≡ 𝑉 ∶ Set and Θ;Γ ⊢ 𝐵 ≡ 𝑉 ∶ Set.
By Lemma 2.70 (piecewise well-formedness of typing judgments)
we have Θ ⊢ Γ ctx. Also, by the set rule and Remark 2.15 (there
is only set), Θ;Γ ⊢ Set type, which gives Θ ⊢ Γ, Set ctx. By
reflexivity of context equality Θ ⊢ Γ, Set ≡ Γ, Set ctx. Because
Θ ⊢ Γ,Set ≡ Γ, Set ctx and Θ;Γ‡Γ ⊢ 𝐴 ≡ 𝐵 ∶ Set‡Set, by Lemma
4.13 (homogenization), Θ ⊨ 𝒞.

ii) 𝒞 = Γ‡Γ ⊢ 𝑡 ≈ 𝑢 ∶ 𝐴‡𝐵: By Definition 4.22 (elaboration into
internal constraints), the elaboration algorithm produced a basic
constraint 𝒞 = Γ ⊢ 𝑡 ∶ 𝐴 ≅ 𝑢 ∶ 𝐵, which means there is a constraint
𝒞′ ∈ ⃗𝒞, 𝒞′ = Γ‡Γ ⊢ 𝐴 ≈ 𝐵 ∶ Set‡Set. Because Θ ⊨ ⃗𝒞, in particular,
Θ ⊨ ⃗𝒞′. This means Θ;Γ ⊢ 𝐴 ≡ 𝐴0 ∶ Set and Θ;Γ ⊢ 𝐵 ≡ 𝐵0 ∶ Set.
By transitivity of equality, Θ;Γ ⊢ 𝐴 ≡ 𝐵 ∶ Set. By Remark 2.15,
Θ;Γ ⊢ 𝐴 ≡ 𝐵 type. By reflexivity of context equality, Θ ⊢ Γ ≡
Γ ctx. By Definition 2.16, Θ ⊢ Γ,𝐴 ≡ Γ,𝐵 ctx. By Lemma 4.13
(homogenization), Θ ⊨ 𝒞.

104 CHAPTER 4. UNIFYING WITHOUT ORDER

Therefore, for all 𝒞 ∈ ⃗𝒞, Θ ⊨ 𝒞. Thus, ⃗𝒞 is an essentially homogeneous set
of constraints.

If the elaboration algorithm is correct, the solutions to the type checking
problem will coincide to the solutions with the resulting internal constraints:

Lemma 4.24 (Correctness of elaboration into internal constraints). Let
Σ;Γ ⊢? 𝑡 ∶ 𝐴 be a type checking problem, and Σ′; ⃗𝒞 its elaboration into internal
constraints by a well formed and correct unification algorithm. Then the
following hold:

Soundness For each Θ such that Θ ⊨ Σ′; ⃗𝒞, we have ΘΣ∪𝑡 wf and ΘΣ∪𝑡 ⊨
Σ; Γ ⊢? 𝑡 ∶ 𝐴.

Completeness If there is Θ with Θ ⊨ Σ;Γ ⊢? 𝑡 ∶ 𝐴, then there is Θ̃ with
Θ̃Σ∪𝑡 = Θ and Θ̃ ⊨ Σ′; ⃗𝒞.

Proof.

Soundness Assume Θ ⊨ Σ′; ⃗𝒞. By Definition 4.11 (solution to a unification
problem), we have Θ ⊨ Σ′.
Let Γ ⊢ 𝑡 ∶ 𝐴 ≈ 𝑢 ∶ 𝐵 be a basic constraint produced by the elaboration
algorithm. By Definition 4.22 (elaboration into internal constraints),
there is a corresponding constraint 𝒞 = Γ‡Γ ⊢ 𝑡 ≅ 𝑢 ∶ 𝐴‡𝐵 ∈ ⃗𝒞. Again
by Definition 4.11 (solution to a unification problem), this means Θ ⊢
Γ,𝐴 ≡ Γ,𝐵 ctx and Θ;Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴.
By Definition 3.12 (correctness of an elaboration algorithm), ΘΣ∪𝑡 ⊨
Γ ⊢? 𝑡 ∶ 𝐴.

Completeness Assume there is a metasubstitution Θ such that Θ ⊨ Σ;Γ ⊢?

𝑡 ∶ 𝐴. By Definition 3.12 (correctness of an elaboration algorithm), there
is Θ̃ such that Θ̃Σ∪𝑡 = Θ and Θ̃ ⊨ Σ′.
Let 𝒞 ∈ ⃗𝒞. We proceed by case analysis:

• 𝒞 = Γ‡Γ ⊢ 𝐴 ≈ 𝐵 ∶ Set‡Set, and the elaboration algorithm pro-
duced a basic constraint 𝒞 = Γ ⊢ 𝑡 ∶ 𝐴 ≅ 𝑢 ∶ 𝐵.
By Definition 3.11 (well-formedness of an elaboration algorithm),
Σ′; Γ ⊢ 𝑡 ∶ 𝐴. By Lemma 2.70 (piecewise well-formedness of typing
judgments), Σ′ ⊢ Γ ctx. As in the proof of Lemma 4.23 (well-
formedness of elaboration into internal constraints), Σ′ ⊢ Γ,Set ≡
Γ,Set ctx. Because Θ̃ ⊨ Σ′, we have Θ̃ ⊢ Γ, Set ≡ Γ, Set ctx.
Also, by Definition 3.12 (correctness of an elaboration algorithm),
Θ̃; Γ ⊢ 𝐴 ≡ 𝐵 type. By Remark 2.15 (there is only set), Θ̃; Γ ⊢
𝐴 ≡ 𝐵 ∶ Set; that is, Θ̃ ⊨ 𝒞.

• 𝒞 = Γ‡Γ ⊢ 𝑡 ≈ 𝑢 ∶ 𝐴‡𝐵, and the elaboration algorithm produced
a basic constraint 𝒞 = Γ ⊢ 𝑡 ∶ 𝐴 ≅ 𝑢 ∶ 𝐵. By Definition 3.12
(correctness of an elaboration algorithm), Θ̃; Γ ⊢ 𝐴 ≡ 𝐵 type and
Θ̃; Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴.

4.4. A UNIFICATION RELATION 105

By Lemma 2.70 (piecewise well-formedness of typing judgments),
we have Θ̃ ⊢ Γ ctx. By reflexivity, this means Θ̃ ⊢ Γ ≡ Γ ctx. By
Definition 2.16 (equality of contexts), Θ̃ ⊢ Γ,𝐴 ≡ Γ,𝐵 ctx; that is,
Θ̃ ⊨ 𝒞.

Therefore, Θ̃ ⊨ Σ′; ⃗𝒞.

4.4 A unification relation
Our approach makes use of reduction rules to simplify unification problems.
A reduction rule may create new constraints and/or extend the signature.

Definition 4.25 (Reduction rule). A rule is a four tuple of the form Σ; ⃗𝒞 ⇝
Σ′; �⃗�, where Σ and Σ′ are signatures, and ⃗𝒞 and �⃗� are vectors of internal
constraints.
A rule Σ; ⃗𝒞 ⇝ Σ′; �⃗� states that, under signature Σ, the constraints ⃗𝒞 reduce
to a list of constraints �⃗�, extending the signature to Σ′.

Correct rules are those which preserve the set of possible solutions. In
Section 4.5 we give a collection of rule schemas, and show that all the resulting
rules are correct.

Definition 4.26 (Rule correctness). A rule Σ; ⃗𝒞 ⇝ Σ′; �⃗� is correct if, as-
suming that Σ; ⃗𝒞 is well-formed, we have:

Well-formedness The problem Σ′;�⃗� is well-formed, and Σ ⊑ Σ′ (in partic-
ular, Σ′ sig).

Soundness For every Σ″ with Σ″ ⊒ Σ′, if Σ″ ∣≈ �⃗� then Σ″ ∣≈ ⃗𝒞.

Completeness For each metasubstitution Θ such that Θ ⊨ Σ; ⃗𝒞, there is a
metasubstitution Θ′ such that Θ = Θ′

Σ and Θ′ ⊨ Σ′;�⃗�.

Remark. The soundness property is stated in terms of constraint satisfaction
(∣≈), and the completeness in terms of constraint solutions (⊨).
We make this distinction to make the correctness proofs of the individual rules
more succinct, as for soundness it suffices to show satisfaction (Σ″ ∣≈ ⃗𝒞).
However, for proving completeness, we use the stronger premise (Θ ⊨ ⃗𝒞).
Theorem 4.31 (correctness of unification) only discusses constraint solutions.

We can define a reduction relation on problems by applying correct rules to
an individual constraints, while preserving the other constraints as they are.

Definition 4.27 (One-step problem reduction: Σ; ⃗⃗⃗ ⃗ℰ ⇝⇝⇝ Σ′; ⃗⃗⃗ ⃗ℰ′). We say that
the problem Σ; ⃗ℰ reduces to Σ′; ⃗⃗⃗ ⃗ℰ′ in one step (written Σ; ⃗⃗⃗ ⃗ℰ ⇝⇝⇝ Σ′; ⃗⃗⃗ ⃗ℰ′), if,
⃗⃗⃗ ⃗ℰ = ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗ℰ1 ∧ ⃗⃗⃗⃗⃗𝒞 ∧ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗ℰ2, ⃗⃗⃗ ⃗ℰ′ = ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗ℰ1 ∧ ⃗⃗⃗⃗⃗ ⃗⃗𝒟 ∧ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗ℰ2, and Σ; ⃗𝒞 ⇝ Σ′; �⃗� is a correct rule.

Definition 4.28 (Problem reduction: Σ′; ⃗⃗⃗ ⃗ℰ⇝⇝⇝⋆ Σ′; ⃗⃗⃗ ⃗ℰ′). We say that the prob-
lem Σ; ⃗⃗⃗ ⃗ℰ reduces to Σ′; ⃗⃗⃗ ⃗ℰ′ if Σ; ⃗ℰ⇝⇝⇝⋆ Σ′; ⃗⃗⃗ ⃗ℰ′, where ⇝⇝⇝⋆ is the reflexive, transitive
closure of ⇝⇝⇝ .

106 CHAPTER 4. UNIFYING WITHOUT ORDER

Lemma 4.29 (Correctness of problem reduction). Given a well-formed prob-
lem Σ; ⃗⃗⃗ ⃗ℰ, such that Σ; ⃗⃗⃗ ⃗ℰ⇝⇝⇝⋆ Σ′; ⃗⃗⃗ ⃗ℰ′, then Σ; ⃗⃗⃗ ⃗ℰ ⇝ Σ′; ⃗⃗⃗ ⃗ℰ′ is a correct rule. That
is, the following hold:

Well-formedness The problem Σ′; ⃗⃗⃗ ⃗ℰ′ is well-formed, and Σ ⊑ Σ′.

Soundness For every Σ″ with Σ″ ⊒ Σ′, if Σ″ ∣≈ ⃗⃗⃗ ⃗ℰ′ then Σ″ ∣≈ ⃗⃗⃗ ⃗ℰ.

Completeness For each metasubstitution Θ such that Θ ⊨ Σ; ⃗⃗⃗ ⃗ℰ, there is a
metasubstitution Θ′ such that Θ = Θ′

Σ and Θ′ ⊨ Σ′; ⃗⃗⃗ ⃗ℰ′.

Proof. By induction on the length of the derivation of Σ; ⃗⃗⃗ ⃗ℰ⇝⇝⇝⋆ Σ′; ⃗⃗⃗ ⃗ℰ″.

• Base case (Σ; ⃗⃗⃗ ⃗ℰ = Σ″; ⃗⃗⃗ ⃗ℰ″):

Well-formedness By assumption, Σ″; ⃗⃗⃗ ⃗ℰ″ = Σ; ⃗⃗⃗ ⃗ℰ is well-formed, and
Σ ⊑ Σ″.

Soundness Take Σ‴ ⊒ Σ″ such that Σ‴ ∣≈ ⃗⃗⃗ ⃗ℰ″. Because ⃗⃗⃗ ⃗ℰ″ = ⃗⃗⃗⃗ℰ, Then
Σ‴ ∣≈ ⃗⃗⃗ ⃗ℰ.

Completeness Assume Θ ⊨ Σ; ⃗⃗⃗ ⃗ℰ. Then we have Θ′ = Θ, with Θ = ΘΣ.

• Inductive step (Σ; ⃗⃗⃗ ⃗ℰ ⇝⇝⇝ Σ′; ⃗⃗⃗ ⃗ℰ′ and Σ′; ⃗⃗⃗ ⃗ℰ′⇝⇝⇝⋆ Σ″; ⃗⃗⃗ ⃗ℰ″):

By Definition 4.27 (one-step problem reduction), we have ⃗⃗⃗ ⃗ℰ = ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗ℰ1∧ ⃗⃗⃗⃗⃗𝒞∧ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗ℰ2,
⃗⃗⃗ ⃗ℰ′ = ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗ℰ1 ∧ ⃗⃗⃗⃗⃗ ⃗⃗𝒟 ∧ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗ℰ2, and Σ; ⃗𝒞 ⇝ Σ′; �⃗� is a correct rule.

Well-formedness Σ; ⃗⃗⃗ ⃗ℰ is well-formed. By Definition 4.5 (well-formed
unification problem), this means that, for each constraint ℰ ∈ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗ℰ1 ∧
⃗⃗⃗⃗⃗𝒞 ∧ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗ℰ2, we have Σ;ℰwf. In particular:

1. Σ; ⃗𝒞wf. By well-formedness of the rule, Σ′; �⃗�wf, which implies
Σ′ sig.

2. By the well-formedness of the rule, Σ′ ⊒ Σ By Lemma 2.155
(preservation of judgments under signature extensions), for ev-
ery ℰ ∈ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗ℰ1 ∧ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗ℰ2, we have Σ′; ℰwf.

Therefore, for every ℰ ∈ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗ℰ1 ∧ ⃗⃗⃗⃗⃗ ⃗⃗𝒟 ∧ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗ℰ2, Σ′; ℰwf; thus Σ′; ⃗⃗⃗ ⃗ℰ′ wf. By
the induction hypothesis, Σ″; ⃗⃗⃗ ⃗ℰ″ wf and Σ ⊑ Σ″.

Soundness Take Σ‴ ⊒ Σ″ such that Σ‴ ∣≈ ⃗⃗⃗ ⃗ℰ″. By the induction
hypothesis, Σ‴ ∣≈ ⃗⃗⃗ ⃗ℰ′; that is, Σ‴ ∣≈ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗ℰ1 ∧ ⃗⃗⃗⃗⃗ ⃗⃗𝒟 ∧ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗ℰ2. In particular:

1. Σ‴ ∣≈ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗ℰ1 ∧ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗ℰ2.
2. Σ‴ ∣≈ ⃗⃗⃗ ⃗⃗ ⃗⃗𝒟. By Definition 4.26 (rule correctness), Σ″ ⊒ Σ′.

Because Σ‴ ⊒ Σ″, by Remark 2.152 (signature extension is
reflexive and transitive) we have Σ‴ ⊒ Σ′. Because Σ‴ ∣≈ ⃗⃗⃗ ⃗⃗ ⃗⃗𝒟,
by the soundness of the rule, Σ‴ ∣≈ ⃗𝒞.

Therefore, Σ‴ ∣≈ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗ℰ1 ∧ ⃗⃗⃗⃗⃗𝒞 ∧ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗ℰ2; that is, Σ‴ ∣≈ ⃗⃗⃗ ⃗ℰ.

4.4. A UNIFICATION RELATION 107

Completeness Assume Θ ⊨ Σ; ⃗⃗⃗ ⃗ℰ. In particular, Θ ⊨ Σ, Θ ⊨ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗ℰ1 ∧ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗ℰ2
and Θ ⊨ ⃗⃗⃗⃗⃗𝒞.
Because Θ ⊨ Σ and Θ ⊨ ⃗⃗⃗⃗⃗𝒞, we have Θ ⊨ Σ; ⃗⃗⃗⃗⃗𝒞. By Definition 4.26
(rule correctness), there is Θ′ such that Θ = Θ′

Σ and Θ′ ⊨ Σ′; �⃗�.
By Remark 2.137 (metasubstitution weakening), Θ′ ⊨ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗ℰ1 ∧ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗ℰ2.
Because Θ′ ⊨ Σ′ and Θ′ ⊨ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗ℰ1 ∧ �⃗� ∧ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗ℰ2, we have Θ′ ⊨ Σ′; ⃗⃗⃗ ⃗⃗ ⃗⃗ℰ′. By
the induction hypothesis, there is Θ″ such that Θ″ ⊨ Σ″, ⃗⃗⃗ ⃗ℰ″ and
Θ″

Σ′ = Θ′.
By Remark 2.154 (metasubstitution restriction to extension), be-
cause Θ′

Σ = Θ and Θ″
Σ′ = Θ′, we have Θ″

Σ = (Θ″
Σ′)Σ = Θ′

Σ = Θ.

Our unification algorithm (Algorithm 2) will start from a problem Σ; ⃗𝒞
and apply rules iteratively, stopping if it produces a signature Σ′ such that
Σ; ⃗𝒞⇝⇝⇝⋆ Σ′; □.

If Σ′ is closed (that is, instantiates all metavariables) we can obtain a solu-
tion to the original problem Σ; ⃗𝒞 by constructing the closing metasubstitution
of Σ′.

Definition 4.30 (Solved problem). Let Σ; �⃗� be a problem. We say that Σ; �⃗�
is a solved problem if Σ; �⃗�wf, Σ is a closed signature, and �⃗� = □.

Theorem 4.31 (Correctness of unification). Let Σ; ⃗𝒞 be an essentially ho-
mogeneous, well-formed problem such that: Σ; ⃗𝒞⇝⇝⇝⋆ Σ′; □, where Σ′; □ is a
solved problem (i.e. Σ′ is closed).

Then the following hold:

1. The signature Σ′ is well-formed.

2. There is Θ such that close(Σ′) ⇓ Θ and ΘΣ ⊨ Σ; ⃗𝒞.

3. For every Θ̃ such that Θ̃ ⊨ Σ; ⃗𝒞, we have ΘΣ ≡ Θ̃.

Proof.

1. By Lemma 4.29 (correctness of problem reduction), we have that Σ′;□
is well-formed.
By Definition 4.5 (well-formed unification problem), Σ′ sig and Σ ⊑ Σ′.

2. By Corollary 2.149 (solution to closed signature), close(Σ′) ⇓ Θ, and
Θ ⊨ Σ′. By Lemma 2.157 (restriction of a metasubstitution to an ex-
tended signature), ΘΣ ⊨ Σ. By the soundness statement in Lemma
4.29, Σ′ ∣≈ ⃗⃗⃗⃗⃗𝒞. Because Θ ⊨ Σ′, by Lemma 4.21 (constraint satisfaction
by compatible metasubstitution) we have Θ ∣≈ ⃗⃗⃗⃗⃗𝒞. Because the set of
constraints ⃗𝒞 is essentially homogeneous, we have Θ ⊨ ⃗⃗⃗⃗⃗𝒞.
By Remark 2.134, ΘΣ ⊆ Θ.
Because Σ; ⃗⃗⃗⃗⃗𝒞wf, by Remark 4.8 (well-formed unification problem is
a judgment) and Remark 4.6 (no extraneous constants in constraint),
consts(⃗⃗ ⃗⃗⃗𝒞) ⊆ decls(Σ).

108 CHAPTER 4. UNIFYING WITHOUT ORDER

By Definition 2.8 (constants declared by a signature), decls(Σ) =
AtomDecls(Σ) ∪ support(Σ). By Remark 2.153 (signature ex-
tension declarations), AtomDecls(Σ) = AtomDecls(Σ′). and
support(Σ) ⊆ support(Σ′), which means that support(Σ) =
support(Σ′)∩support(Σ). Therefore, decls(Σ) = AtomDecls(Σ′)∪
(AtomDecls(Σ′) ∩ support(Σ)).
By Lemma 2.130 (alternative characterization of a compatible meta-
substitution) and Remark 2.9 (atoms and metavariables are disjoint),
AtomDecls(Θ) = AtomDecls(Σ′) and support(Θ) = support(Σ′).
Therefore, decls(Σ) = AtomDecls(Θ) ∪ (AtomDecls(Θ) ∩
support(Σ)).
By Remark 2.135 (declarations in a metasubstitution restric-
tion), AtomDecls(Θ) = AtomDecls(ΘΣ) and support(ΘΣ) =
support(Θ)∩support(Σ). Therefore, decls(Σ) = AtomDecls(ΘΣ)∪
AtomDecls(ΘΣ) = decls(ΘΣ), and thus consts(⃗⃗ ⃗⃗⃗𝒞) ⊆ decls(ΘΣ).
By Remark 2.138 (metasubstitution strengthening) and Remark 4.10
(solution to a constraint as a judgment) ΘΣ ⊨ ⃗⃗⃗⃗⃗𝒞.
Because ΘΣ ⊨ Σ and ΘΣ ⊨ ⃗⃗⃗⃗⃗𝒞, we have ΘΣ ⊨ Σ; ⃗⃗ ⃗⃗⃗𝒞.

3. Let Θ̃ be a metasubstitution such that Θ̃ ⊨ Σ; ⃗𝒞. By the completeness
statement in Lemma 4.29, there is a metasubstitution Θ̃′, such that
Θ̃′

Σ = Θ̃ and Θ̃′ ⊨ Σ′; □.
By Corollary 2.149 (solution to closed signature), this gives Θ ≡ Θ̃′.
By Lemma 2.150 (equality of restricted metasubstitutions), this gives
ΘΣ ≡ Θ̃′

Σ, or, equivalently, ΘΣ ≡ Θ̃.

Corollary 4.32 (Correctness of type checking by unification). Let Σ;Γ ⊢? 𝑡 ∶
𝐴 be a well-formed type checking problem, and Σ′; ⃗𝒞 the output produced by a
well-formed and correct elaboration algorithm.

If Σ′; ⃗𝒞⇝⇝⇝⋆ Σ″; □, and Σ″ is closed, then there is Θ such that close(Σ″)⇓
Θ, and ΘΣ∪𝑡 is a unique solution to the type checking problem Σ;Γ ⊢? 𝑡 ∶ 𝐴
(up to equality of metasubstitutions).

Proof. By Theorem 4.31 (correctness of unification), there is Θ such that
close(Σ″) ⇓ Θ, ΘΣ′ wf, ΘΣ′ ⊨ Σ′, ΘΣ′ ⊨ Σ′; ⃗𝒞.

By Lemma 4.23 (well-formedness of elaboration into internal constraints),
decls(Σ′) ⊇ decls(Σ) ∪ metas(𝑡). By Remark 2.136 (nested metasubstitu-
tion restriction), (ΘΣ′)Σ∪𝑡 = ΘΣ∪𝑡. By Lemma 4.24 (correctness of elaboration
into internal constraints), ΘΣ∪𝑡 ⊨ Σ; Γ ⊢? 𝑡 ∶ 𝐴.

To show the uniqueness of Θ, we assume there is Θ̃ such that Θ̃ ⊨ Σ; Γ ⊢?

𝑡 ∶ 𝐴. By Lemma 4.24 (correctness of elaboration into internal constraints),
there is ̃Θ̃ such that ̃Θ̃Σ∪𝑡 = Θ̃ and ̃Θ̃ ⊨ Σ′; ⃗𝒞.

By Theorem 4.31 (correctness of unification), because ΘΣ′ ⊨ Σ′; ⃗𝒞 and
̃Θ̃ ⊨ Σ′; ⃗𝒞, we have ̃Θ̃ ≡ ΘΣ′ . By Lemma 2.150 (equality of restricted meta-

substitutions), ̃Θ̃Σ∪𝑡 ≡ (ΘΣ′)Σ∪𝑡; that is, Θ̃ ≡ ΘΣ∪𝑡.

4.5. A REDUCTION RULE TOOLKIT 109

4.5 A reduction rule toolkit
Below, we describe a set reduction rules (or more precisely, reduction rule
schemas), and show their correctness according to Definition 4.26.

These rules can then be used to define a correct unification algorithm. The
way the unification algorithm is built from the individual rules is discussed in
Section 5.1 (unification algorithm). According to Theorem 4.31 (correctness
of unification), in order to show the correctness of the algorithm it suffices to
show the correctness of each individual rule.

4.5.1 Syntactic equality check
The heterogeneous equality is reflexive (Remark 4.15). We can exploit this
remark to discharge those constraints whose two sides are syntactically iden-
tical.

Thanks to how the heterogeneous equality is defined (Definition 4.12), this
rule applies even if the type and/or the context on each side of the constraint
are distinct.

Rule-Schema 1 (Syntactic equality).

Σ;Γ‡Γ′ ⊢ 𝑡 ≈ 𝑡 ∶ 𝐴‡𝐴′ ⇝ Σ;□

Proof of correctness. By Definition 4.26 (rule correctness), it suffices to show:

Well-formedness Assume that Σ;Γ‡Γ′ ⊢ 𝑡 ≈ 𝑡 ∶ 𝐴‡𝐴′ is well-formed. Then,
Σ sig. If Σ is well-formed, then the problem Σ;□ is also trivially well-
formed. By Definition 2.151 (signature extension), Σ ⊑ Σ.

Soundness Because Σ;Γ ‡ Γ′ ⊢ 𝑡 ≈ 𝑡 ∶ 𝐴 ‡ 𝐴′ is well-formed, we have Σ;Γ ⊢
𝑡 ∶ 𝐴 and Σ;Γ′ ⊢ 𝑡 ∶ 𝐴′. Let Σ″ ⊒ Σ. By Lemma 2.155 (preservation of
judgments under signature extensions), Σ″; Γ ⊢ 𝑡 ∶ 𝐴 and Σ″; Γ′ ⊢ 𝑡 ∶ 𝐴′.
From Remark 4.15 (reflexivity of heterogeneous equality), Σ″; Γ‡Γ′ ⊢
𝑡 ≡{𝑡}≡ 𝑡 ∶ 𝐴‡𝐴′.

Completeness Assume Θ ⊨ Σ;Γ‡Γ′ ⊢ 𝑡 ≈ 𝑡 ∶ 𝐴‡𝐴′. In particular, Θ ⊨ Σ.
Let Θ′ = Θ. We have Θ′

Σ = Θ. By assumption, Θ′ ⊨ Σ. Because
Θ′ ⊨ Σ, then vacuously Θ′ ⊨ Σ;□.

4.5.2 Metavariable instantiation
Metavariable instantiation is the bread-and-butter of higher-order unification.

Given a unification problem of the form Σ′; □ (with Σ′ closed), Theorem
4.31 (correctness of unification) states that such a unification problem has
a unique solution. The end goal of our unification algorithm is to reduce
both the number of unification constraints and the number of uninstantiated
metavariables to zero.

Metavariable instantiation reduces both the number of constraints in the
problem, and the number of uninstantiated metavariables, thus getting us

110 CHAPTER 4. UNIFYING WITHOUT ORDER

closer to a solution to the unification problem. However, metavariable instan-
tiation must be performed in such a way that the body of the metavariable
has the appropriate type (soundness) and that potential solutions are not lost
(completeness).

Problem 4.33 (Metavariable instantiation). Consider the following candidate
for a rule schema:

⌈Σ1, 𝛼 ∶ 𝐴,Σ2; , Γ1‡Γ2 ⊢ 𝛼 ⃗⃗ ⃗⃗𝑥𝑛 ≈ 𝑡 ∶ 𝐵1‡𝐵2 ⇝ Σ1, 𝛼 ≔ 𝑢 ∶ 𝐴,Σ2; □⌋ (⋆)
This rule schema instantiates 𝛼 to 𝑢 using the constraint Γ1‡Γ2 ⊢ 𝛼 ⃗⃗ ⃗⃗𝑥𝑛 ≈

𝑡 ∶ 𝐵1‡𝐵2.
The question is, under which conditions does rule (⋆) fulfill Definition 4.26

(rule correctness)?

Sufficient preconditions for a solution to Problem 4.33 are given in
Rule schema 2 (metavariable instantiation). In order to specify those
preconditions and prove the correctness of the rule, we first need to introduce
some new concepts.

Lemma 4.34 (General η-equality for Π-types). If Σ;Γ ⊢ 𝑢 ∶ Π ⃗𝐴𝑛𝐵, then
Σ;Γ ⊢ 𝑢 ≡ 𝜆 ⃗𝑥𝑛.(𝑢(+𝑛)  @   ⃗𝑥) ∶ Π ⃗𝐴𝑛𝐵.

Proof. By induction on 𝑛.

• Case 0: Assume Σ;Γ ⊢ 𝑢 ∶ Π ⃗𝐴0𝐵. Note that (𝑢(+0) @ 𝜀) ⇓ 𝑢. Also,
𝑢 = 𝜆 ⃗𝑥0.𝑢. By reflexivity of equality, Σ;Γ ⊢ 𝑢 ≡ 𝜆 ⃗𝑥0.(𝑢(+0) @ 𝜀) ∶ Π ⃗𝐴0𝐵.

• Case 𝑛 + 1: Assume Σ;Γ ⊢ 𝑢 ∶ Π𝐴0Π ⃗𝐴𝑛𝐵.
By Lemma 2.62 (context weakening), Σ;Γ,𝐴0 ⊢ 𝑢(+1) ∶ (Π𝐴0Π ⃗𝐴𝑛𝐵)(+1),
that is, Σ;Γ,𝐴0 ⊢ 𝑢(+1) ∶ Π𝐴(+1)

0 (Π ⃗𝐴𝑛𝐵)(+1)+1.

By the typing rules, Σ;Γ, 𝑥 ∶ 𝐴0 ⊢ 𝑥 ∶ 𝐴(+1)
0 .

By Postulate 2 (typing of hereditary application), and Definition 2.31
(hereditary substitution), (𝑢(+1) @ 0)⇓ and Σ;Γ,𝐴0 ⊢ (𝑢(+1) @ 0) ∶
((Π ⃗𝐴𝑛𝐵)(+1)+1)[0/0], that is, Σ;Γ,𝐴0 ⊢ (𝑢(+1) @ 0) ∶ Π ⃗𝐴𝑛𝐵.

(i) Because (𝑢(+1) @ 0)⇓, by Definition 2.32 (hereditary elimination),
we have two possible cases for 𝑢:

– 𝑢 = 𝑓 , for some neutral term 𝑓 . Then by the eta-abs rule,
Σ;Γ ⊢ 𝑓 ≡ 𝜆.𝑓 (+1) 0 ∶ Π𝐴0Π ⃗𝐴𝑛𝐵.

– 𝑢 = 𝜆.𝑢0, for some term 𝑢0. Then (𝑢(+1) @ 0) ⇓ 𝑢0. By reflex-
ivity, Σ;Γ ⊢ 𝑢 ≡ 𝜆.(𝑢(+1) @ 0) ∶ Π𝐴0Π ⃗𝐴𝑛𝐵.

In both cases, Σ;Γ ⊢ 𝑢 ≡ 𝜆.(𝑢(+1) @ 0) ∶ Π𝐴0Π ⃗𝐴𝑛𝐵.
(ii) By the induction hypothesis (with 𝑥0 = 0), Σ;Γ,𝐴0 ⊢ (𝑢(+1) @

0) ≡ 𝜆 ⃗𝑥𝑛.((𝑢(+1) @ 0)(+𝑛) @ ⃗𝑥) ∶ Π ⃗𝐴𝑛𝐵. By Lemma 2.39 (heredi-
tary substitution and application commute with renaming), Defini-
tion 2.33 (iterated hereditary elimination), and Remark 2.30 (prop-
erties of renamings), this is the same as Σ;Γ,𝐴0 ⊢ (𝑢(+1) @ 𝑛) ≡
𝜆 ⃗𝑥𝑛.((𝑢(+(𝑛+1)) @ 𝑛  ⃗𝑥) ∶ Π ⃗𝐴𝑛𝐵.

4.5. A REDUCTION RULE TOOLKIT 111

By the abs-eq rule, Σ;Γ ⊢ 𝜆𝑥0.(𝑢(+1) @ 𝑥0) ≡ 𝜆𝑥0.𝜆 ⃗𝑥𝑛.(𝑢(+(𝑛+1) @
𝑥0  ⃗𝑥) ∶ Π𝐴0Π ⃗𝐴𝑛𝐵.

By (i), (ii) and transitivity of equality, Σ;Γ ⊢ 𝑢 ≡ 𝜆𝑥0.𝜆 ⃗𝑥𝑛.(𝑢(+(𝑛+1)) @
𝑥0  ⃗𝑥) ∶ Π𝐴0Π ⃗𝐴𝑛𝐵.

Lemma 4.35 (General η-equality for pairs). Assume Σ;Γ ⊢ 𝑢 ∶ Σ𝐴𝐵. Then
(𝑢 @ .𝜋1)⇓, (𝑢 @ .𝜋2)⇓ and Σ;Γ ⊢ 𝑢 ≡ ⟨𝑢 @ .𝜋1, 𝑢 @ .𝜋2⟩ ∶ Σ𝐴𝐵.

Proof. By Postulate 3 (typing of hereditary projection), (𝑢 @ .𝜋1)⇓ and (𝑢 @
.𝜋2)⇓. By Definition 2.32 (hereditary elimination), there are only two possible
cases:

(i) 𝑢 = 𝑓 , where 𝑓 is a neutral term. Then 𝑢@ .𝜋1⇓𝑓 .𝜋1 and (𝑢@ .𝜋2)⇓𝑓 .𝜋2.
By the eta-pair rule, Σ;Γ ⊢ 𝑓 ≡ ⟨𝑓 .𝜋1, 𝑓  .𝜋2⟩ ∶ Σ𝐴𝐵, that is, Σ;Γ ⊢
𝑢 ≡ ⟨𝑢 @ .𝜋1, 𝑢 @ .𝜋2⟩ ∶ Σ𝐴𝐵.

(ii) 𝑢 = ⟨𝑢1, 𝑢2⟩, 𝑢 @ .𝜋1 ⇓ 𝑢1 and (𝑢 @ .𝜋2) ⇓ 𝑢2. By reflexivity, Σ;Γ ⊢
⟨𝑢1, 𝑢2⟩ ≡ ⟨𝑢1, 𝑢2⟩ ∶ Σ𝐴𝐵, that is, Σ;Γ ⊢ 𝑢 ≡ ⟨𝑢 @ .𝜋1, 𝑢 @ .𝜋2⟩ ∶ Σ𝐴𝐵.

The following lemma, derived from Miller’s pattern condition [41], shows
that a term of a function type can be characterized by the result of applying
distinct variables to said term.

Lemma 4.36 (Miller’s pattern condition). Let 𝑢, 𝑣 be such that Σ; · ⊢ 𝑢 ∶
Π⃗⃗⃗⃗⃗⃗𝐴𝑛.𝐵, Σ; · ⊢ 𝑣 ∶ Π⃗⃗⃗⃗⃗⃗𝐴𝑛.𝐵 (in particular, 𝑢 and 𝑣 closed). Assume that, for all
𝑖 ∈ {1,…, 𝑛}, Σ;Γ ⊢ 𝑥𝑖 ∶ 𝐴𝑖[⃗𝑥1,…,𝑖−1], and Σ;Γ ⊢ 𝑢 @ ⃗⃗⃗⃗𝑥 ≡ 𝑣 @ ⃗⃗⃗⃗𝑥 ∶ 𝐵[⃗𝑥], with
all variables in ⃗⃗ ⃗⃗𝑥 pairwise distinct. Then Σ; · ⊢ 𝑢 ≡ 𝑣 ∶ Π⃗⃗⃗⃗⃗⃗𝐴𝑛.𝐵.

Proof. By Lemma 2.62 (context weakening), Σ; ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑦 ∶ 𝐴𝑛, Γ ⊢ 𝑢 @ ⃗⃗⃗⃗𝑥 ≡ 𝑣 @ ⃗⃗⃗⃗𝑥 ∶
𝐵[⃗𝑥].

By induction, we show that for all 𝑚 ∈ {0,…, 𝑛}, there exist Γ(𝑚), ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑥(𝑚)

with ∣Γ(𝑚)∣ = | ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑥(𝑚)| = 𝑛 − 𝑚 such that all variables in ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑥(𝑚) are pairwise
distinct, Σ; ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑦 ∶ 𝐴𝑛, Γ(𝑚) ⊢ 𝑢 @ ⃗𝑦1,…,𝑚  ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑥(𝑚) ≡ 𝑣 @ ⃗𝑦1,…,𝑚  ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑥(𝑚) ∶ 𝐵[⃗𝑦1,…,𝑚, ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑥(𝑚)],
and, for all 𝑘 such that 1 ≤ 𝑘 ≤ 𝑛 − 𝑚, we have Σ; ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑦 ∶ 𝐴𝑛, Γ(𝑚) ⊢ 𝑥(𝑚)

𝑘 ∶
𝐴𝑚+𝑘[⃗𝑦1,…,𝑚, ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑥(𝑚)1,…,𝑘−1].

Here, ⃗𝑦1,…,𝑚 ≝ (∣Γ(𝑚)∣ + 𝑛 − 1), (∣Γ(𝑚)∣ + 𝑛 − 2),…, ∣Γ(𝑚)∣.
By induction on 𝑚:

• Case 0: Holds by the assumptions of the theorem, with Γ0 = Γ, ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑥(0) = ⃗𝑥.

• Case 𝑚 + 1: By the induction hypothesis, Σ; ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑦 ∶ 𝐴𝑛, Γ𝑚 ⊢ 𝑢 @
⃗𝑦1,…,𝑚  ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑥(𝑚) ≡ 𝑣 @ ⃗𝑦1,…,𝑚  ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑥(𝑚) ∶ 𝐵[⃗𝑦1,…,𝑚, ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑥(𝑚)], and, for all 𝑘 such that

1 ≤ 𝑘 ≤ 𝑛 −𝑚, Σ; ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑦 ∶ 𝐴𝑛, Γ𝑚 ⊢ 𝑥(𝑚)
𝑘 ∶ 𝐴𝑚+𝑘[⃗𝑦1,…,𝑚, ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑥(𝑚)1,…𝑘−1].

112 CHAPTER 4. UNIFYING WITHOUT ORDER

In particular, we have Σ; ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑦 ∶ 𝐴𝑛, Γ𝑚 ⊢ 𝑥(𝑚)
1 ∶ 𝐴𝑚+1[⃗𝑦1,…,𝑚], that is,

Σ; ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑦 ∶ 𝐴𝑛, Γ𝑚 ⊢ 𝑥(𝑚)
1 ∶ 𝐴(+1+|Γ𝑚|+(𝑚−𝑛))

𝑚+1 . By Lemma 2.65 (no extraneous
variables in term), Γ(𝑚) = Γ(𝑚)

1 , 𝑥(𝑚)
1 ∶ 𝐴′, Γ(𝑚)

2 , where ∣Γ(𝑚)
2 ∣ = 𝑥(𝑚)

1 . By
Postulate 13 (context strengthening), we have Σ; ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑦 ∶ 𝐴𝑛, Γ(𝑚)

1 ⊢ 𝑥(𝑚)
1 ∶

𝐴(+(1+|Γ𝑚|+(𝑛−𝑚)))(−(1+∣Γ(𝑚)
2 ∣)). By Remark 2.29 (composition of renam-

ings), Σ; ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑦 ∶ 𝐴𝑛, Γ(𝑚)
1 ⊢ 𝑥(𝑚)

1 ∶ 𝐴(+(1+∣Γ(𝑚)
1 ∣+(𝑛−𝑚))).

By Lemma 2.78 (variable types say everything), we have that for each 𝑘
such that 2 ≤ 𝑘 ≤ 𝑛−𝑚, Σ; ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑦 ∶ 𝐴𝑛, Γ(𝑚)

1 , 𝑥(𝑚)
1 ∶ 𝐴′, (Γ(𝑚)

2)[𝑥(𝑚)
1 ↦ 𝑦𝑚+1] ⊢

𝑥(𝑚)
𝑘 ∶ 𝐴𝑚+1+𝑘[⃗𝑦1,…,𝑚, ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑥(𝑚)][𝑥(𝑚)

1 ↦ 𝑦𝑚+1] and Σ; ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑦 ∶ 𝐴𝑛, Γ(𝑚)
1 , 𝑥(𝑚)

1 ∶
𝐴′, (Γ(𝑚)

2)[𝑥(𝑚)
1 ↦ 𝑦𝑚+1] ⊢ (𝑢 @ ⃗𝑦1,…,𝑚  ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑥(𝑚))[𝑥(𝑚)

1 ↦ 𝑦𝑚+1] ≡ (𝑣 @
⃗𝑦1,…,𝑚  ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑥(𝑚))[𝑥(𝑚)

1 ↦ 𝑦𝑚+1] ∶ 𝐵[⃗𝑦1,…,𝑚, ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑥(𝑚)][𝑥(𝑚)
1 ↦ 𝑦𝑚+1].

Let Γ(𝑚+1) ≝ Γ(𝑚)
1 , (Γ(𝑚)

2)[𝑥(𝑚)
1 ↦ 𝑦𝑚+1] and ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑥(𝑚+1) be defined such that

∣⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑥(𝑚+1)∣ ≝ 𝑛 − 𝑚 − 1, 𝑥(𝑚+1)
𝑖 ≝ 𝑥(𝑚)

𝑖+1 if 𝑥(𝑚)
𝑖+1 < 𝑥(𝑚)

1 , and 𝑥(𝑚+1)
𝑖 ≝

𝑥(𝑚)
𝑖+1 − 1 otherwise. By construction, all the variables in 𝑥(𝑚+1) are

pairwise distinct.
Note that 𝑢 and 𝑣 are closed terms. By Lemma 2.39 (hereditary
substitution and application commute with renaming), and Postulate 13
(context strengthening), for each 𝑘 such that 1 ≤ 𝑘 ≤ 𝑛 − 𝑚 − 1
we have Σ; ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑦 ∶ 𝐴𝑛, Γ(𝑚+1) ⊢ 𝑥(𝑚+1)

𝑘 ∶ 𝐴𝑚+1+𝑘[⃗𝑦1,…,𝑚+1, ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑥(𝑚+1)1,…,𝑘−1]
and Σ; ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑦 ∶ 𝐴𝑛, Γ(𝑚+1) ⊢ 𝑢 @ ⃗𝑦1,…,𝑚+1 ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑥(𝑚+1) ≡ 𝑣 @ ⃗𝑦1,…,𝑚+1 ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑥(𝑚+1) ∶
𝐵[⃗𝑦1,…,𝑚+1, ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑥(𝑚+1)].

By taking 𝑚 = 𝑛 we have Σ; ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑦 ∶ 𝐴, Γ𝑛 ⊢ 𝑢 @ ⃗𝑦 ≡ 𝑣 @ ⃗𝑦 ∶ 𝐵[⃗𝑦].
Observe that fv(𝑢 @ ⃗𝑦 ≡ 𝑣 @ ⃗𝑦 ∶ 𝐵[⃗𝑦]) ⊆ ⃗𝑦. By iterated application of

Postulate 13 (context strengthening), we have Σ; ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑦 ∶ 𝐴 ⊢ 𝑢 @ ⃗𝑦 ≡ 𝑣 @ ⃗𝑦 ∶ 𝐵[⃗𝑦].
By the abs-eq rule, Σ; · ⊢ 𝜆 ⃗𝑦.(𝑢 @ ⃗𝑦) ≡ 𝜆 ⃗𝑦.(𝑣 @ ⃗𝑦) ∶ Π ⃗𝐴𝐵. By Lemma

4.34 (general η-equality for Π-types), Σ; · ⊢ 𝑢 ≡ 𝜆 ⃗𝑦.(𝑢 @ ⃗𝑦) ∶ Π ⃗𝐴𝐵 and Σ; · ⊢
𝑣 ≡ 𝜆 ⃗𝑦.(𝑣 @ ⃗𝑦) ∶ Π ⃗𝐴𝐵. By transitivity of equality, Σ; · ⊢ 𝑢 ≡ 𝑣 ∶ Π ⃗𝐴𝐵.

The term 𝑢 in Problem 4.33 is based on the right-hand side of the original
constraint (𝑡), as we see in Rule schema 2. For 𝑢 to have the appropriate type
(𝐴), the context and types of both sides of the constraint must be consistent.

A sufficient precondition is Σ ⊢ Γ1, 𝐵1 ≡ Γ2, 𝐵2 ctx. However, we can
define a weaker precondition which is also sufficient, and concerns only the
types of those variables which are used in the constraint.

Definition 4.37 (Heterogeneously equal contexts modulo variables). We say
that two such contexts Γ1 and Γ2 are heterogeneously equal in signature Σ
modulo the sets of variables 𝑋1 and 𝑋2 (written Σ ⊢ Γ1 ≡{Γ}≡𝑋1,𝑋2

Γ2), if
Σ is a well-formed signature, Γ1 and Γ2 are well-formed contexts such that
|Γ1| = |Γ2|, and, for each variable 𝑥 occurring in both 𝑋1 and 𝑋2, the types
of 𝑥 in Γ1 and Γ2 are heterogeneously equal.

emptyΣ ⊢ · ≡{ · }≡∅,∅ ·

4.5. A REDUCTION RULE TOOLKIT 113

0 ∉ 𝑋1 ∪𝑋2 Σ ⊢ Γ1 ≡{Γ}≡𝑋1−1,𝑋2−1 Γ2
unusedΣ ⊢ Γ1, 𝐴1 ≡{Γ,Set}≡𝑋1,𝑋2

Γ2, 𝐴2

0 ∈ 𝑋2 −𝑋1 Σ ⊢ Γ1 ≡{Γ}≡𝑋1−1,(𝑋2−1)∪fv(𝐴2) Γ2
used-rΣ ⊢ Γ1, 𝐴1 ≡{Γ,𝐴2}≡𝑋1,𝑋2

Γ2, 𝐴2

0 ∈ 𝑋1 −𝑋2 Σ ⊢ Γ1 ≡{Γ}≡(𝑋1−1)∪fv(𝐴1),𝑋2−1 Γ2
used-lΣ ⊢ Γ1, 𝐴1 ≡{Γ,𝐴1}≡𝑋1,𝑋2

Γ2, 𝐴2

Σ;Γ1‡Γ2 ⊢ 𝐴1 ≡{𝐴}≡ 𝐴2 ∶ Set‡Set

𝑋′
1 = (𝑋1 − 1) ∪ fv(𝐴1)

𝑋′
2 = (𝑋2 − 1) ∪ fv(𝐴2)
Σ ⊢ Γ1 ≡{Γ}≡𝑋′

1,𝑋′
2
Γ2

usedΣ ⊢ Γ1, 𝐴1 ≡{Γ,𝐴}≡𝑋1,𝑋2
Γ2, 𝐴2

Remark. In the rule unused we use Set as the witness type because it is
well-formed in any context Γ. Using Bool instead of Set would work equally
well.

Lemma 4.38 (Typing in heterogeneously equal contexts). Let 𝑡 and 𝑢 be
terms such that Σ;Γ1 ⊢ 𝑡 ∶ 𝐵1, Σ;Γ2 ⊢ 𝑢 ∶ 𝐵2, with |Γ1| = |Γ2|.

Furthermore, we have Σ;Γ1‡Γ2 ⊢ 𝐵1 ≡{𝐵}≡ 𝐵2 ∶ Set‡Set and Σ ⊢
Γ1 ≡{Γ}≡fv(𝑡)∪fv(𝐵1),fv(𝑢)∪fv(𝐵2) Γ2.

Then Σ;Γ ⊢ 𝑡 ∶ 𝐵 and Σ;Γ ⊢ 𝑢 ∶ 𝐵.

Proof. We will prove the following stronger property:

Suppose that Σ ⊢ Γ1 ≡{Γ}≡𝑋1,𝑋2
Γ2. For every Δ, if

Σ;Γ1,Δ ⊢ 𝑡 ∶ 𝐵 and fv(Δ ⊢ 𝑡 ∶ 𝐵) ⊆ 𝑋1, then Σ;Γ,Δ ⊢ 𝑡 ∶ 𝐵.
Also, if Σ;Γ2,Δ ⊢ 𝑢 ∶ 𝐵 and fv(Δ ⊢ 𝑢 ∶ 𝐵) ⊆ 𝑋2, then
Σ;Γ,Δ ⊢ 𝑢 ∶ 𝐵.

(⋆)

We proceed by induction on the length of Γ (i.e., the structure of the
derivation for Σ ⊢ Γ1 ≡{Γ}≡𝑋1,𝑋2

Γ2).
In the base case, we have Γ1 = Γ2 = Γ = ·. By assumption, ·,Δ ⊢ 𝑡 ∶ 𝐵

and ·,Δ ⊢ 𝑢 ∶ 𝐵.
In the inductive step, we have:

Γ1 = Γ′
1, 𝐴1

Γ2 = Γ′
2, 𝐴2

Γ = Γ′, 𝐴

We consider four cases, one for each possible rule in the derivation of Σ ⊢
Γ1 ≡{Γ}≡𝑋1,𝑋2

Γ2.

• Rule empty: Trivial.

• Rule unused:

114 CHAPTER 4. UNIFYING WITHOUT ORDER

0 ∉ 𝑋1 ∪𝑋2 Σ ⊢ Γ′
1 ≡{Γ′}≡𝑋1−1,𝑋2−1 Γ′

2
unusedΣ ⊢ Γ′

1, 𝐴1 ≡{Γ′,Set}≡𝑋1,𝑋2
Γ′
2, 𝐴2

From the premises of the rule, 0 ∉ 𝑋1. By assumption, fv(Δ ⊢ 𝑡 ∶ 𝐵) ⊆
𝑋1, which means 0 ∉ fv(Δ ⊢ 𝑡 ∶ 𝐵).
Also by assumption, Γ′

1, 𝐴1,Δ ⊢ 𝑡 ∶ 𝐵, which, by Lemma 2.71 (variables
of irrelevant type), implies Γ′

1,Set,Δ ⊢ 𝑡 ∶ 𝐵.
By Definition 2.45 (free variables of a scoped and typed term) and the
assumption, fv(Set,Δ ⊢ 𝑡 ∶ 𝐵) = fv(Δ ⊢ 𝑡 ∶ 𝐵) − 1 ⊆ 𝑋1 − 1.
From the premises, Σ ⊢ Γ′

1 ≡{Γ′}≡𝑋1−1,𝑋2−1 Γ′
2. By the induction

hypothesis, Γ′,Set,Δ ⊢ 𝑡 ∶ 𝐵; i.e. Γ,Δ ⊢ 𝑡 ∶ 𝐵.
By the same token, we show that, if Γ2,Δ ⊢ 𝑢 ∶ 𝐵 with fv(Δ ⊢ 𝑢 ∶ 𝐵) ⊆
𝑋2, then Γ,Δ ⊢ 𝑢 ∶ 𝐵.

• Rule used-l:

0 ∈ 𝑋1 −𝑋2 Σ ⊢ Γ′
1 ≡{Γ′}≡(𝑋1−1)∪fv(𝐴1),𝑋2−1 Γ′

2
used-lΣ ⊢ Γ′

1, 𝐴1 ≡{Γ′, 𝐴1}≡𝑋1,𝑋2
Γ′
2, 𝐴2

Assume Γ1,Δ ⊢ 𝑡 ∶ 𝐵, i.e. Γ′
1, 𝐴1,Δ ⊢ 𝑡 ∶ 𝐵.

Because fv(Δ ⊢ 𝑡 ∶ 𝐵) ⊆ 𝑋1, by Definition 2.45 (free variables of a
scoped and typed term), fv(𝐴1,Δ ⊢ 𝑡 ∶ 𝐵) = fv(𝐴1) ∪ (fv(Δ ⊢ 𝑡 ∶
𝐵) − 1) ⊆ (𝑋1 − 1) ∪ fv(𝐴1).
By the induction hypothesis, Γ′, 𝐴1,Δ ⊢ 𝑡 ∶ 𝐵, i.e. Γ,Δ ⊢ 𝑡 ∶ 𝐵.
Now assume Γ2,Δ ⊢ 𝑢 ∶ 𝐵, i.e. Γ′

2, 𝐴2,Δ ⊢ 𝑢 ∶ 𝐵.
By the original assumption, fv(Δ ⊢ 𝑢 ∶ 𝐵) ⊆ 𝑋2. By the premises of the
rule, 0 ∉ 𝑋2; therefore, 0 ∉ fv(Δ ⊢ 𝑢 ∶ 𝐵). By Lemma 2.71 (variables of
irrelevant type), Γ′

2,Set,Δ ⊢ 𝑢 ∶ 𝐵.
Also from fv(Δ ⊢ 𝑢 ∶ 𝐵) ⊆ 𝑋2 we deduce fv(Set,Δ ⊢ 𝑢 ∶ 𝐵) =
fv(Set) ∪ (fv(Δ ⊢ 𝑢 ∶ 𝐵) − 1) = fv(Δ ⊢ 𝑢 ∶ 𝐵) − 1 ⊆ 𝑋2 − 1. By the
induction hypothesis, Γ′,Set,Δ ⊢ 𝑢 ∶ 𝐵.
Finally, by Lemma 2.71, we have Γ′, 𝐴1,Δ ⊢ 𝑢 ∶ 𝐵, i.e. Γ,Δ ⊢ 𝑢 ∶ 𝐵.

• Rule used-r: Same as used-l, swapping “1” and “2”, and “𝑡” and “𝑢”.

• Rule used:

Σ;Γ′
1‡Γ′

2 ⊢ 𝐴1 ≡{𝐴}≡ 𝐴2 ∶ Set ‡ Set

𝑋′
1 = (𝑋1 − 1) ∪ fv(𝐴1)

𝑋′
2 = (𝑋2 − 1) ∪ fv(𝐴2)

Σ ⊢ Γ′
1 ≡{Γ′}≡𝑋′

1,𝑋′
2
Γ′
2

usedΣ ⊢ Γ′
1, 𝐴1 ≡{Γ′, 𝐴}≡𝑋1,𝑋2

Γ′
2, 𝐴2

4.5. A REDUCTION RULE TOOLKIT 115

Assume that Σ;Γ′
1, 𝐴1,Δ ⊢ 𝑡 ∶ 𝐵 with fv(Δ ⊢ 𝑡 ∶ 𝐵) ⊆ 𝑋1.

From the first premise of the rule, we have Σ;Γ′
1 ⊢ 𝐴1 ≡ 𝐴 ∶ Set and

fv(𝐴) ⊆ fv(𝐴1).
By the assumptions and Lemma 2.63 (preservation of judgments by type
conversion), Σ;Γ′

1, 𝐴,Δ ⊢ 𝑡 ∶ 𝐵.
By the assumptions and Definition 2.45 (free variables of a scoped and
typed term), fv(𝐴,Δ ⊢ 𝑡 ∶ 𝐵) = fv(𝐴) ∪ (fv(Δ ⊢ 𝑡 ∶ 𝐵) − 1) ⊆
fv(𝐴1) ∪ (𝑋1 − 1)
By the induction hypothesis, Σ;Γ′, 𝐴,Δ ⊢ 𝑡 ∶ 𝐵, i.e. Σ;Γ,Δ ⊢ 𝑡 ∶ 𝐵.
From the assumptions fv(Δ ⊢ 𝑢 ∶ 𝐵) ⊆ 𝑋2 and Σ;Γ′

2, 𝐴2,Δ ⊢ 𝑢 ∶ 𝐵, by
the same token, it follows that Σ;Γ,Δ ⊢ 𝑢 ∶ 𝐵.

Now that we have proven (⋆), we can use it to prove the original lemma.
By hypothesis, Σ;Γ1‡Γ2 ⊢ 𝐵1 ≡{𝐵}≡ 𝐵2 ∶ Set.
Assume Σ;Γ1 ⊢ 𝑡 ∶ 𝐵1. From the hypothesis, we have Σ;Γ1 ⊢ 𝐵1 ≡ 𝐵 ∶ Set,

with fv(𝐵) ⊆ fv(𝐵1). By the conv-eq rule, Σ;Γ1 ⊢ 𝑡 ∶ 𝐵.
By Definition 2.45 (free variables of a scoped and typed term), fv(· ⊢ 𝑡 ∶

𝐵) = fv(𝑡) ∪ fv(𝐵) ⊆ fv(𝑡) ∪ fv(𝐵1),
Also by hypothesis, Σ ⊢ Γ1 ≡{Γ}≡fv(𝑡)∪fv(𝐵1),fv(𝑢)∪fv(𝐵2) Γ2. By applying

(⋆) with Δ = ·, we have Σ;Γ ⊢ 𝑡 ∶ 𝐵.
By the same reasoning, from Σ;Γ2 ⊢ 𝑢 ∶ 𝐵2 and using (⋆), we deduce

Σ;Γ ⊢ 𝑢 ∶ 𝐵.

Using the notion of heterogeneously equal contexts we can define a correct
rule schema for metavariable instantiation.

Rule-Schema 2 (Metavariable instantiation).

Σ;Γ1‡Γ2 ⊢ 𝛼 ⃗⃗ ⃗⃗𝑥𝑛 ≈ 𝑡 ∶ 𝐵1‡𝐵2 ⇝ Σ1, 𝛼 ≔ 𝜆 ⃗𝑦𝑛.𝑡′ ∶ 𝐴,Σ2;□
where

Σ = Σ1, 𝛼 ∶ 𝐴,Σ2
𝑡′ = 𝑡[⃗𝑥 ↦ ⃗𝑦]

all variables in ⃗𝑥 are pair-wise distinct (1)
fv(𝑡) ⊆ ⃗𝑥 (2a)

consts(𝑡) ⊆ decls(Σ1) (2b)
Σ;Γ1‡Γ2 ⊢ 𝐵1 ≡{𝐵}≡ 𝐵2 ∶ Set‡Set (3a)

Σ ⊢ Γ1 ≡{Γ}≡{𝑥𝑖|𝑖=1,…,𝑛}∪fv(𝐵1),fv(𝑡)∪fv(𝐵2) Γ2 (3b)

The vector ⃗𝑦 denotes (𝑛 − 1) … 0. The side conditions ensure that 𝜆 ⃗𝑦.𝑡′ is
a well-typed and unique instantiation for 𝛼.

Proof of correctness. Let 𝒞 = Γ1‡Γ2 ⊢ 𝛼 ⃗⃗ ⃗⃗𝑥𝑛 ≈ 𝑡 ∶ 𝐵1‡𝐵2, and Σ′ = Σ1, 𝛼 ≔
𝜆 ⃗𝑦𝑛.𝑡′ ∶ 𝐴,Σ2.

By Definition 4.26 (rule correctness), assuming Σ;𝒞wf, it suffices to show:

Well-formedness Because no new constraints are added, the rule is well-
formed if Σ′ sig and Σ′ ⊒ Σ.

116 CHAPTER 4. UNIFYING WITHOUT ORDER

(i) By well-formedness of the original problem, we have Σ;Γ1 ⊢ 𝛼  ⃗𝑥 ∶
𝐵1 and Σ;Γ2 ⊢ 𝑡 ∶ 𝐵2.
By (3a), (3b) and Lemma 4.38 (typing in heterogeneously equal
contexts), we have Σ;Γ ⊢ 𝛼  ⃗𝑥 ∶ 𝐵 and Σ;Γ ⊢ 𝑡 ∶ 𝐵. Because
Σ;Γ ⊢ 𝛼  ⃗𝑥 ∶ 𝐵, by Lemma 2.109 (type application inversion), there
is 𝐵′ such that Σ;Γ ⊢ 𝐴 @̂ ⃗𝑥 ⇓ 𝐵′, and Σ;Γ ⊢ 𝐵 ≡ 𝐵′ ∶ Set.
Because Σ;Γ ⊢ 𝑡 ∶ 𝐵, by the conv rule, Σ;Γ ⊢ 𝑡 ∶ 𝐵′. By Lemma
2.120 (typing of metavariable bodies), Σ; · ⊢ 𝜆 ⃗𝑦𝑛.𝑡′ ∶ 𝐴.

(ii) By the assumption, consts(𝑡′) ⊆ decls(Σ1). Because Σ1; · ⊢
𝐴 type, by Lemma 2.72 (no extraneous constants), consts(𝐴) ⊆
decls(Σ1). Because Σ1 ⊆ Σ, and Σ; · ⊢ 𝜆 ⃗𝑦𝑛.𝑡′ ∶ 𝐴, by Postulate 12
(signature strengthening), Σ1; · ⊢ 𝜆 ⃗𝑦𝑛.𝑡′ ∶ 𝐴.

By Remark 2.5 (signature inversion), we have that Σ1 sig. By Defini-
tion 2.4 (well-formed signature) and item (ii), Σ1, 𝛼 ≔ 𝜆 ⃗𝑦𝑛.𝑡′ ∶ 𝐴 sig.
By Definition 2.151 (signature extension), this gives Σ1, 𝛼 ∶ 𝐴 ⊑ Σ1, 𝛼 ≔
𝜆 ⃗𝑦𝑛.𝑡′ ∶ 𝐴. By Corollary 2.156 (horizontal composition of extensions),
Σ1, 𝛼 ∶ 𝐴,Σ2 ⊑ Σ1, 𝛼 ≔ 𝜆 ⃗𝑦𝑛.𝑡′ ∶ 𝐴,Σ2.

Soundness Take Σ″ ⊒ Σ′. We need to show that Σ″ ∣≈ 𝒞.

(i) By rule delta-meta0, Σ′; Γ1 ⊢ 𝛼 ≡ 𝜆 ⃗𝑦𝑛.𝑡′ ∶ 𝐴. Because Σ′ ⊢
Γ1 ctx, by Lemma 2.155 (preservation of judgments under signature
extensions), we have Σ″; Γ1 ⊢ 𝛼 ≡ 𝜆 ⃗𝑦𝑛.𝑡′ ∶ 𝐴.

(ii) The term 𝛼 is neutral. By Definition 2.32 (hereditary elimination),
𝛼 @ ⃗⃗⃗⃗𝑥 ⇓ 𝛼 ⃗⃗ ⃗⃗𝑥.

(iii) By Remark 2.35 (iterated application as substitution on body)
(𝜆 ⃗𝑦𝑛.𝑡′) @ ⃗𝑥 ⇓ 𝑡′[⃗⃗⃗𝑥],
By Lemma 2.40 (correspondence between renaming and substitu-
tion), 𝑡′[⃗⃗⃗𝑥] ⇓ 𝑡′[⃗𝑦 ↦ ⃗⃗⃗⃗𝑥]. Because the variables in ⃗𝑥 are pairwise
distinct, and so are the variables in ⃗𝑦, we have 𝑡′[⃗𝑦 ↦ ⃗⃗⃗⃗𝑥] = 𝑡[⃗⃗ ⃗⃗𝑥 ↦
⃗𝑦][⃗𝑦 ↦ ⃗⃗⃗⃗𝑥] = 𝑡. Therefore, we have (𝜆 ⃗𝑦𝑛.𝑡′ @ ⃗𝑥) ⇓ 𝑡.

(iv) By well-formedness of the original problem, Σ;Γ1 ⊢ 𝛼  ⃗𝑥 ∶ 𝐵1. Be-
cause Σ″ ⊒ Σ′ ⊒ Σ, by Lemma 2.155 (preservation of judgments
under signature extensions), we also have Σ″; Γ1 ⊢ 𝛼  ⃗𝑥 ∶ 𝐵1. By
Lemma 2.109 (type application inversion), this means that there ex-
ists 𝐵′

1 such that Σ″; Γ1 ⊢ 𝐴 @̂ ⃗𝑥 ⇓ 𝐵′
1 and Σ″; Γ1 ⊢ 𝐵′

1 ≡ 𝐵1 type
By (i), (ii) (iii) and Lemma 2.110 (type of hereditary application),
Σ″; Γ1 ⊢ 𝛼  ⃗𝑥 ≡ 𝑡 ∶ 𝐵′

1.
(v) By (iv) and the conv-eq rule, Σ″; Γ1 ⊢ 𝛼  ⃗𝑥 ≡ 𝑡 ∶ 𝐵1.
(vi) By well-formedness of the original problem, Σ;Γ2 ⊢ 𝑡 ∶ 𝐵2. Because

Σ″ ⊒ Σ′ ⊒ Σ, Σ″; Γ2 ⊢ 𝑡 ∶ 𝐵2. By reflexivity, Σ″; Γ2 ⊢ 𝑡 ≡ 𝑡 ∶ 𝐵2.
(vii) By the premises of the rule, fv(𝑡) ⊆ ⃗𝑥 = fv(𝛼  ⃗𝑥). Also, trivially,

fv(𝑡) ⊆ fv(𝑡).

By (v), (vi), and (vii), Σ″; Γ1‡Γ2 ⊢ 𝛼 ⃗⃗ ⃗⃗𝑥𝑛 ≡{𝑡}≡ 𝑡 ∶ 𝐵1‡𝐵2.
By Definition 4.17 (constraint satisfaction), Σ″ ∣≈ 𝒞.

4.5. A REDUCTION RULE TOOLKIT 117

Completeness Assume that Θ ⊨ Σ;Γ1‡Γ2 ⊢ 𝛼  ⃗⃗⃗𝑥𝑛 ≈ 𝑡 ∶ 𝐵1‡𝐵2 holds; that is,
Θ ⊨ Σ, Θ ⊢ Γ1, 𝐵1 ≡ Γ2, 𝐵2 ctx and Θ;Γ1 ⊢ 𝛼 ⃗⃗ ⃗⃗𝑥 ≡ 𝑡 ∶ 𝐵1.
Take Θ′ = Θ. Because Θ ⊨ Σ, Θ′

Σ = ΘΣ = Θ. We need to show that
Θ ⊨ Σ′; □. Because there are no new constraints, it suffices to show
Θ ⊨ Σ′. Because decls(Θ) = decls(Σ′), by Lemma 2.130 (alternative
characterization of a compatible metasubstitution), it suffices to show
that, for each 𝐷 ∈ Σ′, Θ is compatible with 𝐷.
If 𝐷 ∈ Σ1 or 𝐷 ∈ Σ2, then 𝐷 ∈ Σ. Because Θ ⊨ Σ, by Lemma 2.130, Θ
is compatible with 𝐷.
If 𝐷 ∉ Σ1 and 𝐷 ∉ Σ2, then 𝐷 = (𝛼 ≔ 𝜆 ⃗𝑦𝑛.𝑡′ ∶ 𝐴). Let 𝑢 and 𝐵
be the term and type such that 𝛼 ≔ 𝑢 ∶ 𝐵 ∈ Θ. By Remark 2.129
(alternative characterization of compatibility of a metasubstitution with
a declaration), it suffices to show that (i) Θ; · ⊢ 𝐵 ≡ 𝐴 and (ii) Θ; · ⊢
𝑢 ≡ 𝜆 ⃗𝑦𝑛.𝑡′ ∶ 𝐵:

(i) By the assumption, Θ ⊨ Σ, with 𝛼 ∶ 𝐴 ∈ Σ. By Lemma 2.130, and
Remark 2.129, Θ; · ⊢ 𝐵 ≡ 𝐴 type.

(ii) Because Σ ⊢ Γ1 ctx and Θ ⊨ Σ, we have Θ ⊢ Γ1 ctx. Because
𝛼 ≔ 𝑢 ∶ 𝐵 ∈ Θ, by the rule delta-meta, Θ;Γ1 ⊢ 𝛼 ≡ 𝑢 ∶ 𝐵.
Because the original problem is well-formed, we have Σ;Γ1 ⊢ 𝛼  ⃗𝑥 ∶
𝐵1. Also, because 𝛼 ≔ 𝑢 ∶ 𝐵 ∈ Θ, we have Θ;Γ1 ⊢ 𝛼 ⇒ 𝐵. By
Lemma 2.109 (type application inversion), Σ;Γ ⊢ 𝐵 @̂ ⃗𝑥 ⇓ 𝐵′

1, and
Σ;Γ ⊢ 𝐵′

1 ≡ 𝐵1 ∶ Set.
By Lemma 2.110 (type of hereditary application), from Θ;Γ1 ⊢ 𝛼 ≡
𝑢 ∶ 𝐵 we have Θ;Γ1 ⊢ 𝛼  ⃗𝑥 ≡ 𝑢 @ ⃗𝑥 ∶ 𝐵1.
By assumption, Θ;Γ1 ⊢ 𝛼 ⃗⃗ ⃗⃗𝑥 ≡ 𝑡 ∶ 𝐵1. By symmetry and transitivity
of equality, we have Θ;Γ1 ⊢ 𝑢 @ ⃗𝑥 ≡ 𝑡 ∶ 𝐵1.
By item (iii) of the soundness proof, 𝜆 ⃗𝑦𝑛.𝑡′ @ ⃗𝑥 ⇓ 𝑡. Therefore,
by reflexivity, Θ;Γ1 ⊢ (𝜆 ⃗𝑦𝑛.𝑡′) @ ⃗𝑥 ≡ 𝑡 ∶ 𝐵1. By symmetry and
transitivity of equality, we have Θ;Γ1 ⊢ 𝑢 @ ⃗𝑥 ≡ (𝜆 ⃗𝑦𝑛.𝑡′) @ ⃗𝑥 ∶ 𝐵1.
By Lemma 4.36 (Miller’s pattern condition), this gives Θ;Γ1 ⊢ 𝑢 ≡
(𝜆 ⃗𝑦𝑛.𝑡′) ∶ 𝐴.
Because all of 𝑢, (𝜆 ⃗𝑦𝑛.𝑡′) and 𝐴 are closed terms, by Postulate 13
(context strengthening), Θ; · ⊢ 𝑢 ≡ (𝜆 ⃗𝑦𝑛.𝑡′) ∶ 𝐴. Because Θ; · ⊢
𝐵 ≡ 𝐴 type, by the conv-eq rule, Θ; · ⊢ 𝑢 ≡ (𝜆 ⃗𝑦𝑛.𝑡′) ∶ 𝐵.

4.5.3 Type constructors
When it comes to the judgmental equality, the type formers Π and Σ are
injective. That is, two Π types are equal as terms iff the domain and codomain
are equal as terms (Postulate 10). Correspondingly, two Σ-types are equal as
terms iff their first and second components are equal as terms (Postulate 11).

We can exploit this injectivity property to simplify those constraints where
both sides are a Π-type or a Σ-type.

118 CHAPTER 4. UNIFYING WITHOUT ORDER

Rule-Schema 3 (Injectivity of Π).

Σ;Γ‡Γ′ ⊢ Π𝐴𝐵 ≈ Π𝐴′𝐵′ ∶ Set‡Set ⇝
Σ;Γ‡Γ′ ⊢ 𝐴 ≈ 𝐴′ ∶ Set‡Set ∧
Γ‡Γ′, 𝐴‡𝐴′ ⊢ 𝐵 ≈ 𝐵′ ∶ Set‡Set

Proof of correctness. Let 𝒞 = Γ‡Γ′ ⊢ Π𝐴𝐵 ≈ Π𝐴′𝐵′ ∶ Set‡Set and �⃗� =
Γ‡Γ′ ⊢ 𝐴 ≈ 𝐴′ ∶ Set‡Set ∧ Γ‡Γ′, 𝐴‡𝐴′ ⊢ 𝐵 ≈ 𝐵′ ∶ Set‡Set.

Assume Σ;𝒞 is well formed. By Definition 4.26 (rule correctness), it suffices
to show:

Well-formedness We want to show that Σ;𝒟1 and Σ;𝒟2 are both well-
formed. For this, it suffices to show that Σ;Γ ⊢ 𝐴 ∶ Set, Σ;Γ,𝐴 ⊢ 𝐵 ∶ Set,
and also Σ;Γ′ ⊢ 𝐴′ ∶ Set, Σ;Γ′, 𝐴′ ⊢ 𝐵′ ∶ Set.
Because Σ;𝒞 is well-formed, we have Σ;Γ ⊢ Π𝐴𝐵 ∶ Set. By Lemma 2.52
(Π inversion), Σ;Γ ⊢ 𝐴 ∶ Set and Σ;Γ,𝐴 ⊢ 𝐵 ∶ Set.
Analogously, Σ;Γ′ ⊢ 𝐴′ ∶ Set and Σ;Γ,𝐴′ ⊢ 𝐵′ ∶ Set.

Soundness Assume that we have Σ″ ∣≈ �⃗� and Σ″ ⊒ Σ. By Definition 4.17
(constraint satisfaction), Σ″; Γ‡Γ′ ⊢ 𝐴 ≡{𝐴0}≡ 𝐴′ ∶ Set‡Set and
Σ″; Γ‡Γ′, 𝐴‡𝐴′ ⊢ 𝐵 ≡{𝐵0}≡ 𝐵′ ∶ Set‡Set.
By the pi-eq rule, from Σ″; Γ ⊢ 𝐴 ≡ 𝐴0 ∶ Set and Σ″; Γ,𝐴 ⊢ 𝐵 ≡ 𝐵0 ∶
Set, we deduce Σ″; Γ ⊢ Π𝐴𝐵 ≡ Π𝐴0𝐵0 ∶ Set. Also, by Definition 2.18
(free variables in a term), from fv(𝐴0) ⊆ fv(𝐴), and fv(𝐵0) ⊆ fv(𝐵), it
follows that fv(Π𝐴0𝐵0) = fv(𝐴0)∪(fv(𝐵0)−1) ⊆ fv(𝐴)∪(fv(𝐵)−1) =
fv(Π𝐴𝐵).
Analogously, Σ″; Γ′ ⊢ Π𝐴′𝐵′ ≡ Π𝐴0𝐵0 ∶ Set with fv(Π𝐴0𝐵0) =
fv(Π𝐴′𝐵′).
Therefore, Σ″; Γ ‡ Γ′ ⊢ Π𝐴𝐵 ≡{Π𝐴0𝐵0}≡ Π𝐴′𝐵′ ∶ Set‡Set. By Defini-
tion 4.17, Σ ∣≈ 𝒞.

Completeness Assume Θ ⊨ Σ;𝒞. By Definition 4.11 (solution to a unifi-
cation problem), Θ ⊨ Σ, Θ ⊢ Γ, Set ≡ Γ′,Set ctx and Θ;Γ ⊢ Π𝐴𝐵 ≡
Π𝐴′𝐵′ ∶ Set.
Take Θ′ = Θ. Because Θ ⊨ Σ, Θ′

Σ = ΘΣ = Θ.

(i) Because Θ;Γ ⊢ Π𝐴𝐵 ≡ Π𝐴′𝐵′ ∶ Set, by Postulate 10 (injectivity of
Π), Θ;Γ ⊢ 𝐴 ≡ 𝐴′ ∶ Set and Θ;Γ,𝐴 ⊢ 𝐵 ≡ 𝐵′ ∶ Set.

(ii) By the assumption, Θ ⊢ Γ,Set ≡ Γ′,Set ctx. By (i), Θ ⊢ Γ,𝐴 ≡
Γ′, 𝐴′ ctx, and Definition 4.9, Θ ⊨ ⃗⃗⃗⃗⃗ ⃗⃗𝒟.

From the assumption, Θ ⊨ Σ. By (ii), Θ ⊨ ⃗⃗⃗⃗⃗ ⃗⃗𝒟. Therefore, Θ ⊨ Σ, ⃗⃗⃗ ⃗⃗ ⃗⃗𝒟.
Because Θ = Θ′, we have Θ′ ⊨ Σ, ⃗⃗⃗ ⃗⃗ ⃗⃗𝒟 .

Rule-Schema 4 (Injectivity of Σ).

Σ;Γ‡Γ′ ⊢ Σ𝐴𝐵 ≈ Σ𝐴′𝐵′ ∶ Set‡Set ⇝
Σ;Γ‡Γ′ ⊢ 𝐴 ≈ 𝐴′ ∶ Set‡Set ∧ Γ‡Γ′, 𝐴‡𝐴′ ⊢ 𝐵 ≈ 𝐵′ ∶ Set‡Set

4.5. A REDUCTION RULE TOOLKIT 119

Proof. We follow the same reasoning as in the proof for Rule schema 3 (injec-
tivity of Π). We replace all mentions of Π by Σ, and use the sigma-eq rule and
Postulate 11 (injectivity of Σ) instead of pi-eq and Postulate 10 (injectivity
of Π), respectively.

The following rules are special cases of syntactic equality, and we can in
fact do without them. We spell them out here for the sake of completeness.

Rule-Schema 5 (Bool).

Σ;Γ‡Γ′ ⊢ Bool ≈ Bool ∶ Set‡Set ⇝ Σ;□

Proof of correctness. This rule schema is a special case of Rule schema 1 (syn-
tactic equality).

Rule-Schema 6 (Set).

Σ;Γ‡Γ′ ⊢ Set ≈ Set ∶ Set‡Set ⇝ Σ;□

Proof of correctness. This rule schema is a special case of Rule schema 1 (syn-
tactic equality).

4.5.4 Constraint symmetry
The heterogeneous equality is symmetric (Remark 4.16). We can exploit this
property to exchange both sides of a constraint.

Rule-Schema 7 (Constraint symmetry).

Σ;Γ‡Γ′ ⊢ 𝑡 ≈ 𝑢 ∶ 𝐴‡𝐴′ ⇝ Σ;Γ′‡Γ ⊢ 𝑢 ≈ 𝑡 ∶ 𝐴′‡𝐴

Proof of correctness. Let 𝒞 = Γ‡Γ′ ⊢ 𝑡 ≈ 𝑢 ∶ 𝐴‡𝐴′ and 𝒟 = Γ′‡Γ ⊢ 𝑢 ≈ 𝑡 ∶
𝐴′‡𝐴.

Well-formedness Follows from Definition 4.2 (well-formed internal con-
straint), which is symmetric.

Soundness Assume Σ″ ⊒ Σ′, with Σ″ ∣≈ 𝒟. That is, Σ″; Γ′‡Γ ⊢ 𝑢 ≡{𝑣}≡ 𝑡 ∶
𝐴′‡𝐴.
From Remark 4.16 (symmetry of heterogeneous equality), we also have
Σ″; Γ‡Γ′ ⊢ 𝑡 ≡{𝑣}≡ 𝑢 ∶ 𝐴‡𝐴′. Therefore, Σ″ ∣≈ 𝒞.

Completeness Assume Θ ⊨ Σ;𝒞. This means Θ ⊨ Σ and Θ ⊨ 𝒞.
Take Θ′ ≝ Θ. Because Θ ⊨ Σ, Θ′

Σ = ΘΣ = Θ.
Because Θ ⊨ 𝒞, by Definition 4.9 (solution to a constraint), this means
Θ ⊢ Γ,𝐴 ≡ Γ′, 𝐴′ ctx, and Θ;Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴.
By Lemma 2.64 (equality of contexts is an equivalence relation), Θ ⊢
Γ′, 𝐴′ ≡ Γ,𝐴 ctx.
By symmetry of equality, Θ;Γ ⊢ 𝑢 ≡ 𝑡 ∶ 𝐴. By Lemma 2.63 (preservation
of judgments by type conversion), Θ;Γ′ ⊢ 𝑢 ≡ 𝑡 ∶ 𝐴′.

120 CHAPTER 4. UNIFYING WITHOUT ORDER

Because Θ ⊢ Γ′, 𝐴′ ≡ Γ,𝐴 ctx and Θ;Γ′ ⊢ 𝑢 ≡ 𝑡 ∶ 𝐴′, by Definition 4.9,
Θ ⊨ 𝒟.
Because Θ ⊨ Σ and Definition 4.11 (solution to a unification problem),
Θ ⊨ Σ;𝒟; that is, Θ′ ⊨ Σ;𝒟.

Remark 4.39 (Rule symmetry). By Lemma 4.29 (correctness of problem re-
duction) and Rule schema 7 (constraint symmetry) means that, for each rule,
we get a corresponding mirrored version.

In more detail, for each correct rule in the form Σ; ⃗⃗⃗⃗⃗𝒞 ⇝ Σ′; ⃗⃗⃗ ⃗⃗ ⃗⃗𝒟, we get a
rule Σ; ⃗⃗⃗⃗⃗𝒞′ ⇝ Σ′; ⃗⃗⃗ ⃗⃗ ⃗⃗𝒟′; where for each 𝒞𝑖 = Γ1‡Γ2 ⊢ 𝑡 ≈ 𝑢 ∶ 𝐴1‡𝐴2 we have
𝒞′
𝑖 ≝ Γ2‡Γ1 ⊢ 𝑢 ≈ 𝑡 ∶ 𝐴2‡𝐴1, and for each 𝒟𝑖 = Γ1‡Γ2 ⊢ 𝑡 ≈ 𝑢 ∶ 𝐴1‡𝐴2 we

have 𝒟′
𝑖 ≝ Γ2‡Γ1 ⊢ 𝑢 ≈ 𝑡 ∶ 𝐴2‡𝐴1.

4.5.5 Term conversion
Consider the following problem:

Σ; ·‡· ⊢ 𝕒 ≈ 𝜆𝑥.𝕒 𝑥 ∶ (𝔸 → 𝔸)‡(𝔸 → 𝔸) (⋆)
Σ = 𝔸 ∶ Set, 𝕒 ∶ 𝔸 → 𝔸

Observe that, by the eta-abs rule, Σ; · ⊢ 𝕒 ≡ 𝜆𝑥.𝕒 𝑥 ∶ 𝔸 → 𝔸 (⋆⋆). If we
replace the LHS of the constraint in (⋆) with the RHS of (⋆⋆), we can use
Rule schema 1 (syntactic equality) to solve problem (⋆).

In general, given a constraint Σ;Γ‡Γ′ ⊢ 𝑡 ≈ 𝑢 ∶ 𝐴‡𝐴′, we may need to
replace one of its sides (e.g. 𝑡) with a different, but still judgmentally equal
term (𝑡′), before we can apply other rule(s) and solve the constraint.

Because of the definition of heterogeneous equality (Definition 4.12), we
impose the additional constraint that fv(𝑡′) ⊆ fv(𝑡). This condition is in
particular fulfilled when Σ;Γ ⊢ 𝑡 ⟶δη 𝑡′ ∶ 𝐴, which by Remark 2.43 (free
variables of δη-reduct) implies fv(𝑡′) ⊆ fv(𝑡), and covers the use cases in the
unification algorithm (Algorithm 2).

Rule-Schema 8 (Term conversion).

Σ;Γ‡Γ′ ⊢ 𝑡 ≈ 𝑢 ∶ 𝐴‡𝐴′ ⇝ Σ;Γ‡Γ′ ⊢ 𝑡′ ≈ 𝑢 ∶ 𝐴‡𝐴′

where Σ;Γ ⊢ 𝑡 ≡ 𝑡′ ∶ 𝐴
fv(𝑡) ⊇ fv(𝑡′)

Proof of correctness. Let 𝒞 = Γ‡Γ′ ⊢ 𝑡 ≈ 𝑢 ∶ 𝐴‡𝐴′, and 𝒟 = Γ‡Γ′ ⊢ 𝑡′ ≈ 𝑢 ∶
𝐴‡𝐴′.

Well-formedness It suffices to show that Σ;Γ ⊢ 𝑡′ ∶ 𝐴. This follows from
Σ;Γ ⊢ 𝑡 ≡ 𝑡′ ∶ 𝐴 by Lemma 2.70 (piecewise well-formedness of typing
judgments).

Soundness Assume that Σ″ ⊒ Σ, with Σ″ ∣≈ 𝒟. By assumption, Σ″; Γ‡Γ′ ⊢
𝑡′ ≡{𝑣}≡ 𝑢 ∶ 𝐴‡𝐴′. In other words, Σ″; Γ ⊢ 𝑡′ ≡ 𝑣 ∶ 𝐴 and Σ″; Γ′ ⊢ 𝑢 ≡
𝑣 ∶ 𝐴′, with fv(𝑣) ⊆ fv(𝑡′) and fv(𝑣) ⊆ fv(𝑢).

4.5. A REDUCTION RULE TOOLKIT 121

By transitivity of equality, Σ″; Γ ⊢ 𝑡 ≡ 𝑣 ∶ 𝐴. Also, fv(𝑣) ⊆ fv(𝑡′) ⊆
fv(𝑡).
By Definition 4.12 (heterogeneous equality), Σ″; Γ‡Γ′ ⊢ 𝑡 ≡{𝑣}≡ 𝑢 ∶
𝐴‡𝐴′. Therefore, Σ″ ∣≈ 𝒞.

Completeness Assume Θ ⊨ Σ;𝒞. This means Θ ⊨ Σ, Θ ⊢ Γ,𝐴 ≡ Γ′, 𝐴′ ctx,
and Θ;Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴.
Take Θ′ = Θ. Because Θ ⊨ Σ, Θ′

Σ = ΘΣ = Θ.
By the rule premises, Σ;Γ ⊢ 𝑡 ≡ 𝑡′ ∶ 𝐴. Because Θ ⊨ Σ, by Defini-
tion 2.125 (compatible metasubstitution), Θ;Γ ⊢ 𝑡 ≡ 𝑡′ ∶ 𝐴. By as-
sumption, Θ;Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴. By transitivity and symmetry of equality,
Θ;Γ ⊢ 𝑡′ ≡ 𝑢 ∶ 𝐴. By Definition 4.9 (solution to a constraint), Θ ⊨ 𝒟.
Because Θ ⊨ Σ and Θ ⊨ 𝒟, by Definition 4.11 Θ ⊨ Σ;𝒟. Because Θ′ = Θ
we have Θ′ ⊨ Σ;𝒟.

4.5.6 Type conversion
By Lemma 2.63 (preservation of judgments by type conversion), we may re-
place the context and/or the type in a typing or equality judgment by a judg-
mentally equal one.

In practice, this means that we can consider forms of the context and the
type with fewer free variables, metavariables and/or constants when determin-
ing if a rule can be applied to a constraint. This may make it easier to fulfill
the rule’s preconditions.

Rule-Schema 9 (Type and context conversion).

Σ;Γ‡Γ′ ⊢ 𝑡 ≈ 𝑢 ∶ 𝐴‡𝐴′ ⇝ Σ;Γ0‡Γ′ ⊢ 𝑡 ≈ 𝑢 ∶ 𝐴0‡𝐴′

where Σ ⊢ Γ,𝐴 ≡ Γ0, 𝐴0 ctx

Proof of correctness. Let 𝒞 ≝ Γ‡Γ′ ⊢ 𝑡 ≈ 𝑢 ∶ 𝐴‡𝐴′ and 𝒟 ≝ Γ0‡Γ′ ⊢ 𝑡 ≈ 𝑢 ∶
𝐴0‡𝐴′.

Well-formedness By well-formedness of the original problem, Σ;Γ′ ⊢ 𝑢 ∶ 𝐴′.
Also by hypothesis, Σ;Γ ⊢ 𝑡 ∶ 𝐴,
By the premise, Σ ⊢ Γ,𝐴 ≡ Γ0, 𝐴0 ctx. By Lemma 2.63 (preservation of
judgments by type conversion), Σ;Γ0 ⊢ 𝑡 ∶ 𝐴0.
Therefore, Σ;Γ0‡Γ′ ⊢ 𝑡 ≈ 𝑢 ∶ 𝐴0‡𝐴′ is well-formed.

Soundness Assume Σ″ ⊒ Σ, with Σ″ ∣≈ 𝒟. By Definition 4.17 (constraint
satisfaction), this means that Σ″; Γ0‡Γ′ ⊢ 𝑡 ≡{𝑣}≡ 𝑢 ∶ 𝐴0‡𝐴′.

(i) By the rule’s premise, Σ ⊢ Γ,𝐴 ≡ Γ0, 𝐴0 ctx. By symmetry of
context equality, we have Σ ⊢ Γ0, 𝐴0 ≡ Γ,𝐴 ctx. By Lemma
2.155 (preservation of judgments under signature extensions), Σ″ ⊢
Γ0, 𝐴0 ≡ Γ,𝐴 ctx.

122 CHAPTER 4. UNIFYING WITHOUT ORDER

(ii) By assumption Σ″; Γ0 ⊢ 𝑡 ≡ 𝑣 ∶ 𝐴0. By (i) and Lemma 2.63 (preser-
vation of judgments by type conversion), Σ″; Γ ⊢ 𝑡 ≡ 𝑣 ∶ 𝐴.

(iii) By the assumption, fv(𝑣) ⊆ fv(𝑡).
(iv) By the assumption, Σ″; Γ′ ⊢ 𝑢 ≡ 𝑣 ∶ 𝐴′, and fv(𝑣) ⊆ fv(𝑢).

By (ii), (iii), (iv) and Definition 4.12 (heterogeneous equality),
Σ″; Γ0‡Γ′ ⊢ 𝑡 ≡{𝑣}≡ 𝑢 ∶ 𝐴0‡𝐴′. By Definition 4.17, Σ″ ∣≈ 𝒞.

Completeness Assume Θ ⊨ Σ;𝒞; that is, Θ ⊨ Σ and Θ ⊨ 𝒞. By Definition 4.9
(solution to a constraint), we have Θ ⊢ Γ,𝐴 ≡ Γ′, 𝐴′ ctx and Θ;Γ ⊢ 𝑡 ≡
𝑢 ∶ 𝐴.
Let Θ′ = Θ. Because Θ ⊨ Σ, Θ′

Σ = ΘΣ = Θ.

(i) By the premise, Σ ⊢ Γ,𝐴 ≡ Γ0, 𝐴0 ctx. By assumption, Θ ⊨ Σ.
By Definition 2.125 (compatible metasubstitution), Θ ⊢ Γ,𝐴 ≡
Γ0, 𝐴0 ctx. Because Θ ⊢ Γ,𝐴 ≡ Γ′, 𝐴′ ctx, by transitivity of con-
text equality, Θ ⊢ Γ0, 𝐴0 ≡ Γ′, 𝐴′ ctx.

(ii) By assumption, Θ;Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴. Because Θ ⊢ Γ,𝐴 ≡ Γ0, 𝐴0 ctx,
by Lemma 2.63 (preservation of judgments by type conversion),
Θ;Γ0 ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴0.

By (i), (ii) and Definition 4.9, Θ ⊨ 𝒟. By Definition 4.11, Θ ⊨ Σ;𝒟.
Because Θ′ = Θ, we have Θ′ ⊨ Σ;𝒟.

In order for the body of a metavariable to be well-scoped, we may need to
rearrange or normalize the signature first.

Rule-Schema 10 (Signature conversion).

Σ;□ ⇝ Σ′; □
where Σ ⊑ Σ′ and Σ′ ⊑ Σ ctx

Proof of correctness.

Well-formedness By the assumption, Σ ⊑ Σ′. By Definition 2.151 (signa-
ture extension), Σ′ ⊑ Σ implies Σ′ sig. Therefore, Σ′; □wf.

Soundness Holds vacuously.

Completeness Assume Θ ⊨ Σ. By Definition 2.125 (compatible metasubsti-
tution), decls(Θ) = decls(Σ). Because Σ ⊑ Σ′ and Σ′ ⊑ Σ, by Re-
mark 2.153 (signature extension declarations), decls(Σ) = decls(Σ′).
Because Σ′ ⊑ Σ, by Lemma 2.157 (restriction of a metasubstitution to
an extended signature), ΘΣ′ ⊨ Σ′. Let Θ′ = Θ. Because decls(Θ′) =
decls(Θ) = decls(Σ) = decls(Σ′), by Definition 2.132 (restriction of
a metasubstitution to a set of metavariables), Θ′ = ΘΣ′ . Thus Θ′ ⊨ Σ′.
By the same token, Θ′

Σ = Θ. Thus Θ′
Σ ⊨ Σ′.

4.5. A REDUCTION RULE TOOLKIT 123

4.5.7 Type-directed unification
Two functions are judgmentally equal if and only if their bodies are judgmen-
tally equal (Lemma 2.83). Correspondingly, two pairs are equal if and only if
their first and second projections are equal (Lemma 2.85).

We can use these properties to simplify constraints where both sides are
headed by a λ-abstraction, or by a pair constructor.

Rule-Schema 11 (𝜆-abstraction).

Σ;Γ‡Γ′ ⊢ 𝜆.𝑡 ≈ 𝜆.𝑢 ∶ Π𝐴𝐵‡Π𝐴′𝐵′ ⇝
Σ;Γ‡Γ′, 𝐴‡𝐴′ ⊢ 𝑡 ≈ 𝑢 ∶ 𝐵‡𝐵′

Proof of correctness. Let 𝒞 ≝ Γ‡Γ′ ⊢ 𝜆.𝑡 ≈ 𝜆.𝑢 ∶ Π𝐴𝐵‡Π𝐴′𝐵′ and let 𝒟 ≝
Γ‡Γ′, 𝐴‡𝐴′ ⊢ 𝑡 ≈ 𝑢 ∶ 𝐵‡𝐵′.

Assume that Σ;𝒞 is well-formed.

Well-formedness By Definition 4.5 (well-formed unification problem) and
Definition 4.2 (well-formed internal constraint), this means that Σ sig,
Σ;Γ ⊢ 𝜆.𝑡 ∶ Π𝐴𝐵 and Σ;Γ′ ⊢ 𝜆.𝑢 ∶ Π𝐴′𝐵′.
By assumption, Σ;Γ ⊢ 𝜆.𝑡 ∶ Π𝐴𝐵. By Lemma 2.82 (λ inversion), this
means Σ;Γ,𝐴 ⊢ 𝑡 ∶ 𝐵. Analogously, Σ;Γ,𝐴′ ⊢ 𝑢 ∶ 𝐵′.
By Definition 4.5 and Definition 4.2, Σ;𝒟 is well-formed.

Soundness Assume Σ″ ⊒ Σ, with Σ″ ∣≈ 𝒟. By Definition 4.17 (constraint
satisfaction), this means Σ″; Γ‡Γ′, 𝐴‡𝐴′ ⊢ 𝑡 ≡{𝑣}≡ 𝑢 ∶ 𝐵‡𝐵′.
By the assumption, Σ″; Γ,𝐴 ⊢ 𝑡 ≡ 𝑣 ∶ 𝐵, with fv(𝑣) ⊆ fv(𝑡). By
abs-eq, this means Σ″; Γ ⊢ 𝜆.𝑡 ≡ 𝜆.𝑣 ∶ Π𝐴𝐵. Also, fv(𝜆.𝑣) = fv(𝑣) −
1 ⊆ fv(𝑡) − 1 = fv(𝜆.𝑡)
Analogously, Σ″; Γ′ ⊢ 𝜆.𝑢 ≡ 𝜆.𝑣 ∶ Π𝐴′𝐵′, with fv(𝜆.𝑣) ⊆ fv(𝜆.𝑢).
Therefore, Σ″; Γ‡Γ′ ⊢ 𝜆.𝑡 ≡{𝜆.𝑣}≡ 𝜆.𝑢 ∶ Π𝐴𝐵‡Π𝐴′𝐵′. By Defini-
tion 4.17, this means Σ″ ∣≈ 𝒞.

Completeness Assume Θ ⊨ Σ;𝒞. By Definition 4.11 (solution to a unifica-
tion problem) and Definition 4.9 (solution to a constraint), this means
Θ ⊨ Σ, Θ ⊢ Γ,Π𝐴𝐵 ≡ Γ′, Π𝐴′𝐵′ ctx and Θ;Γ ⊢ 𝜆.𝑡 ≡ 𝜆.𝑢 ∶ Π𝐴𝐵.
Take Θ′ = Θ. Because Θ ⊨ Σ, Θ′

Σ = ΘΣ = Θ.

(i) By assumption, Θ ⊢ Γ,Π𝐴𝐵 ≡ Γ′, Π𝐴′𝐵′ ctx; that is Θ ⊢ Γ ≡
Γ′ ctx and Θ;Γ ⊢ Π𝐴𝐵 ≡ Π𝐴′𝐵′ type. By Postulate 10 (injec-
tivity of Π), Θ;Γ ⊢ 𝐴 ≡ 𝐴′ type and Θ;Γ,𝐴 ⊢ 𝐵 ≡ 𝐵′ type.
By Definition 2.16 (equality of contexts) we have Θ ⊢ Γ,𝐴,𝐵 ≡
Γ′, 𝐴′, 𝐵′ ctx.

(ii) By the assumption, Θ;Γ ⊢ 𝜆.𝑡 ≡ 𝜆.𝑢 ∶ Π𝐴𝐵. By Lemma 2.83
(injectivity of 𝜆), we get Θ;Γ,𝐴 ⊢ 𝑡 ≡ 𝑢 ∶ 𝐵.

By (i), (ii) and Definition 4.9 (solution to a constraint), we have Θ ⊨ 𝒟.
By assumption Θ ⊨ Σ, so, by Definition 4.11, Θ ⊨ Σ;𝒟. Because Θ′ = Θ,
Θ′ ⊨ Σ;𝒟.

124 CHAPTER 4. UNIFYING WITHOUT ORDER

To unify a pair it suffices to unify each component individually.

Rule-Schema 12 (Pairs).

Σ;Γ‡Γ′ ⊢ ⟨𝑡1, 𝑡2⟩ ≈ ⟨𝑢1, 𝑢2⟩ ∶ Σ𝐴𝐵‡Σ𝐴′𝐵′ ⇝
Σ;Γ‡Γ′ ⊢ 𝑡1 ≈ 𝑢1 ∶ 𝐴‡𝐴′ ∧ Γ ‡ Γ′ ⊢ 𝑡2 ≈ 𝑢2 ∶ 𝐵[𝑡1]‡𝐵′[𝑢1]

where 𝐵[𝑡1]⇓ and 𝐵′[𝑢1]⇓

As we show in the proof below, the rule preconditions 𝐵[𝑡1]⇓ and 𝐵′[𝑢1]⇓
are redundant provided Σ;Γ‡Γ′ ⊢ ⟨𝑡1, 𝑡2⟩ ≈ ⟨𝑢1, 𝑢2⟩ ∶ Σ𝐴𝐵‡Σ𝐴′𝐵′ wf.

Proof of correctness. Let 𝒞 = Γ‡Γ′ ⊢ ⟨𝑡1, 𝑡2⟩ ≈ ⟨𝑢1, 𝑢2⟩ ∶ Σ𝐴𝐵‡Σ𝐴′𝐵′, 𝒟1 =
Γ‡Γ′ ⊢ 𝑡1 ≈ 𝑢1 ∶ 𝐴‡𝐴′, 𝒟2 = Γ‡Γ′ ⊢ 𝑡2 ≈ 𝑢2 ∶ 𝐵[𝑡1]‡𝐵′[𝑢1].

Assume that Σ;𝒞 is well-formed. By Definition 4.26 (rule correctness), it
suffices to show:

Well-formedness We need to show that Σ;𝒟1 and Σ;𝒟2 are well-formed.
By assumption, Σ;Γ ⊢ ⟨𝑡1, 𝑡2⟩ ∶ Σ𝐴𝐵. By Lemma 2.84 (⟨,⟩-inversion),
this means Σ;Γ ⊢ 𝑡1 ∶ 𝐴, 𝐵[𝑡1]⇓ and Σ;Γ ⊢ 𝑡2 ∶ 𝐵[𝑡1].
By the same reasoning, Σ;Γ′ ⊢ 𝑢1 ∶ 𝐴′, 𝐵′[𝑢1]⇓ and Σ;Γ′ ⊢ 𝑢2 ∶ 𝐵′[𝑢1].
Therefore, both Σ;𝒟1 and Σ;𝒟2 are well-formed.

Soundness Assume Σ″ ⊒ Σ, and Σ″ ∣≈ 𝒟1 ∧ 𝒟2. By Definition 4.17, this
means that Σ″; Γ‡Γ′ ⊢ 𝑡1 ≡{𝑣1}≡ 𝑢1 ∶ 𝐴‡𝐴′ and Σ″; Γ‡Γ′ ⊢ 𝑡2 ≡{𝑣2}≡
𝑢2 ∶ 𝐵[𝑡1]‡𝐵′[𝑢1].
By the assumption, Σ″; Γ ⊢ 𝑡1 ≡ 𝑣1 ∶ 𝐴 and and Σ″; Γ ⊢ 𝑡2 ≡ 𝑣2 ∶ 𝐵[𝑡1].
By the pair-eq rule, this gives Σ″; Γ ⊢ ⟨𝑡1, 𝑡2⟩ ≡ ⟨𝑣1, 𝑣2⟩ ∶ Σ𝐴𝐵.
Also from the assumption, fv(𝑣1) ⊆ fv(𝑡1) and fv(𝑣2) ⊆ fv(𝑡2). There-
fore, fv(⟨𝑣1, 𝑣2⟩) = fv(𝑣1) ∪ fv(𝑣2) ⊆ fv(𝑡1) ∪ fv(𝑡2) = fv(⟨𝑡1, 𝑡2⟩).
Analogously, Σ″; Γ′ ⊢ ⟨𝑢1, 𝑢2⟩ ≡ ⟨𝑣1, 𝑣2⟩ ∶ Σ𝐴′𝐵′, with fv(⟨𝑣1, 𝑣2⟩) ⊆
fv(⟨𝑢1, 𝑢2⟩).
Therefore, Σ″; Γ‡Γ′ ⊢ ⟨𝑡1, 𝑡2⟩ ≡{⟨𝑣1, 𝑣2⟩}≡ ⟨𝑢1, 𝑢2⟩ ∶ Σ𝐴𝐵‡Σ𝐴′𝐵′. By
Definition 4.17, this means Σ″ ∣≈ 𝒞.

Completeness Assume Θ ⊨ Σ;𝒞. By Definition 4.11 (solution to a unification
problem) and Definition 4.9 (solution to a constraint), this means Θ ⊨ Σ,
Θ ⊢ Γ,Σ𝐴𝐵 ≡ Γ′, Σ𝐴′𝐵′ ctx, and Θ;Γ ⊢ ⟨𝑡1, 𝑡2⟩ ≡ ⟨𝑢1, 𝑢2⟩ ∶ Σ𝐴𝐵.
Take Θ′ ≝ Θ. Because Θ ⊨ Σ, by Remark 2.133 (restriction to a com-
patible signature), Θ′

Σ = ΘΣ = Θ.

(i) By the assumption, Θ ⊢ Γ,Σ𝐴𝐵 ≡ Γ′, Σ𝐴′𝐵′ ctx. By Defini-
tion 2.16 (equality of contexts), this gives Θ ⊢ Γ ≡ Γ′ ctx and
Θ;Γ ⊢ Σ𝐴𝐵 ≡ Σ𝐴′𝐵′ type. By Postulate 11 (injectivity of Σ), we
have Θ;Γ ⊢ 𝐴 ≡ 𝐴′ type and Θ;Γ,𝐴 ⊢ 𝐵 ≡ 𝐵′ type.
By Definition 2.16 (equality of contexts), Θ ⊢ Γ,𝐴 ≡ Γ′, 𝐴′ ctx.

4.5. A REDUCTION RULE TOOLKIT 125

(ii) By the assumption, Θ;Γ ⊢ ⟨𝑡1, 𝑡2⟩ ≡ ⟨𝑢1, 𝑢2⟩ ∶ Σ𝐴𝐵. By Lemma
2.85 (injectivity of ⟨,⟩), we get Θ;Γ ⊢ 𝑡1 ≡ 𝑢1 ∶ 𝐴, 𝐵[𝑡1]⇓ and
Θ;Γ ⊢ 𝑡2 ≡ 𝑢2 ∶ 𝐵[𝑡1].

(iii) By (i), Θ;Γ,𝐴 ⊢ 𝐵 ≡ 𝐵′ type. By (ii), Θ;Γ ⊢ 𝑡1 ≡ 𝑢1 ∶ 𝐴. By Pos-
tulate 4 (congruence of hereditary substitution) and Remark 2.15
(there is only set), Θ;Γ ⊢ 𝐵[𝑡1] ≡ 𝐵′[𝑢1] type. By Definition 2.16
(equality of contexts), Θ ⊢ Γ,𝐵[𝑡1] ≡ Γ′, 𝐵′[𝑢1] ctx.

By (i), (ii), (iii) and Definition 4.9 (solution to a constraint), we have Θ ⊨
𝒟1 and Θ ⊨ 𝒟2. By assumption, Θ ⊨ Σ. Therefore, by Definition 4.11,
Θ ⊨ Σ;𝒟1 ∧𝒟2.

For the Bool type, two constructors are equal if they are the identical.
Because true and false take no arguments, the following rule is subsumed by
syntactic equality. We include it for the sake of completeness.

Rule-Schema 13 (Booleans).

Σ;Γ‡Γ′ ⊢ 𝑐 ≈ 𝑐 ∶ Bool‡Bool ⇝ Σ;□

Proof. The rule schema is a special case of Rule schema 1 (syntactic equality).

4.5.8 Strongly neutral terms
Constraints involving neutral terms are not always straightforward to normal-
ize. Let Σ ≝ 𝔸 ∶ Set, 𝕒 ∶ 𝔸, 𝕓 ∶ 𝔸, and consider the following three examples:

Example 4.40 (Strong neutral unification).

Σ,𝛼 ∶ 𝔸; 𝑥 ∶ Bool‡Bool ⊢ if (𝜆.𝔸) 𝑥 𝕒 𝛼 ≡ if (𝜆.𝔸) 𝑥 𝕒 𝕓 ∶ 𝔸‡𝔸

By Definition 4.11 (solution to a unification problem), this problem has a
solution Θ ≝ Σ,𝛼 ≔ 𝕓 ∶ 𝔸. In effect, we can obtain such a solution by requiring
each of the arguments to if on the LHS to be equal to the corresponding
argument on the RHS.

Σ,𝛼 ∶ 𝔸; 𝑥 ∶ Bool‡Bool ⊢ 𝜆.𝔸 ≈ 𝜆.𝔸 ∶ (Bool → 𝔸)‡(Bool → 𝔸)
𝑥 ∶ Bool‡Bool ⊢ 𝑥 ≈ 𝑥 ∶ Bool‡Bool
𝑥 ∶ Bool‡Bool ⊢ 𝕒 ≈ 𝕒 ∶ 𝔸‡𝔸
𝑥 ∶ Bool‡Bool ⊢ 𝛼 ≈ 𝕓 ∶ 𝔸‡𝔸

By applying Rule schema 1 (syntactic equality) and Rule schema 2 (meta-
variable instantiation), we have Σ,𝛼 ≔ 𝕓 ∶ 𝔸;□. By definition, close(Σ, 𝛼 ≔
𝕓 ∶ 𝔸) ⇓ Θ. ◀

However, this approach does not by itself lead to a correct rule schema, as,
in the general case, solutions may be lost:

126 CHAPTER 4. UNIFYING WITHOUT ORDER

Example 4.41 (No solutions). Consider the problem:

Σ,𝛼 ∶ Bool, 𝛽 ∶ Bool; · ⊢ if (𝜆.𝔸) 𝛼 𝕓 𝕒 ≡ if (𝜆.𝔸) 𝛽 𝕒 𝕓 ∶ 𝔸
This problem has a solution, namely Θ = Σ,𝛼 ≔ true ∶ Bool, 𝛽 ≔ false ∶

Bool.
Analogously to Example 4.40 (strong neutral unification), we can solve the

problem by solving the following problem instead:

Σ,𝛼 ∶ Bool, 𝛽 ∶ Bool; · ⊢ 𝜆.𝔸 ≈ 𝜆.𝔸 ∶ Bool → 𝔸
· ⊢ 𝛼 ≈ 𝛽 ∶ Bool
· ⊢ 𝕒 ≈ 𝕓 ∶ 𝔸
· ⊢ 𝕓 ≈ 𝕒 ∶ 𝔸

However, Θ is no longer a solution of the resulting problem, as this would
imply Θ; · ⊢ 𝕒 ≡ 𝕓 ∶ 𝔸. ◀

Even when a solution is found, the solution might not be unique:

Example 4.42 (Non-unique solutions). Consider the problem:

Σ,𝛼 ∶ Bool, 𝛽 ∶ Bool; · ⊢ 𝛽 ≈ true ∶ Bool
· ⊢ if (𝜆.𝔸) 𝛼 𝕒 𝕒 ≡ if (𝜆.𝔸)𝛽 𝕒 𝕒 ∶ 𝔸

This problem has two solutions, namely Θ1 = Σ,𝛼 ≔ true ∶ Bool, 𝛽 ≔
true ∶ Bool, Θ2 = Σ,𝛼 ≔ false ∶ Bool, 𝛽 ≔ true ∶ Bool.

Analogously to Example 4.40 (strong neutral unification), we can solve the
problem by solving the following problem instead:

Σ,𝛼 ∶ Bool, 𝛽 ∶ Bool; · ⊢ 𝛽 ≈ true ∶ Bool
· ⊢ 𝜆.𝔸 ≈ 𝜆.𝔸 ∶ Bool → 𝔸
· ⊢ 𝛼 ≈ 𝛽 ∶ Bool
· ⊢ 𝕒 ≈ 𝕒 ∶ 𝔸
· ⊢ 𝕒 ≈ 𝕒 ∶ 𝔸

By applying Rule schema 1 (syntactic equality) and Rule schema 2 (meta-
variable instantiation), we have:

Σ, 𝛽 ≔ true ∶ Bool, 𝛼 ≔ 𝛽 ∶ Bool; □
And close(Σ, 𝛽 ≔ true ∶ Bool, 𝛼 ≔ 𝛽 ∶ Bool) ⇓ Θ1. However, the resulting

solution (Θ1) is not a unique solution to the original problem. ◀

We wish to reduce constraints involving neutral terms, such as the one
in Example 4.40, without losing solutions, as in Example 4.41, or sacrificing
uniqueness (Example 4.42).

4.5. A REDUCTION RULE TOOLKIT 127

Rule-Schema 14 (Strongly neutral terms).

Σ;Γ‡Γ′ ⊢ ℎ  ⃗𝑒𝑛 ≈ ℎ  ⃗⃗⃗ ⃗⃗ ⃗𝑒′𝑛 ∶ 𝑇 ‡𝑇 ′ ⇝
Σ; ⋀

𝑖∈𝐽
Γ‡Γ′ ⊢ 𝑡𝑖 ≈ 𝑢𝑖 ∶ 𝐵𝑖‡𝐵′

𝑖

where
𝐽 ⊆ {1,…, 𝑛}

ℎ  ⃗𝑒 and ℎ  ⃗𝑒′ are strongly neutral
for each 𝑖 ∈ {1,…, 𝑛}, either:

(i) 𝑖 ∉ 𝐽 , and either 𝑒𝑖 = 𝑒′𝑖 = .𝜋1 or 𝑒𝑖 = 𝑒′𝑖 = .𝜋2,
(ii) 𝑖 ∈ 𝐽 , and there exist 𝑡𝑖, 𝑢𝑖, such that 𝑒𝑖 = 𝑡𝑖, 𝑒′𝑖 = 𝑢𝑖,

Σ;Γ ⊢ ℎ @̂ ⃗𝑒1,…,𝑖−1 ⇓ 𝑉𝑖 and Σ ⊢ 𝑉𝑖 ↘Π𝐵𝑖𝐶𝑖, and
Σ;Γ′ ⊢ ℎ @̂ ⃗𝑒′1,…,𝑖−1 ⇓ 𝑉 ′

𝑖 and Σ ⊢ 𝑉𝑖 ↘Π𝐵′
𝑖𝐶′

𝑖

Proof of correctness. By Lemma 2.106 (type elimination), Lemma 2.98 (equal-
ity of WHNF) and the conv-eq rule, for each 𝑖 ∈ 𝐽 , Σ;Γ ⊢ ℎ  ⃗𝑒1,…,𝑖−1 ∶ Π𝐵𝑖𝐶𝑖
and Σ;Γ′ ⊢ ℎ  ⃗𝑒′1,…,𝑖−1 ∶ Π𝐵′

𝑖𝐶′
𝑖 .

Let 𝒞 = Γ‡Γ′ ⊢ ℎ  ⃗𝑒𝑛 ≈ ℎ  ⃗𝑒′𝑛 ∶ 𝑇 ‡𝑇 ′. For each 𝑖 ∈ 𝐽 , let 𝒟𝑖 = Γ‡Γ′ ⊢ 𝑡 ≈
𝑢 ∶ 𝐵𝑖‡𝐵′

𝑖 and ⃗⃗⃗ ⃗⃗ ⃗⃗𝒟 = ⋀𝑖∈𝐽 𝒟𝑖,

Well-formedness Assume that Σ;𝒞 is a well-formed problem; that is, Σ sig,
Σ;Γ ⊢ ℎ  ⃗𝑒 ∶ 𝑇 and Σ;Γ′ ⊢ ℎ  ⃗𝑒′ ∶ 𝑇 ′.
Let 𝑖 ∈ 𝐽 . By assumption, Σ;Γ ⊢ ℎ  ⃗𝑒1,…,𝑖−1 𝑡𝑖  ⃗𝑒𝑖+1‚…,𝑛 ∶ 𝑇 , By the
preconditions and Lemma 2.111 (application inversion), Σ;Γ ⊢ 𝑡 ∶ 𝐵𝑖.
Analogously, and Σ;Γ ⊢ 𝑢 ∶ 𝐵′

𝑖. Therefore Σ;𝒟𝑖 wf.
Because Σ sig, we have Σ ⊑ Σ. By Definition 4.5, Σ; ⃗⃗⃗ ⃗⃗ ⃗⃗𝒟 is a well-formed
problem.

Soundness Let Σ′ ⊒ Σ. Assume that, for each 𝑖 ∈ 𝐽 , Σ′ ∣≈ 𝒟𝑖, that is,
Σ′; Γ‡Γ′ ⊢ 𝑡𝑖 ≡{𝑣𝑖}≡ 𝑢𝑖 ∶ 𝐵𝑖‡𝐵′

𝑖 and Σ′;𝒟𝑖 wf (⋆).
Consider the term ℎ ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒″𝑛

, where, for each 𝑖 ∈ {1,…, 𝑛}:

𝑒″𝑖 = 𝑣𝑖   if   𝑖 ∈ 𝐽
𝑒″𝑖 = .𝜋1   if   𝑒𝑖 = 𝑒′𝑖 = .𝜋1
𝑒″𝑖 = .𝜋2   if   𝑒𝑖 = 𝑒′𝑖 = .𝜋2

(i) We show by induction on 𝑘 that for all 𝑘, there are 𝑈𝑘 and 𝑈 ′
𝑘

such that Σ′; Γ‡Γ′ ⊢ ℎ  ⃗𝑒1,…,𝑘 ≡{ℎ ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒″1,…,𝑘}≡ ℎ  ⃗⃗⃗ ⃗⃗ ⃗𝑒′1,…,𝑘 ∶ 𝑈𝑘, that is,
Σ′; Γ ⊢ ℎ  ⃗𝑒1,…,𝑘 ≡ ℎ ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒″1,…,𝑘 ∶ 𝑈𝑘, Σ′; Γ′ ⊢ ℎ  ⃗⃗⃗ ⃗⃗ ⃗𝑒′1,…,𝑘 ≡ ℎ ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒″1,…,𝑘 ∶ 𝑈 ′

𝑘,
and fv(ℎ ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒″1,…,𝑘) ⊆ fv(ℎ  ⃗𝑒1,…,𝑘) ∩ fv(ℎ  ⃗⃗⃗ ⃗⃗ ⃗𝑒′1,…,𝑘).
• Case 0: Because Σ;𝒞 is well-formed, we have Σ;Γ ⊢ ℎ  ⃗𝑒 ∶ 𝑇 .

By Lemma 2.155 (preservation of judgments under signature
extensions), we have Σ′; Γ ⊢ ℎ  ⃗𝑒 ∶ 𝑇 .
By Corollary 2.77 (uniqueness of typing for heads), there is 𝑈0
such that Σ′; Γ ⊢ ℎ ⇒ 𝑈0. By the head-eq rule, Σ′; Γ ⊢ ℎ ≡
ℎ ∶ 𝑈0. Analogously, there is 𝑈 ′

0 such that Σ′; Γ′ ⊢ ℎ ≡ ℎ ∶ 𝑈 ′
0.

Trivially, fv(ℎ) ⊆ fv(ℎ) ∩ fv(ℎ).

128 CHAPTER 4. UNIFYING WITHOUT ORDER

• Case 𝑘 + 1:
By the induction hypothesis, Σ;Γ ⊢ ℎ  ⃗𝑒1,…,𝑘 ≡ ℎ ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒″1,…,𝑘 ∶
𝑈𝑘, Σ;Γ′ ⊢ ℎ  ⃗⃗⃗ ⃗⃗ ⃗𝑒′1,…,𝑘 ≡ ℎ ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒″1,…,𝑘 ∶ 𝑈 ′

𝑘, and fv(ℎ ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒″1,…,𝑘) ⊆
fv(ℎ  ⃗𝑒1,…,𝑘) ∩ fv(ℎ  ⃗⃗⃗ ⃗⃗ ⃗𝑒′1,…,𝑘).
– Case 𝑒″𝑘+1 = 𝑣𝑘+1, 𝑒𝑘+1 = 𝑡𝑘+1 and 𝑒′𝑘+1 = 𝑢𝑘+1: As

shown above, Σ;Γ ⊢ ℎ  ⃗𝑒1,…,𝑘 ∶ Π𝐵𝑘+1𝐶𝑘+1. By Lemma
2.155 (preservation of judgments under signature exten-
sions), Σ′; Γ ⊢ ℎ  ⃗𝑒1,…,𝑘 ∶ Π𝐵𝑘+1𝐶𝑘+1.
By Corollary 2.76 (uniqueness of typing for equality of neu-
trals), Σ′; Γ ⊢ ℎ  ⃗𝑒1,…,𝑘 ≡ ℎ ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒″1,…,𝑘 ∶ Π𝐵𝑘+1𝐶𝑘+1.
By (⋆), and Definition 4.12 (heterogeneous equal-
ity), Σ′; Γ ⊢ 𝑡𝑘+1 ≡ 𝑣𝑘+1 ∶ 𝐵𝑘+1. By the app-eq0
rule, there is 𝑈𝑘+1 (with 𝐶𝑘+1[𝑡𝑘+1] ⇓ 𝑈𝑘+1) such that
Σ′; Γ ⊢ ℎ  ⃗𝑒1,…,𝑘 𝑡𝑘+1 ≡ ℎ  ⃗𝑒″1,…,𝑘 𝑣𝑘+1 ∶ 𝑈𝑘+1.
Analogously, there exists 𝑈 ′

𝑘+1 such that Σ′; Γ ⊢
ℎ  ⃗𝑒′1,…,𝑘 𝑡𝑘+1 ≡ ℎ  ⃗𝑒″1,…,𝑘 𝑣𝑘+1 ∶ 𝑈 ′

𝑘+1.
Finally, by (⋆) and distributivity of ∩ over ∪,1 we
have fv(ℎ  ⃗𝑒″1,…,𝑘 𝑣𝑘+1) = fv(ℎ  ⃗𝑒″1,…,𝑘) ∪ fv(𝑣𝑘+1) ⊆
(fv(ℎ  ⃗𝑒1,…,𝑘) ∩ fv(ℎ  ⃗𝑒′1,…,𝑘)) ∪ (fv(𝑡𝑘+1) ∩ fv(𝑢𝑘+1)) ⊆
(fv(ℎ  ⃗𝑒1,…,𝑘) ∪ fv(𝑡𝑘+1)) ∩ (fv(ℎ  ⃗𝑒′1,…,𝑘) ∪ fv(𝑢𝑘+1)) =
fv(ℎ  ⃗𝑒1,…,𝑘 𝑡𝑘+1) ∩ fv(ℎ  ⃗𝑒′1,…,𝑘 𝑢𝑘+1).

– Case 𝑒″𝑘+1 = 𝑒𝑘+1 = 𝑒′𝑘+1 = .𝜋1: By Lemma 2.113 (projec-
tion inversion), there are 𝑈 , 𝑉 such that Σ′; Γ ⊢ ℎ  ⃗𝑒1,…,𝑘 ∶
Σ𝑈𝑉 . By Corollary 2.76 (uniqueness of typing for equal-
ity of neutrals), Σ′; Γ ⊢ ℎ  ⃗𝑒1,…,𝑘 ≡ ℎ  ⃗𝑒″1,…,𝑘 ∶ Σ𝑈𝑉 . Let
𝑈𝑘+1 ≝ 𝑈 . By the proj1-eq rule, Σ′; Γ ⊢ ℎ  ⃗𝑒1,…,𝑘 .𝜋1 ≡
ℎ  ⃗𝑒″1,…,𝑘 .𝜋1 ∶ 𝑈𝑘+1. Analogously, there exists 𝑈 ′

𝑘+1 such
that Σ′; Γ′ ⊢ ℎ  ⃗𝑒′1,…,𝑘 .𝜋1 ≡ ℎ  ⃗𝑒″1,…,𝑘 .𝜋1 ∶ 𝑈 ′

𝑘+1.
By the induction hypothesis, fv(ℎ  ⃗𝑒″1,…,𝑘 .𝜋1) =
fv(ℎ  ⃗𝑒″1,…,𝑘) ⊆ fv(ℎ  ⃗𝑒1,…,𝑘) ∩ fv(ℎ  ⃗𝑒′1,…,𝑘) = fv(ℎ  ⃗𝑒1,…,𝑘 
.𝜋1) ∩ fv(ℎ  ⃗𝑒′1,…,𝑘 .𝜋1).

– Case 𝑒″𝑘+1 = 𝑒𝑘+1 = 𝑒′𝑘+1 = .𝜋2: As in the previous case,
Σ;Γ ⊢ ℎ  ⃗𝑒1,…,𝑘 ≡ ℎ  ⃗𝑒″1,…,𝑘 ∶ Σ𝑈𝑉 . By Remark 2.36 (hered-
itary substitution by a neutral term), there exists 𝑈𝑘+1
such that 𝑉 [ℎ  ⃗𝑒1,…,𝑘] ⇓ 𝑈𝑘+1. By the proj2-eq rule, Σ;Γ ⊢
ℎ  ⃗𝑒1,…,𝑘 .𝜋2 ≡ ℎ  ⃗𝑒″1,…,𝑘 .𝜋2 ∶ 𝑈𝑘+1.
Analogously, there exists 𝑈 ′

𝑘+1 such that Σ′; Γ′ ⊢
ℎ  ⃗𝑒′1,…,𝑘 .𝜋2 ≡ ℎ  ⃗𝑒″1,…,𝑘 .𝜋2 ∶ 𝑈 ′

𝑘+1.
Finally, by the induction hypothesis, fv(ℎ  ⃗𝑒″1,…,𝑘 .𝜋2) =
fv(ℎ  ⃗𝑒″1,…,𝑘) ⊆ fv(ℎ  ⃗𝑒1,…,𝑘) ∩ fv(ℎ  ⃗𝑒′1,…,𝑘) = fv(ℎ  ⃗𝑒1,…,𝑘 
.𝜋2) ∩ fv(ℎ  ⃗𝑒′1,…,𝑘 .𝜋2).

(ii) By taking 𝑘 = 𝑛 in (i), we have Σ′; Γ ⊢ ℎ  ⃗𝑒 ≡ ℎ  ⃗𝑒″ ∶ 𝑈𝑛 and
Σ′; Γ ⊢ ℎ  ⃗𝑒′ ≡ ℎ  ⃗𝑒″ ∶ 𝑈 ′

𝑛, with fv(ℎ  ⃗𝑒″) ⊆ fv(ℎ  ⃗𝑒) ∩ fv(ℎ  ⃗𝑒′).
Because the original problem is well-formed, we have Σ′; Γ ⊢ ℎ  ⃗𝑒 ∶ 𝑇
and Σ′; Γ ⊢ ℎ  ⃗𝑒′ ∶ 𝑇 ′. By Corollary 2.76 (uniqueness of typing for

1Given 𝐴, 𝐵, 𝐶 and 𝐷 sets, we have (𝐴∩𝐶)∪(𝐵∩𝐷) ⊆ (𝐴∩𝐶)∪(𝐵∩𝐷)∪(𝐴∩𝐷)∪(𝐵∩𝐶) =
(𝐴 ∪𝐵) ∩ (𝐶 ∪𝐷).

4.5. A REDUCTION RULE TOOLKIT 129

equality of neutrals), Σ′; Γ ⊢ ℎ  ⃗𝑒 ≡ ℎ  ⃗𝑒″ ∶ 𝑇 and Σ′; Γ ⊢ ℎ  ⃗𝑒′ ≡ ℎ  ⃗𝑒″ ∶
𝑇 ′.
By Definition 4.12 (heterogeneous equality), Σ′; Γ‡Γ′ ⊢
ℎ  ⃗𝑒 ≡{ℎ  ⃗𝑒″}≡ ℎ  ⃗𝑒′ ∶ 𝑇 ‡𝑇 ′. Therefore, Σ′ ∣≈ 𝒞.

Completeness First, note that, by Remark 2.159 (prefixes of strongly neutral
terms), because ℎ  ⃗𝑒 and ℎ  ⃗𝑒′ are strongly neutral, we have that for all 𝑘,
ℎ  ⃗𝑒1,…,𝑘 and ℎ  ⃗𝑒′1,…,𝑘 are also strongly neutral. (⋆)
Assume that Θ ⊨ Σ;𝒞. By Definition 4.11 (solution to a unification
problem), assume that Θ ⊨ Σ, Θ ⊢ Γ, 𝑇 ≡ Γ′, 𝑇 ′ ctx and Θ;Γ ⊢ ℎ  ⃗𝑒 ≡
ℎ  ⃗𝑒′ ∶ 𝑇 .
Take Θ′ = Θ. By Remark 2.17 (context equality inversion), Θ ⊢ Γ ≡
Γ′ ctx.
By induction on 𝑘, we show that for every 𝑘, if there exists 𝑈 such that
Θ;Γ ⊢ ℎ  ⃗𝑒1,…,𝑘 ≡ ℎ  ⃗𝑒′1,…,𝑘 ∶ 𝑈 , then for every 𝑖 ∈ 𝐽 , 𝑖 ≤ 𝑘, we have
Θ ⊨ 𝒟𝑖.

• Case 0: Vacuously true (𝑖 ∈ {1,…, 0} = ∅).
• Case 𝑘 + 1: Assume that there exists 𝑈𝑘+1 such that Θ;Γ ⊢

ℎ  ⃗𝑒1,…,𝑘+1 ≡ ℎ  ⃗𝑒′1,…,𝑘+1 ∶ 𝑈𝑘+1. By the rule preconditions, we have
two possible cases for 𝑒𝑘+1 and 𝑒′𝑘+1:

– Case 𝑒𝑘+1 = 𝑡𝑘+1, 𝑒′𝑘+1 = 𝑢𝑘+1, and 𝑘 + 1 ∈ 𝐽 : Assume there
exists 𝑈 such that Θ;Γ ⊢ ℎ  ⃗𝑒1,…,𝑘+1 ≡ ℎ  ⃗⃗⃗ ⃗⃗ ⃗𝑒′1,…,𝑘+1 ∶ 𝑈 .
(i) By Lemma 2.163 (injectivity of elimination for strongly

neutral terms), there exist 𝐵0
𝑘+1, 𝐶0

𝑘+1 such that Θ;Γ ⊢
ℎ  ⃗𝑒1,…,𝑘 ≡ ℎ  ⃗𝑒′1,…,𝑘 ∶ Π𝐵0

𝑘+1𝐶0
𝑘+1 and Θ;Γ ⊢ 𝑡𝑘+1 ≡ 𝑢𝑘+1 ∶

𝐵0
𝑘+1.

(ii) Because Θ ⊨ Σ, we have Θ;Γ ⊢ ℎ  ⃗𝑒1,…,𝑘 ∶ Π𝐵𝑘+1𝐶𝑘+1.
By (i) and Lemma 2.75 (uniqueness of typing for neutrals),
we have Θ;Γ ⊢ Π𝐵0

𝑘+1𝐶0
𝑘+1 ≡ Π𝐵𝑘+1𝐶𝑘+1 type. By

Postulate 10 (injectivity of Π), we have Θ;Γ ⊢ 𝐵0
𝑘+1 ≡

𝐵𝑘+1 type.
By the conv-eq rule, we have Θ;Γ ⊢ ℎ  ⃗𝑒1,…,𝑘 ≡ ℎ  ⃗𝑒′1,…,𝑘 ∶
Π𝐵𝑘+1𝐶𝑘+1 and Θ;Γ ⊢ 𝑡𝑘+1 ≡ 𝑢𝑘+1 ∶ 𝐵𝑘+1.

(iii) By (ii) and Lemma 2.70 (piecewise well-formedness of typ-
ing judgments), Θ;Γ ⊢ ℎ  ⃗⃗⃗ ⃗⃗ ⃗𝑒′1,…,𝑘 ∶ Π𝐵𝑘+1𝐶𝑘+1. By assump-
tion, Θ ⊨ Σ and Σ;Γ ⊢ ℎ  ⃗𝑒′1,…,𝑘 ∶ Π𝐵′

𝑘+1𝐶′
𝑘+1. By Defini-

tion 2.125 (compatible metasubstitution), Θ;Γ ⊢ ℎ  ⃗𝑒′1,…,𝑘 ∶
Π𝐵′

𝑘+1𝐶′
𝑘+1. By Lemma 2.75 (uniqueness of typing for neu-

trals), Θ;Γ ⊢ Π𝐵𝑘+1𝐶𝑘+1 ≡ Π𝐵′
𝑘+1𝐶′

𝑘+1 type. By Postu-
late 10 (injectivity of Π), Θ;Γ ⊢ 𝐵𝑘+1 ≡ 𝐵′

𝑘+1 type.
Take 𝑖 ∈ {1,…, 𝑘 + 1} ∩ 𝐽 . If 𝑖 = 𝑘 + 1, then, by (ii), Θ;Γ ⊢
𝑡𝑘+1 ≡ 𝑢𝑘+1 ∶ 𝐵𝑘+1, and by (iii), Θ;Γ ⊢ 𝐵𝑘+1 ≡ 𝐵′

𝑘+1 type.
Therefore Θ ⊨ 𝒟𝑖.
If 𝑖 ≤ 𝑘, then by (ii), Θ;Γ ⊢ ℎ  ⃗𝑒1,…,𝑘 ≡ ℎ  ⃗𝑒′1,…,𝑘 ∶ Π𝐵𝑘+1𝐶𝑘+1.
By the induction hypothesis, Θ ⊨ 𝒟𝑖.

130 CHAPTER 4. UNIFYING WITHOUT ORDER

– Case 𝑒𝑘+1 = 𝑒′𝑘+1 = .𝜋1, or 𝑒𝑘+1 = 𝑒′𝑘+1 = .𝜋2, and 𝑘 + 1 ∉ 𝐽 :
By Lemma 2.163, Θ;Γ ⊢ ℎ  ⃗𝑒1,…,𝑘 ≡ ℎ  ⃗𝑒′1,…,𝑘 ∶ 𝑇0. Take 𝑖 ∈
{1,…, 𝑘+1}. If 𝑖 ∈ 𝐽 , then necessarily 𝑖 ≤ 𝑘. By the induction
hypothesis, Θ ⊨ 𝒟𝑖.

By (⋆), Θ;Γ ⊢ ℎ  ⃗𝑒1,…,𝑛 ≡ ℎ  ⃗𝑒′1,…,𝑛 ∶ 𝑇 . Note that ∀𝑖 ∈ 𝐽, 𝑖 ≤ 𝑛. By the
proven property, taking 𝑘 ∶= 𝑛, we have that for all 𝑖 ∈ 𝐽 , Θ ⊨ 𝒟𝑖.
By the assumption, Θ ⊨ Σ. Therefore, by Definition 4.11, Θ ⊨ Σ; ⃗⃗⃗ ⃗⃗ ⃗⃗𝒟.

4.5.9 Metavariable argument killing
In some cases, we may be able to deduce that the body of a metavariable
cannot depend on some of its arguments.

By including this information in the signature, we can simplify existing
constraints. This may allow us to instantiate more metavariables.

Example 4.43 (Good pruning). Consider the following problem, where Σ ≝
𝔸 ∶ Set, 𝕒 ∶ 𝔸, 𝔽 ∶ 𝔸 → 𝔸:

Σ,𝛼 ∶ Bool → 𝔸, 𝛽 ∶ 𝔸; 𝑥 ∶ Bool‡Bool ⊢ 𝛽 ≈ 𝔽 (𝛼 𝑥) ∶ 𝔸‡𝔸
· ⊢ 𝛼 true ≈ 𝕒 ∶ 𝔸‡𝔸

This problem has solution Θ = Σ,𝛼 ≔ 𝜆𝑥.𝕒 ∶ Bool → 𝔸, 𝛽 ≔ 𝔽𝕒 ∶ 𝔸.
However, there is no clear way of finding this solution with the rules described
so far:

(i) In the first constraint, 𝑥 ∈ fv(𝔽 (𝛼 𝑥)), but 𝑥 is not in the arguments of 𝛽;
and in the second constraint, 𝛼 has a non-variable argument; therefore,
the Rule schema 2 (metavariable instantiation) does not apply to either
of them.

(ii) In both of the constraints, there is at least one side which is not a strongly
neutral term. Therefore, Rule schema 14 (strongly neutral terms) does
not apply to any of them.

(iii) Finally, because none of the terms in the constraints can be reduced
further, there is no clear way in which Rule schema 8 (term conversion)
or Rule schema 9 (type and context conversion) could change the con-
straints so that any of the above-mentioned rules would apply.

Observe that the variable 𝑥 does not appear in the arguments of 𝛽. Thus,
we may (correctly) assume that 𝑥 is not actually used by 𝛼. Under this
assumption we may “kill” the argument of 𝛼 as follows:

Σ, 𝛾 ∶ 𝔸, 𝛼 ≔ 𝜆𝑥.𝛾 ∶ Bool → 𝔸, 𝛽 ∶ 𝔸; 𝑥 ∶ Bool‡Bool ⊢ 𝛽 ≈ 𝔽 (𝛼 𝑥) ∶ 𝔸‡𝔸
· ⊢ 𝛼 true ≈ 𝕒 ∶ 𝔸‡𝔸

4.5. A REDUCTION RULE TOOLKIT 131

By applying Rule schema 8 (term conversion) twice, we obtain:

Σ, 𝛾 ∶ 𝔸, 𝛼 ≔ 𝜆𝑥.𝛾 ∶ Bool → 𝔸, 𝛽 ∶ 𝔸; 𝑥 ∶ Bool‡Bool ⊢ 𝛽 ≈ 𝔽 𝛾 ∶ 𝔸‡𝔸
· ⊢ 𝛾 ≈ 𝕒 ∶ 𝔸‡𝔸

And now, by applying Rule schema 2 (metavariable instantiation) twice,
we obtain:

Σ, 𝛾 ≔ 𝕒 ∶ 𝔸, 𝛼 ≔ 𝜆𝑥.𝛾 ∶ Bool → 𝔸, 𝛽 ≔ 𝔽 𝕒 ∶ 𝔸;□

Finally, by Definition 2.143 (closing metasubstitution), close(Σ, 𝛾 ≔ 𝕒 ∶
𝔸, 𝛼 ≔ 𝜆𝑥.𝛾 ∶ Bool → 𝔸, 𝛽 ≔ 𝔽 𝕒 ∶ 𝔸) ⇓ Θ′, and Θ′

Σ,𝛼∶Bool→𝔸,𝛽∶𝔸 = Θ. ◀
Example 4.44 (Bad pruning). The approach in Example 4.43 is not always
correct.

Consider the following problem, where Σ ≝ 𝔸 ∶ Set, 𝕒 ∶ 𝔸, 𝔽 ∶ 𝔸 → 𝔸:

Σ,𝛼 ∶ 𝔸 → 𝔸, 𝛽 ∶ 𝔸, 𝛾 ∶ 𝔸 → 𝔸 ; 𝑥 ∶ Bool‡Bool ⊢ 𝛽 ≈ 𝛾 (𝛼 𝑥) ∶ 𝔸‡𝔸
∧ · ⊢ 𝛼 𝑥 ≈ 𝑥 ∶ 𝔸‡𝔸
∧ · ⊢ 𝛾 𝑥 ≈ 𝕒 ∶ 𝔸‡𝔸

The problem has the solution Θ ≝ Σ,𝛼 ≔ 𝜆𝑥.𝑥 ∶ 𝔸 → 𝔸, 𝛽 ≔ 𝕒 ∶ 𝔸, 𝛾 ≔
𝜆𝑥.𝕒 ∶ 𝔸 → 𝔸.

If we kill the first argument of 𝛼, we obtain the following problem:

Σ, 𝛿 ∶ 𝔸, 𝛼 ≔ 𝜆𝑥.𝛿 ∶ 𝔸 → 𝔸, 𝛽 ∶ 𝔸, 𝛾 ∶ 𝔸 → 𝔸; 𝑥 ∶ Bool‡Bool ⊢ 𝛽 ≈ 𝛾 𝛿 ∶ 𝔸‡𝔸
· ⊢ 𝛿 ≈ 𝑥 ∶ 𝔸‡𝔸
· ⊢ 𝛾 𝑥 ≈ 𝕒 ∶ 𝔸‡𝔸

Because metavariables can only be instantiated to closed terms, the con-
straint · ⊢ 𝛿 ≈ 𝑥 ∶ 𝔸‡𝔸 is unsolvable. The resulting problem does not have the
solution Θ. Therefore, it was not correct to kill the argument. ◀

We want to “kill” metavariable arguments in cases such as Example 4.43,
while avoiding cases such as Example 4.44.

In this section we introduce a notion of killing arguments, and use it for
specifying two correct rule schemas; namely Rule schema 16 (generalized meta-
variable intersection) and Rule schema 17 (metavariable pruning).

Definition 4.45 (Metavariable argument killing: Σ ⊢ kill(𝛼, 𝑛) ↦ Σ′). We
say that killing the 𝑛-th argument of metavariable 𝛼 in signature Σ yields
signature Σ′ (written Σ ⊢ kill(𝛼, 𝑛) ↦ Σ′), if all the following hold:

132 CHAPTER 4. UNIFYING WITHOUT ORDER

(i) 𝑛 ∈ ℕ, 𝑛 ≥ 1,
(ii) Σ sig, Σ = Σ1, 𝛼 ∶ 𝑇 , Σ2 for some Σ1, Σ2 and 𝑇 .

(iii) Σ′ = Σ1, 𝛽 ∶ Π ⃗𝐴𝑛−1𝑈,𝛼 ≔ 𝜆 ⃗𝑥𝑛−1.𝜆𝑦.𝛽  ⃗𝑥 ∶ 𝑇 , Σ2 for some 𝛽, ⃗⃗ ⃗⃗ ⃗⃗𝐴 and 𝑈
with with 𝛽 ∉ decls(Σ); and

(iv) Σ1; · ⊢ 𝑇 ≡ Π ⃗𝐴𝑛−1Π𝐵𝑈 (+1) type for some 𝐵.

Lemma 4.46 (Well-formedness of killing). Assume Σ ⊢ kill(𝛼, 𝑛) ↦ Σ′,
where Σ = Σ1, 𝛼 ∶ 𝑇 , Σ2, and Σ′ = Σ1, 𝛽 ∶ 𝑇 ′, 𝛼 ≔ 𝑡 ∶ 𝑇 , Σ2 for some Σ1, Σ2,
𝑇 , 𝑇 ′ and 𝑡. Then Σ′ sig and Σ ⊑ Σ′.

Proof. Follows by construction, Postulate 13 (context strengthening), and the
typing rules.

(i) By the assumption Σ sig; by Remark 2.5 (signature inversion), Σ1 sig.

(ii) Also by the assumption, Σ1; · ⊢ 𝑇 ≡ Π ⃗𝐴𝑛−1Π𝐵𝑈 (+1) type. By Lemma
2.70 (piecewise well-formedness of typing judgments) and Lemma 2.52
(Π inversion), gives Σ1; ⃗𝐴𝑛−1, 𝐵 ⊢ 𝑈 (+1) type. By Postulate 13 (con-
text strengthening), Σ1; ⃗𝐴𝑛−1 ⊢ 𝑈 type. By repeated application of the
pi rule, Σ1; · ⊢ Π ⃗𝐴𝑛−1.𝑈 type, that is, Σ1; · ⊢ 𝑇 ′ type. By Defini-
tion 4.45 (metavariable argument killing), 𝛽 ∉ decls(Σ) ⊇ decls(Σ1).
Therefore, Σ1, 𝛽 ∶ 𝑇 ′ sig. By Definition 2.151 (signature extension),
Σ1 ⊑ Σ1, 𝛽 ∶ 𝑇 ′. By Corollary 2.156 (horizontal composition of exten-
sions), Σ1, 𝛼 ∶ 𝑇 , Σ2 ⊑ Σ1, 𝛽 ∶ 𝑇 ′, 𝛼 ∶ 𝑇 , Σ2.

(iii) By Lemma 2.69 (signature weakening), Σ1, 𝛽 ∶ 𝑇 ′; · ⊢ 𝑇 type.

By the typing rules, Σ1, 𝛽 ∶ 𝑇 ′; ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑥 ∶ 𝐴𝑛−1 ⊢ 𝛽  ⃗𝑥 ∶ 𝑈 . By Lemma 2.62
(context weakening), Σ1, 𝛽 ∶ 𝑇 ′; ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑥 ∶ 𝐴𝑛−1, 𝑦 ∶ 𝐵 ⊢ 𝛽  ⃗𝑥 ∶ 𝑈 (+1). By the abs
rule, Σ1, 𝛽 ∶ 𝑇 ′; · ⊢ 𝜆 ⃗𝑥𝑛−1.𝜆𝑦.𝛽  ⃗𝑥 ∶ Π ⃗𝐴𝑛−1Π𝐵𝑈 , that is, Σ1, 𝛽 ∶ 𝑇 ′; · ⊢ 𝑡 ∶
Π ⃗𝐴𝑛−1Π𝐵𝑈 .
By the assumption, Σ1; · ⊢ 𝑇 ≡ Π ⃗𝐴𝑛−1Π𝐵𝑈 type. Therefore, by the
conv-eq rule, Σ1, 𝛽 ∶ 𝑇 ′; · ⊢ 𝑡 ∶ 𝑇 . Therefore, Σ1, 𝛽 ∶ 𝑇 ′, 𝛼 ≔ 𝑡 ∶ 𝑇 sig.
By Definition 2.151 (signature extension), Σ1, 𝛽 ∶ 𝑇 ′, 𝛼 ∶ 𝑇 ⊑ Σ1, 𝛽 ∶
𝑇 ′, 𝛼 ≔ 𝑡 ∶ 𝑇 . By Corollary 2.156 (horizontal composition of extensions),
Σ1, 𝛽 ∶ 𝑇 ′, 𝛼 ∶ 𝑇 , Σ2 ⊑ Σ1, 𝛽 ∶ 𝑇 ′, 𝛼 ≔ 𝑡 ∶ 𝑇 , Σ2.

By (ii), (iii) and composition rule in Definition 2.151 (signature extension),
Σ ⊑ Σ′.

Killing an argument of a metavariable 𝛼 preserves a solution if the body
of the metavariable in that solution does not depend on the killed argument.

Lemma 4.47 (Completeness of killing). Assume that Σ ⊢ kill(𝛼, 𝑛) ↦ Σ′

where for some 𝑇α, 𝑇β and 𝑡α, we have Σ = Σ1, 𝛼 ∶ 𝑇α, Σ2 and Σ′ = Σ1, 𝛽 ∶
𝑇β, 𝛼 ≔ 𝑡α ∶ 𝑇α, Σ2.

Also, let Θ be a metasubstitution such that Θ ⊨ Σ.
If there is 𝑣 and 𝑇 such that Θ; · ⊢ 𝛼 ≡ 𝜆𝑛.𝑣 ∶ 𝑇 , with 0 ∉ fv(𝑣), then there

are 𝑢β and 𝑈β such that, for Θ′ = Θ, 𝛽 ≔ 𝑢β ∶ 𝑈β, we have:

4.5. A REDUCTION RULE TOOLKIT 133

(i) Θ′ wf,

(ii) Θ′
Σ = Θ,

(iii) Θ ⊑ Θ′, and

(iv) Θ′ ⊨ Σ′.

Proof. By Lemma 2.75 (uniqueness of typing for neutrals), Lemma 2.70 (piece-
wise well-formedness of typing judgments) and the conv-eq rule, Θ; · ⊢ 𝛼 ≡
𝜆𝑛.𝑣 ∶ 𝑇α.

By Definition 4.45 (metavariable argument killing) and Lemma 2.69 (signa-
ture weakening), Σ; · ⊢ 𝑇α ≡ Π ⃗𝑈𝑛𝑉 type for some 𝑈 and 𝑉 , with 0 ∉ fv(𝑉).
By Definition 2.125 (compatible metasubstitution), Θ; · ⊢ 𝑇α ≡ Π ⃗𝑈𝑛𝑉 type.

By the conv-eq rule, Θ; · ⊢ 𝛼 ≡ 𝜆𝑛.𝑣 ∶ Π ⃗𝑈𝑛𝑉 .
By Lemma 2.70 (piecewise well-formedness of typing judgments), Θ; · ⊢

𝜆𝑛.𝑣 ∶ Π ⃗𝑈𝑛𝑉 . By Corollary 2.58 (iterated 𝜆-inversion) and Postulate 13
(context strengthening), we have Θ; ⃗𝑈1,…,𝑛−1 ⊢ 𝑣(−1) ∶ 𝑉 (−1). By the pi
rule, Θ; · ⊢ 𝜆𝑛−1.𝑣(−1) ∶ Π ⃗⃗⃗ ⃗⃗ ⃗𝑈1,…,𝑛−1(𝑉 (−1)). Take 𝑇β ≝ Π ⃗⃗⃗⃗⃗ ⃗𝑈1,…,𝑛−1(𝑉 (−1)).
By Remark 2.142 (metavariable-free term), we have 𝑢β and 𝑈β such that
Θ; · ⊢ 𝑈β ≡ 𝑇β type, Θ; · ⊢ 𝑢β ∶ 𝑈β, Θ; · ⊢ 𝑢β ≡ 𝜆𝑛−1.𝑣(−1) ∶ 𝑈β, and
metas(𝑢β) = metas(𝑈β) = ∅.

(i) Θ′ wf: By assumption, Θwf. By the subst-meta rule, Θ′ wf.

(ii) Θ′
Σ = Θ: By construction.

(iii) Θ ⊑ Θ′: By Definition 2.151 (signature extension).

(iv) Θ′ ⊨ Σ′: By Lemma 2.130 (alternative characterization of a compat-
ible metasubstitution), it suffices to show that, for each declaration
𝐷 ∈ Σ′, Θ′ is compatible with 𝐷. Because Θ ⊨ Σ and Θ ⊆ Θ′, by
Remark 2.128 (compatibility with a declaration as a judgment) and Re-
mark 2.137 (metasubstitution weakening), it suffices to consider the two
declarations that are in Σ′, but not in Σ.

1. Θ′ compatible with 𝛼 ≔ 𝑡α ∶ 𝑇α: Because Θ; · ⊢ 𝛼 ≡ 𝜆 ⃗𝑧𝑛.𝑣 ∶ Π ⃗⃗⃗ ⃗⃗ ⃗𝑈𝑛𝑉 ,
Θ ⊆ Θ′ and Remark 2.137 (metasubstitution weakening), we have
Θ′; · ⊢ 𝛼 ≡ 𝜆 ⃗𝑧𝑛.𝑣 ∶ Π ⃗⃗⃗ ⃗⃗ ⃗𝑈𝑛𝑉 .
By delta-meta0, transitivity and conv-eq, Θ′; · ⊢ 𝛽 ≡
𝜆𝑛−1.𝑣(−1) ∶ Π ⃗⃗⃗ ⃗⃗ ⃗𝑈1,…,𝑛−1(𝑉 (−1)). By Lemma 4.34 (general η-equality
for Π-types), symmetry and transitivity, Θ′; · ⊢ 𝜆 ⃗𝑥𝑛−1.𝛽  ⃗𝑥 ≡
𝜆𝑛−1.𝑣(−1) ∶ Π ⃗⃗⃗ ⃗⃗ ⃗𝑈1,…,𝑛−1(𝑉 (−1)). By Lemma 2.59 (abstraction
equality inversion), Θ′; ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑥 ∶ 𝑈1,…,𝑛−1 ⊢ 𝛽 ⃗⃗ ⃗⃗𝑥1,…,𝑛−1 ≡ 𝑣(−1) ∶ 𝑉 (−1).
By Lemma 2.62 (context weakening) Θ′; ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑥 ∶ 𝑈1,…,𝑛−1, 𝑦 ∶ 𝑈𝑛 ⊢
𝛽  ⃗⃗⃗𝑥1,…,𝑛−1 ≡ 𝑣 ∶ 𝑉 . By Lemma 2.59 (abstraction equality
inversion), Θ′; · ⊢ 𝜆 ⃗𝑥𝑛−1.𝜆𝑦.𝛽  ⃗𝑥 ≡ 𝜆 ⃗𝑧𝑛.𝑣 ∶ Π ⃗⃗⃗ ⃗⃗ ⃗𝑈𝑉 .
By symmetry and transitivity, Θ′; · ⊢ 𝛼 ≡ 𝜆 ⃗𝑥𝑛−1.𝜆𝑦.𝛽  ⃗𝑥 ∶ Π ⃗⃗⃗ ⃗⃗ ⃗𝑈𝑉 . By
Definition 4.45 (metavariable argument killing), 𝑡α = 𝜆 ⃗𝑥𝑛−1.𝜆𝑦.𝛽  ⃗𝑥.
Therefore, Θ′; · ⊢ 𝛼 ≡ 𝑡α ∶ Π ⃗⃗⃗ ⃗⃗ ⃗𝑈𝑉 .

134 CHAPTER 4. UNIFYING WITHOUT ORDER

Because Θ ⊨ Σ, we have Θ; · ⊢ 𝛼 ∶ 𝑇α. By Lemma 2.75 (uniqueness
of typing for neutrals) and Remark 2.137 (metasubstitution weak-
ening), Θ′; · ⊢ 𝑇α ≡ Π ⃗⃗⃗⃗⃗ ⃗𝑈𝑉 type. By the conv-eq rule, Θ′; · ⊢ 𝛼 ≡
𝑡α ∶ 𝑇α.

2. Θ′ compatible with 𝛽 ∶ 𝑇β: By construction, 𝛽 ∶ 𝑈β ∈ Θ′. By the
meta1 and head rules, Θ′; · ⊢ 𝛽 ∶ 𝑈β.
As shown above, Θ; · ⊢ 𝑈β ≡ 𝑇β type. Because Θ′ ⊒ Θ, by
Lemma 2.155 (preservation of judgments under signature exten-
sions), Θ′; · ⊢ 𝑈β ≡ 𝑇β type. By the conv rule, Θ′; · ⊢ 𝛽 ∶ 𝑇β.

Metavariable intersection

One case where we may kill metavariable arguments is when both sides are
headed by the same metavariable, but some of the arguments differ. We first
prove the following lemma:

Lemma 4.48 (Intersection). Assume that Θ;Γ ⊢ 𝛼  ⃗⃗⃗⃗𝑓 ≡ 𝛼  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑓 ′ ∶ 𝐴, where
⃗⃗⃗ ⃗𝑓 = ⃗⃗⃗ ⃗⃗ ⃗⃗𝑓1

𝑛  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑓2
1+𝑚

, ⃗⃗⃗ ⃗𝑓 ′ = ⃗⃗⃗ ⃗⃗ ⃗⃗𝑓 ′
1
𝑛
  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑓 ′

2
1+𝑚

, and, for all 𝑓 ∈ ⃗⃗⃗⃗𝑓, or 𝑓 ∈ ⃗⃗⃗ ⃗⃗ ⃗⃗𝑓 ′, 𝑓 is irreducible.
Also, assume that 𝑓𝑛+1 = 𝑥  ⃗𝑒, 𝑓 ′

𝑛+1 = 𝑦  ⃗𝑒′, and 𝑥 ≠ 𝑦.
Then there are 𝑣 and 𝑇 such that Θ; · ⊢ 𝛼 ≡ 𝜆𝑛+1.𝑣 ∶ 𝑇 , where 0 ∉ fv(𝑣).

Proof. By Lemma 2.70 (piecewise well-formedness of typing judgments),
Θ;Γ ⊢ 𝛼  ⃗⃗⃗⃗𝑓 ∶ 𝐴. By Lemma 2.112 (iterated application inversion),
Θ; · ⊢ 𝛼 ∶ Π ⃗⃗⃗ ⃗⃗ ⃗𝑈𝑛+1+𝑚𝑉 for some ⃗⃗⃗ ⃗⃗ ⃗𝑈 and 𝑉 . By Lemma 4.34 (general
η-equality for Π-types), Θ; · ⊢ 𝛼 ≡ 𝜆 ⃗𝑧𝑛+1+𝑚.𝛼  ⃗𝑧𝑛+1+𝑚 ∶ Π𝑈𝑛+1+𝑚𝑉 .

By Lemma 2.166 (reduction at Π-type), there is 𝑣 such that Θ; · ⊢
𝜆 ⃗𝑧𝑛+1+𝑚.𝛼  ⃗𝑧𝑛+1+𝑚 ⟶⋆

δη 𝜆 ⃗𝑧𝑛+1+𝑚.𝑣 ∶ Π ⃗⃗⃗ ⃗⃗ ⃗𝑈𝑉 , and Θ; · ⊢ 𝜆 ⃗𝑧𝑛+1+𝑚.𝑣��⟶δη ∶
Π ⃗⃗⃗ ⃗⃗ ⃗𝑈𝑉 ,

By Lemma 2.86 (equality of δη-reduct), it suffices to show that 𝑧𝑛+1 = 𝑚 ∉
fv(𝑣).

By the assumption, Θ;Γ ⊢ 𝛼  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑓1
𝑛 (𝑥  ⃗𝑒)  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑓2

𝑚 ≡ 𝛼  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑓 ′
1
𝑛
 (𝑦  ⃗𝑒′)  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑓 ′

2
𝑚

∶ 𝐴. By
Lemma 2.86 (equality of δη-reduct) and transitivity, Θ; · ⊢ 𝛼 ≡ 𝜆 ⃗𝑧𝑛+1+𝑚.𝑣 ∶
Π⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑧 ∶ 𝑈𝑛+1+𝑚𝑉 . In particular, by Lemma 2.62 (context weakening) and Re-
mark 2.30 (properties of renamings), Θ;Γ ⊢ 𝛼 ≡ 𝜆 ⃗𝑧𝑛+1+𝑚.𝑣 ∶ Π⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑧 ∶ 𝑈𝑛+1+𝑚𝑉 .
By Remark 2.35 (iterated application as substitution on body), (𝜆 ⃗𝑧𝑛+1+𝑚.𝑣) @
⃗𝑓 ⇓ 𝑣[⃗𝑓/ ⃗𝑧] and (𝜆 ⃗𝑧𝑛+1+𝑚.𝑣) @ ⃗⃗⃗ ⃗⃗ ⃗⃗𝑓 ′ ⇓ 𝑣[⃗⃗⃗ ⃗⃗ ⃗⃗𝑓 ′/ ⃗𝑧].

By Lemma 2.79 (typing and congruence of elimination), Θ;Γ ⊢ 𝛼  ⃗⃗⃗⃗𝑓 ≡
𝑣[⃗𝑓/ ⃗𝑧] ∶ 𝐴 and Θ;Γ ⊢ 𝛼  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑓 ′ ≡ 𝑣[⃗⃗⃗ ⃗⃗ ⃗⃗𝑓 ′/ ⃗𝑧] ∶ 𝐴.

By transitivity and symmetry of equality, Θ;Γ ⊢ 𝑣[⃗𝑓/ ⃗𝑧] ≡ 𝑣[⃗⃗⃗ ⃗⃗ ⃗⃗𝑓 ′/ ⃗𝑧] ∶ 𝐴.
By the app rule, Θ;Γ ⊢ 𝛼  ⃗⃗⃗⃗𝑓 ∶ 𝑉 [⃗𝑓/ ⃗𝑧]. By Lemma 2.75 (uniqueness of

typing for neutrals), Θ;Γ ⊢ 𝐴 ≡ 𝑉 [⃗𝑓/ ⃗𝑧] type. By the conv-eq rule, Θ;Γ ⊢
𝑣[⃗𝑓/ ⃗𝑧] ≡ 𝑣[⃗⃗⃗ ⃗⃗ ⃗⃗𝑓 ′/ ⃗𝑧] ∶ 𝑉 [⃗𝑓/ ⃗𝑧].

Assume that 𝑧𝑛+1 ∈ fv(𝑣). which by Lemma 2.176 (injectivity of normal
forms with respect to irreducibles), means that 𝑥 = 𝑦. This is a contradiction
with the theorem premises. Therefore, 𝑧𝑛+1 ∉ fv(𝑣).

4.5. A REDUCTION RULE TOOLKIT 135

Rule-Schema 15 (Metavariable intersection).

Σ;Γ‡Γ′ ⊢ 𝛼  ⃗⃗⃗⃗𝑓𝑛 𝑥  ⃗𝑔𝑚 ≈ 𝛼  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑓 ′𝑛 𝑦  ⃗⃗⃗ ⃗⃗ ⃗𝑔′𝑚 ∶ 𝐴‡𝐴′

⇝ Σ′; Γ‡Γ′ ⊢ 𝛽  ⃗⃗⃗⃗𝑓   ⃗𝑔 ≈ 𝛽  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑓 ′  ⃗⃗⃗ ⃗⃗ ⃗𝑔′ ∶ 𝐴‡𝐴′

where
𝑥 ≠ 𝑦 (1)
all terms in ⃗⃗⃗ ⃗𝑓 , ⃗⃗⃗ ⃗⃗ ⃗⃗𝑓 ′, ⃗𝑔, ⃗⃗⃗ ⃗⃗ ⃗𝑔′ are irreducible (2)
Σ ⊢ kill(𝛼, 𝑛 + 1) ↦ Σ′, where Σ = Σ1, 𝛼 ∶ 𝑈,Σ2

and Σ′ = Σ1, 𝛽 ∶ 𝑇 , 𝛼 ≔ 𝑢 ∶ 𝑈,Σ2 (3)

Condition 3 ensures that the resulting problem is well formed, while con-
ditions 1 and 2 ensure the resulting problem has the same solutions as the
original problem.

Proof of correctness. Let 𝒞 ≝ Γ‡Γ′ ⊢ 𝛼  ⃗𝑓  𝑥  ⃗𝑔 ≈ 𝛼  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑓 ′ 𝑦  ⃗⃗⃗ ⃗⃗ ⃗𝑔′ ∶ 𝐴‡𝐴′ and 𝒟 ≝
Γ‡Γ′ ⊢ 𝛽  ⃗𝑓   ⃗𝑔 ≈ 𝛽  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑓 ′  ⃗⃗⃗ ⃗⃗ ⃗𝑔′ ∶ 𝐴‡𝐴′.

Assume Σ sig and Σ;𝒞wf.

Well-formedness By Lemma 4.46 (well-formedness of killing), we have that
Σ′ sig, and Σ′ ⊒ Σ.
Because Σ;𝒞wf, we have Σ;Γ ⊢ 𝛼  ⃗⃗⃗⃗𝑓  𝑥  ⃗𝑔 ∶ 𝐴. By Lemma 2.155 (preser-
vation of judgments under signature extensions), Σ′; Γ ⊢ 𝛼  ⃗⃗⃗ ⃗𝑓  𝑥  ⃗𝑔 ∶ 𝐴. By
Definition 4.45 (metavariable argument killing) and the delta-meta
rule, Σ′; Γ ⊢ 𝛼  ⃗⃗⃗⃗𝑓  𝑥  ⃗𝑔 ≡ 𝛽  ⃗⃗⃗ ⃗𝑓   ⃗𝑔 ∶ 𝐴. By Lemma 2.70 (piecewise well-
formedness of typing judgments), Σ′; Γ ⊢ 𝛽  ⃗⃗⃗ ⃗𝑓   ⃗𝑔 ∶ 𝐴.
Analogously, Σ′; Γ′ ⊢ 𝛽  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑓 ′  ⃗⃗⃗ ⃗⃗ ⃗𝑔′ ∶ 𝐴′.
Therefore, Σ′;𝒟wf.

Soundness Assume Σ″ ⊒ Σ′, with Σ″ ∣≈ 𝒟. That is, Σ″;𝒟wf, and there
is a term 𝑣 such that Σ″; Γ ⊢ 𝛽  ⃗⃗⃗ ⃗𝑓   ⃗𝑔 ≡ 𝑣 ∶ 𝐴, Σ″; Γ′ ⊢ 𝛽  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑓 ′  ⃗⃗⃗ ⃗⃗ ⃗𝑔′ ≡ 𝑣 ∶ 𝐴′,
fv(𝑣) ⊆ fv(𝛽  ⃗⃗⃗ ⃗𝑓   ⃗𝑔) and fv(𝑣) ⊆ fv(𝛽  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑓 ′  ⃗⃗⃗ ⃗⃗ ⃗𝑔′).
By the same reasoning as in the well-formedness proof, Σ′; Γ ⊢ 𝛼  ⃗⃗⃗⃗𝑓  𝑥  ⃗𝑔 ≡
𝛽  ⃗⃗⃗ ⃗𝑓   ⃗𝑔 ∶ 𝐴. By Lemma 2.155 (preservation of judgments under signa-
ture extensions), Σ″; Γ ⊢ 𝛼  ⃗⃗⃗⃗𝑓  𝑥  ⃗𝑔 ≡ 𝛽  ⃗⃗⃗ ⃗𝑓   ⃗𝑔 ∶ 𝐴. By transitivity, Σ″; Γ ⊢
𝛼  ⃗⃗⃗⃗𝑓  𝑥  ⃗𝑔 ≡ 𝑣 ∶ 𝐴.
By Definition 2.18 (free variables in a term), fv(𝛽  ⃗⃗⃗ ⃗𝑓   ⃗𝑔) ⊆ fv(𝛼  ⃗⃗⃗ ⃗𝑓  𝑥  ⃗𝑔);
therefore, fv(𝑣) ⊆ fv(𝛼  ⃗⃗⃗ ⃗𝑓  𝑥  ⃗𝑔).
Analogously, Σ″; Γ′ ⊢ 𝛼  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑓 ′ 𝑦  ⃗⃗⃗ ⃗⃗ ⃗𝑔′ ≡ 𝑣 ∶ 𝐴′ and fv(𝑣) ⊆ fv(𝛼  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑓 ′ 𝑦  ⃗⃗⃗ ⃗⃗ ⃗𝑔′).
By Definition 4.12 (heterogeneous equality), Σ″; Γ‡Γ′ ⊢ 𝛼  ⃗⃗⃗⃗𝑓  𝑥  ⃗𝑔 ≡{𝑣}≡
𝛼  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑓 ′ 𝑦  ⃗⃗⃗ ⃗⃗ ⃗𝑔′ ∶ 𝐴‡𝐴′.
By Lemma 2.70 (piecewise well-formedness of typing judgments), Σ″ sig,
Σ″; Γ ⊢ 𝛼  ⃗⃗⃗⃗𝑓  𝑥  ⃗𝑔 ∶ 𝐴 and Σ″; Γ′ ⊢ 𝛼  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑓 ′ 𝑦  ⃗⃗⃗ ⃗⃗ ⃗𝑔′ ∶ 𝐴′. Note that |Γ| = |Γ′|. By
Definition 4.2 (well-formed internal constraint), Σ″; 𝒞wf.
Therefore, Σ″ ∣≈ 𝒞.

136 CHAPTER 4. UNIFYING WITHOUT ORDER

Completeness Assume that Θ ⊨ Σ;𝒞. This means that Θ ⊨ Σ, Θ ⊢ Γ,𝐴 ≡
Γ′, 𝐴′ ctx and Θ;Γ ⊢ 𝛼  ⃗⃗⃗⃗𝑓  𝑥  ⃗𝑔 ≡ 𝛼  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑓 ′ 𝑦  ⃗⃗⃗ ⃗⃗ ⃗𝑔′ ∶ 𝐴.

(i) By Definition 4.45 (metavariable argument killing), there exist
⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑈 ′𝑛+1

and 𝑉 , 0 ∉ fv(𝑉), and Σ1; · ⊢ 𝑈 ≡ Π ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑈 ′𝑛+1𝑉 type
such that Σ1 ⊆ Σ. By Lemma 2.69 (signature weakening) and
Θ ⊨ Σ, we have Θ; · ⊢ 𝑈 ≡ Π ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑈 ′𝑛+1𝑉 type. By the conv rule,
Θ; · ⊢ 𝛼 ∶ Π ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑈 ′𝑛+1𝑉 .
By Lemma 4.48 (intersection), there exists 𝑢0 such that Θ; · ⊢ 𝛼 ≡
𝜆 ⃗𝑥𝑛.𝜆𝑦.𝑢0 ∶ Π ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑈 ′𝑛+1𝑉 , and 𝑦 ∉ fv(𝑢0). By Lemma 4.47 (complete-
ness of killing), there is Θ′ ⊨ Σ′ with Θ′

Σ = Θ.
(ii) By (i) and Remark 2.134 (subsumption of restriction), Θ′ ⊇ Θ.

By Lemma 2.69 (signature weakening), Θ′ ⊢ Γ,𝐴 ≡ Γ′, 𝐴′ ctx and
Θ′; Γ ⊢ 𝛼  ⃗⃗⃗⃗𝑓  𝑥  ⃗𝑔 ≡ 𝛼  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑓 ′ 𝑦  ⃗⃗⃗ ⃗⃗ ⃗𝑔′ ∶ 𝐴.

(iii) By the same reasoning as in the well-formedness proof, Σ′; Γ ⊢
𝛼  ⃗⃗⃗⃗𝑓  𝑥  ⃗𝑔 ≡ 𝛽  ⃗⃗⃗ ⃗𝑓   ⃗𝑔 ∶ 𝐴. Because Θ′ ⊨ Σ′, we have Θ′; Γ ⊢ 𝛼  ⃗⃗⃗ ⃗𝑓  𝑥  ⃗𝑔 ≡
𝛽  ⃗⃗⃗ ⃗𝑓   ⃗𝑔 ∶ 𝐴.
Analogously, Θ′; Γ′ ⊢ 𝛼  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑓 ′ 𝑥  ⃗⃗⃗ ⃗⃗ ⃗𝑔′ ≡ 𝛽  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑓 ′  ⃗⃗⃗ ⃗⃗ ⃗𝑔′ ∶ 𝐴′. By (ii) and
Lemma 2.63 (preservation of judgments by type conversion),
Θ′; Γ ⊢ 𝛼  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑓 ′ 𝑥  ⃗⃗⃗ ⃗⃗ ⃗𝑔′ ≡ 𝛽  ⃗⃗⃗⃗𝑓 ′  ⃗⃗⃗ ⃗⃗ ⃗𝑔′ ∶ 𝐴. By transitivity of equality,
Θ′; Γ ⊢ 𝛽  ⃗⃗⃗ ⃗𝑓   ⃗𝑔 ≡ 𝛽  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑓 ′  ⃗⃗⃗ ⃗⃗ ⃗𝑔′ ∶ 𝐴.

By (ii) and (iii), Θ′ ⊨ 𝒟. By (i), Θ′ ⊨ Σ′;𝒟.

The proof above (via Lemma 4.48), does not use the fact that 𝑥 and 𝑦 are
variables; only that they are irreducible terms with distinct heads.

Therefore, we could prove the correctness of the following, more general
version of the rule using the same reasoning steps:

Rule-Schema 16 (Generalized metavariable intersection).

Σ1, 𝛼 ∶ 𝑈,Σ2; Γ‡Γ′ ⊢ 𝛼  ⃗⃗⃗⃗𝑓𝑛 ≈ 𝛼  ⃗𝑔𝑛 ∶ 𝐴‡𝐴′ ⇝
Σ1, 𝛽 ∶ 𝑇 , 𝛼 ≔ 𝑢 ∶ 𝑈,Σ2; Γ‡Γ′ ⊢ 𝛽  ⃗⃗⃗⃗𝑓1,…,𝑖−1  ⃗⃗⃗ ⃗𝑓𝑖+1,…,𝑛 ≈ 𝛽  ⃗𝑔1,…,𝑖−1  ⃗𝑔𝑖+1,…,𝑛 ∶ 𝐴‡𝐴′

where
𝑖 ∈ {1,…, 𝑛}

𝑓𝑖 = ℎ  ⃗𝑒, 𝑔𝑖 = ℎ′  ⃗𝑒′, ℎ ≠ ℎ′

all terms in ⃗⃗⃗ ⃗𝑓 and ⃗𝑔 are irreducible
Σ1, 𝛼 ∶ 𝑈,Σ2 ⊢ kill(𝛼, 𝑖) ↦ Σ1, 𝛽 ∶ 𝑇 , 𝛼 ≔ 𝑢 ∶ 𝑈,Σ2

Metavariable pruning

Another situation where we can kill an argument of a metavariable is when it
is headed by a variable which is not free on the other side of the constraint.
For completeness, the metavariable must occur in a rigid position, and all
arguments to the metavariable must be irreducible.

4.5. A REDUCTION RULE TOOLKIT 137

Lemma 4.49 (Pruning). Let ⃗𝑓 = ⃗⃗⃗ ⃗⃗ ⃗⃗𝑓1
𝑛 (𝑦(+𝑘)  ⃗𝑒)  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑓2

𝑚
where, for all 𝑓 ∈ ⃗⃗⃗ ⃗⃗ ⃗⃗𝑓1 or

𝑓 ∈ ⃗⃗⃗ ⃗⃗ ⃗⃗𝑓2, 𝑓 is irreducible, and let 𝛼 be a metavariable.
Assume that 𝑡2⟦𝛼  ⃗⃗⃗ ⃗𝑓⟧𝑘, Θ;Γ ⊢ 𝑡1 ≡ 𝑡2 ∶ 𝐴, and 𝑦 ∉ fv(𝑡1).

Then there exist Δ and 𝐵 such that |Δ| = 𝑘 Θ; Γ,Δ ⊢ 𝛼  ⃗⃗⃗⃗𝑓 ∶ 𝐵,
and there exist 𝑣0 and 𝑇 such that Θ; · ⊢ 𝛼 ≡ 𝜆𝑛+1.𝑣0 ∶ 𝑇0 and 0 ∉ fv(𝑣0).
Proof. By Lemma 2.170 (typing of rigid occurrences), there exist Δ and 𝐵
such that |Δ| = 𝑘 and Θ;Γ,Δ ⊢ 𝛼  ⃗⃗⃗⃗𝑓 ∶ 𝐵.

By Lemma 2.112 (iterated application inversion), there exist ⃗𝑈 and 𝑉 such
that Θ; · ⊢ 𝛼 ∶ Π ⃗𝑈𝑛+1+𝑚𝑉 .

By Lemma 2.166 (reduction at Π-type), there is 𝑣 such that Θ; · ⊢
𝜆 ⃗𝑧𝑛+1+𝑚.𝑣��⟶δη ∶ Π ⃗𝑈𝑉 and Θ; · ⊢ 𝜆 ⃗𝑧𝑛+1+𝑚.𝛼  ⃗𝑧𝑛+1+𝑚 ⟶⋆

δη 𝜆 ⃗𝑧𝑛+1+𝑚.𝑣 ∶
Π ⃗𝑈𝑛+1+𝑚𝑉 , with ⃗𝑧𝑛+1+𝑚 = ((𝑛 + 1 + 𝑚),…, 1, 0). Take 𝑣0 = 𝜆𝑚.𝑣, and
𝑇0 ≔ Π ⃗𝑈𝑛+1+𝑚𝑉 . By the eta-abs rule, transitivity of equality and Lemma
2.86 (equality of δη-reduct), Θ; · ⊢ 𝛼 ≡ 𝜆𝑛+1.𝑣0 ∶ 𝑇0.

It suffices to show that 0 ∉ fv(𝑣0), i.e. 𝑧𝑛+1 ∉ fv(𝑣).
By the hypothesis, Θ;Γ ⊢ 𝑡1 ≡ 𝑡2 ∶ 𝐴. By Remark 2.88 (existence of

a common normal form), there is a term 𝑟 such that Θ;Γ ⊢ 𝑡1 ⟶⋆
δη 𝑟 ∶ 𝐴,

Θ;Γ ⊢ 𝑡2 ⟶⋆
δη 𝑟 ∶ 𝐴, and Θ;Γ ⊢ 𝑟��⟶δη ∶ 𝐴.

Because 𝑡2⟦𝛼  ⃗⃗⃗ ⃗𝑓⟧𝑘, by Lemma 2.170 (typing of rigid occurrences), Θ;Γ ⊢
𝑡2⟦Δ ⊢ 𝛼  ⃗⃗⃗⃗𝑓 ∶ 𝐵′⟧ ∶ 𝐴 for some Δ and 𝐵′ with |Δ| = 𝑘.

We have Θ;Γ ⊢ 𝑡2⟶⋆
δη 𝑟 ∶ 𝐴. By Remark 2.43 (free variables of δη-reduct)

and Lemma 2.172 (free variables in reduction of rigid occurrences), there is
𝑢′ such that Θ;Γ,Δ ⊢ 𝛼  ⃗⃗⃗⃗𝑓 ≡ 𝑢′ ∶ 𝐵′ and fv(𝑢′) − |Δ| ⊆ fv(𝑟). Because
𝑦 ∉ fv(𝑟), this means 𝑦 + |Δ| ∉ fv(𝑢′).

By Postulate 6 (congruence of hereditary application), Θ;Γ,Δ ⊢ 𝛼  ⃗⃗⃗⃗𝑓 ≡
𝑣[⃗𝑓] ∶ 𝑉 [⃗𝑓]. By Lemma 2.75 (uniqueness of typing for neutrals) and the
conv-eq rule, Θ;Γ,Δ ⊢ 𝛼  ⃗⃗⃗⃗𝑓 ≡ 𝑣[⃗𝑓] ∶ 𝐵′. By transitivity and symmetry,
Θ;Γ,Δ ⊢ 𝑣[⃗𝑓] ≡ 𝑢′ ∶ 𝐵′.

We proceed by contradiction; assume 𝑧𝑛+1 ∈ fv(𝑣). Because 𝑓𝑛+1 =
𝑦(+|Δ|)  ⃗𝑒, by Lemma 2.175 (preservation of irreducibles by normal forms), this
means 𝑦(+|Δ|) ∈ fv(𝑢′), which is a contradiction. Therefore, 𝑧𝑛+1 ∉ fv(𝑣).
Rule-Schema 17 (Metavariable pruning).

Σ;Γ‡Γ′ ⊢ 𝑣 ≈ 𝑡 ∶ 𝐴‡𝐴′ ⇝ Σ′; Γ‡Γ′ ⊢ 𝑣 ≈ 𝑡 ∶ 𝐴‡𝐴′

where
𝑡⟦𝛼  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑓1

𝑛 (𝑦  ⃗𝑒)  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑓2
𝑚⟧𝑘 for 𝑘 ∈ ℕ (1)

𝑦 ∉ fv(𝑣) (2)
every 𝑓 ∈ ⃗⃗⃗ ⃗⃗ ⃗⃗𝑓1 or 𝑓 ∈ ⃗⃗⃗ ⃗⃗ ⃗⃗𝑓2 is irreducible (3)
Σ ⊢ kill(𝛼, 𝑛 + 1) ↦ Σ′, where Σ = Σ1, 𝛼 ∶ 𝑈,Σ2

and Σ′ = Σ1, 𝛽 ∶ 𝑇 , 𝛼 ≔ 𝑢 ∶ 𝑈,Σ2 (4)

Proof of correctness. Let 𝒞 ≝ Γ‡Γ′ ⊢ 𝑣 ≈ 𝑡 ∶ 𝐴‡𝐴′.
Assume Σ sig, Σ;𝒞wf.

Well-formedness By the assumption and Lemma 4.46 (well-formedness of
killing), we have Σ′ sig and Σ′ ⊒ Σ.

138 CHAPTER 4. UNIFYING WITHOUT ORDER

Also by assumption, Σ;𝒞. By Lemma 2.155 (preservation of judgments
under signature extensions), and Remark 4.7 (well-formed unification
constraint is a judgment), Σ′; 𝒞wf.

Soundness Assume Σ″ ⊒ Σ′ and Σ″ ⊨ 𝒞. Then we have Σ″ ⊨ 𝒞.

Completeness Assume that Θ ⊨ Σ;𝒞. This means Θ ⊨ Σ, Θ ⊢ Γ,𝐴 ≡
Γ′, 𝐴′ ctx and Θ;Γ ⊢ 𝑣 ≡ 𝑡 ∶ 𝐴.

By Lemma 4.49 (pruning), taking 𝑡1 ∶= 𝑣, 𝑡2 ∶= 𝑡, and ⃗⃗⃗ ⃗𝑓 ∶= ⃗⃗⃗ ⃗⃗ ⃗⃗𝑓1
𝑛 (𝑦  ⃗𝑒)  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑓2

𝑚
,

there exists 𝑢0 and 𝑈 ′ such that Θ; · ⊢ 𝛼 ≡ 𝜆 ⃗𝑧𝑛+1.𝑢0 ∶ 𝑈 ′, with 𝑧𝑛+1 ∉
fv(𝑢0).
By Lemma 4.47 (completeness of killing), there is Θ′ with Θ′

Σ = Θ and
Θ′ ⊨ Σ′. By Remark 2.134 (subsumption of restriction), Θ′ ⊇ Θ. By
Lemma 2.69 (signature weakening), Θ′ ⊢ Γ,𝐴 ≡ Γ′, 𝐴′ ctx and Θ′; Γ ⊢
𝑣 ≡ 𝑡 ∶ 𝐴; that is, Θ′ ⊨ 𝒞.
Therefore, Θ′ ⊨ Σ′; 𝒞.

4.5.10 Metavariable argument currying
The pattern condition for metavariable instantiation states that all the argu-
ments of a metavariable must be variables. Abel and Pientka [3] observed that
we can relax this condition when some of the arguments of the metavariable
are record constructors. In this case, we can consider each of the fields of the
record as a separate argument when evaluating the pattern condition.

In our formulation, this means that a metavariable argument of type 𝑦 ∶
Σ𝑈𝑉 can be expanded into two arguments 𝑦1 ∶ 𝑈 and 𝑦2 ∶ 𝑉 [𝑦1].

Rule-Schema 18 (Metavariable argument currying).

Σ1, 𝛼 ∶ 𝑇 , Σ2;□ ⇝ Σ1, 𝛽 ∶ 𝑇β, 𝛼 ≔ 𝑡α ∶ 𝑇 , Σ2; □
where

𝛽 is fresh in Σ
Σ1; · ⊢ 𝑇 ≡ Π ⃗𝐴𝑛Π(Σ𝑈𝑉)𝐵 type

𝐵((+2) + 1)[⟨1, 0⟩/0] ⇓ 𝐵′

𝑇β = Π ⃗𝐴𝑛Π𝑈Π𝑉 𝐵′

𝑡α = 𝜆⃗⃗⃗⃗𝑥𝑛 𝑦.𝛽 ⃗⃗ ⃗⃗𝑥𝑛 (𝑦 .𝜋1) (𝑦 .𝜋2)

Proof of correctness. Let Σ = Σ1, 𝛼 ∶ 𝑇 , Σ2, Σ′ = Σ1, 𝛽 ∶ 𝑇β, 𝛼 ≔ 𝑡α ∶ 𝑇 , Σ2,
and 𝑇α = Π ⃗𝐴𝑛Π(Σ𝑈𝑉)𝐵.

Well-formedness Assume Σ sig. We want to show that Σ ⊑ Σ′.

• Σ1, 𝛽 ∶ 𝑇β sig:
It suffices to show that the premises of the following rule are fulfilled:

4.5. A REDUCTION RULE TOOLKIT 139

Σ1 sig 𝛽 is fresh in Σ1 Σ1; · ⊢ 𝑇β type
meta-declΣ1, 𝛽 ∶ 𝑇β sig

By assumption, Σ1 sig. By assumption 𝛽 is fresh in Σ, and therefore
also in Σ1. It remains to show that Σ1; · ⊢ 𝑇β type.
(i) By the rules premises, Σ1; · ⊢ 𝑇 ≡ 𝑇α type. By Lemma

2.70 (piecewise well-formedness of typing judgments), Σ1; · ⊢
𝑇α type (that is, Σ1; · ⊢ Π ⃗𝐴𝑛Π(Σ𝑈𝑉)𝐵 type) By Lemma 2.52
(Π inversion), this gives Σ1; ⃗⃗ ⃗⃗ ⃗⃗𝐴, Σ𝑈𝑉 ⊢ 𝐵 type.

(ii) By Lemma 2.70 (piecewise well-formedness of typing judg-
ments) and Lemma 2.53 (Σ inversion), we have Σ; ⃗⃗ ⃗⃗ ⃗⃗𝐴 ⊢ 𝑈 ∶ Set
and Σ; ⃗⃗ ⃗⃗ ⃗⃗𝐴, 𝑈 ⊢ 𝑉 ∶ Set.

(iii) By (ii), Σ1 ⊢ ⃗⃗⃗⃗⃗⃗𝐴, 𝑈, 𝑉 ctx. By (i) and Lemma 2.62 (context
weakening), Σ1; ⃗⃗ ⃗⃗ ⃗⃗𝐴, 𝑈, 𝑉 , (Σ𝑈𝑉)(+2) ⊢ 𝐵((+2)+1) ∶ Set.

(iv) Note that Σ1; ⃗⃗ ⃗⃗ ⃗⃗𝐴, 𝑈, 𝑉 ⊢ 1 ∶ 𝑈 (+2), Σ1; ⃗⃗ ⃗⃗ ⃗⃗𝐴, 𝑈, 𝑉 ⊢ 1 ∶ 𝑉 (+1),
𝑉 (+1) = 𝑉 ((+2)+1)[1/0], and Σ𝑈𝑉 (+2) = Σ(𝑈 (+2))(𝑉 ((+2)+1)).
By the pair rule, Σ1; ⃗⃗ ⃗⃗ ⃗⃗𝐴, 𝑈, 𝑉 ⊢ ⟨1, 0⟩ ∶ Σ𝑈𝑉 (+2).

By (iii), (iv) and Postulate 1 (typing of hereditary substitution),
Σ1; ⃗⃗ ⃗⃗ ⃗⃗𝐴, 𝑈, 𝑉 ⊢ 𝐵((+2)+1)[⟨1, 0⟩/0] ∶ Set; that is Σ1; ⃗⃗ ⃗⃗ ⃗⃗𝐴, 𝑈, 𝑉 ⊢ 𝐵′ ∶
Set. By successive applications of the pi rule, we have Σ1; · ⊢
Π ⃗⃗⃗⃗⃗⃗𝐴Π𝑈Π𝑉 𝐵′ ∶ Set; that is, Σ1; · ⊢ 𝑇β type.

• Σ1, 𝛽 ∶ 𝑇β, 𝛼 ≔ 𝑡α ∶ 𝑇 sig: It suffices to show that the premises of
the meta-inst rule are fulfilled:

Σ1, 𝛽 ∶ 𝑇β sig
𝛼 fresh in Σ1, 𝛽 ∶ 𝑇β
Σ1, 𝛽 ∶ 𝑇β; · ⊢ 𝑇 type
Σ1, 𝛽 ∶ 𝑇β; · ⊢ 𝑡α ∶ 𝑇

meta-instΣ1, 𝛽 ∶ 𝑇β, 𝛼 ≔ 𝑡 ∶ 𝑇 sig

As shown above, Σ1, 𝛽 ∶ 𝑇β sig. Because Σ sig, we have that 𝛼 is
fresh in Σ1. Because 𝛽 is fresh in Σ, 𝛼 ≠ 𝛽. Therefore, 𝛼 is fresh in
Σ1, 𝛽 ∶ 𝑇β. Because Σ1; · ⊢ 𝑇 type and Σ1 ⊆ Σ1, 𝛽 ∶ 𝑇β, by Lemma
2.69 (signature weakening), we also have Σ1, 𝛽 ∶ 𝑇β; · ⊢ 𝑇 type.
It remains to show that Σ1, 𝛽 ∶ 𝑇β; · ⊢ 𝑡α ∶ 𝑇 .

(a) Let (𝑥1,…, 𝑥𝑛, 𝑦) = (𝑛, 𝑛 − 1,…, 1, 0). Note that fv(Π ⃗𝐴Π𝑈
Π𝑉 𝐵) = ∅, and therefore, 𝐴(+(𝑛+1))

1 = 𝐴1, 𝐴(+𝑛)
2 = 𝐴2[𝑥1], …,

𝐴(+2)
𝑛 = 𝐴2[⃗𝑥1,…,𝑛−1], 𝑈 (+1) = 𝑈[⃗𝑥1,…,𝑛] and 𝑉 (+1)+1[(𝑦 .𝜋1)] =

𝑉 [⃗𝑥1,…,𝑛, (𝑦 .𝜋1)],
By the the var rule, Σ1, 𝛽 ∶ 𝑇β, ⃗𝑥 ∶ 𝐴, 𝑦 ∶ Σ𝑈𝑉 ⊢ 𝑥1 ∶ 𝐴1, Σ1, 𝛽 ∶
𝑇β, ⃗𝑥 ∶ 𝐴, 𝑦 ∶ Σ𝑈𝑉 ⊢ 𝑥2 ∶ 𝐴2[𝑥1], …, and Σ1, 𝛽 ∶ 𝑇β, ⃗𝑥 ∶ 𝐴, 𝑦 ∶
Σ𝑈𝑉 ⊢ 𝑥𝑛 ∶ 𝐴𝑛[𝑥1,…,𝑛−1].
By the proj1 and the proj2 rule, Σ1, 𝛽 ∶ 𝑇β, ⃗𝑥 ∶ 𝐴, 𝑦 ∶ Σ𝑈𝑉 ⊢
𝑦 .𝜋1 ∶ 𝑈[⃗𝑥1,…,𝑛] and Σ1, 𝛽 ∶ 𝑇β, ⃗𝑥 ∶ 𝐴, 𝑦 ∶ Σ𝑈𝑉 ⊢ 𝑦 .𝜋2 ∶
𝑉 (+1)+1[𝑦 .𝜋1].

140 CHAPTER 4. UNIFYING WITHOUT ORDER

By repeated application of the app rule, we have Σ1, 𝛽 ∶
𝑇β; ⃗𝑥 ∶ 𝐴, 𝑦 ∶ Σ𝑈𝑉 ⊢ 𝛽  ⃗𝑥 (𝑦 .𝜋1) (𝑦 .𝜋2) ∶ 𝐵′[⃗𝑥, (𝑦 .𝜋1), (𝑦 .𝜋2)].
By Lemma 2.40 (correspondence between renaming and sub-
stitution) and Postulate 5 (hereditary substitution commutes),
𝐵′[⃗𝑥, (𝑦 .𝜋1), (𝑦 .𝜋2)] = 𝐵((+1) + 1)[⟨0 .𝜋1, 0 .𝜋2⟩/0].
By the eta-pair rule, Σ1, 𝛽 ∶ 𝑇β; ⃗𝐴, Σ𝑈𝑉 ⊢ 0 ≡ ⟨0 .𝜋1, 0 .𝜋2⟩ ∶
Σ𝑈𝑉 . By Postulate 4 (congruence of hereditary substitution),
Σ1, 𝛽 ∶ 𝑇β; ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑥 ∶ 𝐴, 𝑦 ∶ Σ𝑈𝑉 ⊢ 𝐵′[⃗𝑥, (𝑦 .𝜋1), (𝑦 .𝜋2)] ≡ 𝐵((+1) +
1)[0/0] type. By definition, 𝐵((+1) + 1)[0/0] = 𝐵. Therefore,
Σ1, 𝛽 ∶ 𝑇β; ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑥 ∶ 𝐴, 𝑦 ∶ Σ𝑈𝑉 ⊢ 𝛽  ⃗𝑥 (𝑦 .𝜋1) (𝑦 .𝜋2) ∶ 𝐵.
By the abs rule, Σ1, 𝛽 ∶ 𝑇β; · ⊢ 𝜆⃗⃗ ⃗⃗𝑥𝑛 𝑦.𝛽  ⃗⃗⃗𝑥 (𝑦 .𝜋1) (𝑦 .𝜋2) ∶
Π ⃗⃗⃗⃗ ⃗⃗𝐴Π(Σ𝑈𝑉)𝐵.

(b) By assumption, we have Σ1; · ⊢ 𝑇 ≡ Π ⃗⃗⃗⃗⃗⃗𝐴Π(Σ𝑈𝑉)𝐵 type.
By Lemma 2.69 (signature weakening), Σ1, 𝛽 ∶ 𝑇β; · ⊢ 𝑇 ≡
Π ⃗⃗⃗⃗⃗⃗𝐴Π(Σ𝑈𝑉)𝐵 type

(c) By (a) and the conv rule, Σ1, 𝛽 ∶ 𝑇β; · ⊢ 𝜆⃗⃗ ⃗⃗𝑥𝑛 𝑦.(𝛽  ⃗⃗⃗𝑥𝑛 (𝑦 .𝜋1) 
(𝑦 .𝜋2)) ∶ 𝑇 .

By Definition 2.151, Σ1, 𝛼 ∶ 𝑇 ⊑ Σ1, 𝛽 ∶ 𝑇β, 𝛼 ≔ 𝑡α ∶ 𝑇 . By Corol-
lary 2.156, Σ1, 𝛼 ∶ 𝑇 , Σ2 ⊑ Σ1, 𝛽 ∶ 𝑇β, 𝛼 ≔ 𝑡α ∶ 𝑇 , Σ2.

Soundness Assume Σ″ sig such that Σ″ ⊒ Σ1, 𝛽 ∶ 𝑇β, 𝛼 ≔ 𝑡α ∶ 𝑇 , Σ2. Vacu-
ously, Σ″ ∣≈ □.

Completeness Assume Θ ⊨ Σ. We want to find Θ′ such that Θ′
Σ = Θ, and

Θ′ ⊨ Σ′.

(i) Because 𝛼 ∶ 𝑇 ∈ Σ, by Lemma 2.130 (alternative characteriza-
tion of a compatible metasubstitution) and Remark 2.129 (alterna-
tive characterization of compatibility of a metasubstitution with a
declaration), there are 𝑢 and 𝑇 ′ such that 𝛼 ≔ 𝑢 ∶ 𝑇 ′ ∈ Θ and
Θ; · ⊢ 𝑇 ′ ≡ 𝑇 type.

(ii) By (i) and Remark 2.73 (signature piecewise well-formed), Θ; · ⊢
𝑢 ∶ 𝑇 ′. Because Θ ⊨ Σ, Θ; · ⊢ 𝑇 ≡ Π ⃗⃗⃗⃗⃗⃗𝐴𝑛Π(Σ𝑈𝑉)𝐵 type. By (i)
and transitivity of type equality, Θ; · ⊢ 𝑇 ′ ≡ Π ⃗⃗⃗⃗⃗⃗𝐴𝑛Π(Σ𝑈𝑉)𝐵 type.
By the conv rule, Θ; · ⊢ 𝑢 ∶ Π ⃗⃗⃗⃗⃗⃗𝐴𝑛Π(Σ𝑈𝑉)𝐵.

(iii) By (ii) and Lemma 2.62 (context weakening), Θ; ⃗𝐴, 𝑈, 𝑉 ⊢ 𝑢 ∶
Π ⃗⃗⃗⃗⃗⃗𝐴Π(Σ𝑈𝑉)𝐵.
Let ⃗𝑥, 𝑦1, 𝑦2 = 𝑛 + 1,…, 1, 0. Note that (Σ𝑈𝑉)(+2) = (Σ𝑈𝑉)[⃗𝑥].
Therefore, by the var and pair rules, Θ; ⃗𝐴, 𝑈, 𝑉 ⊢ ⟨1, 0⟩ ∶
(Σ𝑈𝑉)[⃗𝑥].
By Postulate 2 (typing of hereditary application), (𝑢 @ ⃗𝑥 ⟨𝑦1, 𝑦2⟩)⇓
and Θ; 𝑥 ∶ ⃗𝐴, 𝑦1 ∶ 𝑈, 𝑦2 ∶ 𝑉 ⊢ 𝑢 @ ⃗𝑥 ⟨𝑦1, 𝑦2⟩ ∶ 𝐵[⃗⃗⃗𝑥, ⟨𝑦1, 𝑦2⟩]. By
Lemma 2.40 (correspondence between renaming and substitution),
𝐵[⃗⃗⃗𝑥, ⟨𝑦1, 𝑦2⟩] = 𝐵(+2)+1[⟨𝑦1, 𝑦2⟩] = 𝐵′.
Let 𝑣 = 𝜆 ⃗𝑥𝑛.𝜆𝑦1.𝜆𝑦2.(𝑢 @ ⃗𝑥 ⟨𝑦1, 𝑦2⟩). By the abs rule, Θ; · ⊢ 𝑣 ∶
Π ⃗𝐴Π𝑈Π𝑉 𝐵′, that is, Θ; · ⊢ 𝑣 ∶ 𝑇β.

4.5. A REDUCTION RULE TOOLKIT 141

Because 𝛼 ≔ 𝑢 ∶ 𝑇 ′ ∈ Θ and Θwf, we have metas(𝑢) = ∅. By
construction, this implies metas(𝑣) = ∅.

(iv) By Lemma 2.141 (existence of meta-free normal form), let 𝑇 ′
β be a

term such that Θ ⊢ 𝑇β ⇘̂ 𝑇 ′
β. In particular, Θ; · ⊢ 𝑇β ≡ 𝑇 ′

β ∶ Set
and metas(𝑇 ′

β) = ∅. By (iii) and the conv rule, Θ; · ⊢ 𝑣 ∶ 𝑇 ′
β.

Let Θ′ = (Θ, 𝛽 ∶= 𝑣 ∶ 𝑇 ′
β).

By (iv) and Definition 2.122 Θ′ wf. Because Θ′
Σ = Θ, we have Θ ⊑ Θ′.

It remains to show that Θ′ ⊨ Σ′.

Let 𝐷 be a declaration, 𝐷 ∈ Σ′. There are three possible cases:

• 𝐷 ∈ Σ1 or 𝐷 ∈ Σ2: Then 𝐷 ∈ Σ. By Remark 2.131, Θ′ is compatible
with 𝐷.

• 𝐷 = 𝛽 ∶ 𝑇β: We have 𝛽 ∶= 𝑣 ∶ 𝑇 ′
β ∈ Θ′. By (iv), Θ; · ⊢ 𝑇β ≡

𝑇 ′
β ∶ Set. By Lemma 2.69, we also have Θ′; · ⊢ 𝑇β ≡ 𝑇 ′

β ∶ Set,
which, by Remark 2.15, Θ′; · ⊢ 𝑇β ≡ 𝑇 ′

β type. By Remark 2.129
(alternative characterization of compatibility of a metasubstitution
with a declaration), Θ′ is compatible with 𝐷.

• 𝐷 = 𝛼 ≔ 𝑡α ∶ 𝑇 : We have 𝛼 ≔ 𝑢 ∶ 𝑇 ′ ∈ Θ.
Note that 𝛽 ≔ 𝑣 ∶ 𝑇 ′

β ∈ Θ′, where 𝑣 = 𝜆 ⃗𝑥𝑛.𝜆𝑦1.𝜆𝑦2.(𝑢 @
⃗𝑥 ⟨𝑦1, 𝑦2⟩) and Θ; · ⊢ Π ⃗⃗⃗⃗⃗⃗𝐴Π𝑈Π𝑉 𝐵′ ≡ 𝑇 ′

β ∶ Set. Also,
𝑡α = 𝜆⃗⃗⃗⃗𝑥𝑛 𝑦.𝛽 ⃗⃗ ⃗⃗𝑥𝑛 (𝑦 .𝜋1) (𝑦 .𝜋2).
By the delta-meta rule and Postulate 9 (commuting of
hereditary substitution and application), Θ′; ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑥 ∶ 𝐴, 𝑦 ∶ Σ𝑈𝑉 ⊢
𝛽  ⃗⃗⃗𝑥𝑛 (𝑦 .𝜋1) (𝑦 .𝜋2) ≡ 𝑢 @ ⃗𝑥 ⟨𝑦 .𝜋1, 𝑦 .𝜋2⟩ ∶ 𝐵′[⃗𝑥, (𝑦 .𝜋1), (𝑦 .𝜋2)].
The premises of Postulate 9 are fulfilled by the fact that
Θ; · ⊢ 𝑇 ′ ≡ Π ⃗𝐴Π𝑈𝑉 type and the same reasoning as above.
By the Postulate 4 (congruence of hereditary substitution) and the
eta-pair and conv-eq rules, we have Θ′; ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑥 ∶ 𝐴, 𝑦 ∶ Σ𝑈𝑉 ⊢ 𝑢 @
⃗𝑥 ⟨𝑦 .𝜋1, 𝑦 .𝜋2⟩ ≡ 𝛽 ⃗⃗ ⃗⃗𝑥𝑛 (𝑦 .𝜋1) (𝑦 .𝜋2) ∶ 𝐵.

By the eta-pair rule and Postulate 6 (congruence of hereditary
application), Θ′; ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑥 ∶ 𝐴, 𝑦 ∶ Σ𝑈𝑉 ⊢ 𝑢 @ ⃗𝑥 𝑦 ≡ 𝛽 ⃗⃗ ⃗⃗𝑥𝑛 (𝑦 .𝜋1) (𝑦 .𝜋2) ∶ 𝐵.
By repeated application of the abs-eq rule, Lemma 4.34 (general
η-equality for Π-types), and transitivity of equality, Θ′; · ⊢ 𝑢 ≡ 𝑡α ∶
𝑇 ′.
By (i) we have Θ; · ⊢ 𝑇 ′ ≡ 𝑇 type. Because Θ ⊑ Θ′, Θ′; · ⊢ 𝑇 ′ ≡
𝑇 type.
Therefore, Θ′ is compatible with 𝐷.

By Lemma 2.130 (alternative characterization of a compatible metasub-
stitution), Θ′ ⊨ Σ′.

142 CHAPTER 4. UNIFYING WITHOUT ORDER

4.5.11 Metavariable η-expansion

Rule schema 2 (metavariable instantiation) cannot be applied if the metavari-
able has projections among its eliminators. Abel and Pientka [3] show how
these eliminators can be removed.

Example 4.50. Consider the following problem:

𝔸 ∶ Set, 𝕒 ∶ 𝔸, 𝕓 ∶ 𝔸, 𝛼 ∶ 𝔸 → 𝔸 → 𝔸× 𝔸;
𝑥 ∶ 𝔸‡𝔸, 𝑦 ∶ 𝔸‡𝔸 ⊢ 𝛼 𝑥 𝑦 .𝜋1 ≈ 𝑥 ∶ 𝔸‡𝔸,
𝑥 ∶ 𝔸‡𝔸, 𝑦 ∶ 𝔸‡𝔸 ⊢ 𝛼 𝑥 𝑦 .𝜋2 ≈ 𝑦 ∶ 𝔸‡𝔸

Rule schema 2 (metavariable instantiation) cannot be applied to any of the
constraints, because the metavariable 𝛼 is applied to eliminators which are
not variables (.𝜋1 and .𝜋2, respectively). However, if we instantiate 𝛼 with
𝛼 ≔ 𝜆𝑥.𝜆𝑦.⟨𝛼1 𝑥 𝑦, 𝛼2 𝑥 𝑦⟩ ∶ 𝔸 → 𝔸 → 𝔸 × 𝔸 (where 𝛼1 ∶ 𝔸 → 𝔸 → 𝔸 and
𝛼2 ∶ 𝔸 → 𝔸 → 𝔸 are fresh metavariables) and apply Rule schema 8 (term
conversion) to normalize the constraints, then the problem becomes:

𝔸 ∶ Set, 𝕒 ∶ 𝔸, 𝕓 ∶ 𝔸,
𝛼1 ∶ 𝔸 → 𝔸 → 𝔸,
𝛼2 ∶ 𝔸 → 𝔸 → 𝔸,
𝛼 ≔ 𝜆𝑥.𝜆𝑦.⟨𝛼1 𝑥 𝑦, 𝛼2 𝑥 𝑦⟩ ∶ 𝔸 → 𝔸 → 𝔸× 𝔸;
𝑥 ∶ 𝔸‡𝔸, 𝑦 ∶ 𝔸‡𝔸 ⊢ 𝛼1 𝑥 𝑦 ≈ 𝑥 ∶ 𝔸‡𝔸,
𝑥 ∶ 𝔸‡𝔸, 𝑦 ∶ 𝔸‡𝔸 ⊢ 𝛼2 𝑥 𝑦 ≈ 𝑦 ∶ 𝔸‡𝔸

Then Rule schema 2 can be applied both constraints.
◀

Example 4.51. Consider the following unification problem:

𝔸 ∶ Set, 𝕒 ∶ 𝔸,
𝔹 ∶ 𝔸 → Set, 𝕓 ∶ 𝔹 𝕒,
𝛼 ∶ 𝔸 → 𝔹 𝕒 → Σ𝔸(𝔹 𝕒);
· ⊢ 𝛼 𝕒 𝕓 .𝜋1 ≈ 𝕒 ∶ 𝔸‡𝔸 ∧
𝑥 ∶ 𝔸‡𝔸, 𝑦 ∶ 𝔹 𝕒‡𝔹 𝕒 ⊢ 𝛼 𝑥 𝑦 ≈ ⟨𝑥, 𝑦⟩ ∶ Σ𝔸(𝔹 𝕒)‡Σ𝔸(𝔹 (𝛼 𝕒 𝕓 .𝜋1))

In order to instantiate 𝛼 by applying Rule schema 2 (metavariable instan-
tiation), we need to have Σ;Γ‡Γ′ ⊢ Σ𝔸(𝔹 𝕒) ≡ Σ𝔸(𝔹 (𝛼 𝕒 𝕓 .𝜋1)) ∶ Set‡Set.

By η-expanding 𝛼 as in the previous example and then applying
Rule schema 12 (pairs), we obtain the following problem:

4.5. A REDUCTION RULE TOOLKIT 143

𝔸 ∶ Set, 𝕒 ∶ 𝔸,
𝔹 ∶ 𝔸 → Set, 𝕓 ∶ 𝔹 𝕒,
𝛼1 ∶ 𝔸 → 𝔹 𝕒 → 𝔸,
𝛼2 ∶ 𝔸 → 𝔹 𝕒 → 𝔹 𝕒,
𝛼 ≔ 𝜆𝑥.𝜆𝑦.⟨𝛼1 𝑥 𝑦, 𝛼2 𝑥 𝑦⟩ ∶ 𝔸 → 𝔹 𝕒 → Σ𝔸(𝔹 𝕒);
· ⊢ 𝛼1 𝕒 𝕓 ≈ 𝕒 ∶ 𝔸 ∧
𝑥 ∶ 𝔸‡𝔸, 𝑦 ∶ 𝔹 𝕒‡𝔹 𝕒 ⊢ 𝛼1 𝑥 𝑦 ≈ 𝑥 ∶ 𝔸‡𝔸 ∧
𝑥 ∶ 𝔸‡𝔸, 𝑦 ∶ 𝔹 𝕒‡𝔹 𝕒 ⊢ 𝛼2 𝑥 𝑦 ≈ 𝑦 ∶ 𝔹 𝕒‡𝔹 (𝛼1 𝕒 𝕓)

Then, by applying Rule schema 2 (metavariable instantiation), we can in-
stantiate 𝛼1 to 𝜆𝑥.𝜆𝑦.𝑥. Then the rest of the constraints can be solved using
Rule schema 8 (term conversion), Rule schema 9 (type and context conver-
sion), Rule schema 1 (syntactic equality) and Rule schema 2 (metavariable
instantiation).

◀

Examples 4.50 and 4.51 may be generalized as the following rule:

Rule-Schema 19 (Metavariable η-expansion).

Σ1, 𝛼 ∶ 𝑈,Σ2; □ ⇝
Σ1, 𝛼1 ∶ Π ⃗⃗⃗ ⃗⃗𝑇 .𝐴, 𝛼2 ∶ Π ⃗⃗⃗ ⃗⃗𝑇 .𝐵[𝛼1  ⃗𝑥], 𝛼 ≔ 𝜆 ⃗𝑥𝑛.⟨𝛼1  ⃗𝑥, 𝛼2  ⃗𝑥⟩ ∶ 𝑈, Σ2; □

where
Σ = Σ1, 𝛼 ∶ 𝑈,Σ2
Σ1; · ⊢ 𝑈 ≡ Π ⃗⃗⃗ ⃗⃗𝑇𝑛.Σ𝐴𝐵 type
𝛼1 and 𝛼2 fresh in Σ, 𝛼1 ≠ 𝛼2

Remark. Rule schema 19 may be applied to any metavariable, regardless of
whether it occurs in a constraint or not.

Proof of correctness. Let

Σ° ≝ Σ1, 𝛼1 ∶ Π ⃗⃗⃗ ⃗⃗𝑇 .𝐴,
Σa ≝ Σ°, 𝛼2 ∶ Π ⃗⃗⃗ ⃗⃗𝑇 .𝐵[𝛼1  ⃗𝑥],
Σb ≝ Σa, 𝛼 ≔ 𝜆 ⃗𝑥𝑛.⟨𝛼1  ⃗𝑥, 𝛼2  ⃗𝑥⟩ ∶ 𝑈 and
Σ′ ≝ Σb, Σ2.

Well-formedness It suffices to show Σ sig, and Σ ⊑ Σ′.

• Σ° sig:
We use the meta-decl rule:

Σ1 sig 𝛼1 is fresh in Σ1 Σ1; · ⊢ Π ⃗⃗⃗ ⃗⃗𝑇 .𝐴 type
meta-declΣ° sig

144 CHAPTER 4. UNIFYING WITHOUT ORDER

By induction on the derivation of Σ sig, we have Σ1 sig.
By the rule preconditions, 𝛼1 is fresh in Σ, and thus in Σ1.
Also by the rule preconditions, Σ1; · ⊢ 𝑈 ≡ Π ⃗⃗⃗ ⃗⃗𝑇𝑛.Σ𝐴𝐵 type. By
Lemma 2.70 (piecewise well-formedness of typing judgments),
Σ1; · ⊢ Π ⃗⃗⃗ ⃗⃗𝑇𝑛.Σ𝐴𝐵 type.
By Lemma 2.52 (Π inversion), we have Σ1; ⃗⃗⃗ ⃗⃗𝑇 ⊢ Σ𝐴𝐵 type. By
Lemma 2.53 (Σ inversion), this gives Σ1; ⃗𝑇 ⊢ 𝐴 type. By Re-
mark 2.15 (there is only set), Σ1; ⃗𝑇 ⊢ 𝐴 ∶ Set. By repeatedly
applying the pi rule, we have Σ1; · ⊢ Π ⃗⃗⃗ ⃗⃗𝑇 .𝐴 ∶ Set, which means
Σ1; · ⊢ Π ⃗⃗⃗ ⃗⃗𝑇 .𝐴 type.

• Σa sig:
We use the meta-decl rule:

Σ° sig
𝛼2 is fresh in Σ° Σ°; · ⊢ Π⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑥 ∶ 𝑇 .𝐵[𝛼1  ⃗𝑥] type

meta-declΣa sig

By the rule preconditions, 𝛼2 is fresh in Σ, and therefore also in Σ°.
By the meta1 and head rules, Σ°; ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑥 ∶ 𝑇 ⊢ 𝛼1 ∶ Π ⃗⃗⃗ ⃗⃗𝑇 .𝐴. By repeat-
edly applying the app rule, Σ°; ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑥 ∶ 𝑇 ⊢ 𝛼1  ⃗𝑥 ∶ 𝐴.
As shown in the proof of Σ° sig, Σ1; ⃗⃗⃗ ⃗⃗𝑇 ⊢ Σ𝐴𝐵 ∶ Set. By Lemma
2.53 (Σ inversion), this gives Σ1; ⃗⃗⃗ ⃗⃗𝑇 , 𝐴 ⊢ 𝐵 ∶ Set.
Because Σ°; ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑥 ∶ 𝑇 ⊢ 𝛼1  ⃗𝑥 ∶ 𝐴 and Σ1; ⃗𝑇 , 𝐴 ⊢ 𝐵 ∶ Set, by Postulate 1
(typing of hereditary substitution), Σ°; ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑥 ∶ 𝑇 ⊢ 𝐵[𝛼1  ⃗𝑥] ∶ Set.
By repeatedly applying the pi rule, we have Σ°; · ⊢ Π ⃗⃗⃗ ⃗⃗𝑇 .𝐵[𝛼1  ⃗𝑥] ∶ Set
which means Σ°; · ⊢ Π ⃗⃗⃗ ⃗⃗𝑇 .𝐵[𝛼1  ⃗𝑥] type.

• Σb sig:

Σa sig
𝛼 fresh in Σa

Σa; · ⊢ 𝑈 type
Σa; · ⊢ 𝜆 ⃗𝑥.⟨𝛼1  ⃗𝑥, 𝛼2  ⃗𝑥⟩ ∶ 𝑈

meta-inst
Σb sig

By Definition 2.4 (well-formed signature), Σ sig implies Σ1; · ⊢
𝑈 type. By Lemma 2.69 (signature weakening), Σa; · ⊢ 𝑈 type.
Finally, by the typing rules (in particular, abs, pair, meta1 and
app) Σa; · ⊢ 𝜆 ⃗𝑥𝑛.⟨𝛼1  ⃗𝑥, 𝛼2  ⃗𝑥⟩ ∶ Π ⃗⃗⃗ ⃗⃗𝑇𝑛.Σ𝐴𝐵. From the premises,
Σ1; · ⊢ 𝑈 ≡ Π ⃗⃗⃗ ⃗⃗𝑇𝑛.Σ𝐴𝐵 ∶ Set. By Lemma 2.69 (signature weak-
ening), Σa; · ⊢ 𝑈 ≡ Π ⃗⃗⃗ ⃗⃗𝑇𝑛.Σ𝐴𝐵 ∶ Set. By the conv rule, Σa; · ⊢
𝜆 ⃗𝑥𝑛.⟨𝛼1  ⃗𝑥, 𝛼2  ⃗𝑥⟩ ∶ 𝑈 .

Thus, Σb sig. By Definition 2.151, Σ1, 𝛼 ∶ 𝑈 ⊑ Σb. By Corollary 2.156
(horizontal composition of extensions), Σ1, 𝛼 ∶ 𝑈,Σ2 ⊑ Σb, Σ2; that is,
Σ ⊑ Σ′.

Soundness Assume Σ″ sig, Σ″ ⊒ Σ′. Vacuously, Σ″ ∣≈ □.

Completeness Assume Θ ⊨ Σ;□; that is, Θ ⊨ Σ.

4.5. A REDUCTION RULE TOOLKIT 145

(i) Because Θ ⊨ Σ, by Lemma 2.130 (alternative characterization of a
compatible metasubstitution) and Remark 2.129 (alternative char-
acterization of compatibility of a metasubstitution with a decla-
ration), we have 𝛼 ≔ 𝑢 ∶ 𝑈 ′ ∈ Θ, Θ; · ⊢ 𝑈 ′ ≡ 𝑈 type and
Θ; · ⊢ 𝑢 ∶ 𝑈 ′.

(ii) By the rule preconditions, Σ1; · ⊢ 𝑈 ≡ Π ⃗⃗⃗ ⃗⃗𝑇Σ𝐴𝐵 type. By Lemma
2.69 (signature weakening), Σ; · ⊢ 𝑈 ≡ Π ⃗⃗⃗ ⃗⃗𝑇Σ𝐴𝐵 type. Because
Θ ⊨ Σ, we have Θ; · ⊢ 𝑈 ≡ Π ⃗⃗⃗ ⃗⃗𝑇Σ𝐴𝐵 type. By (i), transitivity of
equality and conv, Θ; · ⊢ 𝑢 ∶ Π ⃗⃗⃗ ⃗⃗𝑇Σ𝐴𝐵.

(iii) By (ii) and Lemma 2.62 (context weakening), Θ; ⃗⃗⃗ ⃗⃗𝑇 ⊢ 𝑢 ∶ Π ⃗⃗⃗ ⃗⃗𝑇Σ𝐴𝐵.
By Postulate 2 (typing of hereditary application) (𝑢 @ ⃗𝑥)⇓ and
Θ; ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑥 ∶ 𝑇 ⊢ 𝑢 @ ⃗𝑥 ∶ Σ𝐴𝐵.
By Postulate 3 (typing of hereditary projection), we have (𝑢 @
⃗𝑥 .𝜋1)⇓ and Θ; ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑥 ∶ 𝑇 ⊢ 𝑢 @ ⃗𝑥 .𝜋1 ∶ 𝐴. By the same token, we have

(𝑢 @ ⃗𝑥 .𝜋2)⇓, 𝐵[𝑢 @ ⃗𝑥 .𝜋1]⇓ and Θ; ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑥 ∶ 𝑇 ⊢ 𝑢 @ ⃗𝑥 .𝜋2 ∶ 𝐵[𝑢 @ ⃗𝑥 .𝜋1].
(iv) Let 𝑢1 = 𝜆 ⃗𝑥𝑛.(𝑢 @ ⃗𝑥 .𝜋1) and 𝑢2 = 𝜆 ⃗𝑥𝑛.(𝑢 @ ⃗𝑥 .𝜋2). By (iii)

and the abs rule, we have Θ; · ⊢ 𝑢1 ∶ Π⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑥 ∶ 𝑇 𝑛.𝐴 and Θ; · ⊢ 𝑢2 ∶
Π⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑥 ∶ 𝑇 𝑛.𝐵[𝑢 @ ⃗𝑥 .𝜋1].

(v) By Lemma 2.141, there are 𝑈1 and 𝑈2 such that Θ; · ⊢ Π⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑥 ∶ 𝑇𝐴 ≡
𝑈1 ∶ Set and Θ; · ⊢ Π⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑥 ∶ 𝑇𝐵[𝑢 @ ⃗𝑥 .𝜋1] ≡ 𝑈2 ∶ Set, with
metas(𝑈1) = ∅ and metas(𝑈2) = ∅.
By Remark 2.15 (there is only set) and the conv rule, Θ; · ⊢ 𝑢1 ∶ 𝑈1
and Θ; · ⊢ 𝑢2 ∶ 𝑈2.

Let Θ′ = Θ,𝛼1 ≔ 𝑢1 ∶ 𝑈1, 𝛼2 ≔ 𝑢2 ∶ 𝑈2. Note that decls(Θ) =
decls(Σ). By the rule premises, 𝛼1 is fresh in Θ and 𝛼2 is fresh in
(Θ,𝛼1 ≔ 𝑢1 ∶ 𝑈1). By (i), (iv) and (v), metas(𝑢1) = metas(𝑢2) =
metas(𝑈1) = metas(𝑈2) = ∅, Θ; · ⊢ 𝑢1 ∶ 𝑈1 and Θ; · ⊢ 𝑢2 ∶ 𝑈2. By
Lemma 2.69 (signature weakening), Θ,𝛼1 ≔ 𝑢1 ∶ 𝑈1; · ⊢ 𝑢2 ∶ 𝑈2. By
Definition 2.122 (well-formed metasubstitution), Θ′ wf. Because Θ′

Σ =
Θ, we have Θ ⊆ Θ′.
Let 𝐷 ∈ Σ′. There are four possible cases:

1. 𝐷 ∈ Σ1 or 𝐷 ∈ Σ2: Then 𝐷 ∈ Σ. By Remark 2.131, Θ′ is compat-
ible with 𝐷.

2. 𝐷 = 𝛼1 ∶ Π⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑥 ∶ 𝑇 𝑛.𝐴: We have 𝛼1 ≔ 𝑢1 ∶ 𝑈1 ∈ Θ′. By (v),
Θ; · ⊢ 𝑈1 ≡ Π⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑥 ∶ 𝑇 𝑛.𝐴 type. By Lemma 2.69, Θ′; · ⊢ 𝑈1 ≡
Π⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑥 ∶ 𝑇 𝑛.𝐴 type Therefore, Θ′ is compatible with 𝐷.

3. 𝐷 = 𝛼2 ∶ Π⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑥 ∶ 𝑇 𝑛.𝐵[𝛼1  ⃗𝑥]: We have 𝛼2 ≔ 𝑢2 ∶ 𝑈2 ∈ Θ′. It suffices
to show Θ′; · ⊢ Π⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑥 ∶ 𝑇 𝑛.𝐵[𝛼1  ⃗𝑥] ≡ 𝑈2 type.
Because Θ ⊨ Σ, we have Θ; · ⊢ 𝑢 ≡ 𝜆 ⃗𝑥.⟨𝛼1  ⃗𝑥, 𝛼2  ⃗𝑥⟩ ∶ 𝑈 . By Def-
inition 2.32 (hereditary elimination) and Postulate 7 (congruence
of hereditary projection), we have Θ; · ⊢ 𝑢 @ ⃗𝑥 .𝜋1 ≡ 𝛼1  ⃗𝑥 ∶ 𝐴[⃗𝑥].
Because Θ ⊆ Θ′, by Remark 2.137 (metasubstitution weakening),
Θ′; · ⊢ 𝑢 @ ⃗𝑥 .𝜋1 ≡ 𝛼1  ⃗𝑥 ∶ 𝐴[⃗𝑥].

146 CHAPTER 4. UNIFYING WITHOUT ORDER

By Postulate 4 and reflexivity, Θ′; ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑥 ∶ 𝑇 𝑛 ⊢ 𝐵[𝛼1  ⃗𝑥] ≡ 𝐵[𝑢 @ ⃗𝑥 .𝜋1] ∶
𝑈1. By the pi-eq rule, Θ′; · ⊢ Π⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑥 ∶ 𝑇 𝑛.𝐵[𝛼1  ⃗𝑥] ≡ Π⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑥 ∶ 𝑇 𝑛.𝐵[𝑢 @
⃗𝑥 .𝜋1] ∶ Set. By (v), Lemma 2.69, symmetry and transitivity,

Θ′; · ⊢ 𝑈2 ≡ Π⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑥 ∶ 𝑇 𝑛.𝐵[𝛼1  ⃗𝑥] ∶ Set. By remark 2.15, Θ′; · ⊢ 𝑈2 ≡
Π⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑥 ∶ 𝑇 𝑛.𝐵[𝛼1  ⃗𝑥] type.
By Remark 2.129 (alternative characterization of compatibility of
a metasubstitution with a declaration), Θ′ is compatible with 𝐷.

4. 𝐷 = 𝛼 ≔ 𝑡α ∶ 𝑈 , where 𝑡α = 𝜆 ⃗𝑥𝑛.⟨𝛼1  ⃗𝑥, 𝛼2  ⃗𝑥⟩. We need to show
that Θ′; · ⊢ 𝛼 ≡ 𝑡α ∶ 𝑈 .
Note that Σ; · ⊢ 𝑈 ≡ Π ⃗⃗⃗ ⃗⃗𝑇𝑛.Σ𝐴𝐵 ∶ Set. By Θ ⊨ Σ, Θ ⊆ Θ′ and
transitivity of equality we have Θ′; · ⊢ 𝑈 ′ ≡ Π ⃗⃗⃗ ⃗⃗𝑇𝑛.Σ𝐴𝐵 type. Also,
𝛼 ≔ 𝑢 ∶ 𝑈 ′ ∈ Θ′. Therefore, it suffices to show that Θ′; · ⊢ 𝑢 ≡ 𝑡α ∶
𝑈 ′.
By the definition of Θ′, we have Θ′; · ⊢ 𝛼1 ≡ 𝑢1 ∶ Π ⃗⃗⃗ ⃗⃗𝑇𝑛.𝐴, that
is Θ′; · ⊢ 𝛼1 ≡ 𝜆 ⃗𝑥𝑛.𝑢 @ ⃗𝑥 .𝜋1 ∶ Π ⃗⃗⃗ ⃗⃗𝑇𝑛.𝐴. Similarly, Θ′; · ⊢ 𝛼2 ≡
𝑢2 ∶ Π⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑥 ∶ 𝑇 𝑛.𝐵[𝑢1 @ ⃗𝑥 .𝜋1] and thus Θ′; · ⊢ 𝛼2 ≡ 𝜆 ⃗𝑥𝑛.𝑢 @ ⃗𝑥 .𝜋2 ∶
Π⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑥 ∶ 𝑇 𝑛.𝐵[𝑢1 @ ⃗𝑥 .𝜋1]. By Postulate 6 (congruence of hereditary
application), Lemma 2.75 (uniqueness of typing for neutrals) the
pair-eq rule, the eta-pair rule Θ′; ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑥 ∶ 𝑇 ⊢ ⟨𝑢 @ ⃗𝑥 .𝜋1, 𝑢 @ ⃗𝑥 .𝜋2⟩ ≡
⟨𝛼1  ⃗𝑥, 𝛼2  ⃗𝑥⟩ ∶ Σ𝐴𝐵.
By Lemma 4.35 (general η-equality for pairs), Θ′; ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑥 ∶ 𝑇 ⊢ 𝑢 @ ⃗𝑥 ≡
⟨𝛼1  ⃗𝑥, 𝛼2  ⃗𝑥⟩ ∶ Σ𝐴𝐵.
By the abs-eq rule and Lemma 4.34 (general η-equality for Π-
types), Θ′; · ⊢ 𝑢 ≡ 𝜆 ⃗𝑥𝑛.⟨𝛼1  ⃗𝑥, 𝛼2  ⃗𝑥⟩ ∶ Π ⃗⃗⃗ ⃗⃗𝑇Σ𝐴𝐵. By the conv-eq
rule, Θ′; · ⊢ 𝑢 ≡ 𝜆 ⃗𝑥𝑛.⟨𝛼1  ⃗𝑥, 𝛼2  ⃗𝑥⟩ ∶ 𝑈 ′.

Therefore, by Lemma 2.130 (alternative characterization of a compatible
metasubstitution), Θ′ ⊨ Σ′.

4.5.12 Context variable currying
In the same way that one can remove Σ-types from metavariable arguments,
Abel and Pientka [3] show how one can remove Σ-types from constraint con-
texts. This will help us instantiate metavariables whose arguments contain
projections.
Example 4.52. Consider the following problem:

𝔸 ∶ Set, 𝔹 ∶ Set, 𝛼 ∶ 𝔸 → (𝔸 → 𝔹) → 𝔹;
𝑥 ∶ (𝔸 × (𝔸 → 𝔹))‡(𝔸 × (𝔸 → 𝔹)) ⊢ 𝛼 (𝑥 .𝜋1) (𝑥 .𝜋2) ≈ (𝑥 .𝜋2) (𝑥 .𝜋1) ∶ 𝔹‡𝔹
Rule schema 2 (metavariable instantiation) may not be applied, as the

arguments of 𝛼 are not variables. However, because 𝑥 is a pair, we could
consider each of the components as a distinct variable, and reformulate the
constraint as follows:

𝔸 ∶ Set, 𝔹 ∶ Set, 𝛼 ∶ 𝔸 → (𝔸 → 𝔹) → 𝔹;
𝑥1 ∶ 𝔸‡𝔸, 𝑥2 ∶ (𝔸 → 𝔹)‡(𝔸 → 𝔹) ⊢ 𝛼 𝑥1 𝑥2 ≈ 𝑥2 𝑥1 ∶ 𝔹‡𝔹

4.5. A REDUCTION RULE TOOLKIT 147

By applying rule Rule schema 2, we have

𝔸 ∶ Set, 𝔹 ∶ Set, 𝛼 ≔ 𝜆𝑥.𝜆𝑦.(𝑦 𝑥) ∶ 𝔸 → (𝔸 → 𝔹) → 𝔹;□

◀
The technique in Example 4.52 can be generalized as the following rule:

Rule-Schema 20 (Context variable currying).

Σ;Γ1‡Γ2, 𝑥 ∶ Σ𝑈1𝑉1‡Σ𝑈2𝑉2,Δ1‡Δ2 ⊢ 𝑡1 ≈ 𝑡2 ∶ 𝐴1‡𝐴2 ⇝
Σ;Γ1‡Γ2, 𝑥1 ∶ 𝑈1‡𝑈2, 𝑥2 ∶ 𝑉1‡𝑉2,Δ′

1‡Δ′
2 ⊢ 𝑡′1 ≈ 𝑡′2 ∶ 𝐴′

1‡𝐴′
2 where

(Δ1 ⊢ 𝑡1 ∶ 𝐴1)((+2)+1)[⟨1, 0⟩/0] ⇓ (Δ′
1 ⊢ 𝑡′1 ∶ 𝐴′

1)
(Δ2 ⊢ 𝑡2 ∶ 𝐴2)((+2)+1)[⟨1, 0⟩/0] ⇓ (Δ′

2 ⊢ 𝑡′2 ∶ 𝐴′
2)

Informally, we have ⌈Δ′
1 = Δ1[⟨𝑥1, 𝑥2⟩/𝑥]⌋, ⌈𝑡′1 = 𝑡1[⟨𝑥1, 𝑥2⟩/𝑥]⌋, etc.

Before showing the correctness of Rule schema 20, we introduce two new
lemmas:

Lemma 4.53 (Free variables in substitution by pair). Let 𝑡 be a term such
that, for some 𝑟, 𝑡[⟨𝑥, 𝑦⟩/𝑧] ⇓ 𝑟. Then:

• If 𝑧 ∉ fv(𝑡), then fv(𝑟) = fv𝑧(𝑡).
• If 𝑧 ∈ fv(𝑡), then fv𝑧(𝑡) ⊆ fv(𝑟) ⊆ fv𝑧(𝑡) ∪ {𝑥, 𝑦}.

Proof. By induction on the derivation for 𝑡[⟨𝑥, 𝑦⟩/𝑧] ⇓ 𝑟, and Remark 2.28
(renaming and free variables).

Lemma 4.54 (Free variables in substitution by irreducible). Let 𝑡 be a term
such that, for some 𝑟, 𝑡[𝑥 𝑒/𝑧] ⇓ 𝑟, where 𝑒 = .𝜋1 or 𝑒 = .𝜋2. Then:

• If 𝑧 ∉ fv(𝑡), then fv(𝑟) = fv𝑧(𝑡).
• If 𝑧 ∈ fv(𝑡), then fv𝑧(𝑡) ⊆ fv(𝑟) ⊆ fv𝑧(𝑡) ∪ {𝑥}.

Proof. By induction on the derivation for 𝑡[𝑥 𝑒/𝑧] ⇓ 𝑟, and Remark 2.28 (re-
naming and free variables).

Proof of correctness for Rule schema 20. Let 𝒞 ≝ Γ1‡Γ2, 𝑥 ∶ Σ𝑈1𝑉1‡Σ𝑈2𝑉2,
Δ1‡Δ2 ⊢ 𝑡1 ≈ 𝑡2 ∶ 𝐴1‡𝐴2 and 𝒟 ≝ Γ1‡Γ2, 𝑥1 ∶ 𝑈1‡𝑈2, 𝑥2 ∶ 𝑉1‡𝑉2,Δ′

1‡Δ′
2 ⊢

𝑡′1 ≈ 𝑡′2 ∶ 𝐴′
1‡𝐴′

2.

Well-formedness Assume that Σ sig, and Σ;𝒞 is well-formed. By assump-
tion Σ sig. By Definition 2.151, Σ ⊑ Σ.

(i) By the assumption, Γ1, Σ𝑈1𝑉1,Δ1 ⊢ 𝑡1 ∶ 𝐴1. Because Σ;𝒞, by
Lemma 2.70 (piecewise well-formedness of typing judgments), we
have Σ;Γ1 ctx.
Because Σ;Γ1 ⊢ Σ𝑈1𝑉1 type, by Lemma 2.53 (Σ inversion) we also
have that Σ;Γ1 ⊢ 𝑈1 type and Σ;Γ1, 𝑈1 ⊢ 𝑉1 type. Therefore,
Σ ⊢ Γ1, 𝑈1, 𝑉1 ctx.

148 CHAPTER 4. UNIFYING WITHOUT ORDER

(ii) By Lemma 2.62 (context weakening), Σ;Γ1, 𝑈1, 𝑉1, (Σ𝑈1𝑉1,Δ1 ⊢
𝑡1 ∶ 𝐴1)(+2), that is, Σ;Γ1, 𝑈1, 𝑉1, (Σ𝑈1𝑉1)(+2), (Δ1 ⊢ 𝑡1 ∶ 𝐴1)(+2)+1.

(iii) By the var, head and pair rules, Σ;Γ1, 𝑈1, 𝑉1 ⊢ ⟨1, 0⟩ ∶
(Σ𝑈1𝑉1)(+2). By (ii) and Postulate 1 (typing of hereditary
substitution), Σ;Γ1, 𝑈1, 𝑉1, (Δ1 ⊢ 𝑡1 ∶ 𝐴1)(+2)+1[⟨1, 0⟩/0], i.e.
Σ;Γ1, 𝑈1, 𝑉1,Δ′

1 ⊢ 𝑡′1 ∶ 𝐴′
1.

(iv) Analogously, because Γ2, Σ𝑈2𝑉2,Δ2 ⊢ 𝑡2 ∶ 𝐴2, we have
Σ;Γ2, 𝑈2, 𝑉2,Δ′

2 ⊢ 𝑡′2 ∶ 𝐴′
2.

By (iii) and (iv), Σ;𝒟wf.

Soundness Let Σ″ ⊒ Σ such that Σ″ ∣≈ 𝒟. That is, there exists a term 𝑣′
such that Σ″; Γ1, 𝑈1, 𝑉1,Δ′

1 ⊢ 𝑡′1 ≡ 𝑣′ ∶ 𝐴′
1, Σ″; Γ2, 𝑈2, 𝑉2,Δ′

2 ⊢ 𝑡′2 ≡ 𝑣′ ∶
𝐴′

2, fv(𝑣′) ⊆ fv(𝑡′1) and fv(𝑣′) ⊆ fv(𝑡′2).
Trivially Σ″ ⊒ Σ. It suffices to show Σ″ ∣≈ 𝒞; that is, finding a 𝑣 such
that Σ″; Γ1, Σ𝑈1𝑉1,Δ1 ⊢ 𝑡1 ≡ 𝑣 ∶ 𝐴1, Σ″; Γ2, Σ𝑈2𝑉2,Δ2 ⊢ 𝑡2 ≡ 𝑣 ∶ 𝐴2,
fv(𝑣) ⊆ fv(𝑡1) and fv(𝑣) ⊆ fv(𝑡2).

(i) By Lemma 2.70 (piecewise well-formedness of typing judgments)
and Remark 2.13 (context inversion), Σ″; Γ1 ⊢ 𝑈1 type and
Σ″; Γ1, 𝑈1 ⊢ 𝑉1 type. By the sigma rule, Σ″; Γ1 ⊢ Σ𝑈1𝑉1 type.

(ii) By the eta-pair rule, Σ″; Γ1, Σ𝑈1𝑉1 ⊢ 0 ≡ ⟨0 .𝜋1, 0 .𝜋2⟩ ∶
(Σ𝑈1𝑉1)(+1). By Lemma 2.62 (context weakening),
Σ;Γ,Σ𝑈1𝑉1, (Σ𝑈1𝑉1)(+1), (Δ1 ⊢ 𝑡1 ∶ 𝐴1)(+1)+1.
By Lemma 2.40 (correspondence between renaming and substitu-
tion), (Δ1 ⊢ 𝑡1 ∶ 𝐴1)(+1)+1[0/0] ⇓ (Δ1 ⊢ 𝑡1 ∶ 𝐴1).
By Lemma 2.62 and Postulate 4 (congruence of hereditary substi-
tution), there exist Δa

1, 𝑡a1, 𝐴a
1 such that (Δa

1 ⊢ 𝑡a1 ∶ 𝐴a
1) = (Δ1 ⊢ 𝑡1 ∶

𝐴1)(+1)+1[⟨0 .𝜋1, 0 .𝜋2⟩].
By Postulate 4 (congruence of hereditary substitution),
Σ″; Γ1, Σ𝑈1𝑉1 ⊢ Δ1 ≡ Δa

1 ctx, Σ″; Γ1, Σ𝑈1𝑉1,Δ1 ⊢ 𝐴1 ≡ 𝐴a
1 type,

and Σ″; Γ1, Σ𝑈1𝑉1,Δ1 ⊢ 𝑡1 ≡ 𝑡a1 ∶ 𝐴1.
(iii) By Lemma 2.70 (piecewise well-formedness of typing judgments),

Σ″; Γ1 ⊢ Σ𝑈1𝑉1 type. By Lemma 2.53 (Σ inversion) and Lemma
2.62 (context weakening), Σ″; Γ1, Σ𝑈1𝑉1, 𝑈 (+1)

1 ⊢ 𝑉 (+1)+1
1 type. By

the var, head and proj1 rules, Σ″; Γ1, Σ𝑈1𝑉1 ⊢ 0 .𝜋1 ∶ 𝑈 (+1)
1 .

By Postulate 1 (typing of hereditary substitution), Σ″; Γ1, Σ𝑈1𝑉1 ⊢
𝑉 (+1)+1
1 [0 .𝜋1] type.

By Lemma 2.62 (context weakening), Σ″; Γ1, Σ𝑈1𝑉1, 𝑉 (+1)+1
1 [0 .𝜋1],

(Σ𝑈1𝑉1,Δ1 ⊢ 𝑡1 ∶ 𝐴1)(+2), that is, Σ″; Γ1, Σ𝑈1𝑉1, 𝑉 (+1)+1
1 [0 .𝜋1],

(Σ𝑈1𝑉1)(+2), (Δ1 ⊢ 𝑡1 ∶ 𝐴1)(+2)+1.
By the var, head, and proj2 typing rules, Σ″; Γ1, Σ𝑈1𝑉1 ⊢
0 .𝜋2 ∶ 𝑉 (+1)+1

1 [0 .𝜋1]. By the var, head, pair and proj1 rules,
Σ″; Γ1, Σ𝑈1𝑉1, 𝑉 (+1)+1

1 [0 .𝜋1] ⊢ ⟨1 .𝜋1, 0⟩ ∶ Σ𝑈1𝑉 (+2)
1 . By Defini-

tion 2.31 (hereditary substitution), ⟨1 .𝜋1, 0⟩[0 .𝜋2] ⇓ ⟨0 .𝜋1, 0 .𝜋2⟩
and Σ𝑈1𝑉 (+2)

1 [0 .𝜋2]⇓(Σ𝑈1𝑉1)(+1). By Postulate 1 (typing of hered-
itary substitution), Σ″; Γ1, Σ𝑈1𝑉1 ⊢ ⟨0 .𝜋1, 0 .𝜋2⟩ ∶ (Σ𝑈1𝑉1)(+1).

4.5. A REDUCTION RULE TOOLKIT 149

Let (Δb
1 ⊢ 𝑡b1 ∶ 𝐴b

1) = (Δ1 ⊢ 𝑡1 ∶ 𝐴1)(+2)+1[⟨1 .𝜋1, 0⟩][0 .𝜋2].
Note that 1 ∉ fv((Δ1 ⊢ 𝑡1 ∶ 𝐴1)(+2)+1). By Remark 2.49 (strength-
ening by substitution), this means (Δ1 ⊢ 𝑡1 ∶ 𝐴1)((+2)+1)[1 .𝜋2/1] =
(Δ1 ⊢ 𝑡1 ∶ 𝐴1)((+1)+1).
As shown earlier, (Δa

1 ⊢ 𝑡a1 ∶ 𝐴a
1) = (Δ1 ⊢ 𝑡1 ∶ 𝐴1)((+1)+1)[⟨0 .𝜋1, 0 .𝜋2⟩].

By Postulate 5 (hereditary substitution commutes), we have Σ″ ⊢
Γ1, Σ𝑈1𝑉1,Δb

1 ≡ Γ1, Σ𝑈1𝑉1,Δa
1 ctx, Σ″; Γ1, Σ𝑈1𝑉1,Δb

1 ⊢ 𝐴b
1 ≡

𝐴a
1 type, and Σ″; Γ1, Σ𝑈1𝑉1,Δb

1 ⊢ 𝑡b1 ≡ 𝑡a1 ∶ 𝐴b
1 .

By (ii), Lemma 2.63 (preservation of judgments by type con-
version), Lemma 2.63 (preservation of judgments by type
conversion), and the conv-eq rule, we have Σ″ ⊢ Γ1, Σ𝑈1𝑉1,Δ1 ≡
Γ1, Σ𝑈1𝑉1,Δb

1 ctx, Σ″; Γ1, Σ𝑈1𝑉1,Δ1 ⊢ 𝐴1 ≡ 𝐴b
1 type, and

Σ″; Γ1, Σ𝑈1𝑉1,Δ1 ⊢ 𝑡1 ≡ 𝑡b1 ∶ 𝐴1.

(iv) Note that Σ″; Γ1, Σ𝑈1𝑉1, 𝑈 (+1)
1 , 𝑉 (+1)+1

1 , (Σ𝑈1𝑉1,Δ1 ⊢ 𝑡1 ∶ 𝐴1)(+2).
By the typing rules, Σ″; Γ1, Σ𝑈1𝑉1 ⊢ 0 .𝜋1 ∶ 𝑈 (+1)

1 ,
and Σ″; Γ1, Σ𝑈1𝑉1, 𝑈 (+1)

1 , 𝑉 (+1)+1
1 ⊢ ⟨1, 0⟩ ∶ Σ𝑈1𝑉 (+2)

1 ,
Let (Δe

1 ⊢ 𝑡e1 ∶ 𝐴e
1) ≝ (Δ1 ⊢ 𝑡1 ∶ 𝐴1)(+2)+1[⟨1, 0⟩][1 .𝜋1/1], and

let (Δf
1 ⊢ 𝑡f1 ∶ 𝐴f

1) ≝ (Δ1 ⊢ 𝑡1 ∶ 𝐴1)(+2)+1[2 .𝜋1/2][⟨1 .𝜋1, 0⟩]. By
Remark 2.49 (strengthening by substitution), (Δf

1 ⊢ 𝑡f1 ∶ 𝐴f
1) =

(Δ1 ⊢ 𝑡1 ∶ 𝐴1)(+1)+1[⟨1 .𝜋1, 0⟩].
Observe that 1 ∉ fv((Σ𝑈1𝑉1,Δ1 ⊢ 𝑡1 ∶ 𝐴1)(+2)). By Postulate 5
(hereditary substitution commutes), Lemma 2.63 (preservation of
judgments by type conversion) and the conv-eq rule, we have Σ″ ⊢
Γ1, Σ𝑈1𝑉1,Δe

1 ≡ Δf
1 ctx, Σ″; Γ1, Σ𝑈1𝑉1,Δe

1 ⊢ 𝐴e
1 ≡ 𝐴f

1 type, and
Σ″; Γ1, Σ𝑈1𝑉1,Δe

1 ⊢ 𝑡e1 ≡ 𝑡f1 ∶ 𝐴f
1.

Let (Δc
1 ⊢ 𝑡c1 ∶ 𝐴c

1) = (Δf
1 ⊢ 𝑡f1 ∶ 𝐴f

1)[0 .𝜋2/0].
As earlier, let (Δb

1 ⊢ 𝑡b1 ∶ 𝐴b
1) ≝ (Δe

1 ⊢ 𝑡e1 ∶ 𝐴e
1)[0 .𝜋2/0].

By the typing rules and reflexivity, Σ″; Γ1, Σ𝑈1𝑉1 ⊢ 0 .𝜋2 ≡ 0 .𝜋2 ∶
𝑉 (+1)+1[0 .𝜋1]. By (iii) and Postulate 4 (congruence of hereditary
substitution), Σ″ ⊢ Γ1, Σ𝑈1𝑉1,Δb

1 ≡ Γ1, Σ𝑈1𝑉1,Δc
1 ctx,

Σ″; Γ1, Σ𝑈1𝑉1,Δb
1 ⊢ 𝐴c

1 ≡ 𝐴c
1 type,

and Σ″; Γ1, Σ𝑈1𝑉1,Δb
1 ⊢ 𝑡c1 ≡ 𝑡c1 ∶ 𝐴b

1 .
Analogously to the previous steps,
Σ″ ⊢ Γ1, Σ𝑈1𝑉1,Δ1 ≡ Γ1, Σ𝑈1𝑉1,Δc

1 ctx,
Σ″; Γ1, Σ𝑈1𝑉1,Δ1 ⊢ 𝐴1 ≡ 𝐴c

1 type,
and Σ″; Γ1, Σ𝑈1𝑉1,Δ1 ⊢ 𝑡1 ≡ 𝑡c1 ∶ 𝐴1.

(v) By the assumptions and Lemma 2.62 (context weakening),
Σ″; Γ1, Σ𝑈1𝑉1, (𝑈1, 𝑉1,Δ′

1 ⊢ 𝑡′1 ≡ 𝑣 ∶ 𝐴′
1)(+1), that is, Σ″; Γ1, Σ𝑈1𝑉1,

𝑈 (+1)
1 , 𝑉 (+1)+1

1 , (Δ′
1 ⊢ 𝑡′1 ≡ 𝑣 ∶ 𝐴′

1)(+1)+2.
By the typing rules, Σ″; Γ1, Σ𝑈1𝑉1 ⊢ 0 .𝜋1 ∶ 𝑈 (+1)

1 . By Postu-
late 4 (congruence of hereditary substitution), Σ″; Γ1, Σ𝑈1𝑉1,
𝑉 (+1)+1
1 [0 .𝜋1], (Δ′

1 ⊢ 𝑡′1 ≡ 𝑣 ∶ 𝐴′
1)(+1)+2[1 .𝜋1/1].

By the typing rules, we have Σ″; Γ1, Σ𝑈1𝑉1 ⊢ 0 .𝜋2 ∶ 𝑉 (+1)+1
1 [0 .𝜋1].

By Postulate 4 (congruence of hereditary substitution),
Σ″; Γ1, Σ𝑈1𝑉1, (Δ′

1 ⊢ 𝑡′1 ≡ 𝑣 ∶ 𝐴′
1)(+1)+2[1 .𝜋1/1][0 .𝜋2/0].

150 CHAPTER 4. UNIFYING WITHOUT ORDER

Let 𝑣 = 𝑣′(+1)+2+|Δ1|[1 .𝜋(+|Δ1|)
1 /1 + |Δ1|][0 .𝜋(+|Δ1|)

2 / |Δ1|]. By
the earlier definitions, Δc

1 ⊢ 𝑡c1 ≡ 𝑣 ∶ 𝐴c
1) = (Δ′

1 ⊢ 𝑡′1 ≡ 𝑣′ ∶
𝐴′

1)(+1)+2[1 .𝜋1/1][0 .𝜋2/0].
By Postulate 4 (congruence of hereditary substitution),
Σ″; Γ1, Σ𝑈1𝑉1,Δc

1 ⊢ 𝑡c1 ≡ 𝑣 ∶ 𝐴c
1.

By transitivity, Σ″; Γ1, Σ𝑈1𝑉1,Δ1 ⊢ 𝑡1 ≡ 𝑣 ∶ 𝐴1.
(vi) So far, we have shown Σ″; Γ1, Σ𝑈1𝑉1,Δ1 ⊢ 𝑡1 ≡ 𝑣 ∶ 𝐴1. Analogously

(replacing contexts, terms and types of the form ⬚1 by those of the
form ⬚2), we have Σ″; Γ2 ∶ Σ𝑈2𝑉2,Δ2 ⊢ 𝑡2 ≡ 𝑣 ∶ 𝐴2.

(vii) It remains to show that fv(𝑣) ⊆ fv(𝑡1) and fv(𝑣) ⊆ fv(𝑡2).
We have 𝑣 = 𝑣′(+1)+2+|Δ1|[1 .𝜋(+|Δ1|)

1 /1 + |Δ1|][0 .𝜋(+|Δ1|)
2 / |Δ1|]

𝑡′1 = 𝑡((+2)+1+|Δ1|)
1 [⟨1, 0⟩(+|Δ1|)/ |Δ1|].

By the assumption fv(𝑣′) ⊆ fv(𝑡′1). Assume 𝑧 ∈ fv(𝑣). There are
three possible cases:
• Case 𝑧 < |Δ1|. We have 𝑧 ∈ fv(𝑣′(+1)+2+|Δ1|[1 .𝜋(+|Δ1|)

1 /(1 +
|Δ1|)][0 .𝜋(+|Δ1|)

2 / |Δ1|]). By Lemma 2.51 (free variables in
hereditary substitution), we have 𝑧 ∈ fv|Δ1|(𝑣′(+1)+2+|Δ1|[(1 
.𝜋1)(+|Δ1|)/(1 + |Δ1|)]). Then, because 𝑧 < |Δ1|, we have
𝑧 ∈ fv(𝑣′(+1)+2+|Δ1|[1 .𝜋(+|Δ1|)

1 /(1 + |Δ1|)]).
By the same token, 𝑧 ∈ fv(𝑣′((+1)+2+|Δ1|)). By Remark 2.28
(renaming and free variables), because 𝑧 < |Δ1|, 𝑧 ∈ fv(𝑣′).
By the assumption, 𝑧 ∈ fv(𝑡′1). By Lemma 4.53 (free variables
in substitution by pair), 𝑧 ∈ fv(𝑡′1) ⊆ fv|Δ1|(𝑡

((+2)+1+|Δ1|)
1) ∪

fv(⟨1, 0⟩(+|Δ1|)). Because 𝑧 ∉ fv(⟨1, 0⟩(+|Δ1|)), then 𝑧 ∈
fv|Δ1|(𝑡

((+2)+1+|Δ1|)
1). Because 𝑧 < |Δ1|, 𝑧 ∈ fv(𝑡((+2)+1+|Δ1|)

1).
Because 𝑧 < |Δ1|, by Remark 2.28 (renaming and free
variables), 𝑧 ∈ fv(𝑡1).

• Case 𝑧 > |Δ1|. We have 𝑧 ∈ fv(𝑣′((+1)+2+|Δ1|)[(1 .𝜋1)(+|Δ1|)/1 +
|Δ1|][0 .𝜋(+|Δ1|)

2 / |Δ1|]). By Lemma 2.51 (free variables in
hereditary substitution), 𝑧 ∈ fv|Δ1|(𝑣′(+1)+2+|Δ1|[(1 .𝜋1)(+|Δ1|)/
(1 + |Δ1|)]). Because 𝑧 > |Δ1|, this means 𝑧 + 1 ∈
fv(𝑣′(+1)+2+|Δ1|[(1 .𝜋1)(+|Δ1|)/(1 + |Δ1|)]).
By the same token, 𝑧+2 ∈ fv(𝑣′((+1)+2+|Δ1|)). By Remark 2.28
(renaming and free variables), because 𝑧+2 > |Δ1|+2, 𝑧+1 ∈
fv(𝑣′).
By the assumption, 𝑧 + 1 ∈ fv(𝑡′1). By Lemma 4.53
(free variables in substitution by pair), 𝑧 ∈ fv(𝑡′1) ⊆
fv|Δ1|(𝑡

((+2)+1+|Δ1|)
1)∪fv(⟨1, 0⟩(+|Δ1|)). Because 𝑧+1 > |Δ1|+1,

𝑧 ∉ fv(⟨1, 0⟩(+|Δ1|)). 𝑧 ∈ fv|Δ1|(𝑡
((+2)+1+|Δ1|)
1). Because

𝑧+1 > |Δ1|, 𝑧+2 ∈ fv(𝑡((+2)+1+|Δ1|)
1). Because 𝑧+2 > |Δ1|+1,

by Remark 2.28 (renaming and free variables), 𝑧 ∈ fv(𝑡1).
• Case 𝑧 = |Δ1|. We have 𝑧 ∈ fv(𝑣′((+1)+2+|Δ1|)[1 .𝜋(+|Δ1|)

1 /1 +
|Δ1|][0 .𝜋(+|Δ1|)

2 / |Δ1|]).
By Lemma 4.54 (free variables in substitution by irreducible),
{𝑧, 𝑧 + 1} ∩ fv(𝑣′(+1)+2+|Δ1|[1 .𝜋(+|Δ1|)

1 /1 + |Δ1|]) ≠ ∅.

4.6. BEYOND CORRECTNESS 151

Again, by Lemma 4.54 (free variables in substitution by
irreducible), {𝑧, 𝑧 + 1, 𝑧 + 2} ∩ fv(𝑣′(+1)+2+|Δ1|) ≠ ∅. By
Remark 2.28 (renaming and free variables), and noting that
fv(𝑣′(+1)+2+|Δ1|) ⊆ {0, 1,…, |Δ1| + 1,…, |Δ1| + 3,…}. we have
{𝑧, 𝑧 + 1} ∩ fv(𝑣′) ≠ ∅. Because fv(𝑣′) ⊆ fv(𝑡′1), we have
{𝑧, 𝑧 + 1} ⊆ fv(𝑡′1).
We show that 𝑧 ∈ fv(𝑡1) by contradiction. Assume
𝑧 ∉ fv(𝑡1). By Remark 2.28 (renaming and free variables),
𝑧 ∉ 𝑡((+2)+1+|Δ1|)

1 . By Lemma 4.53 (free variables in substitution
by pair), fv(𝑡′1) = fv|Δ1|(𝑡

((+2)+1+|Δ1|)
1). Therefore, because

{𝑧, 𝑧 + 1} ⊆ fv(𝑡′1), {𝑧, 𝑧 + 1} ⊆ fv|Δ1|(𝑡
((+2)+1+|Δ1|)
1). By defi-

nition of fv|Δ1|(·), {𝑧 + 1, 𝑧 + 2} ⊆ fv(𝑡((+2)+1+|Δ1|)
1). However,

by definition, fv(𝑡((+2)+1+|Δ1|)
1) ⊆ {0, 1,…, |Δ1| ,…, |Δ1|+3,…},

which is a contradiction.
Therefore, 𝑧 ∈ fv(𝑡1).

Analogously, fv(𝑣) ⊆ fv(𝑡2).

By Definition 4.12 (heterogeneous equality), Σ;Γ1‡Γ2, 𝑥 ∶ Σ𝑈1𝑉1‡Σ𝑈2𝑉2,
Δ1‡Δ2 ⊢ 𝑡1 ≡{𝑣}≡ 𝑡2 ∶ 𝐴1‡𝐴2; that is, Σ ⊨ 𝒞.

Completeness Assume that Θ;Σ ⊨ 𝒞. Then we have Θ ⊨ Σ, Θ ⊢ (Γ1, Σ𝑈1𝑉1,
Δ1, 𝐴1) ≡ (Γ2, Σ𝑈2𝑉2,Δ2, 𝐴2) ctx, and Θ;Γ1, Σ𝑈1𝑉1,Δ1 ⊢ 𝑡1 ≡ 𝑡2 ∶ 𝐴1.
Take Θ′ = Θ.
By Remark 2.13 (context inversion), Postulate 11 (injectivity of Σ) and
Definition 2.16 (equality of contexts), Θ ⊢ Γ1, 𝑈1 ≡ Γ2, 𝑈2 ctx and Θ ⊢
Γ1, 𝑈1, 𝑉1 ≡ Γ2, 𝑈2, 𝑉2 ctx.

By Lemma 2.62 (context weakening) Θ ⊢ Γ1, 𝑈1, 𝑉1, Σ𝑈1𝑉1,Δ1, 𝐴(+2)
1 ≡

Γ2, 𝑈2, 𝑉2, Σ𝑈2𝑉2,Δ2, 𝐴(+2)
2 ctx. By Postulate 4 (congruence of heredi-

tary substitution), Θ ⊢ Γ1, 𝑈1, 𝑉1,Δ′
1, 𝐴′

1 ≡ Γ2, 𝑈2, 𝑉2,Δ′
2, 𝐴′

2 ctx.
Similarly, we have Θ;Γ1, 𝑈1, 𝑉1,Δ′

1 ⊢ 𝑡′1 ≡ 𝑡′2 ∶ 𝐴′
1.

Therefore, Θ′ ⊨ Σ;𝒟, and by Remark 2.133 (restriction to a compatible
signature), Θ′

Σ = ΘΣ = Θ.

Remark 4.55. Note that, if Σ;𝒞wf, then by Postulate 1 (typing of hereditary
substitution), Δ′

1, Δ′
2, 𝑡′1, 𝑡′2, 𝐴′

1 and 𝐴′
2 exist uniquely. This means that the

rule’s preconditions always hold.

4.6 Beyond correctness
In Section 4.5 (a reduction rule toolkit) we give a collection of rules and prove
their correctness. This set of rules has an additional property which is orthogo-
nal to the correctness, but still desirable; namely, the open-world assumption.
We describe this assumption in more detail in Section 4.6.1.

152 CHAPTER 4. UNIFYING WITHOUT ORDER

On the other hand, the correctness theorem only partially specifies con-
ditions under which a solution exists. As explained in Section 3.3, whether
a solution exists is undecidable in general. However, we can also partially
characterize those conditions under which the original problem is unsolvable
(Section 4.6.2).

4.6.1 Open-world assumption
Either for the sake of performance, or in an interactive setting, it may be
desirable to type-check a program incrementally. In our setting, this means
that rule schemas applied to a problem should remain correct if the problem
is extended with additional declarations or constraints. The general idea that
inferences should remain valid even if new knowledge is added to the system is
called the open-world assumption [31]. In our application, adding new knowl-
edge to the system corresponds to extending the signature with additional
atom declarations, and/or introducing new constraints.

Definition 4.26 (rule correctness) does not entail the open-world assump-
tion. For example, consider the problem Σ1; □, where Σ1 is defined as follows:

Σ1 ≝ 𝔸 ∶ Set, 𝕒 ∶ 𝔸, 𝛼 ∶ 𝔸

And let Σ′
1 be defined as follows:

Σ′
1 ≝ 𝔸 ∶ Set, 𝕒 ∶ 𝔸, 𝛼 ≔ 𝕒 ∶ 𝔸

Because, in the empty context, 𝕒 is the only value of type 𝔸, the rule
Σ1; □ ⇝ Σ′

1; □ is in fact a correct rule (we will not prove this).
Now, let Θ1 ≝ 𝔸 ∶ Set, 𝕒 ∶ 𝔸, 𝛼 ≔ 𝕒 ∶ 𝔸. Then, Θ1 is a unique solution to

Σ′
1; □, and also to Σ1; □ (we will not prove this either).

Consider extending the original problem with an additional constant and
an additional constraint, yielding a well-formed problem (Σ2; ⃗𝒞):

Σ2; ⃗𝒞 ≝ Σ1, 𝕓 ∶ 𝔸; ·‡· ⊢ 𝛼 ≡ 𝕓 ∶ 𝔸‡𝔸

If we generalized the inference Σ1; □ ⇝ Σ′
1; □ to the extended problem

Σ2; ⃗𝒞, we would obtain the unification rule (Σ1, 𝕓 ∶ 𝔸; ⃗𝒞 ⇝ Σ′
1, 𝕓 ∶ 𝔸; ⃗𝒞).

Applying this rule results in the problem (Σ1, 𝕓 ∶ 𝔸; ⃗𝒞), which has one unique
solution Θ2 ≝ 𝔸 ∶ Set, 𝕒 ∶ 𝔸, 𝕓 ∶ 𝔸, 𝛼 ≔ 𝕓 ∶ 𝔸.

By definition, (Θ2)Σ = Θ2. However, Θ2; · ⊢ 𝕒 ≢ 𝕓 ∶ 𝔸, which means Θ2 is
not a solution for Σ′

1, 𝕓 ∶ 𝔸; ⃗𝒞. The rule (Σ1, 𝕓 ∶ 𝔸; ⃗𝒞 ⇝ Σ′
1, 𝕓 ∶ 𝔸; ⃗𝒞) is thus

not complete, and thus not correct.
Because it does not remain correct under extensions, we say that the rule

Σ1; □ ⇝ Σ′
1; □ does not fulfill the open-world assumption.

However, all the rule schemas that we define in Section 4.5 (a reduction
rule toolkit) do fulfill the open world assumption.

Remark 4.56 (Open-world assumption for rule schemas). Suppose Σ; ⃗𝒞 ⇝
Σ′; �⃗�. Let Σ1 be such that Σ,Σ1 sig and decls(Σ1) ∩ decls(Σ′) = ∅. Then
Σ,Σ1; ⃗𝒞 ⇝ Σ′, Σ1; �⃗�.

4.6. BEYOND CORRECTNESS 153

Proof. By case analysis. By construction and applying Lemma 2.69 (signa-
ture weakening) to the preconditions, each of the rule schemas that we define
contains the extended version of each of its rules.

This open-world assumption can be generalized to sequences of rule appli-
cations:
Remark 4.57 (Open-world assumption for problem reduction). Suppose
Σ; ⃗𝒞⇝⇝⇝⋆ Σ′; �⃗�. Let Σ1 be such that Σ,Σ1 sig and decls(Σ1)∩decls(Σ′) = ∅.
and let ⃗ℰ be such that Σ,Σ1; ⃗ℰwf. Then, Σ,Σ1; ⃗𝒞, ⃗ℰ⇝⇝⇝⋆ Σ′, Σ1; �⃗�, ⃗ℰ.

Proof. By induction on the derivation for Σ; ⃗𝒞⇝⇝⇝⋆ Σ′; �⃗�, using Definition 4.28
(problem reduction) and Remark 4.56 (open-world assumption for rule
schemas) at each step.

4.6.2 Unsolvable problems
It might be the case that a problem cannot be solved; for instance, because
one of its constraints is unsolvable.

Definition 4.58 (Unsolvable problem). A problem Σ; ⃗⃗⃗⃗⃗𝒞 is unsolvable if there
does not exist Θ such that Θ ⊨ Σ; ⃗𝒞.

Correct rules preserve problem unsolvability. This means that the unifica-
tion algorithm (Section 5.1) may use the rules in Section 4.5 (a reduction rule
toolkit) not only to find a solution, but also to assess whether a solution exists
at all.

Lemma 4.59 (Preservation of unsolvability). If Σ; ⃗⃗⃗⃗⃗𝒞⇝⇝⇝𝑛 Σ′; ⃗⃗⃗ ⃗⃗ ⃗⃗𝒟, and there is
no solution Θ′ such that Θ′ ⊨ Σ′; ⃗⃗⃗ ⃗⃗ ⃗⃗𝒟, then there is no solution Θ such that
Θ ⊨ Σ; ⃗⃗⃗⃗⃗𝒞.

Proof. Proceed by induction on 𝑛.

• Case 0: Proceed by contradiction; assume there exists Θ such that
Θ ⊨ Σ; ⃗⃗⃗⃗⃗𝒞. Then Θ′ = Θ fulfills Θ′ ⊨ Σ′; ⃗⃗⃗ ⃗⃗ ⃗⃗𝒟, which is a contradiction.
Therefore, there is no Θ such that Θ ⊨ Σ; ⃗⃗⃗⃗⃗𝒞.

• Case 1 + 𝑛: Then we have Σ; ⃗⃗⃗⃗⃗𝒞⇝⇝⇝𝑛 Σ″; ⃗⃗⃗ ⃗ℰ ⇝⇝⇝ Σ′; ⃗⃗⃗ ⃗⃗ ⃗⃗𝒟. By Lemma 4.29
(correctness of problem reduction), Σ″; ⃗⃗⃗ ⃗ℰ ⇝⇝⇝ Σ′; ⃗⃗⃗ ⃗⃗ ⃗⃗𝒟 is a correct rule; in
particular, it is complete. Proceed by contradiction; assume there exists
Θ″ such that Θ″ ⊨ Σ″; ⃗⃗⃗ ⃗ℰ. By completeness, there exists Θ′ such that
Θ″ = Θ′

Σ″ and Θ′ ⊨ Σ′; ⃗⃗⃗ ⃗⃗ ⃗⃗𝒟. This is a contradiction; therefore, there is
no Θ″ such that Θ″ ⊨ Σ″; ⃗⃗⃗ ⃗ℰ. By the induction hypothesis, there is no Θ
such that Θ ⊨ Σ″; ⃗⃗ ⃗⃗ ⃗𝒞.

In general, deciding whether a problem Σ; ⃗⃗⃗⃗⃗𝒞 has a solution is undecidable
(Section 3.3). However, Lemma 4.60 shows that unsolvability is decidable in
some cases.

154 CHAPTER 4. UNIFYING WITHOUT ORDER

Lemma 4.60 (Partial characterization of unsolvable problems). Consider the
following classes of terms:

𝑇1 ≝ {𝑐}
𝑇2 ≝ {𝑓 ∣ 𝑓 is strongly neutral}
𝑇3 ≝ {Π𝐴𝐵}
𝑇4 ≝ {Σ𝐴𝐵}
𝑇5 ≝ {Bool}
𝑇6 ≝ {Set}

Let Σ; ⃗⃗⃗⃗⃗𝒞 be a problem, and 𝒞 ∈ ⃗𝒞 a constraint, 𝒞 = Γ‡Γ′ ⊢ 𝑡 ≈ 𝑢 ∶ 𝐴‡𝐴′.
Suppose than any of the following hold:

(i) 𝑡 ∈ 𝑇𝑖, 𝑢 ∈ 𝑇𝑗, 𝑖 ≠ 𝑗.
(ii) 𝑡 = 𝑐1, 𝑢 = 𝑐2, for some 𝑐1, 𝑐2; and 𝑐1 ≠ 𝑐2.

(iii) 𝑡 = ℎ1  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒1, 𝑢 = ℎ2  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒2, 𝑡 and 𝑢 strongly neutral, and ℎ1 ≠ ℎ2.

Then there is no Θ such that Θ ⊨ Σ; ⃗𝒞.
Proof. Assume there is Θ such that Θ ⊨ Σ; ⃗𝒞. Then, in particular, Θ;Γ ⊢ 𝑡 ≡
𝑢 ∶ 𝐴. By Postulate 14 (existence of a common reduct), there exists 𝑟 such
that Θ;Γ ⊢ 𝑡 ⟶⋆

δη 𝑟 ∶ 𝐴 and Θ;Γ ⊢ 𝑢 ⟶⋆
δη 𝑟 ∶ 𝐴. However, in cases (i) and

(ii), the existence of such an 𝑟 leads to a contradiction.
In case (iii), by Lemma 2.163 (injectivity of elimination for strongly neutral

terms), Θ;Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴 implies ℎ1 = ℎ2, which is a contradiction.

Example 4.61. By Lemma 4.60, the following problem is not solvable.

· ; · ⊢ true ≈ false ∶ Bool
◀

However, as expected from the undecidability of the problem, not all un-
solvable problems can be detected.
Example 4.62 (Unsolvable problem). The following problem is unsolvable,
but this cannot be determined by Lemma 4.59 and Lemma 4.60.

𝛼 ∶ Bool → Bool ; · ⊢ 𝛼 true ≈ true ∶ Bool ∧
· ⊢ 𝛼 true ≈ false ∶ Bool

◀

4.7 Extensibility and limitations thereof
The system is designed to allow addition of new unification rules; it suffices to
show that each of the new rules fulfill Definition 4.26 (rule correctness).

However, adding new typing constructs with new reduction rules can break
completeness. The case of the unit type with η-equality is described below.

4.7. EXTENSIBILITY AND LIMITATIONS THEREOF 155

4.7.1 Singleton types with η-equality
If a type Unit has a single element ⟨⟩, then an η-rule for that type would have
the form:

Σ;Γ ⊢ 𝑓 ∶ Unit
Σ;Γ ⊢ 𝑓 ⟶η ⟨⟩ ∶ Unit

Adding such a rule to the system is convenient, among other things, be-
cause, if one has a metavariable 𝛼 ∶ Π ⃗𝐴𝑛.Unit, one can instantiate it directly
as 𝛼 ≔ 𝜆 ⃗𝑥𝑛.⟨⟩ ∶ Π ⃗𝐴𝑛.Unit. If we consider the unit type above as a record
type with no fields, this is a generalization of Rule schema 19 (metavariable
η-expansion).

However, this rule has ramifications on the theory. In particular, one would
have ·; 𝑥 ∶ Bool → Unit ⊢ 𝑥 true ≡ 𝑥 false ∶ Unit without true = false, which
means that Lemma 2.163 (injectivity of elimination for strongly neutral terms)
and the subsequent corollaries do not hold. In other words, whether a term
is strongly neutral or irreducible would depend not only on the syntax of the
terms, but also on their types.

Agda’s implementation of η-expansion for singletons shares the same issues
[7], and is thus incorrect. A correct implementation would require additional
bookkeeping which may result in decreased performance, but η-equality for
singleton types has use cases that cannot be straightforwardly subsumed by
other existing features.

Our theoretical development does not support such a singleton type. How-
ever, we support singleton types in our prototype Tog+ so that we can run
the case study in Section 5.6. We weaken the Rule schema 14 (strongly neu-
tral terms) and Rule schema 17 (metavariable pruning) rule with the aim of
preserving completeness. More specifically, Rule schema 14 is only applied
when the type of either side of the constraint is known not to be a singleton,
and Rule schema 17 is not applied if the metavariable only occurs rigidly in
subterms which, because of their syntax, may possibly have singleton type.
While this works for our case study, we do not know how these fixes would
scale to the whole corpus of existing Agda code.

156 CHAPTER 4. UNIFYING WITHOUT ORDER

Chapter 5

Evaluation and conclusions

In order to assess the practical usefulness of the unification rules described
in Section 4.5 (a reduction rule toolkit), we implemented a unifier based on
these rules on a prototype type checker for a dependently-typed language.
The type-checker implementation is Tog, which is in turn based on the design
by Mazzoli and Abel [36]. We extend the unification algorithm in Tog with
the unification rules for twin types. We name the resulting implementation
Tog+(pronounced [to:g ti:]).

We evaluate Tog+on examples covering the different constructions in the
language.

5.1 Unification algorithm
In this section we give an overview of how the rules in Section 4.5 (a reduc-
tion rule toolkit) can be combined in order to find a solution to a unification
problem. We choose the order in which the rules are applied with the goal
of minimizing the need for normalizing terms, but we do not claim that our
algorithm is optimal in any sense.

The algorithm is given as a series of functions in pseudocode. The values
assigned can mutate inside a function, but not across function boundaries;
there is also no global shared state. The entry point to the algorithm is the
Solve function (Algorithm 2), which receives the constraints from the elabo-
ration. Solve calls Refine (Algorithm 3) iteratively until all the constraints
are solved or stuck. In turn, Refine uses Assign (Algorithm 4) in order to
perform the metavariable instantiations which are ultimately needed to achieve
a closed signature.

Remember that the elaboration algorithm (Algorithm 1) produces a sig-
nature Σ and a list of constraints ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝒞⋆. The function Solve is called with the
signature (Σ) from the elaboration, the current list of unsolved internal con-
straints (initially empty) and all the constraints from the elaboration (⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝒞⋆).
One thus obtains (Σ′, ⃗⃗⃗ ⃗⃗ ⃗⃗𝒟) ≔ Solve(Σ,□, ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝒞⋆).

The resulting signature (Σ′) may then be fed back into the elaborator,
which will return an extended signature (Σ(1) ⊒ Σ′) and/or additional elabora-
tor constraints ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝒞⋆(1). One then obtains (Σ′(1), ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝒟(1)) ≔ Solve(Σ(1), ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝒟(1), ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝒞⋆(1)).

157

158 CHAPTER 5. EVALUATION AND CONCLUSIONS

This process can be repeated as long as there are new elaborator constraints,
lets say, for 𝑛 steps. If the final signature Σ′(𝑛) has no uninstantiated metavari-
ables, and the final list of constraints is empty (𝒟(𝑛) = □), then we are un-
der the hypotheses of Theorem 4.31 (correctness of unification), which means
that the elaborated program type-checks. A solution Θ may be obtained as
close(Σ′(𝑛)) ⇓Θ, but this is not necessary in order to know that the program
is type-correct.

By Remark 2.96 (WHNF reduction is deterministic), the 𝑡′ such that
Σ ⊢ 𝑡 ↘ 𝑡′ is unique. This is necessary for the algorithms to be deter-
ministic, in particular, for the auxiliary functions EtaContractWhnf and
EtaExpandDefHeaded. Determinism is important from a user-experience
point of view: at least for a given version of the unification algorithm, we want
a given program to either type check or not type check consistently across dif-
ferent calls to the algorithm.

Note that, by Lemma 2.98 (equality of WHNF) we have that if Σ;Γ ⊢ 𝑡 ∶ 𝐴
and Σ ⊢ 𝑡 ↘ 𝑡′, then Σ;Γ ⊢ 𝑡 ≡ 𝑡′ ∶ 𝐴. By Remark 2.102 (preservation of free
variables by WHNF), fv(𝑡′) ⊆ fv(𝑡). These are precisely the preconditions in
Rule schema 8 (term conversion).

5.1. UNIFICATION ALGORITHM 159

Algorithm 2: Solve
input : Current signature Σ

Current internal constraints ⃗⃗ ⃗⃗ ⃗𝒞
New constraints from the elaborator ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝒞⋆

output : Current signature Σ′

Updated internal constraints ⃗⃗⃗ ⃗⃗ ⃗⃗𝒟
Σ′ ≔ Σ
⃗⃗⃗⃗⃗ ⃗⃗𝒟 ≔ □
// Prepend the new constraints to the existing ones:

foreach (Γ ⊢ 𝑡 ∶ 𝐴 ≅ 𝑢 ∶ 𝐵) ∈ | ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝒞⋆| do
// Definition 4.22 (elaboration into internal constraints)
⃗⃗⃗ ⃗⃗ ⃗⃗𝒟 ≔ ⃗⃗⃗⃗⃗ ⃗⃗𝒟 ∧ Γ‡Γ ⊢ 𝐴 ≈ 𝐵 ∶ Set‡Set ∧ Γ‡Γ ⊢ 𝑡 ≈ 𝑢 ∶ 𝐴‡𝐵

⃗⃗⃗⃗⃗ ⃗⃗𝒟 ≔ ⃗⃗⃗⃗⃗ ⃗⃗𝒟 ∧ ⃗⃗⃗⃗⃗𝒞
// Solve constraints until progress is no longer made:
do

progress ≔ false
⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝒟new ≔ □
foreach 𝒞 ∈ ⃗⃗⃗⃗⃗ ⃗⃗𝒟 do

if Unblocked(Σ′; 𝒞) then
progress ≔ true
/* Update the signature and collect the constraints

produced by Refine */

Σ′,⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗⃗ ⃗⃗ ⃗⃗⃗𝒟res ≔ Refine(Σ′,𝒞)
⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝒟new ≔ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝒟new ∧ ⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗⃗ ⃗⃗ ⃗⃗⃗𝒟res

/* Attempt to unblock constraints by η-expanding
uninstantiated metavariables */

metas ≔ [all 𝛼 such that 𝛼 ∶ 𝑇 ∈ Σ′]
foreach 𝛼 ∈ metas do

Take Σ1, Σ2 such that Σ′ = Σ1, 𝛼 ∶ 𝑇 , Σ2
if by Rule schema 19 (metavariable η-expansion),
Σ1, 𝛼 ∶ 𝑇 , Σ2; □ ⇝ Σ″; □ then

progress ≔ true
Σ′ ≔ Σ″

⃗⃗⃗ ⃗⃗ ⃗⃗𝒟 ≔ ⃗⃗⃗⃗⃗ ⃗⃗𝒟 ∧ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝒟new

while progress = true

160 CHAPTER 5. EVALUATION AND CONCLUSIONS

Algorithm 3: Refine
input : Current signature Σ

Constraint 𝒞 = Γ‡Γ′ ⊢ 𝑡 ≈ 𝑢 ∶ 𝐴‡𝐵
output : Updated signature Σ′

Constraints ⃗⃗⃗ ⃗⃗ ⃗⃗𝒟
if by Rule schema 1 (syntactic equality), Σ;𝒞 ⇝ Σ′; ⃗⃗⃗ ⃗⃗ ⃗⃗𝒟 then return;
// Normalize terms before checking whether other rules apply,

using Rule schema 8 (term conversion) (and Rule schema 7
(constraint symmetry))

𝑡 ≔ 𝑡′ such that Σ ⊢ 𝑡↘ 𝑡′;
𝑢 ≔ 𝑢′ such that Σ ⊢ 𝑢↘ 𝑢′;
// The if case of Definition 2.158 (strongly neutral term) has a

condition on the number of arguments which may be fulfilled
by η-expanding the terms

𝑡 ≔ EtaExpandDefHeaded(𝑡);
𝑢 ≔ EtaExpandDefHeaded(𝑢);
if 𝑡 or 𝑢 are neutral terms then

if by Rule schema 14 (strongly neutral terms), Σ;𝒞 ⇝ Σ′; ⃗⃗⃗ ⃗⃗ ⃗⃗𝒟 then
return;

if 𝑡 = 𝛼  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒1 or 𝑢 = 𝛼  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒2 for some 𝛼 then
// We η-contract to reduce sizes of terms
t ≔ EtaContractWhnf(𝑡);
u ≔ EtaContractWhnf(𝑢);
if 𝑡 = 𝛼  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒1 and 𝑢 = 𝛼  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒2 for some 𝛼 then

// For simplicity, we do not use the full generality
of the intersection rule.

if ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒1 = ⃗⃗⃗⃗𝑥𝑛 and ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒2 = ⃗𝑦𝑛 then
Σ′; ⃗⃗⃗ ⃗⃗ ⃗⃗𝒟 ≔ Intersect(Σ; Γ‡Γ′ ⊢ 𝛼  ⃗⃗⃗𝑥 ≈ 𝛼  ⃗𝑦 ∶ 𝐴‡𝐵);
return

else if Σ′ ≔ Assign(Σ; Γ‡Γ′ ⊢ 𝑡 ≈ 𝑢 ∶ 𝐴‡𝐵) and Σ′ ≠ failure
then

⃗⃗⃗ ⃗⃗ ⃗⃗𝒟 ≔ □;
return

else
𝑡 ∶ 𝐴 ≔ EtaExpand(Σ; Γ ⊢ 𝑡 ∶ 𝐴);
𝑢 ∶ 𝐵 ≔ EtaExpand(Σ; Γ′ ⊢ 𝑢 ∶ 𝐵);
if by Rule schema 11 (𝜆-abstraction), Σ;𝒞 ⇝ Σ′; ⃗⃗⃗ ⃗⃗ ⃗⃗𝒟 then return;
if by Rule schema 12 (pairs), Σ;𝒞 ⇝ Σ′; ⃗⃗⃗ ⃗⃗ ⃗⃗𝒟 then return;
if by Rule schema 13 (booleans), Σ;𝒞 ⇝ Σ′; ⃗⃗⃗ ⃗⃗ ⃗⃗𝒟 then return;
if by Rule schema 3 (injectivity of Π), Σ;𝒞 ⇝ Σ′; ⃗⃗⃗ ⃗⃗ ⃗⃗𝒟 then return;
if by Rule schema 4 (injectivity of Σ), Σ;𝒞 ⇝ Σ′; ⃗⃗⃗ ⃗⃗ ⃗⃗𝒟 then return;
if by Rule schema 5 (Bool), Σ;𝒞 ⇝ Σ′; ⃗⃗⃗ ⃗⃗ ⃗⃗𝒟 then return;
if by Rule schema 6 (Set), Σ;𝒞 ⇝ Σ′; ⃗⃗⃗ ⃗⃗ ⃗⃗𝒟 then return;

Σ′ ≔ Σ ;
⃗⃗⃗ ⃗⃗ ⃗⃗𝒟 ≔ 𝒞 ;

5.1. UNIFICATION ALGORITHM 161

Algorithm 4: Assign
[t] input : Current signature Σ0

Constraint 𝒞0

output : Result signature Σres

Result constraint 𝒟
for two iterations do

Σ ≔ Σ(0);
Set 𝒞 ≝ Γ1‡Γ2 ⊢ 𝑡 ≈ 𝑢 ∶ 𝐴‡𝐵;
// This implicitly assigns Γ1, Γ2, 𝑡, 𝑢, 𝐴 and 𝐵
𝒞 ≔ 𝒞(0);
if 𝑡 = 𝛼  ⃗𝑒𝑁 then

Σ;𝒞 ≔ CheckPatternCondition(Σ, Γ1‡Γ2 ⊢ 𝛼  ⃗𝑒𝑁 ≈ 𝑢 ∶
𝐴‡𝐵);

if 𝑡 = 𝛼 ⃗⃗ ⃗⃗𝑥 then
// The following statement implicitly updates 𝑡
𝒞 ≔ Prune(𝒞);
if fv(𝑡) ⊆ ⃗𝑥 then

// For brevity, we leave the actual sequence of
operations unspecified. As discussed in
Section 5.8, only an occurs check is implemented
in practice.

Reorder and normalize Σres using Rule schema 10
(signature conversion), and normalize 𝑡 so that
Σ = Σ1, 𝛼 ∶ 𝑇 , Σ2 for some Σ1, Σ2 and 𝑇 , and
consts(𝑡) ⊆ decls(Σ1);

if by Rule schema 2 (metavariable instantiation),
Σ;𝒞 ⇝ Σ′; □ then

Σres ≔ Σ′;
𝒟 ≔ □;
return

// If we couldn’t instantiate 𝛼, we can at least attempt
to kill some its arguments by using information on the
free variables of 𝑢

// We apply Rule schema 7 (constraint symmetry) so that 𝑢
is on the LHS of the constraint, as required by the
implementation of Prune

Σ;𝒞 ≔ Prune(Σ; 𝒞′) where Σ;𝒞 ⇝ Σ;𝒞′ by Rule schema 7
(constraint symmetry);

else
𝒞 ≔ 𝒞′ where Σ;𝒞 ⇝ Σ;𝒞′ by Rule schema 7;

// The assignment was unsuccessful
Σres ≔ Σ;
𝒟 ≔ 𝒞;
return

162 CHAPTER 5. EVALUATION AND CONCLUSIONS

Algorithm 5: CheckPatternCondition
input : Current signature Σ(0)

Constraint 𝒞(0) of the form Γ1‡Γ2 ⊢ 𝛼  ⃗𝑒 ≈ 𝑡 ∶ 𝐴‡𝐵
output : Signature Σres

Constraint 𝒟
// Remove projections and record constructors

Σ ≔ Σ(0);
Set 𝒞 ≝ Γ1‡Γ2 ⊢ 𝛼  ⃗𝑒𝑁 ≈ 𝑡 ∶ 𝐴‡𝐵;
// This implicitly assigns Γ1, Γ2, 𝛼, ⃗𝑒, 𝑡, 𝐴 and 𝐵
𝒞 ≔ 𝒞(0);
𝑖 ≔ 𝑁 ;
while 𝑖 ≥ 1 do

if 𝑒𝑖 = ⟨𝑣1, 𝑣2⟩, Σ = Σ1, 𝛼 ∶ 𝑇 , Σ2 and by Rule schema 18
(metavariable argument currying) applied with 𝑛 = 𝑖, we have
Σ;□ ⇝ Σ1, 𝛽 ∶ 𝑇β, 𝛼 ≔ 𝑡α ∶ 𝑇 , Σ2; □ then

Σ ≔ Σ1, 𝛽 ∶ 𝑇β, 𝛼 ≔ 𝑡α ∶ 𝑇 , Σ2;
𝛼 ≔ 𝛽;
⃗𝑒 ≔ ⃗𝑒1,…,𝑖−1 𝑣1 𝑣2  ⃗𝑒𝑖+1,…,𝑁 ;

𝑁 ≔ 𝑁 + 1;
𝑖 ≔ 𝑖 + 1;

else if 𝑒𝑖 = 𝑥 .𝜋1  ⃗⃗⃗ ⃗⃗ ⃗𝑒′ or 𝑒𝑖 = 𝑥 .𝜋2  ⃗⃗⃗ ⃗⃗ ⃗𝑒′ and, by applying
Rule schema 20 (context variable currying) to 𝑥, we have
Σ;𝒞 ⇝ Σ′; 𝒞′ then

Σ ≔ Σ′;
𝒞 ≔ 𝒞′;

else if 𝑒𝑖 = 𝑥 for some 𝑥 then
𝑖 ≔ 𝑖 − 1

else
// Constraint not solvable; reset and abort
Σres ≔ Σ;
𝒟 ≔ 𝒞;
return

// Now we have ⃗𝑒 = ⃗𝑥 for some ⃗𝑥
Σres ≔ Σ′;
𝒟 ≔ 𝒞′;
return

5.1. UNIFICATION ALGORITHM 163

Algorithm 6: Prune
input : Current signature Σ(0)

Constraint 𝒞 ≝ Γ1‡Γ2 ⊢ 𝑢 ≈ 𝑡 ∶ 𝐴‡𝐵
output : Updated signature Σres

Constraint 𝒟 ≝ Γ1‡Γ2 ⊢ 𝑢 ≈ 𝑡res ∶ 𝐴‡𝐵
// We define an auxiliary recursive function PruneTerm
// Let 𝑡0 be the value of 𝑡 before calling PruneTerm, 𝑡1 be the

value of 𝑡 when PruneTerm returns, and 𝑣′ the value returned
by PruneTerm

// Precondition: 𝑡0⟦𝑣⟧𝑛
// Postcondition: 𝑡1 is the result of replacing the rigid

occurrence of 𝑣 in 𝑡0 by 𝑣′
⃗𝑥 ≔ fv(𝑢);

Function PruneTerm(n,v)
if fv(𝑣) − 𝑛 ⊈ ⃗𝑥 then

𝑣 ≔ 𝑣′ such that Σ ⊢ 𝑣↘ 𝑣′;
// In practice, 𝑡 is not updated by PruneTerm; here we do

it to clarify which rules are involved
By Rule schema 8 (term conversion), 𝑡 ≔ 𝑡′, where 𝑡′ is the
result of replacing the rigid occurrence of 𝑣 in 𝑡 by 𝑣′;

if 𝑣 = 𝛽  ⃗𝑒 then
if by Rule schema 17 (metavariable pruning) applied to
𝑡′⟦𝑣⟧𝑛, Σ;𝒞 ⇝ Σ′; 𝒞 then

Σ ≔ Σ′;
Let 𝑣′ be such that Σ ⊢ 𝑣↘ 𝑣′;
By Rule schema 8, 𝑡 ≔ 𝑡′, where 𝑡′ is the result of
replacing the rigid occurrence of 𝑣 in 𝑡 by 𝑣′;

return 𝑣′;
else if 𝑣 = Π𝑈1𝑈2 then

return ΠPruneTerm(n,U1)PruneTerm(n+1,U2);
// We write the remaining cases more compactly
else if 𝑣 = ℎ  ⃗𝑒 and 𝑣 is strongly neutral then

return ℎ PruneTerm(n,e1) … PruneTerm(n,e1);
else if 𝑣 = Σ𝑈1𝑈2 then

return ΣPruneTerm(U1)PruneTerm(n+1,U2);
else if 𝑣 = 𝜆.𝑣0 then

return 𝜆.PruneTerm(n+1,v0);
else if 𝑣 = ⟨𝑣1, 𝑣2⟩ then

return ⟨PruneTerm(n,v1), PruneTerm(n,v2)⟩;
return 𝑣

Σres ≔ Σ;
𝑡res ≔ PruneTerm(0,t);
// At this point, 𝑡res = 𝑡
return

164 CHAPTER 5. EVALUATION AND CONCLUSIONS

Algorithm 7: Intersect
input : Current signature Σ

Constraint 𝒞 ≝ Γ‡Γ′ ⊢ 𝛼  ⃗⃗⃗⃗𝑓𝑁 ≈ 𝛼  ⃗𝑔𝑁 ∶ 𝐴‡𝐵
output : Updated signature Σ′

Constraints ⃗⃗⃗ ⃗⃗ ⃗⃗𝒟
𝑛 ≔ 𝑁 ;
for 𝑖 from 𝑁 down to 1 do

if by Rule schema 16 (generalized metavariable intersection),
Σ;Γ‡Γ′ ⊢ 𝛼  ⃗⃗⃗⃗𝑓1,…,𝑖−1 𝑓𝑖  ⃗⃗⃗ ⃗𝑓𝑖+1,…,𝑛 ≈ 𝛼  ⃗𝑔1,…,𝑖−1 𝑔𝑖  ⃗𝑔𝑖+1,…,𝑛 ∶ 𝐴‡𝐵 ⇝
Σ′; Γ‡Γ′ ⊢ 𝛽  ⃗⃗⃗ ⃗⃗ ⃗⃗𝑓 ′𝑛−1 ≈ 𝛽  ⃗⃗⃗ ⃗⃗ ⃗𝑔′𝑛−1 ∶ 𝐴‡𝐵 then

Σ ≔ Σ′; 𝛼 ≔ 𝛽; 𝑛 ≔ 𝑛 − 1; ⃗⃗⃗ ⃗𝑓 ≔ ⃗⃗⃗ ⃗⃗ ⃗⃗𝑓 ′; ⃗𝑔 ≔ ⃗⃗⃗ ⃗⃗ ⃗𝑔′;
Σ′ ≔ Σ;
if ⃗⃗⃗ ⃗𝑓 = ⃗𝑔 then ⃗⃗⃗ ⃗⃗ ⃗⃗𝒟 ≔ □ ;
else ⃗⃗⃗ ⃗⃗ ⃗⃗𝒟 ≔ Γ‡Γ′ ⊢ 𝛼  ⃗⃗⃗⃗𝑓 ≈ 𝛼  ⃗𝑔 ∶ 𝐴‡𝐵 ;

Algorithm 8: Weak head normal form of a term, η-contracted
(EtaContractWhnf)
// Removes redundant λ-abstractions and pair constructors with

the aim of improving performance
input : Current signature Σ

Term 𝑡
output : Term in weak head normal form 𝑡′
repeat

stop ≔ false;
𝑡′ := 𝑡′ such that Σ ⊢ 𝑡↘ 𝑡′;
if 𝑡′ = 𝜆.𝑓 0 and 0 ∉ fv(𝑓) then

𝑡′ ≔ 𝑓 (−1)

else if 𝑡′ = ⟨𝑓 .𝜋1, 𝑓  .𝜋2⟩ then
𝑡′ ≔ 𝑓

else
stop ≔ true

until stop = true;

5.1. UNIFICATION ALGORITHM 165

Algorithm 9: Type directed top-level η-expansion (EtaExpand)
input : Signature, context, term and type: Σ;Γ ⊢ 𝑡 ∶ 𝐴
output : Term and type 𝑡′ ∶ 𝐴′

𝐴′ ≔ 𝐴′ such that Σ ⊢ 𝐴↘𝐴′;
if 𝑡 ≠ 𝜆.𝑢 and 𝐴′ = Π𝑈𝑉 then

𝑡′ ≔ 𝜆.(𝑡(+1) @ 0);
return

else if 𝑡 ≠ ⟨𝑢, 𝑣⟩ and 𝐴′ = Σ𝑈𝑉 then
𝑡′ ≔ ⟨𝑡 @ .𝜋1, 𝑡 @ .𝜋2⟩;
return

else
𝑡′ ≔ 𝑡;
return

Algorithm 10: Application of η-expansion to some neutral terms
(EtaExpandDefHeaded)
input : Term 𝑡
output : Term in weak head-normal form 𝑡′
if 𝑡 = if  ⃗𝑒𝑛 and 𝑛 < 4 then

𝑡′ ≔ 𝜆4−𝑛.(𝑡(+(4−𝑛)) (4 − 𝑛 − 1) … 0)
else

𝑡′ ≔ 𝑡

166 CHAPTER 5. EVALUATION AND CONCLUSIONS

5.2 Constraint book-keeping
Algorithm 2 (Solve) checks whether a constraint is Unblocked before per-
forming the (potentially expensive) Refine operation on this constraint. The
function Unblocked is left unspecified in Section 5.2.1 in order to avoid
cluttering the pseudocode. In this section we give an overview of how the
Unblocked function is implemented in Tog+.

5.2.1 Constraint unblocking (Unblocked)
Each constraint 𝒞 in the Algorithm 2 (Solve) is internally associated with
an unblocker ℬ. The unblocker for each constraint describes the conditions
under which the algorithm should attempt to make progress on that particular
constraint.

In the original Tog [37], unblockers are a disjunction of metavariables
(𝛼1∨𝛼2∨…∨𝛼𝑛). We generalize unblockers to include not only metavariables,
but also constraints, and not only disjunction, but also conjunctions. The aim
is to restrict the conditions under which constraints may unblock, hopefully
increasing performance. We also introduce a “never” unblocker (⊥), for con-
straints which have been deemed unsolvable, and an “always” unblocker (⊤),
for completeness.

Definition 5.1 (Unblocker). An unblocker ℬ is defined inductively as follows:

ℬ ∶∶= ∗𝛼, ∗𝛽,… metavariable
| ∗𝒞 internal constraint
| ℬ1 ∧ ℬ2 | ℬ1 ∨ ℬ2 conjunction and disjunction
| ⊤ | ⊥ always and never

Initially, every constraint has the ⊤ unblocker (“always”), which means
that the constraint is unblocked. Each constraint returned by Refine is an-
notated with a corresponding unblocker. This unblocker is computed by the
same functions that generate the new constraints, by, among other things,
noting which metavariables are preventing some term from normalizing fur-
ther (yielding metavariable unblockers) and which types need to be equal in
order for Rule schema 2 (metavariable instantiation) to be applicable (yielding
internal constraint unblockers).

Definition 5.2 (Unblocking of constraints: Unblocked(Σ; 𝒞)). We say that
a constraint 𝒞 is unblocked in Σ (written Unblocked(Σ; 𝒞)), if, for the un-
blocker ℬ associated with 𝒞, we have Σ ⊢ ℬ unblocks.

The relation Σ ⊢ ℬ unblocks is defined recursively as follows:

Σ ⊢ ∗𝛼 unblocks when 𝛼 is instantiated in Σ
Σ ⊢ ∗𝒞 unblocks when Σ ∣≈ 𝒞
Σ ⊢ ℬ1 ∧ ℬ2 unblocks when Σ ⊢ ℬ1 unblocks and Σ ⊢ ℬ2 unblocks
Σ ⊢ ℬ1 ∨ ℬ2 unblocks when Σ ⊢ ℬ1 unblocks or Σ ⊢ ℬ2 unblocks
Σ ⊢ ⊤ unblocks

5.2. CONSTRAINT BOOK-KEEPING 167

Checking whether a metavariable is instantiated is a simple table lookup,
but checking whether Σ ⊢ ∗𝒞 unblocks is more involved: it is equivalent to
solving the constraint itself. In the following section we explain the how this
check is implemented in Tog+.

5.2.2 Ordering of rule application
As described in Algorithm 2, when turning a basic constraint (Definition 3.7)
into internal constraints (Definition 4.2), the constraint that unifies the types
is output before the constraint that unifies the terms.

All generated constraints are initially unblocked; and unblocked constraints
are attempted in the order in which they are generated. This way, the algo-
rithm attempts to unify the sides of a twin type before the constraint contain-
ing it is attempted, hopefully minimizing the occurrence of twin types with
differing sides.

We discuss two issues related to the order in which rules are applied below.
We consider further optimizing the order in which rules are applied outside
the scope of this work.

Effect on the applicability of syntactic equality: One may fear that
the applicability of syntactic equality is sensitive to which other rules have
been applied to a constraint, and that there may exist problems that become
unsolvable if syntactic equality is not applied at the right time. However, in
our tests, Rule schema 1 (syntactic equality) is not necessary for solving any
of the examples; it just affects performance. For all the other rules, we see no
obvious way in which the preconditions for one rule would cease to hold by
the application of another rule.

Therefore, we believe that the order in which constraints are solved may
affect performance, but should not critically affect the ability of the algorithm
to find a solution.

Use of Rule schema 19 (metavariable η-expansion): Applying
Rule schema 19 increases the number of metavariables, and, as shown
in Section 4.5.11, also may indirectly increase the number of constraints.
Thus rule should not be applied indiscriminately to all metavariables of the
appropriate type, but only in the presence of constraints of the form of those
in Example 4.50 or Example 4.51, and only if other approaches to solve these
constraints, such as Rule schema 2 (metavariable instantiation) have proven
unfruitful.

5.2.3 Constraint satisfaction
In order to efficiently assess whether Σ ∣≈ 𝒞 (or, equivalently, whether Σ ⊢
∗𝒞 unblocks), the implementation keeps a tree of constraints, which has a
node for each constraint that has ever been considered by Solve. Initially,
the elaborator constraints are inserted as roots, with the corresponding inter-
nal constraints as children. When a call to Refine on 𝒞 by Solve returns
constraints ⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗⃗ ⃗⃗ ⃗⃗⃗𝒟res, these are added as children of 𝒞. If ⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗⃗ ⃗⃗ ⃗⃗⃗𝒟res = □, then 𝒞 is

168 CHAPTER 5. EVALUATION AND CONCLUSIONS

marked as solved. When all the children of a constraint are marked as solved,
their parent is also marked as solved.

Each constraint in the tree has an identifier. Internal constraint unblockers
do not contain the constraints themselves, but rather the identifier of the node
in the tree of constraints.

By the correctness (and therefore soundness) of the rules, if Σ;𝒞⇝⇝⇝⋆ Σ′; □,
then for any extension Σ″ ⊒ Σ′, we have Σ″ ∣≈ 𝒞. Furthermore, the signature
produced by a sound rule is always an extension of the previous signature,
and signature extension is a transitive relation (Remark 2.152). Therefore, the
implementation can (partially) determine whether, for the current signature
Σ, we have Σ ∣≈ 𝒞 (and thus, whether Σ ⊢ ∗𝒞 unblocks) by checking whether
𝒞 is marked as solved in the tree.

The constraint tree built for assessing constraint satisfaction has two fur-
ther use cases:

Heterogeneous context equality: The constraint tree is also used to avoid
redundant conversion checks when deciding heterogeneous context equality
(Definition 4.37). For instance, checking the heterogeneous context equality
when assessing the applicability of Rule schema 2 (metavariable instantiation)
in Algorithm 4 is equivalent to checking whether certain constraints are satis-
fied.

Error reporting: When the unification algorithm cannot solve all the con-
straints (that is, when all the remaining constraints are blocked), the user is
informed of which constraints could not be solved and why they are being
blocked.

By finding the elaborator constraints in the constraint tree that are an-
cestors to the unsolved constraints, one could even report the position in the
code from which this constraint originates, and even the typing rule or some
other reason why the constraint was introduced. With this information, the
user could decide whether to change the term, its type, or give more of the
implicit arguments explicitly.

Although collection of this information can be enabled in the implementa-
tion, we have not implemented a way to display it in a user-friendly way.

5.3 Language extensions
The language implemented by Tog (and Tog+) extends the one described in
Chapter 2 in the following ways:

Implicit arguments: Function arguments can be marked as implicit, by
surrounding them with curly braces (Listing 5.1). Such arguments may be
omitted by the user, in which case they are internally replaced by a metavari-
able and inferred.

Listing 5.1: Implicit arguments

module Implicit where

5.3. LANGUAGE EXTENSIONS 169

id : {A : Set} -> A -> A
id x = x

postulate B : Set
postulate b : B

example_id : B
example_id = id b

The step of identifying the points in the code where implicit arguments
have been omitted is not straightforward. We preserve the approach used by
the original Tog implementation as explained by Mazzoli and Abel [36]. In
this approach, only the top level function definitions have implicit arguments,
and these may only occur before non-implicit arguments.

Inductive-recursive data types: Inductive-recursive datatypes can be de-
fined. These datatypes may have several parameters (Listing 5.2). From the
point of view of unification, datatype constructors (e.g. Nat and Vec) and data
constructors (e.g. zero, suc, nil and cons) behave in the same way as postu-
lates: they are equal only to themselves, and injective with respect to the judg-
mental equality (Section 2.12). Recursive definitions (e.g. map) have a judg-
mental equality analogous to the rules delta-if-true and delta-if-false.

In the implementation, the constructors do not take the type parameters
as arguments. This is analogous to the way that λ-abstractions and pairs are
implemented. Note that this implies that the constructor (and thus the term)
may have several different types. Constructor-headed terms are treated as
strongly neutral; the type parameters (in the example in Listing 5.2, (A : Set)
and (n : Nat)) are inferred from the type of the constraint.

Listing 5.2: Inductive data types

module Vec where

data Nat : Set where
zero : Nat
suc : Nat -> Nat

data Vec (A : Set) (n : Nat) : Set
data Vec A n where
nil : n == zero -> Vec A n
cons : {m : Nat} (p : n == suc m) (x : A) (xs : Vec A m) -> Vec A n

map : {A : Set} {B : Set} {n : Nat} -> (A -> B) -> Vec n A -> Vec n B
map _ (nil eq) = nil eq
map f (cons eq x xs) = cons eq (f x) (map f xs)

Identity type with the J axiom: The implementation includes an identity
type and the J axiom. In Listing 5.3, it is shown that the built-in equality type
respects substitutivity (also known as indiscernibility of identicals or Leibniz’s
law), and is a symmetric, transitive and congruent relation.

170 CHAPTER 5. EVALUATION AND CONCLUSIONS

Listing 5.3: Properties of the identity type

module IdentityType where

subst : {A : Set} {x y : A} (P : A -> Set) ->
x == y -> P x -> P y

subst P = J (\ x y _ -> P x -> P y) (\ x p -> p)

sym : {A : Set} {x : A} {y : A} -> x == y -> y == x
sym {A} {x} {y} p = subst (\ y -> y == x) p refl

trans : {A : Set} {x : A} {y : A} {z : A} ->
x == y -> y == z -> x == z

trans {A} {x} p q = subst (\ y -> x == y) q p

cong : {A B : Set} {x : A} {y : A} (f : A -> B) ->
x == y -> f x == f y

cong f p = subst (\ z -> f x == f z) p refl

Record types with η-equality: The Σ-type in the language described in
the theory is generalised to dependent records with an arbitrary number of
fields. These records, as does the Σ-type in the calculus, exhibit η-equality.
Listing 5.4 shows the particular case of how the Σ-type may be defined as a
record type.

Listing 5.4: Σ-type implemented in Tog

module Record where

record Sigma (A : Set)(B : A -> Set) : Set
record Sigma A B where

constructor pair
field
fst : A
snd : B fst

eta : (A : Set) (B : A -> Set) (x : Sigma A B) ->
x == pair (fst x) (snd x)

eta A B x = refl

As explained in Section 4.7.1, η-equality for records with no fields as im-
plemented in Agda leads to non-unique solutions, as we reported [7]. We
implement η-equality for such records in Tog+, but restrict the unification
rules with the aim of preserving completeness. In particular, Rule schema 14
(strongly neutral terms) is not applied until at least one of the sides of the con-
straint is known not to have singleton type; and rule r-strong is disallowed
when assessing rigid occurrences in Rule schema 17 (metavariable pruning).

Simplification of metavariable intersection: Furthermore, for simplic-
ity, we implement the simpler metavariable intersection rule (Rule schema 15)

5.4. BENCHMARKING METHODOLOGY 171

instead of the more general Rule schema 16. We do not expect any issues re-
garding unit types, as we expect that those arguments of a metavariable that
are of unit type can always be killed.

5.4 Benchmarking methodology
In the coming sections we benchmark the CPU and memory usage of the
implementation in order to justify certain design choices. We compare with a
reference implementation, Agda, to put our figures in context.

The benchmarks are run on an Intel i7-8550U CPU, 32GiB RAM, running
64bit Linux. Agda and Tog are compiled using GHC 8.4.4 (-O2 enabled),
and the Stackage 12.26 LTS release. CPU usage is measured as the total
execution time of the process with respect to the wall clock, while memory
usage is measured as the maximum amount allocated from the system by the
GHC runtime system (where 1 MB = 106 bytes). The specific versions and
command line arguments of the programs used are detailed in Table 5.1.

To reduce the variability due to concurrent processes running on the same
machine, we take the median of at least 10 measurements. In all plots, we re-
port a 95% confidence interval for the median. This interval is calculated using
the non-parametric bootstrap technique, which uses sampling with replace-
ment from the data itself (in our case, 1000 samples) in order to approximate
the actual distribution of a statistic (in this case, the median).

5.4.1 Comparing Tog with Agda
Tog code can be run essentially unchanged in Agda. Because of the lack
of universe stratification in Tog/Tog+, Agda may need to be given the
- -type-in-type option when type-checking a Tog/Tog+ file. Additionally, if
the Tog program being type-checked by Agda uses Tog built-in identity type,
this type must be loaded into Agda by importing the module in Listing 5.5.

Listing 5.6 shows an example of how to adapt a Tog program so that it can
run in both Tog and Agda:

1. {-# OPTIONS --type-in-type #-} disables universe stratification checks
(see Remark 2.15).

2. {-@AGDA-} makes Tog/Tog+ignore the following line.

3. open import Prelude includes the definitions in Listing 5.5. A file named
Prelude.agda with the contents of Listing 5.5 must be in Agda’s import
path.

4. open Sigma makes the constructors and fields of the Sigma record type
available in the global scope, in the same way as they are by default in
Tog.

172 CHAPTER 5. EVALUATION AND CONCLUSIONS

Implementation Commit Command line arguments
Agda 87a3b458 --type-in-type --without-

K --no-termination-check
--ignore-interfaces --no-
positivity-check

Tog+ c13fdd5e --quiet --synEquality 2 --
physicalEquality --solver W -
-noCheckElaborated --termType
HC4 --fastElaborate

Tog+ without
hash consing

—”— --quiet --synEquality 2
--physicalEquality --
termType S --solver W
--noCheckElaborated --
fastElaborate

Tog+ without fast
elaboration

—”— --quiet --synEquality 2 --
physicalEquality --solver W -
-noCheckElaborated --termType
HC4

Tog+ without
syntactic equality

—”— --quiet --synEquality 0 --
solver W --noCheckElaborated -
-termType HC4 --fastElaborate

Table 5.1: Command line options for the benchmarks in Chapter 5

Listing 5.5: Tog Prelude

{-# OPTIONS --type-in-type #-}
{-# OPTIONS --without-K #-}
module Prelude where

data _==_ {A : Set}(x : A) : A -> Set where
refl : x == x

J : {A : Set} {x y : A}
(P : (x : A) (y : A) -> x == y -> Set) ->
((z : A) -> P z z refl) -> (p : x == y) -> P x y p

J P h refl = h _

5.5. FROM TOG TO TOG+ 173

Listing 5.6: Adapted version of Listing 5.4

{-# OPTIONS --type-in-type #-}
module Record where

{-@AGDA-}
open import Prelude

record Sigma (A : Set)(B : A -> Set) : Set
record Sigma A B where

constructor pair
field
fst : A
snd : B fst

{-@AGDA-}
open Sigma

eta : (A : Set) (B : A -> Set) (x : Sigma A B) ->
x == pair (fst x) (snd x)

eta A B x = refl

In order to make the benchmark results more comparable be-
tween Tog+ and Agda, we have disabled some features of Agda, such
as the aforementioned universe levels (- - type-in-type flag) termina-
tion checking (--no-termination-check flag) and positivity checking
(--no-positivity-check flag), in order to not make Agda unfairly slower.
Another reason to disable universe levels, together with the K axiom
(- -without-K flag), is to make the underlying type theory in Agda closer to
the one in Tog and Tog+.

Noe that our benchmarks are done with a small set of programs, which
where also used to guide the development of the prototype itself. Furthermore,
the Agda implementation does more bookkeeping work than our prototype;
for instance, it keeps track of more information associated with the type-
checked terms and definitions, and it also serializes the type-checked definitions
together with syntax highlighting information and writes the result to disk. On
the other hand, Agda has been developed over the years by a big community,
with many optimizations to deal with specific use cases. Because of these
differences, we will only make claims regarding the technical feasibility of our
approach; but we will not make claims about the relative performance of the
two tools beyond our case study.

5.5 From Tog to Tog+

Tog+ extends Tog with an implementation of the unification algorithm de-
scribed in Section 5.1. The implementation is modified with respect to Sec-
tion 5.1 in order to improve performance and to accommodate the language
extensions described in Section 5.3.

174 CHAPTER 5. EVALUATION AND CONCLUSIONS

Apart from the unification algorithm, we modify the term representation
and the elaboration procedure to increase the performance of type checking.

5.5.1 Term representation using hash-consing
If represented as their syntax trees, the size of the terms involved in type
checking can be exponentially large compared to size of the original program.
In Tog+, in order to increase the amount of sharing in the representation, and
thus reduce the memory footprint, we use hash-consing on terms.

In hash consing, introduced by Deutsch [17] in the context of Lisp, each en-
countered term is represented at most once in memory, and assigned a unique
identifier. This has the potential of reducing the memory footprint of a col-
lection of terms with a large number of identical subterms. It also makes it
possible to compare terms for syntactic equality in constant time.

In the rest of this section we assess the performance of our hash consing
implementation on two examples which are typically hard for dependent type
checkers. These are families of examples of increasing size, and involve implicit
arguments which, in their fully expanded form, are exponential in the size of
the program, and contain many duplicated subterms. We thus expect that
increasing sharing via hash consing will reduce the memory footprint, and
that memoizing operations on terms will reduce the execution time. Both of
these examples were originally written for Agda and then in turn adapted to
the original Tog implementation.

Repeated application of the identity function: One example is re-
peated application of the identity function (Listing 5.7), suggested by Shao
et al. [54].

When all implicit arguments are inferred, the size (without sharing) of the
term that gets passed as the first implicit argument to id increases exponen-
tially in the number of occurrences of id. We use hash-consing to reduce the
memory usage of terms, and the processing footprint of term reduction and
comparison.

Using hash-consing results in a great decrease in both CPU time (Fig-
ure 5.1) and maximum heap size (Figure 5.2). In the case of Agda, the example
is fast because of an optimization by Norell [46] which inlines simple functions
like id. An analogous example which precludes this optimization (Listing 5.8)
brings the performance of Agda closer to that of Tog+ without hash consing
(c.f. Figure 5.3 and Figure 5.4).

Projection functions: Another example where there is redundancy in the
term representation is given in Listing 5.9, which was presented as a particu-
larly slow example by Mazzoli [35].

5.5. FROM TOG TO TOG+ 175

Listing 5.7: Example with 𝑛 = 20 applications of id

module Ids20 where

id : {A : Set} -> A -> A
id x = x

id20 : {A : Set} -> A -> A
id20 = (id id id id id id id id id id

id id id id id id id id id id)

Listing 5.8: Example with 𝑛 = 20 applications of id, while preventing inlining.

module IdsBinder20 where

slow20 : {A : Set} -> ((A : Set) -> A -> A) -> A -> A
slow20 id = ((id _) (id _) (id _) (id _) (id _)

(id _) (id _) (id _) (id _) (id _)
(id _) (id _) (id _) (id _) (id _)
(id _) (id _) (id _) (id _) (id _))

0.01

0.10

1.00

0 10 20 30 40

Number of occurrences of id

C
P

U
 t

im
e

 (
s) Implementation

Agda

Tog⁺ without hash consing

Tog⁺

Typechecking of id … id

Figure 5.1: CPU usage of id

176 CHAPTER 5. EVALUATION AND CONCLUSIONS

10

100

1000

0 10 20 30 40

Number of occurrences of id

M
e

m
o

ry
 (

M
B

)

Implementation

Agda

Tog⁺ without hash consing

Tog⁺

Typechecking of id … id

Figure 5.2: Memory usage of id

0.01

0.10

1.00

10.00

0 10 20 30 40

Number of occurrences of id

C
P

U
 t

im
e

 (
s) Implementation

Agda

Tog⁺ without hash consing

Tog⁺

with id as a bound variable

Typechecking of id … id

Figure 5.3: CPU usage of id when the inlining optimization is prevented

5.5. FROM TOG TO TOG+ 177

10

100

1000

0 10 20 30 40

Number of occurrences of id

M
e

m
o

ry
 (

M
B

)

Implementation

Agda

Tog⁺ without hash consing

Tog⁺

with id as a bound variable

Typechecking of id … id

Figure 5.4: Memory usage of id when the inlining optimization is prevented

Listing 5.9: Example of projections from data type for 𝑛 = 7

module Data where

data Sigma (A : Set)(B : A -> Set) : Set
data Sigma A B where
pair : (x : A) -> B x -> Sigma A B

fst : {A : _} {B : _} -> Sigma A B -> A
fst (pair x y) = x

snd : {A : _} {B : _} (p : Sigma A B) -> B (fst p)
snd (pair x y) = y

data Unit : Set
data Unit where
tt : Unit

Cat : Set
Cat =
Sigma Set (\ Obj ->
Sigma (Obj -> Obj -> Set) (\ Hom ->
Sigma ((X : _) -> Hom X X) (\ id ->
Sigma ((X Y Z : _) -> Hom Y Z -> Hom X Y -> Hom X Z) (\ comp ->
Sigma ((X Y : _)(f : Hom X Y) -> comp _ _ _ (id Y) f == f) (\ idl ->
Sigma ((X Y : _)(f : Hom X Y) -> comp _ _ _ f (id X) == f) (\ idr ->
Sigma ((W X Y Z : _)

(f : Hom W X)(g : Hom X Y)(h : Hom Y Z) ->

178 CHAPTER 5. EVALUATION AND CONCLUSIONS

comp _ _ _ (comp _ _ _ h g) f ==
comp _ _ _ h (comp _ _ _ g f)) (\ assoc ->

Unit)))))))

Obj : (C : Cat) -> Set
Obj C = fst C

Hom : (C : Cat) -> Obj C -> Obj C -> Set
Hom C = fst (snd C)

id : (C : Cat) -> (X : _) -> Hom C X X
id C = fst (snd (snd C))

comp : (C : Cat) -> (X Y Z : _) -> Hom C Y Z -> Hom C X Y -> Hom C X Z
comp C = fst (snd (snd (snd C)))

idl : (C : Cat) -> (X Y : _)(f : Hom C X Y) ->
comp C _ _ _ (id C Y) f == f

idl C = fst (snd (snd (snd (snd C))))

idr : (C : Cat) -> (X Y : _)(f : Hom C X Y) ->
comp C _ _ _ f (id C X) == f

idr C = fst (snd (snd (snd (snd (snd C)))))

assoc : (C : Cat) ->
(W X Y Z : _) (f : Hom C W X)(g : Hom C X Y)(h : Hom C Y Z) ->
comp C _ _ _ (comp C _ _ _ h g) f ==
comp C _ _ _ h (comp C _ _ _ g f)

assoc C = fst (snd (snd (snd (snd (snd (snd C))))))

We compare the performance of the type-checker on examples of different
sizes, from 0 to 7. The size of the example corresponds to the maximum
number of nested applications of fst and snd in the file. Listing 5.10 shows
the test file for size 3.
Listing 5.10: Example of projections from data type for 𝑛 = 3. For succintness,
we have omitted the code ({- ... -}) corresponding to the definitions of Sigma,
fst, snd and Unit in Listing 5.9.

{-# OPTIONS --type-in-type #-}
module Data3 where

{- ... -}

Cat : Set
Cat =
Sigma Set (\ Obj ->
Sigma (Obj -> Obj -> Set) (\ Hom ->
Sigma ((X : _) -> Hom X X) (\ id ->
Unit)))

5.5. FROM TOG TO TOG+ 179

Obj : (C : Cat) -> Set
Obj C = fst C

Hom : (C : Cat) -> Obj C -> Obj C -> Set
Hom C = fst (snd C)

id : (C : Cat) -> (X : _) -> Hom C X X
id C = fst (snd (snd C))

Both of the functions fst and snd take the types A and B as implicit argu-
ments. However, the type of the function snd also has an application of the
function fst. This means that the type checker needs to infer and manipulate
implicit arguments whose size (without sharing) grows exponentially with the
number of nested applications of these functions (Listing 5.11).

Listing 5.11: Listing 5.10 with partially expanded implicit arguments (𝑛 = 3).
If the all of the implicit arguments ({_}) were to be filled, each definition body
would be several times bigger than as defined below.

{- ... -}

Obj : (C : Cat) -> Set
-- Obj C = fst C
Obj C = fst {Set}

{\ obj -> Sigma (obj -> obj -> Set)
(\hom -> Sigma ((X : obj) -> hom X X)

(\ id -> Unit))}
C

Hom : (C : Cat) -> Obj C -> Obj C -> Set
-- Hom C = fst (snd C)
Hom C = fst {fst {_} {_} C -> fst {_} {_} C -> Set}

{\ hom -> Sigma ((X : fst {_} {_} C) -> hom X X)
(\ id -> Unit)}

(snd {Set}
{\ obj -> Sigma (obj -> obj -> Set)
(\ hom -> Sigma ((X : obj) -> hom X X)

(\ id -> Unit))}
C)

id : (C : Cat) -> (X : _) -> Hom C X X
-- id C = fst (snd (snd C))
id C = fst {(X : fst {_} {_} C) -> fst {_} {_}

(snd {_} {_} C) X X}
{\ id -> Unit}
(snd {_} {_} (snd {_} {_} C))

When type-checking examples of different sizes, we observe that hash-
consing reduces both the CPU time (Figure 5.5) and the amount of memory

180 CHAPTER 5. EVALUATION AND CONCLUSIONS

1e-02

1e-01

1e+00

1e+01

1e+02

1 2 3 4 5 6 7

n

C
P

U
 (

s) Implementation

Tog⁺ without hash consing

Tog⁺

Typechecking of fst (snd …ₙ snd)

Figure 5.5: CPU usage of the Data example.

10

100

1000

1 2 3 4 5 6 7

n

M
e

m
o

ry
 (

M
B

)

Implementation

Tog⁺ without hash consing

Tog⁺

Typechecking of fst (snd …ₙ snd)

Figure 5.6: Memory usage of the Data example

5.5. FROM TOG TO TOG+ 181

required (Figure 5.6) by orders of magnitude. Further reductions could be
achieved with a specialized optimization for projection-like functions, which is
done for Agda as explained by Abel [1], and implemented by Norell [45].

Hash consing also allows for performing syntactic equality checks in con-
stant time, instead of linear in the size of the terms involved. Performing these
checks result in significant reductions in execution time for large examples (see
Section 5.6.1).

5.5.2 Elaboration
Mazzoli and Abel [36] show that dependent type checking can be reduced to
unification. This means in particular that the type-checker does not manipu-
late ill-typed terms. Instead, there is an elaboration step before typechecking
which translates the syntax written by the user into well-typed terms (possibly
involving new metavariables), and a set of unification constraints. In this ap-
proach, metavariables fulfill two functions: they stand for implicit arguments
that the user omitted; and they also replace subterms which, if present, would
lead to possibly untyped terms.

However, the introduction of metavariables and constraints by the elab-
oration procedure leads to additional constraints that must be solved, and
metavariables that must be instantiated. This is particularly inefficient in the
case of neutral terms where the head is of known type (see Remark 3.14). At
the suggestion of Andreas Abel, we add an additional case to the elaboration
rule for application so that, when a constant which is known to have a Π-type
is applied to a term, the domain and codomain of the Π-type are extracted
directly by the elaboration instead of the unifier.

Listing 5.12: Example of applications for 𝑛 = 7

module App7 where

data Bool : Set where
true : Bool
false : Bool

first : Bool -> Bool -> Bool -> Bool -> Bool -> Bool -> Bool -> Bool
first x1 x2 x3 x4 x5 x6 x7 = x1
res1 : Bool
res1 = first true true true true true true true
res2 : Bool
res2 = first true true true true true true true
res3 : Bool
res3 = first true true true true true true true
res4 : Bool
res4 = first true true true true true true true
res5 : Bool
res5 = first true true true true true true true
res6 : Bool
res6 = first true true true true true true true
res7 : Bool

182 CHAPTER 5. EVALUATION AND CONCLUSIONS

res7 = first true true true true true true true
res8 : Bool
res8 = first true true true true true true true
res9 : Bool
res9 = first true true true true true true true
res10 : Bool
res10 = first true true true true true true true

To measure the impact of this optimization we compare the performance
of elaboration in examples with 10 function applications of the same length 𝑛,
for varying 𝑛. The case for 𝑛 = 7 is shown in Listing 5.12.

Figure 5.7 and Figure 5.8 show how enabling the shortcut in the elaboration
algorithm (fast elaboration) eliminates a big part of the cost of type checking.
We apply similar shortcuts when elaborating λ-abstractions, refl, and the
application of data constructors, type constructors and the J axiom.

5.5. FROM TOG TO TOG+ 183

0.00

0.05

0.10

0.15

0.20

5 10 15 20

n

C
P

U
 (

s)

Implementation

Agda

Tog⁺ without fast elaboration

Tog⁺

Typechecking of (const true …ₙ true)

Figure 5.7: CPU usage of the App example.

2

3

4

5

6

5 10 15 20

n

M
e

m
o

ry
 (

M
B

)

Config.

Agda

Tog⁺ without fast elaboration

Tog⁺

Typechecking of (const true …ₙ true)

Figure 5.8: Memory usage of the App example

184 CHAPTER 5. EVALUATION AND CONCLUSIONS

5.6 Case study: Type Theory in Type Theory
To assess the feasibility of our algorithm, we use it to typecheck a large exam-
ple, and compare its performance with Agda.

Listing A.1 in appendix A shows a small definition of a dependently typed
language, using the technique by McBride [39], and implemented for Tog by
Nils Anders Danielsson.

The embedded dependently typed language is then used to define pro-
gressively more complicated structures, such as a pointed set (Listing 5.15),
a reflexive graph (Listing 5.17), part of the definition of precategories (List-
ing 5.18), and part of the definition of a setoid (Listing 5.19).

These examples give rise to constraints such as the one in Listing 5.13 or
5.14. As explained in Section 5.7, many proof assistants cannot handle them,
but Agda can. This makes these examples a good way of benchmarking the
implicit argument inference capabilities of our approach, and provides some
indication of whether this approach could replace the current one used in Agda.

Listing 5.13: Constraint from the pointed set example (Listing 5.15). The
constraint can be solved by unifying two terms before their types have been
fully unified.

_443 : Unit -> U
ctx: []
lhs:
Sigma (Unit -> U) (\u ->
Sigma (_==_ (Sigma Unit (\g -> Set) -> U)

(\g -> u (fst g)) (_ -> set))
(_ -> (A : Set) -> A))

: Set
rhs:
Sigma (Unit -> U) (\u ->
Sigma (_==_ (Sigma Unit (\g -> El (_443 g)) -> U)

(\g -> u (fst g)) (\g -> _443 (fst g)))
(_ -> (A : Set) -> A))

: Set

Listing 5.14: Constraint from the multigraph example (Listing 5.16). The
constraint can be solved by currying a context variable with a two-sided type.

_1733 : (Sigma Unit (\g -> Set)) -> U
ctx: []
lhs: _==_ (Sigma (Sigma Unit (\g -> Set)) (\g -> snd g)

-> U)
(\g -> el (snd (fst g)))
(_ -> set) : Set

rhs: _==_ (Sigma (Sigma Unit (\g -> Set)) (\g -> El (_1733 g))
-> U)

(\g -> _1733 (fst g))
(\g -> set) : Set

5.6. CASE STUDY: TYPE THEORY IN TYPE THEORY 185

Listing 5.15: Definition of a pointed set

pointU : U
pointU =
sigma set (\ obj -> (el obj))

point : Type empty (\ _ -> pointU)
point =

-- Objects.
sigma' set'

-- Point.
(el' (var zero))

Listing 5.16: Definition of a multigraph

graphU : U
graphU =
sigma set (\ obj ->
(fun (el obj) (fun (el obj) set)))

graph : Type empty (\ _ -> graphU)
graph =

-- Vertices
sigma' set'

-- Edges
(pi' (el' (var zero)) (pi' (el' (var (suc zero))) set'))

Listing 5.17: Definition of a fully-reflexive multigraph

refl-graphU : U
refl-graphU =
sigma set (\ obj ->
sigma (fun (el obj) (fun (el obj) set)) (\ hom ->
(pi (el obj) (\ x -> el (hom x x)))))

refl-graph : Type empty (\ _ -> refl-graphU)
refl-graph =

-- Objects.
sigma' set'

-- Morphisms.
(sigma' (pi' (el' (var zero)) (pi' (el' (var (suc zero))) set'))

-- Identity.
(pi' (el' (var (suc zero)))

(el' (app (app (var (suc zero)) (var zero)) (var zero)))))

Listing 5.18: Part of the definition of a precategory

186 CHAPTER 5. EVALUATION AND CONCLUSIONS

raw-categoryU : U
raw-categoryU =
sigma set (\ obj ->
sigma (fun (el obj) (fun (el obj) set)) (\ hom ->
times
(pi (el obj) (\ x -> el (hom x x)))
(pi (el obj) (\ x -> pi (el obj) (\ y -> pi (el obj) (\ z ->

fun (el (hom x y)) (fun (el (hom y z)) (el (hom x z)))))))))

raw-category : Type empty (\ _ -> raw-categoryU)
raw-category =

-- Objects.
sigma' set'

-- Morphisms.
(sigma' (pi' (el' (var zero)) (pi' (el' (var (suc zero))) set'))

-- Identity.
(sigma' (pi' (el' (var (suc zero)))

(el' (app (app (var (suc zero)) (var zero)) (var zero))))
-- Composition.
(pi' (el' (var (suc (suc zero)))) -- X.
(pi' (el' (var (suc (suc (suc zero))))) -- Y.
(pi' (el' (var (suc (suc (suc (suc zero)))))) -- Z.
(pi' (el' (app (app (var (suc (suc (suc (suc zero)))))

(var (suc (suc zero))))
(var (suc zero)))) -- Hom X Y.

(pi' (el' (app (app (var (suc (suc (suc (suc (suc zero))))))
(var (suc (suc zero))))

(var (suc zero)))) -- Hom Y Z.
(el' (app (app (var (suc (suc (suc (suc (suc (suc zero)))))))

(var (suc (suc (suc (suc zero))))))
(var (suc (suc zero)))))))))))) -- Hom X Z.

Listing 5.19: Part of the definition of a setoid

setoidU : U
setoidU =
sigma set (\ a ->
sigma (fun (el a) (fun (el a) set)) (\ rel ->
times (pi (el a) (\ x -> el (rel x x))) (
times (pi (el a) (\ x -> pi (el a) (\ y ->

fun (el (rel x y)) (el (rel y x))))) (
(pi (el a) (\ x -> pi (el a) (\ y -> pi (el a) (\ z ->

fun (el (rel x y)) (fun (el (rel y z)) (el (rel x z)))))))
))))

setoid : Type empty (\ _ -> setoidU)
setoid =

-- The set.

5.6. CASE STUDY: TYPE THEORY IN TYPE THEORY 187

sigma' set'
-- The relation.

(sigma' (pi' (el' (var zero))
(pi' (el' (var (suc zero))) set')) -- _ ≈ _.

-- Reflexivity.
(sigma' (pi' (el' (var (suc zero)))

(el' (app (app (var (suc zero)) (var zero))
(var zero))))

-- Symmetry.
(sigma' (pi' (el' (var (suc (suc zero)))) -- x.

(pi' (el' (var (suc (suc (suc zero))))) -- y.
(pi' (el' (app (app (var (suc (suc (suc zero))))

(var (suc zero)))
(var zero))) -- x ≈ y.

(el' (app (app (var (suc (suc (suc (suc zero)))))
(var (suc zero)))

(var (suc (suc zero)))))))) -- y ≈ x.
-- Transitivity.
(pi' (el' (var (suc (suc (suc zero))))) -- x.
(pi' (el' (var (suc (suc (suc (suc zero)))))) -- y.
(pi' (el' (var (suc (suc (suc (suc (suc zero))))))) -- z.
(pi' (el' (app (app (var (suc (suc (suc (suc (suc zero))))))

(var (suc (suc zero))))
(var (suc zero)))) -- x ≈ y.

(pi' (el' (app (app (var (suc (suc (suc
(suc (suc (suc zero)))))))

(var (suc (suc zero))))
(var (suc zero)))) -- y ≈ z.

(el' (app (app (var (suc (suc (suc
(suc (suc (suc (suc zero))))))))

(var (suc (suc (suc (suc zero))))))
(var (suc (suc zero))))))))))))) -- x ≈ z.

These examples cannot be type-checked using the original Tog implemen-
tation due to the strict ordering of constraints (Section 3.9). However, our
implementation Tog+is able to type-check these examples, and do so with a
usage of CPU time (Figure 5.9) and memory (Figure 5.10) which is comparable
to the Agda implementation.

Even though the figures show Tog+to be apparently more efficient than
Agda, one should consider that Agda does additional processing on the type-
checked terms (such as writing out syntax highlighting information, or storing
associated line ranges in code). We expect this additional work to be respon-
sible for a constant factor increase in resource usage by Agda with respect to
Tog+.

5.6.1 Impact of syntactic equality
With this example we can also measure the impact of the use of Rule schema 1
(syntactic equality). In Figure 5.11 we see how enabling Rule schema 1 has a

188 CHAPTER 5. EVALUATION AND CONCLUSIONS

0

5

10

15

Refl. graph Precat. (part) Setoid (part)

Structure

C
P

U
 (

s) Implementation

Agda

Tog⁺

Typechecking of the TT-in-TT examples

Figure 5.9: CPU usage of the TT-in-TT examples, Agda vs Tog. We show
the results for the reflexive graph (Listings A.1+5.17), a part of the definition
of a precategory (Listings A.1+5.18), and a part of the definition of a setoid
(Listings A.1+5.19).

0

300

600

900

Refl. graph Precat. (part) Setoid (part)

Structure

M
e

m
o

ry
 (

M
B

)

Implementation

Agda

Tog⁺

Typechecking of the TT-in-TT examples

Figure 5.10: Memory usage of the TT-in-TT examples in Figure 5.9.

5.6. CASE STUDY: TYPE THEORY IN TYPE THEORY 189

0

3

6

9

12

Refl. graph Precat. (part) Setoid (part)

Structure

C
P

U
 (

s) Implementation

Tog⁺

Tog⁺ without syntactic equality

Typechecking of the TT-in-TT examples

Figure 5.11: CPU usage of the TT-in-TT examples in Figure 5.9, with and
without syntactic equality.

results in a consistent and significant lowered CPU usage of Tog+. The impact
on memory usage is less clear, as shown in Figure 5.12.

190 CHAPTER 5. EVALUATION AND CONCLUSIONS

0

50

100

Refl. graph Precat. (part) Setoid (part)

Structure

M
e

m
o

ry
 (

M
B

)

Implementation

Tog⁺

Tog⁺ without syntactic equality

Typechecking of the TT-in-TT examples

Figure 5.12: Memory usage of the TT-in-TT examples in Figure 5.9, with and
without syntactic equality.

5.7 Related systems
One of our goals for this approach to unification is to allow flexibility in the
order in which constraints are solved, while preserving the well-typedness of
constraints at every step of the algorithm. In this section, we explain the
constraints that make the example in Section 5.6 particularly interesting for
us, and use it as a starting point to compare the power of Tog+’s unification
algorithm with that of other systems.

For the sake of readability, we define the following shorthands. The type
annotations are given for the sake of clarity; the definitions themselves are
purely metasyntactic.

U ≝ Bool × Bool ∶ Set
set ≝ ⟨true, false⟩ ∶ U
el (𝑏 ∶ Bool) ≝ ⟨false, 𝑏⟩ ∶ U
El (𝑢 ∶ U) ≝ if (𝜆.Bool) (𝑢 .𝜋1) true (𝑢 .𝜋2) ∶ Bool

These shorthands mimic some sort of inductive data type (U) with two
constructors (set, el) and an inductively-defined function of type U → Bool
(i.e. El). Although our implementation does support inductive datatypes
(Section 5.3), we use these abbreviations in this section so that we can keep
the discussion within the syntax of our language as defined in Section 2.1.

We can now introduce Example 5.3. It is an example where finding a
solution relies on having flexibility for the order in which constraints are solved.
This example is a simplification of a problem which arises when typechecking
the case study in Section 5.6 (see Listing 5.13).

5.7. RELATED SYSTEMS 191

Example 5.3 (Cross-dependent constraint). In the problem below, a meta-
variable 𝛼 occurs in a term (𝜆𝑦.(𝛼 𝑥)), which has to be unified with another
term (𝜆𝑦.set), whose type (𝔽 (El (𝛼 𝑥)) → U) contains the same metavariable
𝛼.

𝔽 ∶ Bool → Set, ℙ ∶ (𝑋 ∶ Set) → (𝑥 ∶ 𝑋) → Set, 𝛼 ∶ Bool → U ;
𝑥 ∶ Bool ⊢ ℙ (𝔽 (El (𝛼 𝑥)) → U) (𝜆𝑦.set) ∶ Set ≅ ℙ (𝔽 true → U) (𝜆𝑦.(𝛼 𝑥)) ∶ Set

◀
By Definition 4.22, the constraint in Example 5.3 decomposes into two

internal constraints, yielding the problem Σ(0); 𝒞(0)
1 , 𝒞(0)

2 , where:

Σ(0) ≝ 𝔽 ∶ Bool → Set, ℙ ∶ (𝑋 ∶ Set) → (𝑥 ∶ 𝑋) → Set, 𝛼 ∶ Bool → U

𝒞(0)
1 ≝ 𝑥 ∶ Bool‡Bool ⊢ Set ≈ Set ∶ Set‡Set

𝒞(0)
2 ≝ 𝑥 ∶ Bool‡Bool ⊢ ℙ (𝔽 (El (𝛼 𝑥)) → U) (𝜆𝑦.set) ≈

ℙ (𝔽 true → U) (𝜆𝑦.(𝛼 𝑥)) ∶ Set‡Set

The constraints are refined using Algorithm 2, following the steps below:

1. By Rule schema 1 (syntactic equality), Σ(0); 𝒞(0)
1 ⇝ Σ(0); □. By

Rule schema 14 (strongly neutral terms), Σ(0); 𝒞(0)
2 ⇝ Σ(0); 𝒞(1)

1 , 𝒞(1)
2 ,

where:

𝒞(1)
1 ≝ 𝑥 ∶ Bool‡Bool ⊢ 𝔽 (El (𝛼 𝑥)) → U ≈ 𝔽 true → U ∶ Set‡Set

𝒞(1)
2 ≝ 𝑥 ∶ Bool‡Bool ⊢ (𝜆𝑦.set) ≈ (𝜆𝑦.(𝛼 𝑥)) ∶

(𝔽 (El (𝛼 𝑥)) → U)‡(𝔽 true → U)

Therefore, Σ(0); 𝒞(0)
1 , 𝒞(0)

2 ⇝⇝⇝⋆ Σ(0); 𝒞(1)
1 , 𝒞(1)

2 .

2. By Rule schema 3 (injectivity of Π), Σ(0); 𝒞(1)
1 ⇝ Σ(0); 𝒞(2)

1 , 𝒞(2)
2 , where:

𝒞(2)
1 ≝ 𝑥 ∶ Bool‡Bool ⊢ 𝔽 (El (𝛼 𝑥)) ≈ 𝔽 true ∶ Set‡Set

𝒞(2)
2 ≝ 𝑥 ∶ Bool‡Bool, 𝑦 ∶ 𝔽 (El (𝛼 𝑥))‡𝔽 true ⊢ U ≈ U ∶ Set‡Set

By Rule schema 11 (𝜆-abstraction), Σ(0); 𝒞(1)
2 ⇝ Σ(0); 𝒞(2)

3 , where:

𝒞(2)
3 ≝ 𝑥 ∶ Bool, 𝑦 ∶ (𝔽 (El (𝛼 𝑥)))‡(𝔽 true) ⊢ set ≈ 𝛼 𝑥 ∶ U‡U

Therefore, Σ(0); 𝒞(1)
1 , 𝒞(1)

2 ⇝⇝⇝⋆ Σ(0); 𝒞(2)
1 , 𝒞(2)

2 , 𝒞(2)
3 .

3. By Rule schema 14 (strongly neutral terms), Σ(0); 𝒞(2)
1 ⇝ Σ(0); 𝒞(3)

1 ,
where:

𝒞(3)
1 ≝ 𝑥 ∶ Bool‡Bool ⊢ El (𝛼 𝑥) ≈ true ∶ Bool‡Bool

By Rule schema 1 (syntactic equality), Σ(0); 𝒞(2)
2 ⇝ Σ(0); □.

192 CHAPTER 5. EVALUATION AND CONCLUSIONS

By Rule schema 2 (metavariable instantiation): Σ(0); 𝒞(2)
3 ⇝ Σ(1); □,

where:

Σ(1) ≝ 𝔽 ∶ Bool → Set, ℙ ∶ (𝑋 ∶ Set) → (𝑥 ∶ 𝑋) → Set,
𝛼 ≔ 𝜆𝑥.set ∶ Bool → U

Therefore, Σ(0); 𝒞(2)
1 , 𝒞(2)

2 , 𝒞(2)
3 ⇝⇝⇝⋆ Σ(1); 𝒞(3)

1 .

4. By Rule schema 8 (term conversion), Σ(1); 𝒞(3)
1 ⇝ Σ(1); 𝒞(4)

1 , where:

𝒞(4)
1 ≝ 𝑥 ∶ Bool‡Bool ⊢ true ≈ true ∶ Bool‡Bool

5. Finally, by Rule schema 1 (syntactic equality), Σ(1); 𝒞(4)
1 ⇝ Σ(1); □.

Because Σ(0); 𝒞(0)
1 , 𝒞(0)

2 ⇝⇝⇝⋆ Σ(1); □ and Σ(1) is closed, by Theorem 4.31,
there exists a unique solution Θ such that Θ ⊨ Σ(0); 𝒞(0)

1 , 𝒞(0)
2 , where:

Θ = 𝔽 ∶ Bool → Set, ℙ ∶ (𝑋 ∶ Set) → (𝑥 ∶ 𝑋) → Set, 𝛼 ≔ 𝜆𝑥.set ∶ Bool → U

5.7.1 Comparison with Coq, Matita, Idris, Lean and Tog
We test examples equivalent to Example 5.3 on the dependently-typed proof
assistants Coq 8.11.0, Matita 0.99.3, Idris 1.3.2, Lean 3.4.2, and also on the
original Tog. All of these implementations get stuck on the corresponding
example (see Listing 5.20, and, in appendix B, Listings B.1, B.2, B.3 and
B.4). In all cases, there is a metavariable alpha with a variable 𝑥 in scope. In
all cases, the type checker is not able to infer a term for alpha, even though
set' is the unique solution. The example indeed type checks in all the proof
assistants once the solution for alpha is filled.

Listing 5.20: Minilang example in Coq:

(* Atoms *)
Axiom F : bool -> Set.
Axiom Pred : forall (X : Set) (x : X), Set.

(* Shorthands *)
Definition U : Set := bool * bool.
Definition set' : U := (true, true).
Definition el' (b : bool) : U := (false, b).

Definition El (u : U) : bool :=
match (fst u) with
| true => false
| false => (snd u)

end.

(* Metavariables and constraints *)
Definition c1 :

5.7. RELATED SYSTEMS 193

forall (x: bool),
let alpha : U := _ in
(Pred ((F (El alpha)) -> U) (fun y => set')) ->
(Pred ((F true) -> U) (fun y => alpha)) :=

fun x y => y.

Output:

File "Minilang.v", line 22, characters 16-17:
Error:
In environment
x : bool
y : Pred (F (El ?u) -> U) (fun _ : F (El ?u) => set')
The term "y" has type "Pred (F (El ?u) -> U) (fun _ : F (El ?u) => set')"
while it is expected to have type
"Pred (F true -> U) (fun _ : F true => ?u)".

5.7.2 Comparison with Agda
Agda is able to deal successfully with an example analogous to the ones in
Section 5.7.1. However, Agda’s unifier may at some times be over-eager when
comparing terms, which results in ill-typed terms in the course of unification,
as reported by Norell [33].

Consider the well-formed unification problem below. Note that F and f
could also be defined only in terms of if; we use pattern-matching syntax for
the sake of readability.

Nat ∶ Set,
0 ∶ Nat,
1 ∶ Nat,
2 ∶ Nat,
𝔻 ∶ Nat → Set
𝛼 ∶ Nat → Set,
𝛽 ∶ Nat → Bool,

F : Bool → Set
F false = Bool
F true = Nat

f : (b : Bool) → F b → Nat
f false false = 0
f false true = 1
f true x = 2

 ;

· ⊢ (𝑥 ∶ Nat) → 𝛼 𝑥 ∶ Set ≈ (𝑥 ∶ F (𝛽 0)) → 𝔻 (𝑓 (𝛽 0) 𝑥) ∶ Set (1)
· ⊢ 𝛽 ∶ Nat → Bool ≈ 𝜆.false ∶ Nat → Bool (2)
· ⊢ 𝛼 0 ≈ 𝔻 0 ∶ Set (3)

Coq, Matita, Idris, Lean, Tog and Tog+ correctly instantiate 𝛽 ≔ 𝜆.false,
and then recognize that the resulting problem has no solution, because Nat ≠
F (𝛽 0).

However, Agda will first solve constraint (1), incorrectly instantiating 𝛼
with an ill-typed term (⌈𝛼 ≔ 𝜆𝑥.𝔻 (𝑓 (𝛽 0) 𝑥) ∶ Nat → Set⌋). Agda will then
solve constraint (2), instantiating 𝛽 ≔ 𝜆.false ∶ Nat → Bool. Finally, Agda
will attempt to solve constraint (3) by reducing the LHS to the ill-typed term
⌈𝔻 (𝑓 false 0)⌋. This leads to a crash in the Agda type checker, which assumes
that all intermediate terms are well-typed.

194 CHAPTER 5. EVALUATION AND CONCLUSIONS

This behaviour can result in unexpected crashes even in well-typed pro-
grams, for example when using instance search: see the issues reported by
Abel et al. [6], Abel et al. [8] and Norell [47].

5.7.3 Comparison with the twin variable approach
By implementing twin types in the style of Gundry and McBride [25, 27], Tog+

is able to type check an example analogous to the ones in Section 5.7.1. We
make certain changes to their unification rules to make them more amenable
to an implementation in the context of a dependent type checker such as Agda.

Twin contexts, but no twin variables: We have a strict separation of
variables on both sides of the context. That is, variables on the left hand
side of the constraint only reference the left hand size of the context, and
viceversa. Because it is always clear which side of a context a variable refers
to, we can dispense with the twin variable annotations (Section 3.10) alto-
gether. This reduces the space of possible terms, which is specially interesting
in an implementation with hash consing as it reduces the memory footprint
(Section 5.5.1).

Heterogeneous syntactic equality: Rule schema 1 (syntactic equality)
can immediately solve constraints in which both the LHS and the RHS are
syntactically identical. This rule mimics the one proposed by Gundry and
McBride [25, cf. (4.1) in Figure 4.14].

When type checking our case study (Section 5.6), enabling Rule schema 1
(syntactic equality) results in a significant speed-up compared to recursively
unifying the term using the remaining unification rules (Figure 5.11).

In our version of the rule, we only check whether the terms are equal, but
completely ignore the types. The soundness of the rule is justified in terms of
Definition 4.12 (heterogeneous equality).

By ignoring the types, we avoid the potential cost of comparing them for
equality. Also, because variables do not have twin type annotations, whether
the two sides of the context are equal does not need to be accounted for; in
fact, we ignore the context completely. Furthermore, when using hash consing,
the syntactic equality becomes a constant time operation. We expect that this
simplification of the rule leads to an improvement in performance.

Avoiding type checking in metavariable instantiation: The precondi-
tions for Rule schema 2 (metavariable instantiation) ensure that the body of
𝛼 has the right type; that is, Σ1; · ⊢ 𝜆 ⃗𝑦.𝑡′ ∶ 𝐴. As suggested by Gundry and
McBride [25, 27] and also as implemented in Tog, the implementation does not
type check the metavariable body (as is done in the original implementation
by Gundry [26]), but instead relies on conditions on the context and the types
to establish that the body of 𝛼 has the right type.

In Rule schema 2 the preconditions for well-typedness of the body of 𝛼 are
phrased in terms of Definition 4.37 (heterogeneously equal contexts modulo
variables) for the context and Definition 4.12 (heterogeneous equality) for the
type. However, the middle term of these heterogeneous equalities (e.g. 𝑣 for

5.7. RELATED SYSTEMS 195

Σ;Γ1‡Γ2 ⊢ 𝑡 ≡{𝑣}≡ 𝑢 ∶ 𝐴1‡𝐴2) is not computed explicitly in the implemen-
tation (Tog+). Instead, a unification constraint is associated with each twin
type, and the twin types are recognized as heterogeneously equal when the
corresponding constraint is solved.

Note that Definition 4.37 (heterogeneously equal contexts modulo vari-
ables) also performs a form of context strengthening, by ignoring those vari-
ables which are not used in the constraint. To make this strengthening sound,
our Definition 4.12 imposes an additional constraint on the free variables of
the middle term; namely, fv(𝑣) ⊆ fv(𝑡) ∪ fv(𝑢). In practice, this restriction
does not affect the choice of rules or the implementation of the algorithm, as
neither extracting subterms nor reducing terms according to Definition 2.41
(δη-normalization step) introduces new free variables.

Heterogeneous context currying: As opposed to the corresponding rule
by Gundry and McBride [25, cf. (4.15) in Figure 4.14], our context currying
rule (Rule schema 20) works for any context variable where both sides have
the required form, even if the two sides of the twin type are otherwise not
equal. Despite being more powerful in this sense, the implementation becomes
more straightforward than if we also had to check whether both sides of the
twin type can be unified.

Listing 5.14 shows an example where such heterogeneous currying is
needed. Here is a distilled version of the resulting constraint:

Example 5.4 (Heterogeneous currying constraint).

𝔽 ∶ Bool → Set,
ℙ ∶ (𝑋 ∶ Set) → (𝑥 ∶ 𝑋) → Set,
𝛼 ∶ Bool → U

 ;
· ⊢
ℙ (Σ(𝑥 ∶ Bool)(𝔽 𝑥) → U) (𝜆𝑦.el (𝑦 .𝜋1))
≅
ℙ (Σ(𝑥 ∶ Bool)(𝔽 (El (𝛼 𝑥))) → U) (𝜆𝑦.𝛼 (𝑦 .𝜋1))
∶ Set‡Set

The unique solution is Θ ≝ 𝔽 ∶ Bool → Set, ℙ ∶ (𝑋 ∶ Set) → (𝑥 ∶ 𝑋) →
Set, 𝛼 ∶= 𝜆𝑧.el 𝑧 ∶ Bool → U]. ◀

The resulting example can be solved by using Rule schema 20 (context
variable currying), but it is not obvious to us that it can be tackled with the
rules proposed by Gundry and McBride [25, cf. Figure 4.14].

Otherwise, both Gundry and McBride’s approach [25] and ours seem to be
similar regarding the kind of constraints that they can solve.

Most general unifiers vs. closed metasubstitutions: Our correctness
theorem is phrased in the style of Abel and Pientka [3]. Solutions are (closed)
metasubstitutions Θ, in which each metavariable is assigned a closed term. By
contrast, Gundry and McBride phrase the correctness in terms of producing a
most general unifier.

196 CHAPTER 5. EVALUATION AND CONCLUSIONS

For a program to be type-correct, closed solutions to all metavariables must
be found, in which case the most general unifier will also be the unique closed
solution.

If no closed solution exists, it is possible that the original problem may be
reduced to a problem with no constraints (e.g. Σ; ⃗⃗⃗⃗⃗𝒞⇝⇝⇝⋆ Σ′; □), where some of
the metavariables in Σ′ are uninstantiated.

One important difference between the most-general unifier approach and
the closed metasubstitution approach is that the former automatically im-
plies the open-world assumption (Section 4.6.1), which means in particular
that extending the signature with additional constants does not invalidate the
uniqueness of the obtained solutions. With closed metasubstitutions, whether
this assumption holds or not depends on the specific rules used. As we explain
in Remark 4.57, the assumption does hold for our choice of unification rules.

5.8 Future work
The goal of this line of research is a verified-correct implementation of depen-
dent type checking with implicit arguments. Our work gets us closer to this
goal, but leaves however some main questions unaddressed.

Postulates: We make a limited number of assumptions which correspond to
our intuition about how terms in the type theory we work in should behave.

However, as of November 2018, and according to Krishnaswami [32], prov-
ing the correctness of hereditary substitution in a dependently-typed language
with large elimination without resorting to a larger theory with explicit sub-
stitutions is an open question.

A proof of correctness of unification in the given type theory necessitates
a proper stratification of Set that replaces the set rule. The existence of
hereditarily-substituted terms in the resulting, stratified theory must then be
addressed.

Termination and coverage of unification: We only address the correct-
ness of the individual rules that make up the algorithm. However, we do not
assess whether the unification algorithm always terminates, and under which
circumstances it can find a solution.

As Gundry and McBride explain in Gundry’s thesis [25], the rule set easily
leads to non-termination. Once the theory is properly stratified the question
of whether the algorithm terminates can be considered.

Mazzoli and Abel [36] show that unification problems arising from the elab-
oration of programs without metavariables always fall entirely in the pattern
fragment, and thus, if the program is well-typed, then the resulting unification
problem can always be solved by pattern unification. Because our unifica-
tion algorithm is implemented using their algorithm as a starting point, we
conjecture that this property also holds for our implementation.

Singleton types with η-equality: The case study in Section 5.6 makes use
of singleton types with η-equality in order to avoid the need to write empty
environments explicitly.

5.8. FUTURE WORK 197

Agda uses the η-equality in a sound way, but ignores the impact it has
on completeness when it comes to pruning. Thus, pruning may produce non-
unique solutions [7]. However, due to lack of evidence of the practical impact
of this issue, the behaviour is still in place in Agda.

In our implementation (Tog+), we introduce a unit type with η-equality,
but simultaneously weaken Rule schema 17 (metavariable pruning) and
Rule schema 14 (strongly neutral terms) with the aim of preserving
correctness.

A full solution would be able to preserve the full power of pruning while
addressing the issues that η-equality for singleton types presents for its com-
pleteness. This would however require keeping track of the necessary infor-
mation about the types of subterms, which would in turn require important
changes in our implementation. We consider this out of the scope of this work.

Generalization of performance: The example we choose performs ade-
quately with the hash-consing implementation. However, hash-consing has
its own drawbacks. A successful implementation must either also use hash-
consing and/or find a mechanism to deal with the duplicated effort due to the
twin types.

We believe that by perfecting the book keeping associated with twin types
explained in Section 5.2.3, it would be possible to minimize the presence of
twin types in the constraints, and also reduce the amount of redundant com-
putation.

Signature ordering and occurs check: By Definition 2.151 (signature
extension) and Lemma 2.155 (preservation of judgments under signature ex-
tensions), reordering a signature does not affect which judgments hold under
the signature (as long as the resulting signature is well-formed). Therefore,
the ordering of the signature is of limited relevance, as long as an ordering
which makes the signature well-formed exists.

When implementing the algorithm in Section 5.1, we do not reorder the
signature as needed. Instead, the signature is kept as an unordered set.

{𝔸 ∶ Set, 𝛼 ≔ 𝛽 ∶ 𝔸, 𝛽 ≔ 𝕒 ∶ 𝔸, 𝕒 ∶ 𝔸}
However, in this unordered signature, a cyclic dependency between

metavariables could lead to an infinite sequence of reductions:

Σ ≅ {𝔸 ∶ Set, 𝛼 ≔ 𝛽 ∶ 𝔸, 𝛽 ≔ 𝛼 ∶ 𝔸}
Σ; · ⊢ 𝛼⟶δη 𝛽 ⟶δη 𝛼⟶δη 𝛽 ⟶δη … ∶ 𝔸

The issue is that the body of 𝛼 mentions 𝛽 which in turn mentions 𝛼.
To avoid this issue, before instantiating a metavariable, we perform an occurs
check to ensure that instantiation will not introduce any cyclic dependencies
in the signature between metavariable bodies.

Another problem in an unordered signature is that of metavariables or
atoms occurring directly or indirectly in their own type. This leads to what is
called “very dependent types”, and allows perplexing declarations such as the
following:

198 CHAPTER 5. EVALUATION AND CONCLUSIONS

{𝛼 ≔ 𝔻 𝛽 ∶ Set, 𝛽 ≔ 𝕕 ∶ 𝛼, 𝔻 ∶ 𝛼 → Set, 𝕕 ∶ 𝔻 𝛽}
However, no analogous check is performed for the occurrence of constants

in their types in our implementation at the point of instantiation. This is
neither done in Agda, as reported by Abel et al. [5] using the example above.

Unlike metavariables occurring in themselves, which can easily lead to non-
termination, examples such as the one above do not seem to be an issue for
Agda in practice. The lack of cycles in the declarations in the final signature
can be ensured after unification is completed, which was done by Agda together
with the termination check for recursive function definitions (until this check
was disabled for practical reasons [5]).

5.9 Conclusions
This thesis demonstrates how the techniques by Mazzoli and Abel [36] and
Gundry and McBride [27] can be leveraged and extended in order to type-
check challenging dependently typed programs.

At the elaboration phase, we use the algorithm proposed by Mazzoli and
Abel [36] with some minor modifications (Section 5.5.2).

For unification, we take the algorithm by Gundry and McBride [27], sim-
plify it, and extend it with a shortcut syntactic equality (Rule schema 1) and
context currying for twin variables (Rule schema 20).

In Section 4.5 we provide a detailed argument for the correctness of our uni-
fication rules, modulo some (admitedly incorrect) postulates. The correctness
argument is done on the same term representation as is used in the imple-
mentation (β-normal terms, no explicit substitutions, variables as deBruijn
indices). Despite its reliance on certain postulates about the type theory, and
the difficulty of trusting large technical proofs that have not been machine-
checked, we believe that the correctness argument is detailed enough to provide
a good level of assurance of the soundness and completeness of the unification
rules.

The evaluation section suggests that implementing a unification algorithm
based on twin-types in a dependently-typed programming language such as
Agda could be done while using the same underlying type theory, and result
in an improved preservation of internal invariants over the current state of
affairs.

There are still mismatches between the theoretical rules (Section 4.5) and
the actual implementation (Section 5.1), which are recounted in Section 5.8.
Many of these mismatches are also shared with the Agda implementation; we
hope that this thesis will show the more salient obstacles which stand in the
way of a completely invariant-preserving implementation.

Finally, our prototype uses hash consing as a quick-and-dirty alternative
to the years of optimization work done by the Agda community. The fact that
a straightforward optimization such as hash consing results in type-checking
times comparable to the current Agda implementation suggests that the our
unification technique could be implemented in an existing proof assistant with-
out drastically increasing its resource usage. It also suggests that hash consing
may in some cases be a potentially useful optimization.

Appendix A

Code for the TT-in-TT
case study

Listing A.1: Definition of the dependently-typed language
module TTInTT where

-- We define a substitutitivity property using the
-- J axiom.
subst : {A : Set} {x y : A} (P : A -> Set) ->

x == y -> P x -> P y
subst P = J (\ x y _ -> P x -> P y) (\ x p -> p)

-- We define the type with no elements as its Church encoding
Empty : Set
Empty = (A : Set) -> A

-- We define the unit type with η-equality.
-- All values of type Unit are definitionally equal to tt.
record Unit : Set
record Unit where

constructor tt

-- We define a sum type as follows
data Either (A : Set) (B : Set) : Set
data Either A B where
left : A -> Either A B
right : B -> Either A B

-- We define a Σ-type with η-equality, as in the
-- theoretical development.
record Sigma (A : Set) (B : A -> Set) : Set
record Sigma A B where

constructor pair
field

199

200 APPENDIX A. CODE FOR THE TT-IN-TT CASE STUDY

fst : A
snd : B fst

-- This is the uncurry operation for Σ-types, which
-- mimics the uncurry operation for pairs in Haskell
uncurry : {A : Set} {B : A -> Set} {C : Sigma A B -> Set} ->

((x : A) (y : B x) -> C (pair x y)) ->
((p : Sigma A B) -> C p)

uncurry f p = f (fst p) (snd p)

-- Non-depedent product types are a specific case of
-- Σ-types.
Times : Set -> Set -> Set
Times A B = Sigma A (\ _ -> B)

--
-- A universe

-- We define a datatype to encode a fragment of the universe of types
-- in dependent type theory. Note that this is an inductive-recursive
-- definition, because a function that eliminates from U (i.e. El) is
-- used in the definition of U itself.

data U : Set

El : U -> Set

data U where
set : U
el : Set -> U
sigma : (a : U) -> (El a -> U) -> U
pi : (a : U) -> (El a -> U) -> U

-- The El function returns the Agda type corresponding to a
-- given code (i.e. a term of type U).

El set = Set
El (el A) = A
El (sigma a b) = Sigma (El a) (\ x -> El (b x))
El (pi a b) = (x : El a) -> El (b x)

-- Abbreviations.

fun : U -> U -> U
fun a b = pi a (\ _ -> b)

times : U -> U -> U
times a b = sigma a (\ _ -> b)

201

-- We now define a language to describe a fragment of dependent type
-- theory with a universe of types U. We do this by defining syntax
-- for contexts, variables, types and terms.

--
-- Contexts

data Ctxt : Set

-- Types.

Ty : Ctxt -> Set

-- Environments.

Env : Ctxt -> Set

-- A context is a list of types. Each type in the list is typed
-- in the preceding context G.

data Ctxt where
empty : Ctxt
snoc : (G : Ctxt) -> Ty G -> Ctxt

-- A type gives a code for each possible assignment of Agda terms to the
-- variables in the context.

Ty G = Env G -> U

-- The environment associated to a context is an Agda type whose
-- elements are assignments of terms to each of the variables in the
-- context of the Agda type corresponding to the type of that variable.

Env empty = Unit
Env (snoc G s) = Sigma (Env G) (\ g -> El (s g))

-- Variables are represented by their corresponding de Bruijn indices,
-- using the auxiliary functions zero and suc.
--
-- Var G T is the type of variables of type T in context G.
-- Such a variable is either:
-- - The last variable in the context, if, for an abstract
-- environment 'g', the code of that variable's type (s (fst g))
-- is equal to (t g).
-- - A variable of some type 'u' in the preceding context, if, for
-- an abstract environment 'g', the code of that variable’s type
-- (u (fst g)) is equal to (t g).
--
-- In both cases, s and u are typed only in the initial fragment of

202 APPENDIX A. CODE FOR THE TT-IN-TT CASE STUDY

-- the context (all variables except the last), so we restrict the
-- environment g to its initial segment (fst g).
Var : (G : Ctxt) -> Ty G -> Set
Var empty t = Empty
Var (snoc G s) t =
Either ((\ g -> s (fst g)) == t)

(Sigma _ (\ u -> Times ((\ g -> u (fst g)) == t) (Var G u)))

-- The variable (zero) has type s in any context where the last
-- variable has type s.
zero : {G : _} {s : _} ->

Var (snoc G s) (\ g -> s (fst g))
zero = left refl

-- If x has type t in G, then (suc x) has type t in the extended
-- context (snoc G s).
suc : {G : _} {s : _} {t : _}

(x : Var G t) ->
Var (snoc G s) (\ g -> t (fst g))

suc x = right (pair _ (pair refl x))

-- A lookup function.
-- Given a variable and an environment, the term mapped to that
-- variable in the environment is returned.
lookup : (G : Ctxt) (s : Ty G) -> Var G s -> (g : Env G) -> El (s g)
lookup empty _ absurd _ = absurd _
lookup (snoc vs v) _ (left eq) g = subst (\ f -> El (f g)) eq (snd g)
lookup (snoc vs v) t (right p) g =

subst (\ f -> El (f g)) (fst (snd p))
(lookup _ _ (snd (snd p)) (fst g))

--
-- A language

-- Syntax for types.

data Type (G : Ctxt) (s : Ty G) : Set

-- Terms.

data Term (G : Ctxt) (s : Ty G) : Set

-- The semantics of a term.
-- eval gives the Agda term corresponding to a term in the language.
eval : {G : _} {s : _} -> Term G s -> (g : Env G) -> El (s g)

-- When defining the Agda types for language types and language terms,
-- we use equality proofs to make up for the lack of support for
-- indices in Tog� datatypes.

203

data Type G s where
set'' : s == (\ _ -> set) -> Type G s
-- Terms of type 'set' represent codes of types. To obtain the
-- corresponding type, we apply el'' to the term.
el'' : (x : Term G (\ _ -> set)) ->

(\ g -> el (eval {G} {_ -> set} x g)) == s ->
Type G s

sigma'' : {t : _} {u : _} ->
Type G t ->
Type (snoc G t) u ->
(\ g -> sigma (t g) (\ v -> u (pair g v))) == s ->
Type G s

pi'' : {t : _} {u : _} ->
Type G t ->
Type (snoc G t) u ->
(\ g -> pi (t g) (\ v -> u (pair g v))) == s ->
Type G s

data Term G s where
var : Var G s -> Term G s
lam'' : {t : _} {u : _} ->

Term (snoc G t) (uncurry u) ->
(\ g -> pi (t g) (\ v -> u g v)) == s ->
Term G s

app'' : {t : _} {u : (g : Env G) -> El (t g) -> U} ->
Term G (\ g -> pi (t g) (\ v -> u g v)) ->
(t2 : Term G t) ->
(\ g -> u g (eval t2 g)) == s ->
Term G s

-- For conciseness, we do not include the constructors and
-- eliminators for the Σ-type

-- The interpretation of a variable is obtained from the environment
eval (var x) g = lookup _ _ x g
-- The interpretation of a λ-abstraction is an Agda function, where
-- the bound variable is added to the environment.
eval (lam'' t eq) g = subst (\ f -> El (f g)) eq

(\ v -> eval t (pair g v))
-- The interpretation of an application is the Agda function
-- application of the evaluation of the terms.
eval (app'' t1 t2 eq) g = subst (\ f -> El (f g)) eq

(eval t1 g (eval t2 g))

-- Abbreviations.
-- These abbreviations make up for the lack of support for indices in
-- Tog� datatypes.
set' : {G : Ctxt} -> Type G (\ _ -> set)
set' = set'' refl

204 APPENDIX A. CODE FOR THE TT-IN-TT CASE STUDY

el' : {G : Ctxt}
(x : Term G (\ _ -> set)) ->
Type G (\ g -> el (eval {G} {_ -> set} x g))

el' x = el'' x refl

sigma' : {G : Ctxt} {t : Env G -> U} {u : Env (snoc G t) -> U} ->
Type G t ->
Type (snoc G t) u ->
Type G (\ g -> sigma (t g) (\ v -> u (pair g v)))

sigma' s t = sigma'' s t refl

pi' : {G : _} {t : _} {u : _} ->
Type G t ->
Type (snoc G t) u ->
Type G (\ g -> pi (t g) (\ v -> u (pair g v)))

pi' s t = pi'' s t refl

lam : {G : _} {t : _} {u : _} ->
Term (snoc G t) (uncurry u) ->
Term G (\ g -> pi (t g) (\ v -> u g v))

lam t = lam'' t refl

app : {G : _} {t : _} {u : (g : Env G) -> El (t g) -> U} ->
Term G (\ g -> pi (t g) (\ v -> u g v)) ->
(t2 : Term G t) ->
Term G (\ g -> u g (eval t2 g))

app t1 t2 = app'' t1 t2 refl

Appendix B

Code and output of system
comparisons

Listing B.1: Minilang example in Idris:
module Minilang

-- Atoms
postulate F : Bool -> Type
postulate P : (X : Type) -> (x : X) -> Type

-- Shorthands --
U : Type
U = (Bool, Bool)

Set' : U
Set' = (True, True)

El' : Bool -> U
El' b = (False, b)

El : U -> Bool
El u = if (fst u) then True else (snd u)

postulate c : {alpha : Bool -> U} ->
let ty1 : Type = (x : Bool) -> (F (El (alpha x))) -> U

ty2 : Type = Bool -> (F True) -> U in
(P ty1 (\x , y => Set'), P ty2 (\x , y => alpha x))

postulate AreEqual : {A : Type} -> (A , A) -> Type

-- Constraints
c1 : Type
c1 = AreEqual c

205

206 APPENDIX B. CODE AND OUTPUT OF SYSTEM COMPARISONS

Output:

Minilang.idr:30:6-15:
|

30 | c1 = AreEqual c
| ~~~~~~~~~~

When checking right hand side of c1 with expected type
Type

When checking an application of Minilang.AreEqual:
Type mismatch between
(P ((x : Bool) -> F (El (alpha x)) -> U) (\x8, y => Set'),
P (Bool -> F True -> U) (\x10, y11 => alpha x10)) (Type of c)

and
(P (Bool -> F True -> (Bool, Bool)) (\x10, y11 => alpha x10),
P (Bool -> F True -> (Bool, Bool))

(\x10, y11 => alpha x10)) (Expected type)

Specifically:
Type mismatch between
P ((x : Bool) ->
F (if fst (alpha x) then True else snd (alpha x)) ->
(Bool, Bool))
(\x8, y => (True, True))

and
P (Bool -> F True -> (Bool, Bool))
(\x10, y11 => alpha x10)

[ExitFailure: 1]

Listing B.2: Minilang example in Lean:

constant F : bool -> Type
constant B : Type
constant P : Π (X : Type), X -> Type

-- Shorthands
def U : Type := bool × bool
def set' : U := (tt, tt)
def el' (b : bool) : U := (ff, b)

def El (u : U) : bool :=
match u.1 with
| tt := tt
| ff := u.2

end

-- (* Metavariables and constraints *)
def c1 :

let alpha (x : bool) : U := _ in

207

(P (Π (x : bool), (F (El (alpha x))) -> U) (λ x y, set')) ->
(P (Π (x : bool), (F true) -> U) (λ x y, alpha x)) :=
λ x, x

Output:

Minilang.lean:18:34:
error: don't know how to synthesize placeholder
context:
x : bool
� U
[ExitFailure: 1]

Listing B.3: Minilang example in Matita:

include "basics/bool.ma".
include "basics/types.ma".

(* Atoms *)
axiom F : bool -> Type[0].
axiom B : Type[0].
axiom P : (Π (X : Type[0]). Π (x : X). Type[0]).

(* Shorthands *)
definition U : Type[0] � bool × bool.
definition mkSet : U � �true , true�.
definition mkEl (b : bool) : U � �false , b�.

definition El (u : U) : bool � match (\fst u) with
[true => true
| false => (\snd u)
].

(* Metavariables and constraints *)
definition c1 :

let alpha : bool → U � λx.? in
(P (Π (x : bool). (F (El (alpha x))) → U) (λ x. λ y. mkSet)) →
(P (Π (x : bool). (F true) → U) (λ x. λ y. alpha x)) �
λ x. x.

Output:

********** DISAMBIGUATION ERRORS: **********
***** Errors obtained during phases 4: *****
*Error at 721-722: The term
x
has type
(P (�x:bool.F (El ?59[...])→U) (λx:bool.λy:F (El ?59[...]).mkSet))
but is here used with type
(P (�x:bool.F true→U) (λx:bool.λy:F true.?59[...]))

208 APPENDIX B. CODE AND OUTPUT OF SYSTEM COMPARISONS

***** Errors obtained during phases 3: *****
*Error at 721-722: The term
x
has type
(P (�x:bool.F (El ?58[...])→U) (λx:bool.λy:F (El ?58[...]).mkSet))
but is here used with type
(P (�x:bool.F true→U) (λx:bool.λy:F true.?58[...]))

***** Errors obtained during phases 2: *****
*Error at 721-722: The term
x
has type
(P (�x:bool.F (El ?57[...])→U) (λx:bool.λy:F (El ?57[...]).mkSet))
but is here used with type
(P (�x:bool.F true→U) (λx:bool.λy:F true.?57[...]))

***** Errors obtained during phases 1: *****
*Error at 721-722: The term
x
has type
(P (�x:bool.F (El ?56[...])→U) (λx:bool.λy:F (El ?56[...]).mkSet))
but is here used with type
(P (�x:bool.F true→U) (λx:bool.λy:F true.?56[...]))

Info: Compilation failed
[ExitFailure: 1]

Listing B.4: Minilang example in Tog:

module Minilang where

record Sigma (A : Set) (B : A -> Set) : Set
record Sigma A B where

constructor pair
field
fst : A
snd : B fst

data Bool : Set where
true : Bool
false : Bool

if : (A : Bool -> Set) -> (b : Bool) -> A true -> A false -> A b
if _ true x y = x
if _ false x y = y

-- Atoms
postulate F : Bool -> Set
postulate P : (X : Set) -> (x : X) -> Set

209

-- Shorthands --
U : Set
U = Sigma Bool (_ -> Bool)

set' : U
set' = pair true true

El : U -> Bool
El u = if (_ -> Bool) (fst u) true (snd u)

alpha : Bool -> U
alpha x = _

-- Constraints
c1 : (P ((x : Bool) -> F (El (alpha x)) -> U) (\x -> \y -> set')) ->

(P ((_ : Bool) -> F true -> U) (\x -> \y -> alpha x))
c1 x = x

Output:

--
-- Checking declarations
--
-- Solved Metas: 193
-- Unsolved Metas: 3
--
_184 (38:60) : Minilang.Bool -> Minilang.Bool

_185 (38:60) : Minilang.Bool -> Minilang.Bool

_196 (39:8) :
Minilang.P
((x : Minilang.Bool) ->
Minilang.F
(Minilang.if (_ -> Minilang.Bool) (_184 0#x)

Minilang.true
(_185 0#x)) ->

Minilang.Sigma Minilang.Bool (_ -> Minilang.Bool))
(_ _ -> Minilang.pair Minilang.true Minilang.true) ->

Minilang.P
(Minilang.Bool ->
Minilang.F Minilang.true ->
Minilang.Sigma Minilang.Bool (_ -> Minilang.Bool))
(\x _ -> Minilang.pair (_184 1#x) (_185 1#x))

--
-- Unsolved problems: 1
--

210 APPENDIX B. CODE AND OUTPUT OF SYSTEM COMPARISONS

** Waiting on [128, 127] [[_184]]
[x : Minilang.P
((x : Minilang.Bool) ->
Minilang.F
(Minilang.if (_ -> Minilang.Bool) (_184 0#x)

Minilang.true
(_185 0#x)) ->

Minilang.Sigma Minilang.Bool (_ -> Minilang.Bool))
(_ _ -> Minilang.pair Minilang.true Minilang.true)

; _ : Minilang.Bool
] |-
Minilang.if (_ -> Minilang.Bool) (_184 0#x)
Minilang.true
(_185 0#x) = Minilang.true : Minilang.Bool

>>
UnifySpine
ctx:
[x : Minilang.P
((x : Minilang.Bool) ->
Minilang.F
(Minilang.if (_ -> Minilang.Bool) (_184 0#x)

Minilang.true
(_185 0#x)) ->

Minilang.Sigma Minilang.Bool (_ -> Minilang.Bool))
(_ _ -> Minilang.pair Minilang.true Minilang.true)

; _ : Minilang.Bool
]

type: (Minilang.F Minilang.true -> Set) -> Set
h: no head
elims1:
[$ _ -> Minilang.Sigma Minilang.Bool

(_ -> Minilang.Bool)
]

elims2:
[$ _ -> Minilang.Sigma Minilang.Bool

(_ -> Minilang.Bool)
]

>>
UnifySpine
ctx:
[x : Minilang.P
((x : Minilang.Bool) ->
Minilang.F
(Minilang.if (_ -> Minilang.Bool) (_184 0#x)

Minilang.true
(_185 0#x)) ->

Minilang.Sigma Minilang.Bool (_ -> Minilang.Bool))
(_ _ -> Minilang.pair Minilang.true Minilang.true)

]

211

type:
(Minilang.Bool ->
Minilang.F Minilang.true ->
Minilang.Sigma Minilang.Bool (_ -> Minilang.Bool)) ->
Set

h:
Minilang.P
(Minilang.Bool ->
Minilang.F Minilang.true ->
Minilang.Sigma Minilang.Bool (_ -> Minilang.Bool))

elims1:
[$ \x _ -> Minilang.pair (_184 1#x) (_185 1#x)]

elims2:
[$ _ _ -> Minilang.pair Minilang.true Minilang.true]

>>
[x : Minilang.P
((x : Minilang.Bool) ->
Minilang.F
(Minilang.if (_ -> Minilang.Bool) (_184 0#x)

Minilang.true
(_185 0#x)) ->

Minilang.Sigma Minilang.Bool (_ -> Minilang.Bool))
(_ _ -> Minilang.pair Minilang.true Minilang.true)

] |-
_196 0#x
=
0#x
:
Minilang.P
(Minilang.Bool ->
Minilang.F Minilang.true ->
Minilang.Sigma Minilang.Bool (_ -> Minilang.Bool))
(\x _ -> Minilang.pair (_184 1#x) (_185 1#x))

--
Type error:
Error at 0:0 :
UnsolvedMetas [_184, _185, _196]

[ExitFailure: 1]

212 APPENDIX B. CODE AND OUTPUT OF SYSTEM COMPARISONS

Index

List of Definitions, Notations and Problems

Notation (Vector notation: ⃗𝑡) 11
Notation (Neutral terms in vector form: ℎ  ⃗𝑒) 13
Notation (Vector elements: 𝑡𝑖) 13
Notation (Vector slices: ⃗𝑡𝑖,…,𝑗) 13
Notation (Vector membership: _ ∈ _) 13
Notation (Ungrammatical terms: ⌈𝑡⌋) 13
Notation (Partial functions: 𝐹 ⇓ 𝑦, 𝐹⇓, 𝐹) 13

2.1 Definition (Fresh declaration) 14
2.2 Definition (Instantiated metavariable, body of a metavariable) 14
2.3 Definition (Uninstantiated metavariable) 14
2.4 Definition (Well-formed signature: Σ sig) 14
2.6 Definition (Support of a signature: support(Σ)) 15

Notation (Signature concatenation: Σ1, Σ2) 15
2.7 Definition (Atom declarations of a signature: AtomDecls(Σ)) 15
2.8 Definition (Constants declared by a signature: decls(Σ)) . . 15
2.10 Definition (Metavariables in a term: metas(𝑡)) 15
2.11 Definition (Set of atoms in a term: atoms(𝑡)) 15
2.12 Definition (Set of constants of a term: consts(𝑡)) 15
2.14 Definition (Support of a context: |Γ|) 17

Notation (Variable names in contexts Γ, 𝑥 ∶ 𝐴) 17
Notation (Context concatenation: Γ1, Γ2) 17

2.16 Definition (Equality of contexts) 18
Notation (Names for de Bruijn indices: 𝜆𝑥.𝑡, Π(𝑥 ∶ 𝐴)𝐵, …) . 18
Notation (N-ary binders: 𝜆 ⃗𝑥𝑛.𝑡, Π⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗(𝑥 ∶ 𝐴)

𝑛
𝐵) 19

Notation (Arrow notation for Π-types: (𝑥 ∶ 𝐴) → 𝐵, 𝐴 → 𝐵) 19
Notation (Product notation for Σ-types: (𝑥 ∶ 𝐴) × 𝐵, 𝐴×𝐵) 19
Notation (Strengthening of a set of variables: 𝑋 − 1, 𝑋 − 𝑘) . 19

2.18 Definition (Free variables in a term: fv(𝑡)) 19
2.19 Definition (Free variables of a context: fv(Δ)) 19

Notation (Membership of names in set of free variables: 𝑥 ∈
fv(𝑡), 𝑥 ∉ fv(𝑡), fv(𝑡) ⊆ { ⃗𝑥}) 19

2.20 Definition (Renaming) . 20
2.21 Definition (Inline renamings: [… ↦ …]) 20
2.22 Definition (Weakening: (+n)) 20

213

214 LIST OF DEFINITIONS, NOTATIONS AND PROBLEMS

2.23 Definition (Strengthening: (−𝑛)) 20
2.24 Definition (Weakening of renamings: (𝜌 + 𝑛)) 20
2.26 Definition (Application of a renaming to a term: 𝑡 𝜌, 𝑡𝜌) . . . 20
2.27 Definition (Renaming of a context: Γ 𝜌) 21

Notation (Composition of renamings: 𝜌1𝜌2) 21
2.31 Definition (Hereditary substitution: 𝑡[𝑢/𝑥] ⇓ 𝑟) 22

Notation (𝐵[𝑡]) . 22
Notation (⃗𝑒𝑛[𝑡/𝑥] ⇓ ⃗⃗⃗ ⃗⃗ ⃗𝑒′𝑛) . 22

2.32 Definition (Hereditary elimination: 𝑡 @ 𝑒 ⇓ 𝑟) 22
Notation (Hereditary substitution as a partial function:
𝑡[𝑢/𝑥]⇓, 𝑡[𝑢/𝑥]) . 22
Notation (Hereditary elimination as a partial function: (𝑡 @
𝑒)⇓, 𝑡 @ 𝑒) . 24

2.33 Definition (Iterated hereditary elimination: 𝑡 @ ⃗𝑒 ⇓ 𝑟, 𝑡 @ ⃗𝑒) 24
2.34 Definition (Iterated hereditary substitution: 𝑡[�⃗�/ ⃗𝑥] ⇓ 𝑟) 24
2.38 Definition (Hereditary substitution for contexts: Δ[𝑢/𝑥] ⇓ Δ′) 24

Notation (Names for de Bruijn indices in hereditary substitu-
tion) . 25
Notation (Implicit signature) 26

2.41 Definition (δη-normalization step: Σ;Γ ⊢ 𝑡⟶δη 𝑢 ∶ 𝑇) 29
2.42 Definition (Iterated δη-reduction: Σ;Γ ⊢ 𝑡⟶⋆

δη 𝑢 ∶ 𝐴) 29
2.44 Definition (Judgment: Σ;Γ ⊢ 𝐽) 31

Notation (Signature judgment: Σ ⊢ 𝐽) 31
2.45 Definition (Free variables of a scoped and typed term: fv(Δ ⊢

𝑡 ∶ 𝐵), fv(𝐽)) . 31
2.46 Definition (Set of constants in a judgment: consts(𝐽)) . . . 32
2.47 Definition (Renaming of a judgment: 𝐽 𝜌, (Δ ⊢ 𝑡 ∶ 𝐵) 𝜌) . . . 32
2.48 Definition (Hereditary substitution of judgments: 𝐽[𝑢/𝑥],

(Δ ⊢ 𝑡 ∶ 𝐵)[𝑢/𝑥]) . 32
2.50 Definition (Set of free variables, strengthened: fv𝑥(𝑡)) 33
2.67 Definition (Signature subsumption: Σ ⊆ Σ′) 39
2.68 Definition (Well-formed reordering) 39
2.87 Definition (Full normal form: Σ;Γ ⊢ 𝑡��⟶δη ∶ 𝐴) 47
2.95 Definition (Weak head normal form: Σ ⊢ 𝑡↘ 𝑢) 49
2.100 Definition (Head of a term: Set, Σ, Π, Bool, 𝜆, ℎ, 𝑐, ⟨_,_⟩) . 51
2.103 Definition (Type elimination: Σ;Γ ⊢ (ℎ ∶) @̂ ⃗𝑒 ⇓ 𝑈) 52
2.104 Definition (Type application: Σ;Γ ⊢ 𝑇 @̂ ⃗𝑡 ⇓ 𝑈) 52
2.114 Definition (Type application, reversed: Σ;Γ ⊢ 𝑇 @̂R ⃗𝑡 ⇓ 𝑈) . 55
2.122 Definition (Well-formed metasubstitution: Θwf) 59
2.124 Definition (Metasubstitution subsumption: Θ ⊆ Θ′) 59
2.125 Definition (Compatible metasubstitution: Θ ⊨ Σ) 60
2.126 Definition (Declaration: (𝐷)) 60
2.127 Definition (Compatibility of a metasubstitution with a decla-

ration: Θ compatible with 𝐷) 60
2.132 Definition (Restriction of a metasubstitution to a set of

metavariables: ΘΣ, ΘΣ∪𝑡) . 62
2.139 Definition (Closed signature) 63
2.140 Definition (Normalization to meta-free terms: Σ ⊢ 𝑡 ⇘̂ 𝑢) . . 63

LIST OF DEFINITIONS, NOTATIONS AND PROBLEMS 215

2.143 Definition (Closing metasubstitution: close(Σ) ⇓ Θ) 63
2.145 Definition (Equality of metasubstitutions: Θ ≡ Θ′) 65
2.151 Definition (Signature extension: Σ ⊑ Σ′) 68
2.158 Definition (Strongly neutral term) 70
2.164 Definition (Irreducible terms) 74
2.168 Definition (Rigid occurrence) 75
2.169 Definition (Typed rigid occurrence) 75

3.1 Definition (Term with holes) 83
3.2 Definition (Well-formed type checking problem: Σ;Γ ⊢? 𝑡 ∶ 𝐴) 83
3.3 Definition (Solution to a type checking problem: Θ ⊨ Σ;Γ ⊢?

𝑡 ∶ 𝐴) . 83
3.4 Definition (Unique solution to a type checking problem) . . . 83
3.7 Definition (Basic constraint) 86
3.8 Definition (Solution to a basic constraint: Θ ⊨ Σ;Γ ⊢ 𝑡 ∶ 𝐴 ≅

𝑢 ∶ 𝐵) . 86
3.9 Problem (Unification of dependently-typed terms) 86
3.10 Definition (Elaboration algorithm) 86
3.11 Definition (Well-formedness of an elaboration algorithm) . . . 86
3.12 Definition (Correctness of an elaboration algorithm) 86

Notation (Terms and constraints) 90
3.18 Definition (Homogeneous constraint) 95

4.1 Definition (Twin contexts) . 98
Notation (Twin context) . 98
Notation (Twin context concatenation) 98

4.2 Definition (Well-formed internal constraint: Σ;Γ1‡Γ2 ⊢ 𝑡 ≈
𝑢 ∶ 𝐴‡𝐵) . 98

4.3 Definition (Unification problem) 98
4.4 Definition (Set of constants in a constraint or a vector of con-

straints: consts(𝒞),consts(⃗𝒞)) 99
4.5 Definition (Well-formed unification problem) 99
4.9 Definition (Solution to a constraint: Θ ⊨ 𝒞, Θ ⊨ ⃗𝒞) 99
4.11 Definition (Solution to a unification problem: Θ ⊨ Σ; ⃗𝒞) . . . 100
4.12 Definition (Heterogeneous equality: Σ;Γ‡Δ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴‡𝐵) . . 100
4.17 Definition (Constraint satisfaction: Σ ∣≈ 𝒞, Σ ∣≈ ⃗𝒞) 101
4.18 Definition (Essentially homogeneous set of constraints) 102
4.19 Definition (Essentially homogeneous problem) 102
4.22 Definition (Elaboration into internal constraints) 103
4.25 Definition (Reduction rule) 105
4.26 Definition (Rule correctness) 105
4.27 Definition (One-step problem reduction: Σ; ⃗⃗⃗ ⃗ℰ ⇝⇝⇝ Σ′; ⃗⃗⃗ ⃗ℰ′) . . . 105
4.28 Definition (Problem reduction: Σ′; ⃗⃗⃗ ⃗ℰ⇝⇝⇝⋆ Σ′; ⃗⃗⃗ ⃗ℰ′) 105
4.30 Definition (Solved problem) 107
4.33 Problem (Metavariable instantiation) 110
4.37 Definition (Heterogeneously equal contexts modulo variables) 112
4.45 Definition (Metavariable argument killing: Σ ⊢ kill(𝛼, 𝑛) ↦

Σ′) . 131
4.58 Definition (Unsolvable problem) 153

216 LIST OF THEOREMS, PROPOSITIONS, LEMMAS AND REMARKS

5.1 Definition (Unblocker) . 166
5.2 Definition (Unblocking of constraints: Unblocked(Σ; 𝒞)) . . 166

List of Postulates

1 Postulate (Typing of hereditary substitution) 32
2 Postulate (Typing of hereditary application) 32
3 Postulate (Typing of hereditary projection) 32
4 Postulate (Congruence of hereditary substitution) 33
5 Postulate (Hereditary substitution commutes) 33
6 Postulate (Congruence of hereditary application) 33
7 Postulate (Congruence of hereditary projection) 33
8 Postulate (No infinite chains) 33
9 Postulate (Commuting of hereditary substitution and application) 34
10 Postulate (Injectivity of Π) . 35
11 Postulate (Injectivity of Σ) . 35
12 Postulate (Signature strengthening) 43
13 Postulate (Context strengthening) 43
14 Postulate (Existence of a common reduct) 47
15 Postulate (Existence of a unique full normal form) 47

List of Theorems, Propositions, Lemmas and
Remarks

2.5 Remark (Signature inversion) 15
2.9 Remark (Atoms and metavariables are disjoint) 15
2.13 Remark (Context inversion) 17
2.15 Remark (There is only set) 18
2.17 Remark (Context equality inversion) 18
2.28 Remark (Renaming and free variables) 21
2.29 Remark (Composition of renamings) 21
2.30 Remark (Properties of renamings) 21
2.35 Remark (Iterated application as substitution on body) 24
2.36 Remark (Hereditary substitution by a neutral term: 𝑡[𝑓/𝑥]) . 24
2.37 Remark (Hereditary elimination of neutral terms: 𝑓 @ ⃗𝑒) . . 24
2.39 Lemma (Hereditary substitution and application commute

with renaming) . 25
2.40 Lemma (Correspondence between renaming and substitution) 25
2.43 Remark (Free variables of δη-reduct) 29
2.49 Remark (Strengthening by substitution) 33
2.51 Lemma (Free variables in hereditary substitution) 33
2.52 Lemma (Π inversion) . 35
2.53 Lemma (Σ inversion) . 35
2.54 Lemma (Term equality is an equivalence relation) 35
2.55 Remark (Type equality is an equivalence relation) 35

LIST OF THEOREMS, PROPOSITIONS, LEMMAS AND REMARKS 217

2.56 Lemma (Neutral inversion) 36
2.57 Lemma (Type of 𝜆-abstraction) 36
2.59 Lemma (Abstraction equality inversion) 36
2.60 Lemma (Type of a pair) . 36
2.61 Remark (Reflexivity of context equality) 37
2.62 Lemma (Context weakening) 37
2.63 Lemma (Preservation of judgments by type conversion) 38
2.64 Lemma (Equality of contexts is an equivalence relation) . . . 38
2.65 Lemma (No extraneous variables in term) 39
2.69 Lemma (Signature weakening) 39
2.70 Lemma (Piecewise well-formedness of typing judgments) . . . 39
2.71 Lemma (Variables of irrelevant type) 43
2.72 Lemma (No extraneous constants) 43
2.73 Remark (Signature piecewise well-formed) 43
2.74 Remark (Simplified delta-meta rule: delta-meta0) 44
2.75 Lemma (Uniqueness of typing for neutrals) 44
2.78 Lemma (Variable types say everything) 45
2.79 Lemma (Typing and congruence of elimination) 45
2.80 Lemma (Simplified app, app-eq: app0, app-eq0) 46
2.81 Remark (Cancellation of weakening with substitution) 46
2.82 Lemma (λ inversion) . 46
2.83 Lemma (Injectivity of 𝜆) . 46
2.84 Lemma (⟨,⟩-inversion) . 47
2.85 Lemma (Injectivity of ⟨,⟩) . 47
2.86 Lemma (Equality of δη-reduct) 47
2.88 Remark (Existence of a common normal form) 47
2.89 Remark (Disjointness of primitive types) 48
2.90 Lemma (Reduction under equal context) 48
2.91 Remark (Inversion of reduction under 𝜆) 48
2.92 Remark (Inversion of reduction under ⟨, ⟩) 49
2.93 Remark (Strengthening of hereditary substitution and elimi-

nation) . 49
2.94 Remark (Strengthening of reduction) 49
2.96 Remark (WHNF reduction is deterministic) 50
2.97 Remark (WHNF reduction is δη-reduction) 50
2.98 Lemma (Equality of WHNF) 50
2.99 Lemma (Term in WHNF) . 51
2.101 Lemma (Nose of weak-head normal form) 51
2.102 Remark (Preservation of free variables by WHNF) 52
2.105 Remark (Type elimination without projections) 53
2.106 Lemma (Type elimination) . 53
2.107 Lemma (Type elimination inversion) 53
2.108 Remark (Uniqueness of head type lookup) 53
2.109 Lemma (Type application inversion) 54
2.110 Lemma (Type of hereditary application) 54
2.111 Lemma (Application inversion) 54
2.112 Lemma (Iterated application inversion) 54
2.113 Lemma (Projection inversion) 54
2.115 Lemma (Type application, reversed) 55

218 LIST OF THEOREMS, PROPOSITIONS, LEMMAS AND REMARKS

2.116 Lemma (Free variables in type application) 55
2.117 Lemma (Commuting of renamings with hereditary substitu-

tion and elimination) . 55
2.118 Lemma (Commuting of renamings with WHNF) 55
2.119 Lemma (Commuting of renaming with reversed type applica-

tion) . 56
2.120 Lemma (Typing of metavariable bodies) 56
2.123 Remark (Metasubstitutions are signatures) 59
2.128 Remark (Compatibility with a declaration as a judgment: 𝐽 =

𝐷) . 60
2.129 Remark (Alternative characterization of compatibility of a

metasubstitution with a declaration) 60
2.130 Lemma (Alternative characterization of a compatible meta-

substitution) . 60
2.131 Remark (Compatibility of extended metasubstitutions with

declarations) . 62
2.133 Remark (Restriction to a compatible signature) 62
2.134 Remark (Subsumption of restriction) 62
2.135 Remark (Declarations in a metasubstitution restriction) . . . 62
2.136 Remark (Nested metasubstitution restriction) 62
2.137 Remark (Metasubstitution weakening) 63
2.138 Remark (Metasubstitution strengthening) 63
2.141 Lemma (Existence of meta-free normal form) 63
2.142 Remark (Metavariable-free term) 63
2.144 Lemma (Compatibility of closing metasubstitution) 65
2.146 Lemma (Metasubstitution equality is an equivalence relation) 66
2.147 Lemma (Compatibility respects equality) 66
2.148 Lemma (Uniqueness of closing metasubstitution) 66
2.150 Lemma (Equality of restricted metasubstitutions) 68
2.152 Remark (Signature extension is reflexive and transitive) . . . 69
2.153 Remark (Signature extension declarations) 69
2.154 Remark (Metasubstitution restriction to extension) 69
2.155 Lemma (Preservation of judgments under signature extensions) 69
2.157 Lemma (Restriction of a metasubstitution to an extended sig-

nature) . 70
2.159 Remark (Prefixes of strongly neutral terms) 70
2.160 Remark (Closure of strongly neutral terms) 70
2.161 Remark (Intermediate steps of reduction of strong neutrals) . 71
2.162 Remark (Reduction preserves strongly neutral terms) 71
2.163 Lemma (Injectivity of elimination for strongly neutral terms) 71
2.165 Remark (Extensions of irreducible terms) 74
2.166 Lemma (Reduction at Π-type) 74
2.167 Lemma (Characterization of normal forms) 74
2.170 Lemma (Typing of rigid occurrences) 76
2.171 Remark (Free variables of rigid occurrence) 76
2.172 Lemma (Free variables in reduction of rigid occurrences) . . . 76
2.174 Lemma (Rigidity of substitution by neutral terms in normal

forms) . 78
2.175 Lemma (Preservation of irreducibles by normal forms) 78

LIST OF EXAMPLES 219

2.176 Lemma (Injectivity of normal forms with respect to irreducibles) 79

4.6 Remark (No extraneous constants in constraint) 99
4.7 Remark (Well-formed unification constraint is a judgment:

𝐽 = 𝒞) . 99
4.8 Remark (Well-formed unification problem is a judgment: 𝐽 = ⃗𝒞) 99
4.10 Remark (Solution to a constraint as a judgment) 100
4.13 Lemma (Homogenization) . 100
4.15 Remark (Reflexivity of heterogeneous equality) 101
4.16 Remark (Symmetry of heterogeneous equality) 101
4.20 Lemma (Constraint satisfaction in extended signature) 102
4.21 Lemma (Constraint satisfaction by compatible metasubstitu-

tion) . 102
4.23 Lemma (Well-formedness of elaboration into internal con-

straints) . 103
4.24 Lemma (Correctness of elaboration into internal constraints) 104
4.29 Lemma (Correctness of problem reduction) 106
4.31 Theorem (Correctness of unification) 107
4.34 Lemma (General η-equality for Π-types) 110
4.35 Lemma (General η-equality for pairs) 111
4.36 Lemma (Miller’s pattern condition) 111
4.38 Lemma (Typing in heterogeneously equal contexts) 113
4.39 Remark (Rule symmetry) . 120
4.46 Lemma (Well-formedness of killing) 132
4.47 Lemma (Completeness of killing) 132
4.48 Lemma (Intersection) . 134
4.49 Lemma (Pruning) . 137
4.53 Lemma (Free variables in substitution by pair) 147
4.54 Lemma (Free variables in substitution by irreducible) 147
4.56 Remark (Open-world assumption for rule schemas) 152
4.57 Remark (Open-world assumption for problem reduction) . . . 153
4.59 Lemma (Preservation of unsolvability) 153
4.60 Lemma (Partial characterization of unsolvable problems) . . . 154

List of Examples

2.25 Example (Strengthening by a variable: ((−1) + 𝑛)) 20

3.5 Example (Dependent type checking with metavariables, unique
solution) . 85

3.6 Example (Dependent type checking with metavariables, no
unique solution) . 85

3.13 Example (Elaboration of a type checking problem with
metavariables) . 87

3.15 Example (First-order problem) 90
3.16 Example (Higher-order problem) 90
3.17 Example (Solvable higher-order unification problem) 91

220 LIST OF FIGURES

3.19 Example (Limitations of sequential solving) 95

4.14 Example (Heterogeneous equality) 101
4.40 Example (Strong neutral unification) 125
4.41 Example (No solutions) . 126
4.42 Example (Non-unique solutions) 126
4.43 Example (Good pruning) . 130
4.44 Example (Bad pruning) . 131
4.62 Example (Unsolvable problem) 154

5.3 Example (Cross-dependent constraint) 190
5.4 Example (Heterogeneous currying constraint) 195

List of Algorithms

1 Elaborate . 89

2 Solve . 159
3 Refine . 160
4 Assign . 161
5 CheckPatternCondition . 162
6 Prune . 163
7 Intersect . 164
8 EtaContractWhnf . 164
9 EtaExpand . 165
10 EtaExpandDefHeaded . 165

List of Figures

2.1 Syntax for terms . 12
2.2 Metavariables occurring in a term 16
2.3 Atoms occurring in a term . 16
2.4 Free variables in a term . 19
2.5 Applying a renaming 𝜌 to a term. 21
2.6 Hereditary substitution and elimination 23
2.7 Cases for δη-reduction . 30
2.8 Inductive definition of the meta-free normal form of a term . . 64

3.1 Recursive definition of the set of holes in a term 84

5.1 CPU usage of id . 175
5.2 Memory usage of id . 176
5.3 CPU usage of id when the inlining optimization is prevented . 176
5.4 Memory usage of id when the inlining optimization is prevented 177
5.5 CPU usage of the Data example. 180
5.6 Memory usage of the Data example 180

LIST OF LISTINGS 221

5.7 CPU usage of the App example. 183
5.8 Memory usage of the App example 183
5.9 CPU usage of the TT-in-TT examples, Agda vs Tog 188
5.10 Memory usage of the TT-in-TT examples in Figure 5.9. 188
5.11 CPU usage of the TT-in-TT examples in Figure 5.9 189
5.12 Memory usage of the TT-in-TT examples in Figure 5.9 190

List of Listings

1.1 Non-unique implicit argument 3

5.1 Implicit arguments . 168
5.2 Inductive data types . 169
5.3 Properties of the identity type 169
5.4 Σ-type implemented in Tog . 170
5.5 Tog Prelude . 172
5.6 Adapted version of Listing 5.4 173
5.7 Example with 𝑛 = 20 applications of id 175
5.8 Example with 𝑛 = 20 applications of id, while preventing inlining.175
5.9 Example of projections from data type for 𝑛 = 7 177
5.10 Example of projections from data type for 𝑛 = 3 178
5.11 Listing 5.10 with partially expanded implicit arguments (𝑛 = 3) 179
5.12 Example of applications for 𝑛 = 7 181
5.13 Constraint from the pointed set example 184
5.14 Constraint from the multigraph example 184
5.15 Definition of a pointed set . 185
5.16 Definition of a multigraph . 185
5.17 Definition of a fully-reflexive multigraph 185
5.18 Part of the definition of a precategory 185
5.19 Part of the definition of a setoid 186
5.20 Minilang example in Coq . 192

A.1 Definition of the dependently-typed language 199

B.1 Minilang example in Idris . 205
B.2 Minilang example in Lean . 206
B.3 Minilang example in Matita . 207
B.4 Minilang example in Tog . 208

List of Tables

5.1 Command line options for the benchmarks in Chapter 5 172

222 LIST OF TABLES

Bibliography

[1] Andreas Abel. Documented the conditions of projection-likeness. Agda
Source Code Repository, January 2017. URL https://github.com/agda/
agda/commit/3b02558118dd1fb4b00f82248c2d3c2e595281fe#diff-8abf7d
df426bbf6ef075fd206f630f2c .

[2] Andreas Abel. Type checker normalizes too much. Agda Issue #4125,
October 2019. URL https://github.com/agda/agda/issues/4125 .

[3] Andreas Abel and Brigitte Pientka. Higher-order dynamic pattern uni-
fication for dependent types and records. In Typed Lambda Calculi and
Applications (TLCA 2011). 2011. doi:10.1007/978-3-642-21691-6_5 .

[4] Andreas Abel, Francesco Mazzoli, and Ulf Norell. Strange metavari-
able behaviour when the first argument comparison is stuck. Agda Issue
#1258, August 2014. URL https://github.com/agda/agda/issues/1258 .

[5] Andreas Abel, Jesper Cockx, and Nils Anders Danielsson. Agda allows
“very dependent” types. Agda Issue #1556, August 2015. URL https:
//github.com/agda/agda/issues/1556 .

[6] Andreas Abel, Nils Anders Danielsson, and Ulf Norell. Inconsistent con-
straints leading to violated invariants in conversion checking. Agda Issue
#1467, March 2015. URL https://github.com/agda/agda/issues/1467 .

[7] Andreas Abel, Nils Anders Danielsson, and Víctor López Juan. Overzeal-
ous pruning (reprise). Agda Issue #2876, December 2017. URL https:
//github.com/agda/agda/issues/2876 .

[8] Andreas Abel, Martin Stone Davis, Ulf Norell, et al. (No longer an) In-
ternal error at src/full/Agda/TypeChecking/Substitute.hs:98. Agda Issue
#2709, August 2017. URL https://github.com/agda/agda/issues/2709 .

[9] Andreas Abel, Jesper Cockx, Nils Anders Danielsson, and Víctor
López Juan. Regression related to fix of #3027. Agda Issue #4408,
January 2020. URL https://github.com/agda/agda/issues/4408 .

[10] Robin Adams. A modular hierarchy of logical frameworks. PhD thesis,
Faculty of Engineering and Physical Sciences, University of Manchester,
2004. URL https://repository.royalholloway.ac.uk/items/2fa04c91-
c933-8da6-3bc4-9d300b20cc54/10/ .

223

https://github.com/agda/agda/commit/3b02558118dd1fb4b00f82248c2d3c2e595281fe#diff-8abf7ddf426bbf6ef075fd206f630f2c
https://github.com/agda/agda/commit/3b02558118dd1fb4b00f82248c2d3c2e595281fe#diff-8abf7ddf426bbf6ef075fd206f630f2c
https://github.com/agda/agda/commit/3b02558118dd1fb4b00f82248c2d3c2e595281fe#diff-8abf7ddf426bbf6ef075fd206f630f2c
https://github.com/agda/agda/issues/4125
https://doi.org/10.1007/978-3-642-21691-6_5
https://github.com/agda/agda/issues/1258
https://github.com/agda/agda/issues/1556
https://github.com/agda/agda/issues/1556
https://github.com/agda/agda/issues/1467
https://github.com/agda/agda/issues/2876
https://github.com/agda/agda/issues/2876
https://github.com/agda/agda/issues/2709
https://github.com/agda/agda/issues/4408
https://repository.royalholloway.ac.uk/items/2fa04c91-c933-8da6-3bc4-9d300b20cc54/10/
https://repository.royalholloway.ac.uk/items/2fa04c91-c933-8da6-3bc4-9d300b20cc54/10/

224 BIBLIOGRAPHY

[11] Robin Adams. Lambda-free logical frameworks. CoRR, abs/0804.1879,
2008. URL http://arxiv.org/abs/0804.1879 .

[12] Jesper Cockx and “palkarz”. Type checker explosion. Agda Issue #3554,
February 2019. URL https://github.com/agda/agda/issues/3554 .

[13] Robert L. Constable, Todd B. Knoblock, and Joseph L. Bates. Writing
programs that construct proofs. Journal of Automated Reasoning, 1(3):
285–326, 1984.

[14] Catarina Coquand. The homepage of the Agda type checker, 1998. URL
https://web.archive.org/web/20070909205649/http://www.cs.chalmer
s.se/~catarina/agda/ .

[15] Thierry Coquand and Gérard Huet. Constructions: A higher order proof
system for mechanizing mathematics. Technical Report RR-0401, INRIA,
May 1985. URL https://hal.inria.fr/inria-00076155 .

[16] Nils Anders Danielsson and Ulf Norell. Inconsistent constraints leading
to violated invariants in conversion checking. Agda Issue #1467, March
2014. URL https://github.com/agda/agda/issues/1467 .

[17] L. Peter Deutsch. An interactive program verifier. Xerox, Palo Alto
Research Center, 1973. URL http://citeseerx.ist.psu.edu/viewdoc/su
mmary?doi=10.1.1.696.5498 .

[18] Gilles Dowek, Amy Felty, Hugo Herbelin, Gérard Huet, Benjamin Werner,
and Christine Paulin-Mohring. The Coq proof assistant user’s guide :
version 5.6. Research Report RT-0134, INRIA, 1991. URL https://hal.
inria.fr/inria-00070034 .

[19] Dominic Duggan. Unification with extended patterns. Theoretical Com-
puter Science, 206(1-2):1–50, 1998. doi:10.1016/S0304-3975(97)00141-2 .

[20] Conal M Elliott. Higher-order unification with dependent function types.
In International Conference on Rewriting Techniques and Applications,
pages 121–136. Springer, 1989. doi:10.1007/3-540-51081-8_104 .

[21] Conal M Elliott. Extensions and applications of higher-order unification.
PhD thesis, Carnegie Mellon University, 1990. URL http://citeseerx.
ist.psu.edu/viewdoc/summary?doi=10.1.1.128.8369 .

[22] Jean-Yves Girard. Interprétation fonctionelle et élimination des coupures
de l’arithmétique d’ordre supérieur. PhD thesis, Université Paris VII,
1972. URL https://web.archive.org/web/20190604052524/https:
//www.cs.cmu.edu/~kw/scans/girard72thesis.pdf .

[23] Michael Gordon, Robin Milner, and Christopher Wadsworth. Edinburgh
LCF – A Mechanised Logic of Computation, volume 78 of Lecture Notes
in Computer Science. Springer-Verlag, 1979. ISBN 978-3-540-09724-2.
doi:10.1007/3-540-09724-4 .

http://arxiv.org/abs/0804.1879
https://github.com/agda/agda/issues/3554
https://web.archive.org/web/20070909205649/http://www.cs.chalmers.se/~catarina/agda/
https://web.archive.org/web/20070909205649/http://www.cs.chalmers.se/~catarina/agda/
https://hal.inria.fr/inria-00076155
https://github.com/agda/agda/issues/1467
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.696.5498
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.696.5498
https://hal.inria.fr/inria-00070034
https://hal.inria.fr/inria-00070034
https://doi.org/10.1016/S0304-3975(97)00141-2
https://doi.org/10.1007/3-540-51081-8_104
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.128.8369
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.128.8369
https://web.archive.org/web/20190604052524/https://www.cs.cmu.edu/~kw/scans/girard72thesis.pdf
https://web.archive.org/web/20190604052524/https://www.cs.cmu.edu/~kw/scans/girard72thesis.pdf
https://doi.org/10.1007/3-540-09724-4

BIBLIOGRAPHY 225

[24] James R Guard. Automated logic for semi-automated mathematics. Tech-
nical report, Applied Logic Corp. Princeton, NJ, 1964. URL https:
//web.archive.org/web/20200509053351/https://apps.dtic.mil/dtic/t
r/fulltext/u2/602710.pdf .

[25] Adam Gundry. Type Inference, Haskell and Dependent Types. PhD thesis,
Department of Computer and Information Sciences, University of Strath-
clyde, 2013. URL http://adam.gundry.co.uk/pub/thesis/ .

[26] Adam Gundry. Unification and type inference algorithms. Source code
repository, February 2015. URL https://github.com/adamgundry/type-i
nference . Commit 4cee7626.

[27] Adam Gundry and Conor McBride. A tutorial implementation of dynamic
pattern unification. Unpublished, 2012. URL http://adam.gundry.co.u
k/pub/pattern-unify/ .

[28] Gérard P Huet. The undecidability of unification in third order
logic. Information and control, 22(3):257–267, 1973. doi:10.1016/0304-
3975(81)90040-2 .

[29] Gerard P. Huet. A unification algorithm for typed 𝜆-calculus. Theoretical
Computer Science, 1(1):27–57, 1975. doi:10.1016/0304-3975(75)90011-0 .

[30] Antonius JC Hurkens. A simplification of Girard’s paradox. In Inter-
national Conference on Typed Lambda Calculi and Applications, pages
266–278. Springer, 1995. doi:10.1007/BFb0014058 .

[31] C. Maria Keet. Open world assumption. In Encyclopedia of Systems Bi-
ology, pages 1567–1567. 2013. ISBN 978-1-4419-9863-7. doi:10.1007/978-
1-4419-9863-7_734 .

[32] Neel Krishnaswami. Answer to “hereditary substitution with a universe
hierarchy”. Theoretical Computer Science Stack Exchange. URL https:
//cstheory.stackexchange.com/questions/41924/hereditary-substitu
tion-with-a-universe-hierarchy/41928 .

[33] Víctor López Juan and Ulf Norell. Internal error in the presence of
unsatisfiable constraints. Agda Issue #3027, April 2018. URL https:
//github.com/agda/agda/issues/3027 .

[34] Lena Magnusson. The Implementation of ALF – a Proof Editor based
on Martin-Löf’s Monomorphic Type Theory with Explicit Substitution.
PhD thesis, Department of Computer Science, Chalmers University of
Technology, 1994.

[35] Francesco Mazzoli. Data. Tog Source Repository, November 2014. URL
https://github.com/bitonic/tog/blob/7047c561557328952dbbbe7a6944
c470f10ac192/examples/slow/Data.agda .

[36] Francesco Mazzoli and Andreas Abel. Type checking through unification,
2016. arXiv:1609.09709v1 .

https://web.archive.org/web/20200509053351/https://apps.dtic.mil/dtic/tr/fulltext/u2/602710.pdf
https://web.archive.org/web/20200509053351/https://apps.dtic.mil/dtic/tr/fulltext/u2/602710.pdf
https://web.archive.org/web/20200509053351/https://apps.dtic.mil/dtic/tr/fulltext/u2/602710.pdf
http://adam.gundry.co.uk/pub/thesis/
https://github.com/adamgundry/type-inference
https://github.com/adamgundry/type-inference
http://adam.gundry.co.uk/pub/pattern-unify/
http://adam.gundry.co.uk/pub/pattern-unify/
https://doi.org/10.1016/0304-3975(81)90040-2
https://doi.org/10.1016/0304-3975(81)90040-2
https://doi.org/10.1016/0304-3975(75)90011-0
https://doi.org/10.1007/BFb0014058
https://doi.org/10.1007/978-1-4419-9863-7_734
https://doi.org/10.1007/978-1-4419-9863-7_734
https://cstheory.stackexchange.com/questions/41924/hereditary-substitution-with-a-universe-hierarchy/41928
https://cstheory.stackexchange.com/questions/41924/hereditary-substitution-with-a-universe-hierarchy/41928
https://cstheory.stackexchange.com/questions/41924/hereditary-substitution-with-a-universe-hierarchy/41928
https://github.com/agda/agda/issues/3027
https://github.com/agda/agda/issues/3027
https://github.com/bitonic/tog/blob/7047c561557328952dbbbe7a6944c470f10ac192/examples/slow/Data.agda
https://github.com/bitonic/tog/blob/7047c561557328952dbbbe7a6944c470f10ac192/examples/slow/Data.agda
https://arxiv.org/abs/1609.09709v1

226 BIBLIOGRAPHY

[37] Francesco Mazzoli, Nils Anders Danielsson, Ulf Norell, Andrea Vezzosi,
Andreas Abel, et al. Tog - a prototypical implementation of dependent
types, 2017. URL https://github.com/bitonic/tog .

[38] Conor McBride. Epigram, 2007. URL http://www.e-pig.org .

[39] Conor McBride. Outrageous but meaningful coincidences: Depen-
dent type-safe syntax and evaluation. In Proceedings of the 6th
ACM SIGPLAN Workshop on Generic Programming, WGP’10, 2010.
doi:10.1145/1863495.1863497 .

[40] Spiro Michaylov and Frank Pfenning. An empirical study of the runtime
behavior of higher-order logic programs. In Proceedings of the Workshop
on the 𝜆Prolog Programming Language, pages 257–271, 1992. URL http:
//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.2557 .

[41] Dale Miller. A logic programming language with lambda-abstraction,
function variables, and simple unification. Journal of logic and computa-
tion, 1(4):497–536, 1991. doi:10.1093/logcom/1.4.497 .

[42] César Muñoz. A Calculus of Substitutions for Incomplete-Proof Repre-
sentation in Type Theory. Research Report RR-3309, INRIA, 1997. URL
https://hal.inria.fr/inria-00073380 .

[43] César Muñoz. Proof-term synthesis on dependent-type systems via ex-
plicit substitutions. Theoretical Computer Science, 266(1-2):407–440,
2001. doi:10.1016/S0304-3975(00)00196-1 .

[44] Ulf Norell. Towards a practical programming language based on depen-
dent type theory. PhD thesis, Department of Computer Science and
Engineering, Chalmers University of Technology, Sweden, 2007. URL
http://www.cse.chalmers.se/~ulfn/papers/thesis.pdf .

[45] Ulf Norell. Detection of projection like functions. Agda Source Repository,
September 2011. URL https://github.com/agda/agda/commit/3ce53cc6
f4aec36aa0fb5f6697f49ec4ff747ecd .

[46] Ulf Norell. Auto-inline simple definitions. Agda Source Repository, April
2018. URL https://github.com/agda/agda/commit/2a3495289d5ee089ab
c9a7c041c5b05dbc472f37 .

[47] Ulf Norell. Internal error during instance search. Agda Issue #3870, June
2019. URL https://github.com/agda/agda/issues/3870 .

[48] Ulf Norell and Catarina Coquand. Type checking in the presence of meta-
variables. Unpublished, 2007. URL http://www.cse.chalmers.se/~ulfn/
papers/meta-variables.html .

[49] Kent Petersson. A programming system for type theory. Technical Re-
port 9, Programming Methodology Group, University of Gothenburg and
Chalmers University of Technology, 1984. ISSN 0282-2083.

[50] Emil L. Post. A variant of a recursively unsolvable problem. Bulletin of the
American Mathematical Society, 52(4):264–268, 1946. doi:10.1090/S0002-
9904-1946-08555-9 .

https://github.com/bitonic/tog
http://www.e-pig.org
https://doi.org/10.1145/1863495.1863497
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.2557
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.2557
https://doi.org/10.1093/logcom/1.4.497
https://hal.inria.fr/inria-00073380
https://doi.org/10.1016/S0304-3975(00)00196-1
http://www.cse.chalmers.se/~ulfn/papers/thesis.pdf
https://github.com/agda/agda/commit/3ce53cc6f4aec36aa0fb5f6697f49ec4ff747ecd
https://github.com/agda/agda/commit/3ce53cc6f4aec36aa0fb5f6697f49ec4ff747ecd
https://github.com/agda/agda/commit/2a3495289d5ee089abc9a7c041c5b05dbc472f37
https://github.com/agda/agda/commit/2a3495289d5ee089abc9a7c041c5b05dbc472f37
https://github.com/agda/agda/issues/3870
http://www.cse.chalmers.se/~ulfn/papers/meta-variables.html
http://www.cse.chalmers.se/~ulfn/papers/meta-variables.html
https://doi.org/10.1090/S0002-9904-1946-08555-9
https://doi.org/10.1090/S0002-9904-1946-08555-9

BIBLIOGRAPHY 227

[51] David J. Pym. Proofs, search and computation in general logic. PhD
thesis, 1990. URL http://www.lfcs.inf.ed.ac.uk/reports/90/ECS-LFC
S-90-125/ .

[52] Jason Reed. Higher-order constraint simplification in dependent type
theory. In Proceedings of the Fourth International Workshop on Logi-
cal Frameworks and Meta-Languages: Theory and Practice, LFMTP ’09,
pages 49–56, 2009. doi:10.1145/1577824.1577832 .

[53] John Alan Robinson. A machine-oriented logic based on the reso-
lution principle. Journal of the ACM (JACM), 12(1):23–41, 1965.
doi:10.1145/321250.321253 .

[54] Zhong Shao, Christopher League, and Stefan Monnier. Im-
plementing typed intermediate languages. In ICFP ’98, 1998.
doi:10.1145/289423.289460 .

[55] Beta Ziliani and Matthieu Sozeau. A unification algorithm for Coq featur-
ing universe polymorphism and overloading. In ACM SIGPLAN Notices,
volume 50, pages 179–191. ACM, 2015. doi:10.1145/2784731.2784751 .

[56] Beta Ziliani and Matthieu Sozeau. A comprehensible guide to a new
unifier for CIC including universe polymorphism and overloading. Journal
of Functional Programming, 27, 2017. doi:10.1017/S0956796817000028 .

http://www.lfcs.inf.ed.ac.uk/reports/90/ECS-LFCS-90-125/
http://www.lfcs.inf.ed.ac.uk/reports/90/ECS-LFCS-90-125/
https://doi.org/10.1145/1577824.1577832
https://doi.org/10.1145/321250.321253
https://doi.org/10.1145/289423.289460
https://doi.org/10.1145/2784731.2784751
https://doi.org/10.1017/S0956796817000028

	Introduction
	Our contributions
	Problem statement
	A brief history of higher-order unification with dependent types
	Recent approaches to dependent type checking with metavariables
	Uniqueness of solutions
	Design choices
	Structure of the thesis

	A dependently-typed language
	Term syntax
	Notational preliminaries
	Signatures (Σ sig)
	Contexts (Σ ⊢ Γ ctx)
	Types (Σ;Γ ⊢ A type)
	Context equality (Σ ⊢ Γ ≡ Γ′ ctx)
	Binders and variables
	Renamings
	Hereditary substitution and elimination (t[u/x], t @e)
	Head lookup (Σ;Γ ⊢ h ⇒ A)
	Terms (Σ;Γ ⊢ t : A)
	Term equality (Σ;Γ ⊢ t ≡ u : A)
	Term reduction (⟶δη, ⟶⋆δη)
	Properties
	Judgments
	Substitution and elimination
	Typing and equality
	Contexts
	Signatures
	Admissible rules
	Term reduction

	Weak head normalization (↘)
	Type elimination (@)
	Metasubstitutions (Θ)
	Closing metasubstitution (close(Σ))
	Equality of metasubstitutions (Θ₁ ≡ Θ₂)
	Signature extensions (Σ ⊑ Σ′)
	Non-reducible terms
	Rigidly occurring terms (t⟦u⟧)
	Out of scope features
	Inductive definitions and inductive families
	Identity types
	Generalized records with η

	Unification for type checking
	From type checking to unification
	Higher-order unification
	(Un)decidability of higher order unification
	Miller pattern unification
	Dynamic pattern unification
	Extension to product types
	Interleaving type checking with unification
	The Π problem
	Strictly ordered, homogeneous constraints
	Heterogeneous constraints using twin variables

	Unifying without order
	Two-sided internal constraints
	Heterogeneous equality
	From type checking to internal constraints
	A unification relation
	A reduction rule toolkit
	Syntactic equality check
	Metavariable instantiation
	Type constructors
	Constraint symmetry
	Term conversion
	Type conversion
	Type-directed unification
	Strongly neutral terms
	Metavariable argument killing
	Metavariable argument currying
	Metavariable η-expansion
	Context variable currying

	Beyond correctness
	Open-world assumption
	Unsolvable problems

	Extensibility and limitations thereof
	Singleton types with η-equality

	Evaluation and conclusions
	Unification algorithm
	Constraint book-keeping
	Constraint unblocking (Unblocked)
	Ordering of rule application
	Constraint satisfaction

	Language extensions
	Benchmarking methodology
	Comparing Tog with Agda

	From Tog to Tog⁺
	Term representation using hash-consing
	Elaboration

	Case study: Type Theory in Type Theory
	Impact of syntactic equality

	Related systems
	Comparison with Coq, Matita, Idris, Lean and Tog
	Comparison with Agda
	Comparison with the twin variable approach

	Future work
	Conclusions

	Code for the TT-in-TT case study
	Code and output of system comparisons
	Index
	List of definitions, notations and problems
	List of postulates
	List of theorems, propositions, lemmas and remarks
	List of examples
	List of algorithms
	List of figures
	List of code listings
	List of tables

	Bibliography

