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Abstract

The microresonator comb (microcomb) is a laser source which generates
equally spaced coherent lines in the spectral domain. Having a miniature
footprint and the potential of being low cost, it has attracted attention in
multiple applications. Demonstrations have included high-speed optical
communications, light detection and ranging, calibrating spectrographs
for exoplanet detection and optical clocks. These experiments relied on
the generation of dissipative Kerr solitons (DKS) which circulate in the
microresonator. The development of such waveforms is paramount for
further advancement of the micrcomb.

This thesis studies the dynamics of DKS in microresonators aim-
ing at developing a low-cost, reliable and high-performing microcomb
source. The investigation will cover both dark and bright DKS’s, which
are found respectively in normal and anomalous dispersion microres-
onators. The dark DKS will be in center focus since it can provide
a relatively high comb power compared to other waveforms. The per-
formance of microcombs in terms of line power is numerically explored
for telecommunication purposes. The initiation of dark DKS from lin-
early coupled microcavities is investigated, showing efficient, low-power
generation from silicon nitride microresonators that are reproducible in
fabrication. These studies could facilitate reliable, low-powered, energy-
efficient microcombs.

Keywords: nonlinear optics, four-wave mixing, dissipative solitons, mi-
croresonators, optical frequency combs
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Chapter 1

Introduction

In 2005, John L. Hall and Theodore W. Hänsch shared half of the Nobel
prize in physics for their contributions to precision spectroscopy [1, 2].
Their work in the late 90s and early 2000s would lead to dramatic im-
provements to atomic clocks [3,4], but a key element to their success was
the development of an optical frequency comb (OFC).

In contrast to the continuous wave (CW) laser, which outputs light
at a single discrete frequency, an OFC is a laser source that outputs
a series of equally spaced lines in the frequency domain [5]. A critical
feature of these comb lines is that they are phase-locked to each other.
As such, they typically correspond to a train of optical pulses in the time
domain, with a repetition rate (frep) equal to the comb line separation.
The absolute optical frequency of each comb line (fn) is represented by
fn = nfrep+fceo, where fceo stands for carrier-envelope offset frequency,
caused by a constant phase slippage between consecutive pulses. Thus,
the absolute frequency of each comb line can be determined if both frep
and fceo are known.

While frep is usually easily measured as a radio frequency (RF) beat-
note between comb lines, measuring fceo comprises a massive challenge,
which was one of the main achievement of the Nobel awarded OFC. It
required an octave-spanning comb spectrum, accomplished by broaden-
ing a mode-locked laser (MLL) via the Kerr effect in a highly nonlinear
fiber (HNLF). By implementing a self-referencing technique, the fceo of
the octave-spanning comb was made available as an RF beatnote [6] such
that the absolute frequency of each comb line could be determined and
stabilized with remarkable precision. Utilizing the comb lines as a series
of optical references, this enabled the determination of optical frequencies
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Chapter 1. Introduction

with orders of magnitude higher precision and lower hardware complex-
ity compared to previous technologies, facilitating the development of
optical clocks [7].

The research field of OFCs has since expanded at an incredible rate.
OFCs are now studied within multiple application domains, e.g. as an
astrocomb [8], where a spectrograph calibrated with an OFC captures
the Doppler shift of stars for exoplanet detection; for dual-comb spec-
troscopy [9], a technique useful both for spectroscopy and light detec-
tion and ranging (LIDAR) where two OFC combs are used to map an
optical spectrum onto a narrower RF spectrum; in RF photonics [10],
e.g. to generate low noise microwave signals; and in optical telecommu-
nications [11], replacing multiple CW lasers for carrier generation and
enabling other enhancements in terms of spectral efficiency and signal
processing. Note that the need for self-referencing, and the optimal comb
characteristics in general, varies on a case by case basis. For example,
atomic clocks require self-referencing with high stability and an octave-
spanning spectrum [6]. In contrast, optical telecommunications require
a relatively narrow and flat spectrum with high line power compared
to the surrounding optical noise power (i.e. high optical signal to noise
ratio) [12].

Different sources can be employed as an OFC. One is the MLL, which
generates synchronized optical pulses by periodically introducing absorp-
tion to a laser cavity, where the line spacing of the generated OFC is de-
fined by the length of the laser cavity [13]. Having existed since the early
60’s [14], the MLL is a well established and commercially available OFC
source. The electro-optic comb (EOC) is another OFC source, which
is easily assembled using commercially available components primarily
developed for telecommunications. It is generated by modulating a CW
laser with an RF tone via electro-optic modulation (EOM), typically us-
ing a cascade of phase and intensity modulators [15]. It is flexible in
terms of tunability since the center frequency can be changed by tuning
the wavelength of the laser and the line spacing can be changed by tun-
ing the frequency of the RF tone. The spectrum can be broadened to
an octave in a highly nonlinear fiber, but an excess of phase noise orig-
inating in the RF clock is often an obstacle to self-referencing. Recent
experiments have overcome this obstacle by filtering the lines of the EOC
in an optical cavity, achieving self-referencing at a stability comparable
to the MLL [16,17].

With the MLL and the EOC readily available as table-top solutions,
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an increasing effort has been spent on realizing chip-scale OFCs. Such de-
vices promise a dramatic reduction in size with co-integration of other op-
tical components at a potential low cost, e.g. using fabrication methods
compatible with complementary metal–oxide–semiconductor (CMOS)
processes [18]. Miniaturization opens new opportunities, especially in
settings outside of the laboratory. While progress has been made in
making chip-scale MLLs [19] and EOCs [20], another prominent candi-
date is the microresonator frequency comb (microcomb) [21,22].

First demonstrated in the mid 2000s [23], the microcomb is generated
in a microresonator by employing the Kerr effect to convert input power
from a CW laser to other comb lines [24]. The generated lines are con-
fined to the resonances of the cavity, where four-wave mixing (FWM)
allows energy transfer to evenly spaced and coherent comb lines. A
thorough investigation of the nonlinear microcavity physics has led to
the realization of coherent microcombs exhibiting several distinct intra-
cavity waveforms in the form of dissipative Kerr solitons (DKS). Among
those are the heavily researched bright DKS [25] and soliton crystals [26],
both found in anomalous dispersion cavities, but also the less known dark
DKS (sometimes called mode-locked dark pulse), found in normal dis-
persion cavities [27]. Such waveforms have been used for microcomb
demonstrations in applications [21], ranging from optical clocks [28] to
optical telecommunication [29,30].

Further studies into the dynamics of the DKS have led to promising
designs towards reliable comb generation [31–33]. Microcombs using
less than a milliwatt of CW laser power have been demonstrated [34].
Such low power operation is in the domain of integrated lasers, which
enables further miniaturization of the comb source [35,36]. Promising as
these experiments were, the microcomb still requires more development
to be established as a competing OFC solution. One persisting challenge
is limited conversion efficiency, i.e. the portion of input optical CW
power converted to comb lines at other frequencies. Having low power
conversion efficiency translates into lower wall-plug energy efficiency and
low optical signal to noise ratio. This is especially true for the bright
DKS, where the conversion efficiency is fundamentally limited [37]. The
DKS’s generated in the normal dispersion regime offers much higher
conversion efficiency but at the cost of a more uneven spectrum [38].
A further study into the dynamics and designs of these waveforms is
essential for the realization of reliable, energy-efficient microcombs.
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Chapter 1. Introduction

1.1 This thesis

This thesis focuses on the dynamics of microresonator frequency combs
with the overall goal of realizing reliable designs with high conversion
efficiency and flat spectral distribution of power. These characteristics
are especially appealing to optical telecommunications. Thus, more em-
phasis will be put on dark DKS since they offer much higher conversion
efficiency compared to the bright DKS.

In Paper A, single-mode microresonators are studied, where both
bright and dark DKS are numerically simulated over a large parameter
space in order to discover optimized designs for optical telecommunica-
tion applications.

Paper B features a careful experimental and numerical investigation
of the initiation process of dark DKS’s from a CW laser in a single
microcavity containing two linearly coupled transverse modes.

In Paper C, microcombs are experimentally demonstrated from two
linearly coupled normal-dispersion microresonators. Numerical simula-
tions show that these microcombs exhibit temporal waveform with char-
acteristics similar to a dark DKS. The existence regime of these mi-
crocombs is found considerably larger compared to dark DKS from a
single-mode cavity operation.

1.1.1 Thesis outline

This thesis is organized as follows: Chapter 2 serves as a brief introduc-
tion to the soliton dynamics of nonlinear waveguides. Chapter 3 discusses
the cold cavity dynamics of microresonators, both for single microcavities
and linearly coupled cavities. In Chapter 4, the microcomb generation
and soliton dynamics in microcavities are described. Finally, Chapter 5
is the future outlook.
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Chapter 2

Dynamics in nonlinear
waveguides

An essential part of microcomb generation is the circulation of light
through a nonlinear waveguide. This propagation is ruled by the Kerr
effect and dispersion, similar to the optical fiber, which can be modeled
with the nonlinear Schrödinger equation (NLSE). The NLSE predicts
the existence of solitons in optical fibers [39], and with the right modifi-
cations, it can be used to predict dissipative solitons in microresonators.
In the next section, the NLSE will be briefly introduced. It is then em-
ployed in the second section to describe the basic dynamics of solitons
with particular focus on dissipative solitons.

2.1 The nonlinear Schrödinger equation

An optical field propagating in a waveguide is governed by Maxwell’s
equations. Propagating in the z-direction, the field is described by
its transverse modes. For all work in this thesis we can ignore the z-
component of the electric field and consider a single polarization. The
NLSE is an approximation of the evolution of a slowly varying electric
field envelope (A) in a single transverse mode as it propagates in a single
direction through a waveguide featuring the Kerr effect. It presents the
characteristics of the transverse modes as constants (e.g. loss, disper-
sion, nonlinearity) that modify the electric field envelope as a scalar as
it moves in the z-direction. Details about the derivation can be found in
the literature [40]. The NLSE is given by
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Chapter 2. Dynamics in nonlinear waveguides

∂A

∂z
= iγ|A|2A− α

2
A− β1

∂A

∂t
− iβ2

2

∂2A

∂t2
+
iβ3

6

∂3A

∂t3
, (2.1)

where α is the propagation loss for each unit of length, β1 is the in-
verted group velocity, and β3 is the third-order dispersion (TOD). The
group velocity dispersion (GVD) is described by β2, where anomalous
dispersion (β < 0) signifies that higher frequencies go faster than lower
frequencies, while normal dispersion (β > 0) signifies the opposite. The
Kerr effect is depicted by the nonlinear coefficient, γ, which can man-
ifest in several nonlinear effects, such as self-phase modulation (SPM),
cross-phase modulation (XPM), and four-wave mixing (FWM). Here, the
electric field envelope is normalized such that |A|2 = P , where P is the
optical power. The normalized electric field can be found as

E(z, t) = A(z, t)ei(β0z−ω0t) (2.2)

where β0 is the wavenumber.
Because of the nonlinear term, the NLSE is not easy to analytically

integrate. However, it is relatively simple to simulate. The simulations in
this work will be based on either the split-step method [40] or the Runge-
Kutta method in the interaction picture [41], but both methods simulate
propagation by taking small enough steps such that the nonlinear and
linear portion of the NLSE can be applied separately. For simplification,
the β1 is often removed from the equation by assuming a reference frame
moving at the speed of group velocity.

2.2 Introduction to soliton dynamics

Solitons were first discovered as translational waves in a water canal
by J.S. Russell in the early 1800s [42]. It is defined as a wave that
travels through time and space at a constant velocity while maintaining
its shape [43]. They are found in energy conservative systems, arising as
a balance between dispersive elements and nonlinearities.

Found in multiple domains of physics, solitons were first described in
optical fibers in 1973 [44], with bright solitons appearing in the anoma-
lous dispersion regime and dark solitons in the normal dispersion regime.
Examples of a split-step simulation in an optical fiber only featuring the
Kerr nonlinearity and GVD are displayed in Figure. 2.1, initiating the
solitons from mathematical closed-form expression [40]. These propagate
unchanged because of a balance between the GVD and SPM. The source
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2.2. Introduction to soliton dynamics

Figure 2.1: The plot in a (b) shows the temporal feature of single bright
(two dark) soliton after 100 km lossless propagation in an optical fiber, i.e.
the pulse is only affected by the Kerr effect and GVD (γ = 0.002 (Wm)−1,
β2 = ±20ps2/km). The corresponding spectrum is shown in c and d for bright
and dark solitons respectively. The simulations showed that these waveforms
would propagate without change to temporal and spectral power profiles. Note
that the bright soliton features a constant phase, while the dark solitons exhibit
a π phase shift. Two dark solitons are simulated to avoid simulation artifacts.

of this balance is that the self-phase modulation generates a positive
chirp in a negative slope of the intensity distributed pulse and a nega-
tive chirp in the positive slope of a pulse. For the bright soliton, this
means that lower frequencies will appear on the leading edge, but the
anomalous GVD corrects this chirp since the higher frequencies move
faster. A similar story can be told about the dark soliton, only with
higher frequencies appearing on the trailing edge.

In a lossless fiber, a soliton can propagate indefinitely. It was for this
reason that much effort was spent on using solitons for carrying data in
fiber optical communications [39]. However, losses of the fiber become
significant at longer distances, causing the soliton to become wider and
shrink in amplitude [45]. Systems involving various gain elements were
often deployed such that the average system would be effectively lossless

7



Chapter 2. Dynamics in nonlinear waveguides

while maintaining similar soliton dynamics. However, many amplified
systems can support soliton-like dynamics that are distinctly different
from the fiber soliton. These are dissipative solitons, discussed in the
next section.

2.3 Dissipative solitons

Much like solitons found in conservative systems, dissipative solitons
(DS) rely on a balance between nonlinearity and dispersion. The main
difference is that the DS thrive in systems with continuous energy ex-
change, where the DS existence also depends on the balance between
gain and loss [46]. They are found in a wide range of optical systems,
one of which is the Mode-locked laser (MLL).

The DS generated in an MLL generally appears as a balance between
the GVD, Kerr nonlinearity, amplification and cavity losses. The MLL
features amplification in a resonant cavity, often with other added ele-
ments such as spectral filters, saturable absorbers and a Kerr medium.
As such, a wide range of MLL configurations is possible, enabling a vari-
ety of DS dynamics [47]. Not only does this include bright and dark DS
waveforms that are similar to the fiber solitons [48,49], but also different
shapes such as flat-top pulses and composite pulses [50–52].

Optical resonant cavities can also maintain a DS when excited by a
laser [53], e.g. DS’s in microresonators. The gain of a microcomb DS
is usually supplied via parametric amplification of a CW input pump
over a broad spectrum which compensates for the losses [21]. This em-
ployment of the Kerr effect to supply gain is perhaps the reason why
these waveforms have become known as dissipative Kerr solitons (DKS).
As such, the power of the center wavelength needs to be kept at a high
enough level so that it can maintain the DKS.

The dynamics of DKS are not only captured by microresonators. An
MLL cavity can support a DKS through saturated amplification of the
center wavelength of the DKS. Figure 2.1a shows the layout of a simple
cavity with such an amplifier, where the gain profile does not reach other
resonant modes of the cavities. A simulation was conducted by solving
equation 2.1 (β2 = ±200 ps2/km, γ = 0.002(Wm)−1, α = 0.9 km−1)
for a full roundtrip of propagation (L = 20 cm). In each roundtrip, a
portion of power was coupled from the cavity (θ = 0.002) and the ampli-

fier would amplify according to A′(f0) = A(f0)e
Psat

αL+θ

Psat+|A(f0)|2 . Figures
2.1b-d show the generation of a dark DKS in the normal dispersion re-

8



2.3. Dissipative solitons

gion, with Psat = 7.4W , initiating from two dark solitons similar to figure
2.1b. Figures 2.1e-g. The bright DKS is displayed, with Psat = 1.5 W ,
and initiating from a bright soliton similar to figure 2.1a. For the soliton
to stabilize, a constant delay of 0.0017 radians to the center wavelength
was needed every roundtrip. The resulting waveforms are distinctly dif-
ferent from the fiber solitons in Figure. 2.1, both in phase and amplitude.
This is particularly noticeable in the normal dispersion regime, which ex-
hibits a single dark DKS without the π phase shift characteristic to dark
solitons in fibers. This goes to show that the dynamics of DKS cannot
be accurately depicted by the physics of typical fiber solitons.

9



Chapter 2. Dynamics in nonlinear waveguides

Figure 2.2: a) shows a layout of a laser cavity which can be used to generate
a DKS. b) shows the evolution of a dark DKS from initiation, c) shows the
temporal features and d) shows the spectrum. e) shows the evolution of a
bright DKS from initiation, f) shows the temporal features and g) shows the
spectrum.

10



Chapter 3

Cold cavity dynamics of
microresonators

Microresonators are optical cavities that typically have a sub-millimeter
footprint. Like most other resonators, their operation is based on con-
structive interference, allowing them to store energy for wavelengths of
light that are an integer multiple of the cavity length. Thus, light at these
selected wavelengths is allowed to couple into the microcavity where it
builds up in power, while other wavelengths are rejected. As such they
are found in multiple applications, such as dynamic filters and laser cav-
ities [54,55].

The main aim of this chapter is to introduce the dynamics and char-
acteristics of microresonators when nonlinearities are negligible, aiming
at cavities that enable microcomb generation. While this study focuses
on integrated microring resonators in silicon nitride, it will in most cases
apply to optical resonators in general. The next section will cover the
dynamics of one microring supporting a single transverse mode, i.e. the
dynamics that enable the DKS’s in Paper A. The second section will in-
troduce linearly-coupled transverse modes, which involve the dynamics
that enabled DKS generation in Paper B. The third section discusses the
dynamics of linearly coupled rings, which were employed for generating
DKS in Paper C.
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Chapter 3. Cold cavity dynamics of microresonators

Figure 3.1: A basic layout of the microring resonator: A bus waveguide
coupled to a ring waveguide.

3.1 The linear frequency response of a single-
mode microresonator

A typical microring resonator features a bus waveguide and a ring waveg-
uide placed in close proximity (see Figure 3.1). The distance is short
enough such that the edges of the mode profiles in both waveguides over-
lap, such that one mode induces a weak perturbation to the other. This
leads to periodic exchange of power between the two waveguides [56].
Assuming weak coupling over a short distance of interaction, the cou-
pling is approximated to occur in a single point [57] using the following
coupling matrix: [

Eout
E2

]
=

[
r it
it r

] [
Ein
E1

]
, (3.1)

where t and r represent the coupling coefficients between the electric
fields as depicted in figure 3.1. The coupler is assumed to be lossless,
such that 1 = r2 + t2. In addition, the propagation over a full roundtrip
in the ring (when nonlinearity is neglected) is described by

∂E

∂z
= −α

2
E + iβ(∆ω)E (3.2)

where α is the propagation loss, β(∆ω) = β0 + β1∆ω+ β2/2(∆ω)2 + · · ·
is the frequency dependent propagation constant expanded around the

12



3.1. The linear frequency response of a single-mode microresonator

center frequency ω0, ω is the angular frequency and ∆ω = ω − ω0. This
equation can be solved as

E1 = E2e
(−α/2+iβ(∆ω))L, (3.3)

where L is the roundtrip length of the ring.
The system of equations formed by equation 3.1 and equation 3.3

describes the linear response of the microring. Using these equations,
the power transmission can be derived as [58,59]

T (∆ω) =
|Eout(∆ω)|2

|Ein(∆ω)|2
=

a2 − 2ra cos(β(∆ω)L) + r2

1− 2ra cos(β(∆ω)L) + (ra)2
. (3.4)

This equation is especially useful for the characterization of microres-
onator devices since such transmission is easily measured by scanning
the frequency of an input laser while recording the output power in a
photodiode. It describes the appearance of resonances separated by the
FSR which has a frequency dependence in the presence of the GVD and
higher-order dispersion. The locations of the resonance center is de-
scribed by β(∆ω)L = 2πµ, where µ is the longitudinal mode number
(see figure 3.2a-b). Thus, the resonances appearing in a transmission
scan can be used to determine the dispersion profile of the resonator
waveguide (see figure 3.2c).

Not only are the resonances defined by the dispersion profile, but
they are also influenced by the cavity losses, i.e. both intrinsic losses
(a) and coupling losses (r). The impact of the losses is seen in the
full width at half maximum (ωFWHM ) and depth (described by R) of
the resonance (see figure 3.2 c). For the purpose of analysing these
characteristics, it is useful to approximate the cosine term of equation
3.4 with cos(x) ≈ 1 − x2/2, which holds fairly well when cavity losses
are low. The result is a Lorentzian shaped function

T =
(βL)2 +R(Γ/2)2

(βL)2 + (Γ/2)2
, (3.5)

R =
(r − a)2

(1− ra)2
, Γ = 2

(1− ra)√
ra

=
ωFWHMωFSR

2π
. (3.6)

With prior knowledge of the FSR, finding the FWHM and resonance
depth of a resonance is enough to determine the values of the intrinsic and
extrinsic loss parameters, a and r. Note however that a and r are tangled
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Chapter 3. Cold cavity dynamics of microresonators

Figure 3.2: a) shows a microring transmission spectrum according to equa-
tion 3.4, using parameters a = 0.99, r = 0.968, β0 = 0, β1 = 6.67 ps/km,
β2 = 100000 ps2/km and L = 1.5 mm. The GVD causes the FSR to change
with frequency, which means that the mode numbers are not appearing at
equally spaced frequencies. The GVD is rather exaggerated such that this
uneven separation becomes noticeable. b) shows the variation in propagation
constant with frequency, with effects of β1 subtracted. It shows clearly the
positive parabolic curve caused by the normal GVD term, but this curve be-
comes negative when anomalous dispersion is considered. The red markings
corresponding to the location of the resonances. c) shows a closer look at one
of the resonances, displaying FWHM and resonance depth.

in the equations, such that it is not possible to tell if the resonance is
undercoupled (r > a) or overcoupled (r < a). This could be determined
from the phase profile of the resonance, for which a coherent detection
is required [58]. In practice, when there is a large difference between a
and r, this can be determined from prior knowledge of the design. The
latter approach was used when characterizing the microrings in Paper B
and C.

The losses of resonator cavities are commonly represented by the
quality factor (Q), which describes the number of optical cycles experi-
enced by an optical field in the resonator cavity before the intrinsic and
extrinsic losses reduce its energy by a factor 1/e. It relates to a resonance
shape through

Q =
ω0

ωFWHM
≈ ω0ngL

√
ra

π(1− ra)c0
, (3.7)
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3.2. Dynamics of linearly coupled transverse modes

which makes it easily definable from a resonance profile. The quality
factor is often described as a combination between the extrinsic and in-
trinsic quality factors (Qi and Qe). Assuming low intrinsic and extrinsic
losses, these can be approximated as

Q−1 ≈ Q−1
i + Q−1

e , (3.8)

Qi ≈
ω0ngL

√
a

π(1− a)c0
, Qe ≈

ω0ngL
√
r

π(1− r)c0
. (3.9)

The quality factor carries much significance when it comes to build up of
power in the microcavity. Such buildup of power is essential for micro-
combs, since they operate through the Kerr effect. The power buildup
factor at center of resonance can be found as [59]

|E1(∆ω)|2

|Ein(∆ω)|2
=

(1− r2)a2

(1− ra)2
∝ aQ2

r
. (3.10)

Assuming that both intrinsic and extrinsic losses are low (r, a ≈ 1), the
buildup of power in the cavity rises quadratically with the quality factor.
Since the coupling rate can be managed in design, realizing microcomb
operation at low power levels will ultimately be limited by the intrin-
sic losses. For silicon nitride microresonators, these intrinsic losses are
usually dominated by scattering due sidewall roughness of the waveg-
uides [60]. Reducing the impact of these losses [61] was an essential part
of realizing the low-power microcombs in Paper C.

3.2 Dynamics of linearly coupled transverse
modes

The analysis in the previous section was based on propagation in a sin-
gle transverse mode in the microresonator. For microcomb generation,
much focus is put on realizing waveguide dimensions with favorable Kerr
coefficient and GVD, often leading to larger waveguides supporting more
than one mode. While these transverse modes are orthogonal in theory,
they will often exhibit perturbations due to sidewall roughness, lead-
ing to linear coupling (κ) between two transverse modes [62–64]. These
effects are unwanted in general as they can prohibit or deform DKS gen-
eration [65]. However, such perturbations can be of benefit in normal
GVD waveguides, as they can enable the generation of a dark DKS from
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Chapter 3. Cold cavity dynamics of microresonators

Figure 3.3: a) shows the dispersion profile of two linearly coupled modes,
where b) provides a zoom-in on the y-axis. The supermodes (β+ and β−) and
the uncoupled modes (β(1) and β(2)) are marked in the figure. The parameters
used were β(1)

0 = β
(2)
0 = 0, β(2)

1 = 1.04 · β(1)
1 = 6.8 ns/m, β(2)

2 = β
(1)
2 =

4000 ps2/km and κ = 50m−1.

a CW laser [27]. In fact, such a coupling was essential for the generation
of the dark DKS in paper B. This section provides a brief introduction
into the dynamics of such mode-coupling.

Let us consider a weak linear coupling between two co-propagating
transverse modes, which can be modeled by [56,66]

∂E1

∂z
= iζ1E1 + iκE2,

∂E2

∂z
= iκE1 + iζ2E2, (3.11)

where κ is the coupling coefficient between modes 1 and 2 and ζn =
iαn/2+β(n) is the complex propagation constant of mode n. Modes 1 and
2 are considered to be a fundamental mode and higher order transverse
mode, respectively. The coupling breaks the orthogonality between the
modes, allowing them to exchange power in a periodic manner. However,
a new basis can be found for the perturbed system with orthogonal
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3.2. Dynamics of linearly coupled transverse modes

Figure 3.4: a) shows the coupled-mode dispersion profile from figure 3.3,
but the figures below will have the same β(1), β(2) and κ values. b) shows a
resonance profile of mode 1 with κ = 0. c) is a resonance transmission with
power coupled from the bus waveguide into both modes (θ1 = 0.02, θ2 = 0.04)
and with κ = 50m−1. The shaded lines connect the resonances to the dispersion
profile in a), indicating to which mode they belong. The resonances of the two
modes are shown to shift across one another due to the difference in group
velocity. d) shows a zoom-in to the center of the same resonance transmission.
In contrast to the uncoupled resonance in b), the mode-coupling causes the
resonances to shift off center. Finally, e) and f) show a similar response as c)
and d), with θ2 = 0. The effect is that the resonances corresponding to mode
2 (seen in a) as the diagonal uncoupled mode) will disappear.

modes, called supermodes [67]. These supermodes can be written as a
superposition of the orthogonal modes of the unperturbed system. The
propagation constant of the supermodes can be derived from 3.11 as [56]

ζ± =
ζ1 + ζ2

2
±

√(
ζ1 − ζ2

2

)2

+ |κ|2 (3.12)
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Chapter 3. Cold cavity dynamics of microresonators

with an example displayed in figure 3.3a. The losses will have negligible
impact and are thus not included in the example, hence ζ is replaced by
β. The figure shows the dispersion profile of the modes 1 and 2, with
and without linear coupling. The coupling induces a change in the dis-
persion profile, but it is only significant when the difference between the
two propagation constants (|β(1) − β(2)|) is not significantly larger than
the coupling rate (κ). The maximal separation between supermodes and
uncoupled modes is reached at the mode crossing, where β(1) = β(2).
Note that even though the uncoupled modes 1 and 2 cross, the super-
modes avoid each other at the crossing. It is therefore often referred to
as an avoided mode-crossing. Figure 3.3b depicts the enlarged profile.
Here, both uncoupled modes 1 and 2 have normal GVD, which can be
seen in the upwards curving parabolic shape of mode 1. This parabolic
curve is heavily modified in the presence of mode-coupling, exhibiting a
downward curve for β− which can be interpreted as localized anomalous
dispersion. This feature is important as it can enable modulational in-
stability, a process that allows the initiation of dark DKS from a CW
input. This was in fact the key element that enabled the dark DKS
generation in normal-dispersion linearly-coupled transverse modes from
a CW laser in Paper B.

Let us consider a microresonator with the same layout as 3.1, but sup-
porting two transverse modes: mode 1, which is the fundamental mode;
and mode 2, which is a higher-order transverse mode. The transmis-
sion spectrum of a microcavity featuring the coupled modes will display
resonances which can be used to characterize the cavity. However, the
location of these resonances will not be defined by the uncoupled modes,
but rather the supermodes as β+L = 2πn and β−L = 2πm, where n and
m are integer numbers.

The response can be modeled using a system combining equation 3.11
with a coupling matrix describing a directional coupler between the bus
waveguide and the two modes of the microcavity, with the model detailed
in Paper B. Here, this system is numerically solved to display a transmis-
sion spectrum of the microcavity in figure 3.4. The dispersion parameters
and coupling are the same as in figure 3.3, with α1 = α2 = 9.2m−1 and
the power coupling ratio to mode 1 and 2 is θ1 = 0.02 and θ2 = 0.04.
The resulting transmission spectrum is displayed in figure 3.4 c-d. It
shows resonances whose locations are described by the dispersion pro-
file in figure 3.3. Far away from the mode crossing, the resonances of
the transverse modes are not impacted by the mode coupling. These
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3.3. Linearly coupled microrings

Figure 3.5: A basic layout of two linearly coupled microrings

can be used to characterize the transverse modes separately using the
single-mode model from section 3.1 to retrieve the dispersion and losses.
The coupling coefficient can then be derived by a measured fitting of
the resonances near the avoided mode crossing with equation 3.11. Al-
ternatively, in the special case when β(1) = β(2) as is the case for the
resonances displayed in figure 3.4 d, the resonance difference (∆ωr) can
be used to determine the coupling coefficient (κ ≈ π∆ωr(β

(1) +β(2))/2).
Another interesting case is presented in figure 3.4e-f, where the cou-

pling between bus waveguide and mode 2 has been turned off (θ2 = 0).
In this case, the resonances of mode 2 only appear when coupled with
the resonances of mode 1. An intuitive explanation is that with θ2 = 0,
mode 2 is reliant on mode 1 to supply power. Therefore, in the places
that mode 1 is not resonant, no power can be coupled to mode 2. The
FSR of mode 2 can be determined from this profile, but the absence
of resonances beyond the mode-crossing makes the GVD and intrinsic
losses hard to determine.
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Chapter 3. Cold cavity dynamics of microresonators

3.3 Linearly coupled microrings

The coupled transverse modes, discussed in the previous section, exhibit
a modified dispersion near the mode crossing which can be used for
generating dark DKS. However, their main drawback is that the coupling
coefficient is hard to control in fabrication since it is enabled by parasitic
effects such as sidewall roughness. Furthermore, the resonance locations
of the two transverse modes cannot be tuned separately, due to the fact
that the two modes occupy the same physical space. Controlling these
two aspects is critical for achieving dark DKS reliably.

An alternative approach is to move transverse mode 2 into a second
cavity placed in close proximity to the first cavity such that they become
linearly coupled, i.e. using a single transverse mode in each ring. Thus
the coupling coefficient between modes can be easily controlled in design
by controlling the distance between rings.

Another key benefit of the two ring approach is that the resonance
locations of the two modes can be tuned separately [68], tuning the
location of the avoided mode crossing. Such tuning can be achieved
by heating one of the rings, which causes an increase in the refractive
index, shifting the resonances [69, 70]. This was demonstrated in Paper
C, enabling dark DKS generation in multiple resonances.

The coupling regimes of the two coupled rings can be approximated
with matrices: [

Eout
E2

]
=

[
r1 it1
it1 r1

] [
Ein
E1

]
, (3.13)

[
E6

E4

]
=

[
r2 it2
it2 r2

] [
E5

E3

]
, (3.14)

where the input and output fields are depicted in figure 3.5. Note that
one of the main differences from the transverse mode model is that there
is no coupling from bus waveguide to mode 2 (i.e. the mode in ring
2). An important consequence is that the resonances of ring 2 will only
appear when in the vicinity of ring 1 resonance, as was displayed in figure
3.4e. This mean that the characterization of ring 2 will essentially be
limited to only the FSR.

It should be noted that the transverse modes of the rings are in
practice made identical, achieving a difference of 2 − 5% in FSR by
designing the rings with different lengths. However, when modeling these
rings in this thesis, the FSR difference will be achieved by changing the
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3.3. Linearly coupled microrings

group index, assuming ring 2 has the same length as ring 1. This is
a rather crude approximation, but sufficiently accurate considering the
limitations to the characterization of ring 2.

The propagation in the microrings is derived in a manner similar to
equation 3.3.

∂En
∂z

= −αn
2
En + iβ(n)(∆ω)En, (3.15)

where n stands for the mode in ring n. Using a procedure similar to [71],
the transmission can be derived as

T =
Eout
Ein

=
r1 −Ka1e

iβ(1)L

1−Kr1a1eiβ
(1)L

, (3.16)

K =
r2 − a2e

iβ(2)L

1− r2a2eiβ
(2)L

, (3.17)

where an = e−αnL/2. This model was used with the same parameters as
presented in figure 3.4e, with the same overall coupling between modes
per roundtrip (t2 = κL = 0.075). The resulting transmission spectrum
is virtually identical to figure 3.4e. This can be understood by applying
the mean-field approximation, which is valid when the intracavity fields
do not change significantly over a roundtrip. This assumes that coupling
rate between modes can be evenly distributed over a roundtrip, but this
modifies equation 3.15 into

∂E1

∂z
= −α1

2
E1 + iβ(1)(∆ω)E1 + iκ′E2,

∂E2

∂z
= −α2

2
E2 + iβ(2)(∆ω)E2 + iκ′E1, (3.18)

where κ′ = t2
L . Thus, this equation becomes identical to the equation

3.11. The two coupled rings can therefore be accurately modelled and
characterized using same methods as described for the coupled transverse
modes.
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Chapter 4

Soliton generation in
microresonators

A nonlinear microresonator cavity has the ability to maintain a dissipa-
tive Kerr soliton (DKS). The process relies on the parametric conversion
of a CW-pump field to neighboring frequency components. This chap-
ter serves as a brief introduction to DKS’s and the nonlinear effects in
microresonators. The first section covers nonlinear dynamics in a single
cavity. The second section covers DKS generation in anomalous dis-
persion microresonators. The third section discusses DKS generation in
normal dispersive waveguides, both considering single-mode operation
and linearly-coupled modes.

4.1 Nonlinear dynamics in a single cavity

The modeling of the nonlinear operation in a single-mode microres-
onator can be described in two parts: A nonlinear propagation over a
full roundtrip and a coupling regime exchanging optical power between
bus waveguide and ring. This system of equations is known for forming
the Ikeda map [72]. These equations include a modified NLSE and the
coupling matrix from equation 3.1[

Aout
A2

]
=

[
r it
it r

] [
Ain
A1

]
, (4.1)

∂A

∂z
= iγ|A|2A− α

2
A+ iβ0A−

iβ2

2

∂2A

∂t2
+
iβ3

6

∂3A

∂t3
. (4.2)
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Chapter 4. Soliton generation in microresonators

Figure 4.1: A basic layout of the microring resonator: a bus waveguide cou-
pled to a ring waveguide.

Note that the term, β0, signifies the phase shift per unit length of the
input field (Ain) compared to the resonance of the cavity. It is often
expressed in terms of the detuning δ0 = −β0L, which accounts for the
accumulated phase shift of the pump compared to nearest resonance.
The coupling between bus waveguide and ring is often presented in terms
of power as θ = t2.

Defining the internal field (A) in a time window, spanning the du-
ration of a cavity roundtrip, a full roundtrip of the intracavity field can
be easily simulated. This is done by first applying the coupling equa-
tion and then simulating propagation through the full length of the ring
by solving equation 4.2 with the split-step method. Realistically, such
a field will include noise due to the quantized nature of light, which is
included in the simulation by adding a photon with a random phase into
each spectral bin onto the laser [73,74].

4.1.1 The Lugiato-Lefever equation

The Ikeda map can be approximated as a single equation, which is some-
times called the Lugiato-Lefever equation (LLE). It is named after the
authors who first derived it to describe the optical spatial field in a non-
linear cavity [75], but it was later shown that it also applies for temporal
fields [76].

To derive the LLE the intracavity field is assumed not to change
significantly over the span of a single roundtrip. As such, the nonlinear
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4.1. Nonlinear dynamics in a single cavity

Figure 4.2: Solutions for the intracavity power assuming CW steady-state,
with blue and red show the contrast between linear and nonlinear regime. The
parameters were set as Pin = 20mW , σ = 0.0024 and L = 1.5mm.

propagation through the length of the cavity (L) can be approximated
by

A
(n)
1 = A

(n−1)
2 + L

∂A
(n)
1

∂z
, (4.3)

where n presents the number of roundtrips. The coupling regime gives

A
(n−1)
2 = A

(n−1)
1 (1− θ) +

√
θAin, (4.4)

where, assuming that the coupling rate is low, the approximation√
1− θ ≈ 1 − θ/2 has been applied. Combining equations 4.3 and 4.4,

and substituting 4.2 leads to the LLE equation:

∂A

∂τ
=
A

(n)
1 −A(n−1)

1

tR
=

1

tR
(−σ − iδ0 − L

iβ2
2

∂2

∂t2
+ L

iβ3
6

∂3

∂t3
+ iLγ|A|2)A+ i

√
θAin,

(4.5)
where σ = θ+αL

2 and tR is the roundtrip time, and τ is the slow time.
This equation has been widely used to investigate the dynamics of non-
linear cavities, such as bistability [76, 77], existence regimes of wave-
forms [77–79], modulational instability [73,80] and impact of parameters
on spectral features [37,81].

4.1.2 Bistability

The LLE can be used to describe a CW intracavity field of the cavity
in presence of the nonlinear phase shift [76]. Assuming steady-state, the
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Chapter 4. Soliton generation in microresonators

Figure 4.3: a) shows the temporal features of Turing rolls, with b) showing the
corresponding spectrum. Parameters were set as θ = 0.005, β2 = −100ps2/km,
L = 1.5 mm, FSR = 100 GHz, α = 0.5 m−1, γ = 1 (Wm)−1, δ0 = 0, Pin =
10mW .

LLE is reduced to

i
√
θAin = (−σ − iδ0 + iγL|A|2)A. (4.6)

Multiplying each side of the equation with its conjugate results in [81]

θ|Ain|2 = (σ2 + δ2
0 + γ2L2P 2 − 2δ0γLP )P, (4.7)

where P = |A|2 is the intracavity power, which can be easily solved
numerically. Then, by taking the angle of 4.6, the angle of the intracavity
field is found as

∠A = ∠(iAin)− ∠(−σ − iδ0 + iγL|A|2). (4.8)

Using these equations, the power build-up in a resonant cavity is plotted
in figure 4.2. It shows how the resonances of the cavity become ’tilted’
in the presence of a nonlinear phase shift. This leads to three possible
solutions for the intracavity field, one of which is unstable. The area of
bistability has been closely linked with the appearance of DKS’s [78,81].
A part of the reason is that the higher branch of the bistability has
high power, enhancing the nonlinearities that generate and maintain the
DKS. As will be discussed in section 4.3, another intuitive reason is that
the DKS form as a transition between the bistable levels.
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4.1. Nonlinear dynamics in a single cavity

4.1.3 Modulational instability

The bistability analysis above only considered CW solutions. However,
in the presence of small perturbations (e.g. noise), the microcavity can
exhibit modulational instability (MI). This occurs when the CW field (P )
provides parametric amplification to other frequency components which
outweighs the cavity losses. This can lead to an oscillating temporal
field [82], commonly named Turing rolls [78, 83], which are displayed
in figure 4.3. In anomalous GVD microrings, by tuning the power or
frequency of the CW laser, the Turing rolls can change shape and turn
into bright DKS [84]. This is enabled by the fact that the existence
regimes of Turing rolls and bright DKS are linked, either directly or
through an intermediate chaotic regime [78, 85]. The presence of MI
near the existence regime of DKS is thus essential for initiation from a
CW laser.

DKS initiation in the normal GVD regime also requires Turing rolls.
However, due to the lack of phase matching in single-mode waveguides,
MI will be extremely hard to achieve. The phase-matching condition for
MI, assuming negligible higher-order dispersion, can be derived from the
LLE as [73]

β2 = 2
δ0 − 2γLP

∆ω2L
, (4.9)

where ∆ω signifies the frequency where phase matching occurs (i.e. max-
imum parametric amplification). Note that the (δ0 − 2γLP ) sets a
limitation to the sign of the GVD. MI is accessible in the anomalous
GVD regime when (δ0 < 2γLP ), which only requires δ0 = 0 to be
fulfilled. However, in the normal dispersion regime, the requirement is
(δ0 > 2γLP ), where Turing rolls can only be found using excessive pump
power and high detuning [78]. Furthermore, the existence regime of dark
DKS and Turing rolls are not linked, since dark DKS exist in the regime
where (δ0 < 2γLP ). Dark DKS are thus virtually impossible to achieve
in single-mode normal GVD microrings.

One way of achieving phase matching in normal GVD waveguides
is by modifying the dispersion profile via coupling to another mode
[27, 32, 33, 86, 87]. As discussed in section 3.2, linearly coupled trans-
verse modes or linearly coupled microcavities can effectively introduce
localized anomalous GVD in normal GVD waveguides. This was a key
factor in Paper B and Paper C, where such mode-coupling eased the
phase-matching condition, allowing a DKS to be generated from Turing
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Chapter 4. Soliton generation in microresonators

Figure 4.4: a) shows the temporal features of a bright DKS, with b)
showing the corresponding spectrum. Parameters were set as θ = 0.005,
β2 = −100ps2/km, L = 1.5mm, FSR = 100GHz, α = 0.5m−1, γ = 1(Wm)−1,
δ0 = 0.02, Pin = 20mW . The soliton was initiated using the theoretically de-
rived envelope of the bright DKS.

rolls.
Phase matching is not the only condition for MI. A second condi-

tion requires the intracavity power to rise beyond the gain threshold of
the parametric oscillations [82, 88]. This sets a threshold input power,
described by [73]

Pin,th =
1

γL

(
2σ2 + (δ0 − σ)2

)
, (4.10)

where σ = θ+αL
2 ≈ ω0ngL

πc0Q
. This sets a 1/Q2 condition for the input power

to achieve MI, underlining once again the importance of minimizing the
losses of the cavity to realize low power operation. Thus, demonstrations
of low-power operation of microcombs depend on realizing microcavities
with high quality-factors [35, 36]. Indeed, high quality-factors were one
of the key factors in Paper C to realize microcomb generated from only
2.5 mW of laser power.

4.2 Generation of DKS in anomalous dispersion
microresonators

The bright DKS was theoretically described in optical cavities as early
as the 90’s [77,89]. It is essentially a soliton-like pulse which sits on top
of a CW background defined by the lower level of the CW bistability (see
figure 4.4). The spectrum has a smooth envelope, with a line separation
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4.2. Generation of DKS in anomalous dispersion microresonators

equal to the rate at which the DKS circulates the cavity. Both the
temporal and spectral amplitudes of the bright DKS can be derived as
a hyperbolic secant from the LLE [25, 37, 81]. Such studies have shown
that the conversion efficiency (the output power of generated comb lines
divided by the input power) is fundamentally limited, which can lead to
a lack of power in the generated comb lines. This became the inspiration
for the numerical analysis of conducted in Paper A, where the conversion
efficiency and line power of bright DKS is compared to the dark DKS.

Bright DKS were first experimentally demonstrated in a nonlinear
fiber cavity in 2010 [53] and would appear in microresonators a few years
later [25]. These waveforms can be initiated using a CW laser at a
constant pump power, tuning the laser frequency into resonance from
the blue side towards the red. Figure 4.5a shows the simulated evolution
of the intracavity power as the laser detuning is changed linearly with
time. The cavity goes through a state of MI, where Turing rolls are
generated, into a chaotic state. At a certain detuning, the chaos subsides,
with multiple bright DKS’s appearing as shown in figure 4.5b. It shows
that multiple bright DKS, all having the same shape, can coexist in
the cavity. The spectrum (figure 4.5b) of these multisoliton states is
relatively uneven and therefore often undesirable. Due to the chaotic
regime, the number of generated DKS is generally not deterministic.
However, this can be overcome by involving methods where the laser
frequency is slowly shifted towards the blue side or via careful tuning of
the microring temperature [31,90].

Since its first demonstration, the bright DKS has been heavily re-
searched [21]. Multiple demonstrations have been conducted, such as
microwave generation [91], ultrafast ranging and detection [92], spectro-
gram calibration for exoplanet detection [93] and optical atomic clocks
[94].

Anomalous GVD microrings can also exhibit waveforms beyond the
bright DKS. The Soliton crystal is one example, which can be viewed as
the arrangement of multisoliton states into fixed patterns [26]. Another
example is the dispersive wave (Cherenkov radiation), which manifests
itself when the part of the spectrum has normal GVD due to third-order
dispersion. This leads the DKS developing oscillatory tails [95]. Re-
cent efforts have moved towards generating DKS in coupled anomalous
microresonators. The super-efficient soliton has been theoretically pre-
dicted in such coupled microrings [96], promising a conversion efficiency
> 90%, far exceeding that of the regular bright DKS. It is generated in an
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Chapter 4. Soliton generation in microresonators

Figure 4.5: a) shows the evolution of the temporal field in an anomalous
microring as the detuning is changed linearly with propagation time. It shows
the generation of Turing patterns at δ0 = 0, chaos at δ0 = 0.005rad and solitons
appearing after δ0 = 0.01 rad. b) shows the temporal field at δ0 = 0.02 rad,
with c) showing the corresponding spectrum. Parameters used were θ = 0.005,
β2 = −100ps2/km, L = 1.5mm, FSR = 100GHz, α = 0.5m−1, γ = 1(Wm)−1,
Pin = 20mW .

anomalous GVD microresonator which is coupled to a normal dispersion
microring. The input pump is first coupled from a bus waveguide to the
normal GVD ring, where power builds up. The enhanced power in the
normal GVD ring is then used to feed the anomalous GVD ring where the
soliton is generated. While this is a promising design for energy-efficient
microcombs, it has yet to be demonstrated.
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4.3 Generation of DKS in normal dispersion mi-
croresonators

A DKS can be maintained in normal GVD single-mode microresonators.
It is essentially a dark pulse in a CW background with oscillations in
the bottom that decay towards the middle (see figure 4.6) [27]. The CW
background and the bottom ripples are closely related to the CW steady-
steady state solution of the bistability, where the dark DKS appears to
switch between these two states. As such, it has been described as two
switching waves, which move towards each other until their oscillatory
tails lock together [97, 98]. A peculiar result of this is that the resulting
pulse can exist in different states depending on how these oscillatory
tails lock together, with each state having varying widths and a different
number of ripples at the bottom of the pulse [79]. Switching between
these states was observed in Paper B as a change in the number of
oscillations in the comb spectrum.

The spectrum of a dark DKS is distinctly different from the bright
DKS. It displays a number of ripples that are somewhat linked to the
number of ripples in the temporal field. Thus, the spectrum is much less
even compared to the bright DKS. However, the conversion efficiency
of these waveforms is usually higher than 20% [38], much higher than
their bright counterpart in anomalous GVD. This results in higher line
power, as was discussed in Paper A, making them attractive for optical
telecommunication experiments. Indeed, dark DKS’s were employed in
such experiments in Papers D and H.

It has to be noted that while the discussion has so far focused on dark
DKS in single-mode microresonators. However, such operation has not
been demonstrated in practice. The problem lies in that the dark DKS
cannot be initiated from a CW laser in a normal GVD microring due to
a lack of MI, as was discussed in section 4.1.3. Demonstrated dark DKS
have thus required perturbed GVD profile to achieve the phase matching
required for MI, i.e. by employing an avoided mode-crossing as discussed
in section 3.2 and 3.3,

The first experimental demonstrations of dark DKS were generated
by pumping a resonance in a mode-crossing enabled by two transverse
modes [27,87,99]. These have been useful in demonstrating the dynamics
of dark DKS, such as in Paper B, where it was shown that dark DKS are
generated deterministically by simply tuning a CW laser into resonance
from the blue side.
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However, as discussed in section 3.3, the coupled transverse modes
offer limited control over the linear mode-coupling strength and loca-
tion of the avoided mode-crossing. If either of these factors is not set
correctly, a DKS might not be attainable. Furthermore, if the avoided
mode-crossing is not tunable, a DKS is generally only achieved in one
resonance. This difficulty is perhaps the reason why dark DKS have not
been used as commonly in demonstrations compared to the bright DKS.

More recent efforts of dark DKS generation have featured linearly
coupled microresonators, where the avoided mode-crossing can be moved
separately via microheaters on each microring [68]. Microcombs from
such a design were first demonstrated in [27], with [33] showing later
improvements. Paper C demonstrated unequivocally a DKS in linearly
coupled microresonators.

DKS’s generated in an avoided mode-crossing can also exhibit a
significant change in shape compared to the single-mode dark DKS.
Pumped at near the center of a mode-crossing, they are typically asym-
metrical due to the asymmetric perturbation of the crossing [100]. They
can also exhibit a spectrum with no ripples, but a flat-top [32]. Such
waveforms have been found in simulations when the pump resonance is
shifted compared to other resonances, and are sometimes called plati-
cons [101].
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Figure 4.6: a) shows the temporal characteristics of a dark DKS circulating
in a single-mode normal dispersion cavity. b) shows the bistability for the same
cavity, with a vertical dashed line indicating the detuning at which the dark
DKS operates. The red lines drawn between a) and b) show that the upper
and lower power levels of the dark pulse strongly linked to the upper and lower
branch of the bistability, where the dark DKS can be considered to switch bete.
c) shows how the dark DKS is formed from an initial condition of a dark square
pulse with amplitudes and phase corresponding to the CW bistability solutions.
d) shows the spectrum that corresponds to the dark DKS. Parameters were set
as θ = 0.005, β2 = 100 ps2/km, L = 1.5 mm, FSR = 100 GHz, α = 0.5 m−1,
γ = 1 (Wm)−1, δ0 = 0.0141, Pin = 20mW .
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Chapter 5

Future outlook

In this thesis, I have studied the dynamics of dark DKS both experimen-
tally and in simulations. Here are a few things I consider interesting for
future work

• My studies in Paper C considered dark DKS generation enabled by
linearly coupled microrings. The dynamics of this system is con-
siderably more complicated than the single-mode system. Further
exploration into the dynamics of coupled rings could lead to the
discovery of new dynamics, exotic waveforms and new opportuni-
ties in the field of microcomb.

• Improving the conversion efficiency and spectral shape of micro-
combs would be of high value for several applications. Supereffi-
cient solitons have been suggested, but not realized in microcavi-
ties. Realizing such a waveform would be a breakthrough in the
field of microcombs. Another thing worth investigating is the gen-
eration of a superefficient dark DKS in a normal dispersion cavity.

• The linearly coupled microring in Paper C demonstrated impressive
performance. The next step with those rings would be to use them
in demonstrations within applications such as telecommunications
or dual-comb spectroscopy.
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Chapter 6

Summary of Papers

Paper A

Superchannel engineering of microcombs for optical communi-
cations,
Journal of the Optical Society of America B, 36, 8, 2013-2022, 2019.

Here, we conduct a numerical investigation into the performance
of both dark and bright DKS for generating frequency carriers for
fiber optical communications. We discuss the benefits of using mul-
tiple narrow microcomb sources, each constituting a superchannel,
compared to using a broad microcomb source. We discover that
the line power of bright and dark DKS follow the same scaling in
terms of input power and number of lines generated, showing that dark
DKS can offer up to 3 dB higher line power compared to the bright DKS.

My contributions: I conducted the simulations, I wrote the paper
with support from co-authors, I presented the work at CLEO 2018

Paper B

Switching dynamics of dark-pulse Kerr comb states in optical
microresonators,
arXiv :1910.11035, 2019

In this work, we investigate the dynamics of dark DKS comb
generation, both experimentally and numerically. Spectrally probing
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the pump resonance as the dark DKS is generated, we discover that
an extra resonance appears once the comb is initiated. We find that
the two resonances are closely linked to the bistability of the cavity.
We also find that the dark DKS spectra exhibits switching between
different states. Numerical simulations accurately replicated the comb
spectra, showing that the different states correspond to dark pulses with
different number of oscillations.

My contributions: I conducted single-mode simulations to verify
the VNA scans, I assisted with lab measurements, I presented the part
of the work that featured hot cavity spectroscopy at CLEO EU 2019.

Paper C

Dissipative Kerr solitons in photonic molecules,
arXiv :2007.02608, 2020.

Here, we demonstrate DKS generated from linearly-coupled normal
dispersion microrings. Using a microheater on one of the rings to
control the coupling interaction, we demonstrate that these structures
can generate DKS with high conversion efficiency at low input power in
a reproducible manner. We show through numerical simulations that
the dynamics of these DKS are enabled by the linear coupling of two
cavities. We numerically demonstrate that this design offers DKS’s with
a larger existence regime compared to dark DKS in single-mode cavities.

My contributions: I conducted the lab experiments, I replicated
the microcombs numerically, I assisted with numerical characterization,
I wrote parts of the paper, I presented the work at CLEO 2020.
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