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”Two roads diverged in a wood, and I,
I took the one less traveled by,

And that has made all the difference.”
– Robert Frost





Fuel-efficient driving strategies
Sina Torabi
Department of Mechanics and Maritime Sciences
Chalmers University of Technology

Abstract

This thesis is concerned with fuel-efficient driving strategies for vehicles driv-
ing on roads with varying topography, as well as estimation of road grade
and vehicle mass for vehicles utilizing such strategies. A framework referred
to as speed profile optimization (SPO), is introduced for reducing the fuel
or energy consumption of single vehicles (equipped with either combustion
or electric engines) and platoons of several vehicles. Using the SPO-based
methods, average reductions of 11.5% in fuel consumption for single trucks,
7.5 to 12.6% energy savings in electric vehicles, and 15.8 to 17.4% average
fuel consumption reductions for platoons of trucks were obtained. More-
over, SPO-based methods were shown to achieve higher savings compared to
the commonly used methods for fuel-efficient driving. Furthermore, it was
demonstrated that the simulations are sufficiently accurate to be transferred
to real trucks. In the SPO-based methods, the optimized speed profiles were
generated using a genetic algorithm for which it was demonstrated, in a dis-
cretized case, that it is able to produce speed profiles whose fuel consumption
is within 2% of the theoretical optimum.

A feedforward neural network (FFNN) approach, with a simple feedback
mechanism, is introduced and evaluated in simulations, for simultaneous es-
timation of the road grade and vehicle mass. The FFNN provided road grade
estimates with root mean square (RMS) error of around 0.10 to 0.14 degrees,
as well as vehicle mass estimates with an average RMS error of 1%, relative
to the actual value. The estimates obtained with the FFNN outperform road
grade and mass estimates obtained with other approaches.

Keywords: fuel efficiency, energy efficiency, vehicle platooning, speed pro-
file optimization, genetic algorithms, performance analysis, mass estimation,
road grade estimation, neural networks.
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Chapter 1
Introduction

This thesis is focused on developing and applying methods and strategies
for fuel-efficient driving for trucks and electric minibuses. For conventional
trucks with combustion engines (hereafter referred to as conventional trucks),
fuel accounts for approximately one third of the total cost of ownership and
operation. Considering that hauling companies typically own many conven-
tional vehicles that travel an average of around 130,000 km per year [24],
increasing the efficiency of their vehicles even by a few per cent can translate
to significant savings for those companies. For electric vehicles, which have
been introduced in recent years in the transport sector, increasing efficiency
is also highly relevant, considering that current electric vehicles require fre-
quent and time-consuming recharging cycles.

Currently, road transport is responsible for 21% of the total greenhouse
gas emissions in the EU [26]. Thus, in addition to the economical benefits,
technologies that increase efficiency of vehicles help to achieve the environ-
mental goals set by governments as well as organizations such as the EU. For
example, in the case of the EU, the transport sector is required to reduce
greenhouse gas emissions by at least 60% by 2050 with respect to the 1990
level [25]. With these strict regulations, and considering also the expected
increases in both fuel prices and the volume of transported goods, vehicle
manufacturers are under pressure to take appropriate actions.

The process of improving energy efficiency and fuel efficiency of vehicles
can be divided into three general categories, namely (i) improving existing
vehicle designs, for example the drivetrains or aerodynamic aspects, (ii) de-
veloping entirely new vehicle designs (hybrid and fully electric engines, for

1



2 Chapter 1. Introduction

example), and (iii) improving the utilization of existing vehicles, for example
by applying fuel-efficient driving, which is the topic of this thesis [56].

1.1 Fuel-efficient driving

Fuel-efficient driving strategies have been developed both for groups of ve-
hicles and for single vehicles. Platooning, i.e. a situation in which several
vehicles drive in a linear configuration with small inter-vehicle distances, was
one of the earliest strategies developed for increasing the fuel efficiency. Driv-
ing in such a configuration can reduce the fuel consumption by reducing the
aerodynamic drag force experienced by the vehicles. For example, in a pla-
toon of two trucks driving at 80 km/h at a constant spacing of 10 m, the
aerodynamic drag force is reduced by around 40% [46]. In addition to the
increased fuel efficiency, platooning can reduce traffic congestion and improve
safety by better utilization of the road.

Most of the earlier work on platooning, both in simulations and in ex-
periments, focused only on the aerodynamic effects of platooning at close
inter-vehicle distances, when driving mainly on flat roads; see, for exam-
ple [6, 14, 27, 37]. In these works, the lead vehicle maintained a constant
speed using a standard cruise control system (CC) system while the
follower vehicle maintained a constant distance using an adaptive cruise
control system. However, on roads with varying topography, this approach
leads to excessive acceleration and braking, and consequently neutralizes the
positive effect of platooning [3, 86]. Since many roads exhibit varying topog-
raphy, it is necessary to consider the impact of the road topography when
developing fuel-efficient driving strategies, both for platoons of vehicles and
single vehicles. The speed profile of a vehicle, defined as the vehicle’s speed
as a function of its longitudinal position along the road, thus plays an im-
portant role in any non-flat topography, both for the lead vehicle and the
followers. In such situations, the speed profile must be allowed to vary ac-
cording to the road’s topography. An illustration of speed variation based
on road topography is shown in Fig. 1.1. As can be seen in the top panel
of the figure, the vehicle slows down while traversing an uphill segment and
speeds up while traversing a downhill segment of a road (bottom panel).

Considering that forming or joining a platoon is not always possible, fuel-
efficient driving strategies should be developed for single vehicles as well.
Moreover, as it turns out (see Sect. 5.3), the reduced aerodynamic drag in a
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Figure 1.1: Illustration of the basic idea in speed variations based on road to-
pography. In the top panel two speed profiles are shown, namely the Standard CC
speed profile (blue line) and a fuel-efficient driving strategy (orange line). The dash
lines represent the speed limits in which the fuel-efficient driving strategy operates,
see Chapter 3. The bottom panel shows the road profile.

platoon formation actually plays a rather minor part, contributing only about
15% of the total fuel savings. The remaining 85% stem from following the
speed profile, thus providing further motivation for considering fuel-efficient
driving strategies for single vehicles.

Such strategies can be achieved in various ways which will be reviewed
in this thesis (see also Chapter 2). Many of the proposed methods in the
literature are based on the optimal control framework in general, and
model predictive control (MPC) in particular. In these methods, the
speed profile is optimized, using dynamic programming, for a rather short
horizon; see e.g. [39, 41, 43, 87]. The speed profile is then tracked using
inputs from the MPC controller.

An alternative approach is to use the speed profile optimization (SPO)
framework introduced in Paper I. With the SPO approach, fuel-efficient speed
profiles can be generated for road segments of any desired length. As shown in
Papers II and III, the SPO method results in higher fuel savings compared to
MPC-based methods for trucks equipped with internal combustion engines.

The SPO method was also extended to the case of fully electric au-
tonomous minibuses (see Paper VI), demonstrating that the method can
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be applied successfully to this case as well. Moreover, the SPO method re-
sulted in competitive energy savings (in Paper VI) relative to the methods
commonly used to reduce the energy consumption of electric vehicles.

1.2 Mass and road grade estimation

For the fuel-efficient driving strategies to perform at their maximum poten-
tial, accurate knowledge of the vehicle’s mass and the road grade ahead is
required. Estimation strategies used to date can be categorized into two gen-
eral groups, sensor-based methods and model-based methods. Sensor-based
methods estimate the mass and road grade using a combination of various
high-quality sensors and conventional estimation and filtering techniques,
such as Kalman filtering. Model-based methods, on the other hand, use the
signals received from the vehicle’s communication area network (CAN) in
combination with a model of the longitudinal dynamics of the vehicle for
estimating the parameters, also making use of Kalman filtering.

These methods, however, either cannot be used in all driving situations
(during braking, for example) or will have lower performance (for example,
when certain driving styles are used; see [47]). Moreover, the performance
of model-based methods deteriorates when the vehicles are following fuel-
efficient speed profiles, which typically contain situations involving low ac-
celeration phases, coasting downhill without applying any engine torque, etc.
Also, in certain situations such as in underground mines, it is very difficult
or impossible to acquire an accurate road grade using GPS sensors.

Thus, there is a need for estimation methods which can be applied in
all driving situations while also achieving higher precision than conventional
methods. Moreover, more accurate estimation of the mass and the road grade
may improve the performance of advanced control systems for automatic gear
shifting and engine torque control as well as safety functions such as stability
control and anti-lock braking systems; see e.g. [23, 54, 100, 101].

An alternative approach is to use soft computing and machine learning
methods for estimating parameters of vehicles and roads. In Paper V, a feed-
forward neural network was implemented and applied to the case of estimat-
ing the vehicle mass and the road grade. It was shown that the performance
of the neural network exceeded that of conventional methods. Moreover, the
neural network’s estimation is available during all driving situations, includ-
ing braking, coasting, and low acceleration phases.
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1.3 Research questions

The aim of this thesis has been to improve the fuel efficiency of heavy-duty
vehicles equipped with internal combustion engines as well as increasing the
efficiency of fully electric vehicles. More specifically, this thesis has sought
to answer the following research questions (RQs):

RQ1: How should a vehicle (or a platoon) be operated in order to minimize
energy consumption?

As discussed in the previous section, the fuel consumption of a conventional
vehicle depends on its speed. Thus, this question refers to the problem of de-
signing a framework with which a fuel-efficient speed profile can be generated
and used by the vehicles. More importantly, the process of investigating this
question may also result in ways of achieving higher efficiency than the cur-
rent fuel-efficient driving approaches (such as MPC-based methods). With
the prevailing trend towards electrification, it is also highly relevant to study
electric vehicles in the context of this research question, in which case the
energy efficiency would involve battery usage rather than fuel consumption.

RQ2: To what extent can simulation results related to energy consumption
be transferred to real vehicles?

Most studies on fuel-efficient driving have been carried out only in simu-
lations, often due to the high computational demands of MPC-based ap-
proaches. Consequently, there is a lack of information on the real-world per-
formance of these driving strategies, which often leads to uncertainty about
their effectiveness and therefore hinders their adoption in vehicles.

RQ3: How can one assess whether the performance of a fuel-efficient driving
strategy is close to the theoretical optimum?

Many of the proposed fuel-efficient driving strategies are based on the opti-
mal control framework. However, these solutions are generated for a simpli-
fied, discretized problem (where, for example, a short optimization horizon
is used), which may be quite different from the original problem. In cases
of the kind considered here, where no such simplifications are applied, how
can one assess the performance of a fuel-efficient driving strategy? Thus,
this question refers to the problem of analyzing fuel-efficient driving strate-
gies by comparing their performance to a theoretical optimum (which can be
obtained under certain assumptions).
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RQ4: How can one accurately estimate the necessary signals for implemen-
tation and execution of the driving strategy?

This question primarily concerns the problem of estimating the vehicle’s mass
and the road grade. In fuel-efficient driving strategies, it is commonly as-
sumed that the mass of the vehicle and the slope of the road ahead are
known with high accuracy in advance. Estimates of the vehicle mass and
the road grade are utilized by the vehicle’s electronic control units (ECUs)
to achieve higher performance. In practice, however, these parameters are
also estimated by the ECUs. However, as briefly mentioned in the previous
section, the performance of these existing estimation methods drops during
fuel-efficient driving. Thus, estimation methods with higher accuracy are
needed to ensure that such driving strategies are utilized to their maximum
potential.

1.4 Limitations and contributions

Here, only the longitudinal dynamics of the vehicles has been considered.
Moreover, in the platoon studies presented in the papers forming this thesis,
all the vehicles were equipped with the same powertrain system, but with
different masses (in the case of heterogeneous platoons). Furthermore, in
the simulations, it has been assumed that the motion of the vehicles was not
disrupted by the surrounding traffic.

The author is the main contributor to the analysis in, and the writing of,
Papers II, III, IV, V, and VI, and one of the main contributors to Paper I.

1.5 Thesis layout

Chapters 2 and 3 give the necessary background on driving strategies (Chap-
ter 2) and the SPO methods introduced and developed for improving the ef-
ficiency of the vehicles (Chapter 3). In Chapter 4, the conventional methods
used for estimation of vehicle mass and road parameters are reviewed and
the proposed estimation method is presented. The main results are presented
and discussed in Chapter 5, and the conclusions and future work are provided
in Chapter 6. Brief summaries of the papers are given in Chapter 7.



Chapter 2
Fuel-efficient driving

The continuous refinement of vehicle technologies has been improving the
energy efficiency of drivetrains over the years. Another factor that strongly
affects the energy consumption of a vehicle is driving behavior, thus pro-
viding another opportunity for increased efficiency. Driving behavior can be
improved via driving assistance systems through which drivers receive
recommendations regarding the suitable target speed, something that im-
prove their driving efficiency, see for example [7, 42, 88, 20, 75]. The increas-
ing level of autonomy in vehicles has led to development of driving strategies
that actively control the longitudinal motion of vehicles, thereby increasing
the potential for energy savings even further. In this chapter, such driving
strategies will be reviewed, and then the concept of speed profile optimization
will be introduced.

The optimal driving strategy depends strongly on the topography of the
road. On flat roads and under a travel time constraint, as was shown in [38],
driving at constant speed is the optimal solution to the problem of fuel con-
sumption minimization. Another simple case is that in which the slope is
constant. For this case, Schwarzkopf and Leipnik [81] considered the problem
of decreasing the fuel consumption of passenger cars, for which they proposed
an analytical solution based on Pontryagin’s maximum principle. In [28], a
similar approach was proposed as well for the case of heavy-duty vehicles
driving on simple road segments.

Turning now to the more realistic case of roads with varying topography,
the problem of energy-efficient driving has been commonly formulated as an
optimal control problem in which the optimization is solved numerically.

7
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Figure 2.1: Illustration of the basic idea in the model predictive control frame-
work. At each time instant k, an optimal control problem is solved (using dynamic
programming, for example) based on the predicted state of the model, which re-
turns an optimal control sequence (future inputs) for the entire prediction horizon
p. Then, only the first of the future control inputs (Applied input) is applied to the
system. At the next time instant k+1, the same procedure is repeated with updated
states.

For example, Lattemann et al. [58] proposed the predictive cruise control
(PCC) system, which is an upgrade on the standard cruise control system.
PCC allows the speed of the vehicle to vary in a narrow range, typically
around ±5 km/h, and the system works by allowing the vehicle to lower its
speed while traversing uphill segments and increase its speed while traversing
downhill segments.

2.1 Optimal control framework

In order to improve the performance of PCC systems, the model predictive
control (MPC) framework has been used in designing and tracking speed
trajectories. In MPC-based approaches, an optimal speed trajectory is gen-
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erated through online iterative optimization, with respect to fuel (or energy)
consumption, over a typically short horizon of 2 − 5 km. The generated
speed trajectory is then tracked by a controller for which the instantaneous
input is generated based on the predicted state of the system, at each step.
In MPC-based approaches, the optimization problem is typically solved nu-
merically using dynamic programming (DP) [12].

As mentioned above, MPC is a framework that relies on iterative online
solutions, for which the updating frequency depends on the discretization
step of the optimal control problem. As shown in Fig. 2.1, at each time
step k, an optimal control problem is formulated and solved, for the entire
prediction horizon p, using DP for example. This procedure will return a
sequence of control inputs of which only the first is applied to the system
(between steps k and k + 1). Then, this procedure is repeated for each time
instant. The discretization step, for the case of fuel-efficient driving strategies
for trucks, is typically in the range of 25 to 200 meters [40, 41, 43, 87], and
around 20 meters for electric vehicles since they generally operate in urban
environments [63].

2.2 Speed profile optimization

In this thesis, an alternative approach for fuel-efficient driving is proposed
in which an optimized speed profile is generated for longer road sections,
without having to carry out the optimization iteratively at every position.
In this approach, which will be referred to as the speed profile optimiza-
tion (SPO) framework, the vehicle simply follows the generated optimized
speed profile using a standard controller (for example a PID controller, see
Chapter 3). In the SPO framework, the optimization is carried out using
methods inspired by natural phenomena, for example genetic algorithms [44]
(see Chapter 3).

One of the main advantages of the SPO-based methods, compared to the
MPC-based methods, is that it is not necessary to iteratively re-calculate
the solution. Therefore, once the speed profile is generated over the entire
horizon, no further optimization is required.

In the SPO methods, road segments of any length can be considered in
principle. In this thesis, a horizon of 10 km length has been considered, mo-
tivated by the fact that the time required to generate suitable speed profiles
is typically a few minutes, making it possible to generate an optimized speed
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profile for the following 10 km section while driving over the current section.

Additionally, since the optimized speed profiles from the SPO framework
act as a recipe and provide a reference speed the vehicles are not required to
follow the speed profiles exactly (or even with very small errors) in contrast
to the MPC-based methods. Thus, simpler controllers such as a standard
PID can be used in the SPO framework.

2.3 Applications

The fuel-efficient driving strategies mentioned in the previous section
can be used both in single vehicles and in platoons. In this section, dif-
ferences between the implementations of these strategies, along with their
respective performances, while driving on roads with varying topography,
will be reviewed.

2.3.1 Single vehicles

Fuel-efficient driving strategies (for conventional vehicles with combustion
engines) and energy-efficient strategies (for electric vehicles) have been im-
plemented and tested rather extensively in simulations and in experiments.
The savings of PCC methods and MPC-based approaches typically fall in
the range of 3% to 10% for conventional vehicles (relative to highway driving
at constant speed using a standard CC), and around 10% to 15% for electric
vehicles (relative to human drivers operating in urban environments).

The PCC system proposed in [58] reduced the fuel consumption of a
truck, driving over a road segment of 25 km, by around 3%. Hellström et
al. [38], proposed look-ahead control (LAC) as an MPC-based upgrade of the
PCC approach to solve the problem of fuel consumption minimization. In the
LAC method, the optimization problem was solved using DP to generated
an optimal speed profile for a truck to follow. Then, LAC was tested over
120 km of highway road, in simulation, resulting in fuel savings of 3.5% on
average.

For fully electric vehicles, in contrast to the extensive work carried out
for hybrid and conventional vehicles, rather few methods have been proposed
for optimization of a vehicle speed profile, see for example [20, 63, 76, 77, 16,
83]. The strategies developed for driving energy efficiently for fully electric
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vehicles, which have mainly been tested in urban environments, are typically
utilized as driving assistance systems.

Dynamic programming, i.e. the most common technique used in connec-
tion with MPC-based approaches, suffers from the curse of dimensionality,
which is the exponential growth of the computation time with the number of
states. Much work has been carried out to improve the computational effi-
ciency of DP by, for example, eliminating the states that cannot be reached
due to the physical limitations of the vehicle (see e.g. [38]). Moreover, as
Henzler et al. [43] showed, reducing the problem of fuel-efficient driving to a
convex MPC formulation improved both the computational efficiency of the
method as well as the savings achieved.

In part motivated by a desire to escape the drawbacks of DP (and MPC),
the concept of SPO was introduced in Paper I and tested (in simulations)
for generating optimized speed profiles for the lead vehicle of a platoon. The
fuel consumption of the lead truck was reduced by 15% on average, relative
to standard CC, over 10 km road segments of highway roads with varying
topography. In Paper II, the SPO method was implemented and tested, for a
single truck, both in simulations and experiments. The analysis from Paper
II showed that the results obtained in simulations are transferable to real
trucks (RQ2). In other words, the fuel savings obtained in real trucks are
similar to those obtained in simulations.

Moreover, the fuel savings obtained with SPO in Papers I and II compared
favorably to the savings obtained by the methods mentioned earlier in this
chapter. For example, in Paper II, a close comparison was made between
SPO and a PCC system, in real trucks. Here, SPO improved the fuel savings
by 3 percentage points, almost doubling the savings. In this comparative
study, both the road and the speed range used were the same for the two
methods (SPO and PCC). Furthermore, in more relaxed settings where the
truck’s speed was allowed to vary between 60 and 90 km/h, fuel savings of
around 10% (on average, relative to standard CC) were obtained by SPO
when driving on road profiles of 10 km length.

Paper VI extended the SPO method to the case of a fully electric au-
tonomous minibus with regenerative braking. The energy consumption of
the vehicle was reduced by 8.5% and 11.5% for short bus routes with slope
variation, relative to the baseline case, see Fig. 5.3 in Subsect. 5.1.1. Ad-
ditionally, in Paper VI, it was demonstrated that SPO enabled the minibus
to carry out four more round trips on a single battery charge relative to the
baseline case. The energy savings reported in Paper VI are within the range
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commonly found in the literature. However, the SPO results are not directly
comparable to those of MPC-based approaches since the baseline case used
in Paper VI is a more stringent method, offering a stronger challenge: In
Paper VI, the results were compared to a (rather energy-efficient) baseline
case involving autonomous operation with PID control. In other works (see
e.g. [20]), a human driving cycle is used as a baseline case, which in all like-
lihood would not be as efficient as an autonomous operation with a PID
controller; see e.g. [65, 74].

A common critique of genetic algorithms (and similar population-based
stochastic optimization methods) is their inability to guarantee that the
global optimal solution will be found in finite time (see e.g. [30, 72]). In
Paper IV, this issue was addressed for the problem of fuel consumption op-
timization of trucks by introducing a general method for assessment of the
performance of such algorithms in slightly simplified cases where the global
optimum of the problem can be determined. The results of this investigation
showed that the genetic algorithm used in SPO is able to find near-optimal
speed profiles for the cases considered.

2.3.2 Platoons of vehicles

The focus of most of the early work on platooning was on the concept of
string stability, i.e. the ability of the controlled vehicles in the platoon
to attenuate disturbances. Therefore, at the time, various control strategies
and spacing policies were proposed to ensure the string stability of the
platoon [73, 85, 96, 97]. The relative success of these works, centered on the
practical aspects of platooning, spurned an interest in other properties such
as fuel efficiency and safety.

Fuel-efficient platooning strategies are mainly concerned with maintaining
a close inter-vehicle distance between vehicles to benefit from the reduced
air drag. The ACC function allows the following vehicles within a platoon
to follow a desired spacing policy. Thus, the combination of standard CC,
for the lead vehicle to maintain a constant speed, and adaptive cruise
control (ACC) for the other vehicles to keep their distance to the vehicle in
front has been extensively used in platooning.

On flat highways, the CC+ACC combination for vehicle platooning showed
fuel savings of up to 10% [13, 98]. However, as was shown in [1], the positive
impact of the reduced air drag from driving at close inter-vehicle distances
can be neutralized by slope variation, thus making the CC+ACC approach
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unsuitable in such situations.
There have only been few studies in which the topography of the road and

its impact on fuel consumption of the entire platoon is considered. Alam et
al. in [4] proposed a new platooning approach based on the LAC method (see
Subsect. 2.3.1) which was tested on synthetic road profiles of simple uphill
and downhill segments. In this approach, the LAC method is first used to
generate a fuel-optimal speed trajectory for a given road segment for every
vehicle in the platoon. Then, the speed trajectory that requires the largest
adjustment, compared to driving at constant speed, is selected for the entire
platoon to follow. This approach resulted in fuel savings of up to 14% on the
downhill segments and 0.7% on the uphill segments relative to CC+ACC.
A similar approach was used in [68] to generate common speed trajectories
for all vehicles in a platoon. This approach reduced the fuel consumption of
a platoon of four light (around 3500 kg) vehicles, driving on highways, by
around 6%.

As discussed in the previous section, the SPO method for fuel-efficient
driving has several advantages over MPC-based methods. In Paper I, the
SPO method was used to generate optimized speed profile for the lead vehicle
of a platoon. The follower vehicles used various formation control strategies
adopted from the framework of artificial physics (AP), such as a non-linear
spring damper model, modified artificial gravity, etc., to keep a safe distance
(see Paper I). This approach, i.e. SPO+AP, was tested on road profiles of
10 km length (from a Swedish highway; for a more detailed discussion on
road profile length, see Sect. 5.2) and reduced the fuel consumption of the
entire platoon by 15% on average relative to CC+ACC. The fuel savings
obtained by SPO-based platooning methods compares favorably to those
obtained with MPC-based approaches. However, the utilization of the AP
framework to control the follower vehicles of a platoon had no significant
impact on the fuel reduction compared to the standard ACC. Therefore, the
entire improvement in fuel savings was a result of speed profile optimizations
for the lead vehicle.

Returning to MPC-based approaches, in recent work, Turri et al. [87] pro-
posed a new platooning strategy where the characteristics of all vehicles were
considered in the speed trajectory optimization. In this method, a common
feasible speed trajectory, which can be followed by all the vehicles in the pla-
toon, was generated using DP and tracked by the lead vehicle while the other
vehicles control their distance to the vehicle in front of them. This approach,
which is referred to as cooperative look-ahead control (CLAC), was tested
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in simulations both for homogeneous and heterogeneous platoons of trucks
on Swedish highways. The CLAC method’s performance was compared to
the case in which each vehicle used CC, resulting in fuel savings of 5.4% to
10.8% on average (depending on the vehicle mass and their position in the
platoon).

Moreover, in order to improve the performance of MPC-based platooning
approaches, in terms of both computational efficiency and fuel savings, two-
layer or multi-layer hierarchical controllers have been proposed and tested in
simulations. In these approaches, the first layer is responsible for generat-
ing speed trajectories for trucks, either via online optimization (i.e. during
driving) [32, 62] or offline optimization [22, 33] on a longer horizon and with
shorter update frequency. The speed planning results are then used in the
lower layer of the controller for tracking and scheduling gear shifts. The fuel
savings of these methods falls typically in the range of 4% to 15% depending
on the platoon configuration and the road profile.

In Paper III, the SPO framework was extended to allow individual speed
profiles for all vehicles in the platoon. In this approach, each vehicle receives
and follows its own individually optimized speed profile independently of
the other vehicles. In other words, in this approach which is referred to as
platooning SPO (P-SPO), vehicles are not required to follow any spacing
policies. In Paper III, the P-SPO approach was tested in simulations on
road profiles of 10 km highway in Sweden, resulting in fuel savings of 15.8%
(on average) for a homogeneous platoon and 16.7 – 17.4% for heterogeneous
platoons (with different masses) relative to the case of CC+ACC. Moreover,
in Paper III, it was shown that the fuel savings compared favorably to those
of MPC-based methods in similar situations.



Chapter 3
Speed profile optimization

The main idea behind the fuel-efficient driving strategies proposed in this
thesis is the offline (before driving) optimization of a vehicle’s speed profile,
using genetic algorithms [44]. With this approach, the entire speed profile
is available a priori, before the vehicle starts driving1. This is in contrast to
most of the approaches discussed in Chapter 2, in which the optimized speed
profiles are generated during driving (i.e. online) mainly using DP.

In this chapter, the methods and tools required for investigating RQs 1
and 3 are described in detail. This chapter starts with a description of the
longitudinal dynamics models for conventional trucks (Papers I-IV) and for
electric vehicles (Paper VI). Next, the PID controller and the ACC controller
used in the simulations are presented. Then, the speed and road profile repre-
sentation along with the safety constraints considered during the simulations
are described. The chapter ends with a description of the method for evaluat-
ing and optimizing speed profiles, as well as the procedure used for assessing
the performance of the speed profile optimization method.

3.1 Modeling

The vehicle model and the optimization method were implemented in a
dedicated simulation environment written (by the author) in the C# .NET
programming language. This simulation environment can be used both for

1The problem of handling the presence of other vehicles is discussed in Sect. 5.3 and
in Papers II, III, and VI.
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single vehicles (either conventional or electric) and for a platoon of vehicles.
In this thesis, only the longitudinal motion of a vehicle is considered both
in the case of single vehicles and for platoons of vehicles.

3.1.1 Truck model

The longitudinal dynamics of a conventional truck can be expressed in the
following form [3]

m(G)v̇ = Fe − Fb − Fd − Fr − Fg, (3.1)

where the expression on the left-hand side represent the vehicle’s acceleration
and the total inertial mass mG. The terms on the right-hand side represent
the forces experienced by the vehicle, namely the engine force Fe, the braking
force Fb, the air drag resistance force Fd, the rolling resistance force Fr, and
the gravity force Fg. The total inertial mass of a truck is computed in the
following way

m(G) = m+
Jw + γ2

Gγ
2
f ηGηfJe

r2
w

, (3.2)

where G is the active gear, m is the mass of the truck, Jw and Je are the wheel
and the engine inertia, respectively, γG and γf represent the gearbox and final-
drive ratios, ηG and ηf denote the gearbox and final-drive efficiencies, and
rw is the wheel radius. The various forces acting on the truck are described
below.

Engine force

The engine force (Fe) acting on a truck comes from the generated torque
from the truck’s engine acting on the wheels, which is transferred through
the drive-line, namely clutch, gearbox, etc. The engine force is computed in
the following way

Fe =
γGγfηGηf

rw

Te ≡ keTe, (3.3)

where Te is the generated torque, γG and γf are the gearbox and final-drive
ratios, ηG and ηf denote the gearbox and final-drive efficiencies, and rw is
the wheel radius. The engine torque, Te, is calculated by considering the
inverse dynamics of the truck: The requested acceleration aR is computed
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from the speed profile, and then the required engine force is calculated by
considering all the external forces acting on the truck S = Fd +Fr +Fg as well
as the requested acceleration. Thus, by rearranging the terms in Eq. (3.1),
the requested engine torque TR

e can be defined as

TR
e =

m(G)aR + S

ke

, (3.4)

The effective acceleration generated by the engine, aE, is calculated as

aE =

{
aR if TR

e < Tmax
e

keTmax
e −S
m(G)

if TR
e ≥ Tmax

e

(3.5)

where ke is the torque coefficient, and Tmax
e is the maximum torque that

can be generated by the engine. The instantaneous fuel consumption is then
determined by interpolation of the torque-RPM-fuel map for the modeled
vehicle, using the provided engine torque and the engine’s speed.

Braking force

The braking systems of modern trucks consist of several components such as
foundation (friction) brakes, engine brakes, and retarders. Given the vari-
ability of the braking systems and their controller logic, the braking torque,
and consequently the braking force, is typically difficult to model in detail.
Therefore, in this thesis as in many other works in the field [50, 43, 87, 67],
the braking system is not modeled and, instead, it is simply assumed that
the brakes can provide deceleration of down to a limit of -2.5 m/s2 [80].

Air drag resistance:

The aerodynamic resistance force experienced by a single vehicle is described
as

Fa =
1

2
cDAρav

2, (3.6)

where cD is the air drag coefficient, ρa is the air density, A is the frontal area
of the vehicle, and v is the vehicle’s speed. As was discussed in the previous
chapter, driving at close inter-vehicle distances (such as in a platoon, where
distances of around 10 m have been used with ACC systems) reduces the
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Figure 3.1: Mapping of air drag reduction as a function of inter-vehicle distance.
After Turri et al. [87].

aerodynamic force. This reduction is modeled by considering a non-linear
air drag ratio, Φ(d)

Fd =
1

2
cDAρaΦ(d)v2, (3.7)

where Φ(d) is a coefficient that quantifies the air drag reduction as a
function of the inter-vehicle distance, d, when driving behind another vehi-
cle. Φ(d) is typically modeled based on empirical results from wind-tunnel
experiments as [87, 67]

Φ(di,i-1) =

(
1− CD,1

CD,2 + di,i-1

)
, (3.8)

where di,i-1 is the ith vehicle’s distance to its preceding vehicle, and CD,1 and
CD,2 are constants, obtained through regression on the experimental data
in [46]. The experimental data and the fitted curve are shown in Fig. 3.1.
Note that, in this model, the air drag reduction on the preceding vehicle is
neglected (since it is much smaller than the reduction experienced by the
follower vehicle).

Rolling resistance force:

The rolling resistance force, caused by the friction between the tires and the
road surface, is a resistive force that can be expressed as
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Fr = mgcr cosα, (3.9)

where m is the vehicle’s mass, g is the constant of gravitational acceleration,
cr is the rolling resistance coefficient, and α is the road slope. One should
note that throughout this thesis, α is positive for uphill segments of a road
and negative for downhill segments.

Gravitational force:

The gravitational force plays an important role in the longitudinal dynam-
ics of a truck and its fuel consumption, when driving on roads with varying
topography, considering trucks’ large masses. The gravitational force is ex-
pressed as

Fg = mg sinα, (3.10)

where, again, m is the mass of the truck, g is the gravitational acceleration,
and α is the road slope. The gravitational force can either be propulsive
(during downhill driving) or resistive (during uphill driving).

3.1.2 Electric minibus

The longitudinal vehicle model, used for simulating the fully electric minibus
(Paper VI), is based on a computationally efficient energy consumption model
proposed in [29]. In addition to providing conversion from the required power
at the wheels to battery power requirements, this model provides an estimate
for the battery’s state-of-charge. Moreover, the model takes into account the
regenerative braking system in calculations of the battery’s state-of-charge.
The energy consumption of the vehicle is expressed in the following general
way

dE

dt
= Ptot, (3.11)

where E is the energy consumption and Ptot is the total power provided by
the battery, computed as

Ptot = PbηRTE, (3.12)

where Pb, given by
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Pb = Pm + Paux, (3.13)

is the battery’s output power, ηRTE denotes the battery’s round trip efficiency,
a value which is slightly smaller than 1. The value of ηRTE depends on
whether the battery is in charging or discharging mode (see below). Pm

represents the required power by the electric motor whereas Paux represents
the auxiliary power (a value which is constant throughout the simulation)
needed to keep the vehicle’s auxiliary systems running.

The battery’s state-of-charge, S, is updated as follows

dS

dt
= − Pb

C
, (3.14)

where C denotes the battery’s capacity in Ws.
The required power by the electric motor, Pm, is calculated in the follow-

ing way, depending on whether the battery is charging or discharging,

Pm =

{
Ptηr, if Pt < 0

Pt/ηt, if Pt > 0
(3.15)

where ηr and ηt are the electric motor’s efficiency in regenerative (charging)
mode and in traction (discharging) mode, respectively. Moreover, Pt is the
electric motor’s required traction power which is computed by considering
the longitudinal dynamics of the vehicle in the following way

Pt = v × (m(1 + Ci)a+ Fa + Fg + Fr) , (3.16)

where v and a denote the vehicle’s speed and acceleration, m is the mass of
the vehicle, and Ci is the correction factor for rotational inertia force. The
terms Fa, Fg, and Fr represent the aerodynamic drag force, gravity force,
and the rolling resistance force experienced by the vehicles. These forces
are calculated as described in Eqs. (3.6), (3.9), and (3.10) in the previous
subsection.

3.1.3 PID controller

In both simulations and experiments, a simple PID controller has been
used to follow a desired speed profile, both for conventional trucks and the
fully electric minibus. The control output of the PID controller is computed
as



3.1. Modeling 21

u(t) = Kpe(t) +Ki

∫ t

0

e(τ)dτ +Kdė(t), (3.17)

where Kp,Ki, and Kd are the proportional, integral, and derivative gains
respectively. Moreover, e(t) is the error signal which is calculated as follows

e(t) = vs(t)− v(t), (3.18)

where vs is the reference speed and v(t) is the vehicle’s instantaneous speed.
The requested acceleration, aR, which is sent to the vehicle’s powertrain, is
then computed by dividing the controller’s output by the vehicle mass.

3.1.4 Adaptive cruise control

Adaptive cruise control (ACC), mainly used in platooning strategies, is
an upgrade on the standard CC system, and it allows a vehicle to maintain
a desired distance to the preceding vehicle, while following the same speed
trajectory. The requested acceleration, aR, is calculated using the following
expression [19]

aR = k1(di,i-1 − d0) + k2(vi-1 − vi), (3.19)

where di,i-1 = xi-1−xi is the inter-vehicle distance, xi = xi(t) represents the ith

vehicle’s position along the road, vi = vi(t) represents the ith vehicle’s speed,
k1 and k2 are the gains, and d0 denotes the desired inter-vehicle distance.

3.1.5 Road and speed profile representation

To evaluate the SPO method’s performance, both the speed profiles and
the road profiles need to be modeled in the simulation environment. Two
approaches were used for modeling the profiles in the papers forming this
thesis. In Paper I, simple lists of two-dimensional points were used to de-
scribe the profiles, giving the elevation and the speed values every 10 meters
along the road. In the other papers, a more compact representation was con-
sidered using composite Bézier curves, i.e. a sequence of Bézier splines;
see e.g. [11]. Such a compact representation for the profiles reduces the opti-
mization search space significantly which can lead to improved performance
of the method (see Subsect. 5.5). Here, two-dimensional cubic Bézier splines
of the following general form were used,
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Figure 3.2: Comparison between the fitted composite Bézier curve and the orig-
inal data, over a part of the road between Göteborg and Bor̊as. The dots represent
the original data and the gray curve represents the fitted splines. The vertical lines
separate individual splines in the composite Bézier curve.

x(u) ≡ (x(u), y(u))T = P0(1− u)3 + 3P1u(1− u)2

+3P2u
2(1− u) + P3u

3, (3.20)

where the vectors Pj are two-dimensional control points and u is a parameter
ranging from 0 to 1.

Road profiles

Two-dimensional composite Bézier curves (as described in the previous sec-
tion) are used for modeling road profiles since only the longitudinal motion
has been considered. With this representation, the two dimensions are the
elevation and the longitudinal position along the road. Thus, a road profile
is expressed in the following form

(s, z) ≡ (si(u), zi(u)) , i = 0, . . . , n− 1 (3.21)

where n is the total number of splines used to model a road section. With
this formulation, it becomes possible to write the elevation as z = z(s), since
for any given position s along the road, the corresponding spline index and
u−value can be found.

The number of splines needed to fit a composite Bézier curve to a list of
position-elevation pairs can be selected in various ways. For example, it can
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be chosen in such a way that the curve passes through all the data points.
This approach, however, is not so suitable for two main reasons. First, fitting
a curve to all the data points can introduce the noise present in the data into
the road profiles. Second, if the number of splines used in fitting a Bézier
curve approaches the number of data points, the search space size, taking
into account the optimization procedure (see Subsect. 3.2), will exceed that
of the case in which simple point lists are used. For the data sets used in this
thesis, the number of splines was selected so that each spline covers roughly
500 meters of a road segment. An example of a fitted curve is shown in
Fig. 3.2.

Speed profile:

Similar to the road profiles described in the previous section, the speed
profiles are modeled using two-dimensional composite cubic Bézier curves
of the following form

(s, v) ≡ (si(u), vi(u)) , i = 0, . . . , n− 1 (3.22)

where v is the longitudinal speed of the vehicle and s is the longitudinal
position of the vehicle along the road. Thus, the speed of a vehicle can
be expressed as v = v(s) (similar to the elevation of the road). With this
representation, the same number of splines for s as in the road profiles must
be used since the speed of a vehicle is calculated based on the vehicle’s current
longitudinal position along the road.

3.1.6 Safety constraints

In the proposed P-SPO approach for platooning, the inter-vehicle distances
between vehicles are not controlled directly. Thus, it is necessary to have
safety constraints and to consider them during optimization. Here, the
safety of a platoon is guaranteed by preventing the inter-vehicle distance
from dropping below a safe distance at any time. At each time step, during
the optimization, the safe distance is calculated as [97]

d safe
i, i-1 (t) = d0 + h(t)vi(t) (3.23)

where d safe
i,i−1(t) is the minimum allowed distance between the ith and (i− 1)th

vehicles at time t, d0 is the absolute allowed minimum distance, h(t) is the
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variable time headway, and vi(t) is the ith vehicle’s speed at time t. The
variable time headway h(t) is expressed as

h(t) = h0 − chvr(t) (3.24)

where h0 > 0 is the (constant) minimum time headway, ch > 0 is a constant,
and vr(t) = vi-1 − vi is the relative speed. The value of h(t) must always
be positive for safety reasons, while also being prevented from becoming too
large. Large values for time headway are not desirable since they can push a
platoon beyond the limit where the platoon can be considered coherent. Thus
in Paper III, the variable time headway values were limited to the interval
[0, 1] (s), and the values of h0 and c0 were set to 0.1 (s) and 0.2 (s2/m)
respectively, as was proposed in [97].

3.2 Optimization

Here, the problem of moving a single vehicle from a given starting point to
a given destination is considered for cases where the road profile is known
in advance, so that the motion of a vehicle can be formulated as a desired
speed profile, vd(s), defined over the entire road profile, where vd is the
desired speed of the vehicle at any given longitudinal position s along the
road. Thus, the problem of minimizing the fuel (or energy) consumption
of a vehicle involves first finding an optimal speed profile and then driving
accordingly over the road (RQ1).

For platoons, two approaches have been considered. In Paper I, the
leader-follower approach was used, in which the lead vehicle’s motion is
considered as an SPO problem for a single vehicle while the other (follower)
vehicles control the distance to the vehicle immediately in front of them.
However, in Paper III, the P-SPO method (see Subsect. 2.3.2) was used. In
this method, the problem of minimizing the fuel consumption of a platoon is
reduced to finding an optimal speed profile for each vehicle while ensuring a
safe distance between the vehicles (see Subsect. 3.1.6), thus eliminating the
problem of (active) inter-vehicle distance control.

3.2.1 Evaluation

The models and methods described in Sect. 3.1 were implemented (by the
author) in a dedicated simulation environment in C#.NET for simulating
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the motion of both conventional and electric vehicles. In the simulation
environment, with a speed profile available, the vehicle can be made to follow
it so that its fuel (or energy) consumption can be measured.

The speed profile evaluation for a single vehicle proceeds as follows:
At each time step, the current longitudinal position of the vehicle is used to
calculate the desired speed from the speed profile either by linear interpola-
tion (in cases where a point list is used for the road profile, see Paper I), or
via the spline interpolation, as described in Subsect. 3.1.5; see also Papers II,
III, and VI. Thus, the speed profile is used as a lookup table from which the
desired speed is calculated at any given longitudinal position along the road.
The obtained desired speed is then fed to the vehicle’s PID controller as its
reference speed. When the vehicle reaches the end of a road profile, the fuel
consumption or the energy consumption of the vehicle is returned from the
simulation environment.

Turning to platoons, the evaluation of the method proceeds as follows:
If the P-SPO method is used, the evaluation procedure is the same (for
each vehicle) as in the case of a single vehicle case, since the vehicles follow
their individual speed profiles independently (see Paper III), except that the
inter-vehicle distance is also monitored to ensure the safety of the platoon
(see Subsects. 3.1.6 and 3.2.2). In the case of the leader-follower approach
(Paper I), only the lead vehicle has an optimized speed profile defined a
priori which is evaluated as in the case of the single vehicles. For the follower
vehicles, at every time step, the distance between the current vehicle and its
preceding vehicle is calculated and used to compute the desired acceleration
based on the adopted model, for example ACC. Once all the vehicles of a
platoon reach the end of a road profile, their average fuel consumption is
returned.

3.2.2 Optimization algorithm

The optimization of the speed profiles is carried out using genetic algorithms
(GAs) [31, 44, 66], with respect either to fuel consumption or energy con-
sumption. In the optimization algorithms used here, each individual (a
candidate solution to the problem at hand) defines N speed profiles (in case
of a platoon of N vehicles, Paper III) or one profile (N = 1) in case of a
single vehicle (Papers I, II, and VI). Speed values defining the speed profiles
are encoded in strings (referred to as chromosomes, following the usual GA
nomenclature) of L numbers (genes). The aim of the optimization is to find
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Figure 3.3: An example of speed profile tweaking in the RMHC method. In the
snapshot shown, taken from the early stages of an optimization run, the initial
(flat) speed profile has undergone three tweakings.

an individual whose corresponding values define speed profiles for which the
fuel (or energy) consumption is minimal over a given road profile.

In Paper I, a simple genetic algorithm with a single individual (that is,
a population of size 1) was used. The speed profile was modeled using a
simple list that specified the desired speed at a number of discrete points
(every 10 m in this case). This simple genetic algorithm which can also
be referred to as random mutation hill climbing (RMHC) proceeds as
follows: First, a constant speed profile is specified, i.e. one identical to the
case in which the vehicle follows the standard CC system. Then, the vehicle’s
fuel consumption, f0, is computed using the evaluation procedure described
in the previous section. Since only a single individual is considered in RMHC
method, f0 also represents the minimum fuel consumption, fmin, found so far.
Next, the individual is tweaked by randomly selecting a point at a random
location at which the speed value is changed by a fraction β (either positive
or negative). Then, the speed values within the interval [xt−r, xt+r] where r
is a randomly selected range, are changed linearly. Thus, the change ∆vd(x)
in the speed profile is computed as
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∆vd(x) =





(
1− |x−xt

r
|
)
βvd(x) if |x− xt| < r

0 otherwise
(3.25)

An example of such a tweaking procedure is shown in Fig. 3.3. Finally,
a smoothing step is applied to the speed profile using a simple, centered
moving average of length 3. The new generated individual is then evaluated
by simulating the motion of the vehicle following the corresponding speed
profile. If the resulting fuel consumption, fnew, is lower than the current
minimum fuel consumption, the new individual is kept and the value of
fmin is updated accordingly. Otherwise, the new individual is discarded and
a new tweaking is applied to the previous individual as described above.
Two constraints are applied to the generated speed profiles encoded in the
individuals, namely (i) the instantaneous maximum speed, vmax, must never
exceed the road’s speed limit and (ii) the average speed should always be
above a certain threshold v̄min. In Paper I, these constraints were considered
as hard constraints, i.e. if any of them were violated during the optimization,
the corresponding individual was discarded immediately.

In Papers II, III, and VI, the optimization was carried out using a more
standard GA, with a larger population size (M), typically around 100. In
these papers, the speed profiles are represented by composite Bézier curves to
improve the performance of the optimization process; see Subsect. 5.5. The
individuals are encoded using floating-point numbers, where each number
(gene) represents the second component (i.e. the speed, v) of a spline control
point Pi,j where i is the spline index and j is the control point index for
the spline in question; see also Eq. (3.20). In order to make sure that the
decoded individuals result in smooth speed profiles, two requirements were
considered during encoding. First, since a speed profile consists of several
splines, the positional continuity (C0) of the profile should be taken into
account so that a decoded individual forms a speed profile that is continuous
over the entire road profile. The second requirement ensures the smoothness
of the generated speed profile. This is achieved by preserving the derivative
continuity (C1) of the speed profile in the encoding process. To make sure
that these requirements are met, the following conditions must hold:

Pi,3 = Pi+1,0 for i = 0, . . . , n− 1 (3.26)
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Figure 3.4: The optimization procedure used in the SPO and P-SPO methods.
The decoding step generates a speed profile (one for each chromosome in the pop-
ulation). The speed profiles (individuals) are then evaluated one by one, using the
vehicle model along with the PID controller and the road profile, returning a fitness
value, namely the inverse of the fuel consumption for the individual in question.

and

Pi,3 − Pi,2 = Pi+1,1 − Pi+1,0 for i = 0, . . . , n− 1 (3.27)

Therefore, the number of parameters or genes (i.e. the length of the chromo-
somes) will be L = N(4 + 2(n − 1)) = N(2n + 2) where n is the number of
splines. The decoding results in a set of N speed profiles that are then evalu-
ated using the procedure described in Subsect. 3.2.1. The fitness measure
of an individual is taken as the inverse of the fuel (or energy) consumption
of the N vehicles while following their speed profiles. The flowchart of the
optimization process is shown in Fig. 3.4.

As in the case of the RMHC method used in Paper I, the generated speed
profiles from the standard GA used in Papers II, III, and VI must fulfill cer-
tain requirements, namely that (i) the instantaneous maximum speed must
never exceed the road’s speed limit, (ii) the average speed should always be
above a certain threshold, and (iii) the instantaneous minimum speed should
be above a certain user-defined threshold to ensure that the vehicle does not
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affect the traffic negatively (a condition that was not considered in Paper
I). Moreover, in the case of a platoon (Paper III), two additional constraints
were considered to ensure the safety and cohesion of the platoon: (iv) the
inter-vehicle distance was required to be larger than the safe distance defined
in Eq. (3.23) and (v) the inter-vehicle distance was prevented from exceeding
a threshold (here 40 m) at all time, ensuring cohesion. In contrast to the hard
constraints used in Paper I, soft constraints were applied in this case: If any
of the optimization constraints (except for the safety measure) described
above was violated, the fitness value was multiplied by a penalty term smaller
than 1. For instance, in a case where the instantaneous inter-vehicle distance
exceeded its maximum allowed value, the penalty term was calculated as
follows

pdi,i−1
(d) = e

−cd
(

di,i−1
dmax

−1
)2

, (3.28)

where di,i−1 is the maximum distance between the ith and the (i− 1)th vehi-
cle during the evaluation, cd is a constant, and dmax is the maximum allowed
inter-vehicle distance. Similar penalty terms were used for the other con-
straints.

In GA, after evaluating all the individuals in the population, the next
generation is generated as follows: First, individuals are selected using
tournament selection with probability of ptour (around 0.7 to 0.8) and tour-
nament size Stour (from 2 to 5). Thus, for each selection step, a tournament
with S randomly selected individuals is formed and then, with probability
ptour, the best individual is selected. If the best individual is not selected,
it is removed from the tournament and the process is repeated again with
the remaining S − 1 individuals, until either an individual is selected or a
single individual remains in the tournament (in which case that individual is
selected). The tournament selection step is carried out M times and the re-
sulting M/2 pairs of individuals are then subjected to single-point crossover
with probability pcross (around 0.7 to 0.9). If the crossover is not carried out,
(probability 1− pcross) the selected individuals are copied as they are. Once
M new individuals have been formed, they are all subjected to mutations
such that each gene is mutated with probability of pmut = prel/L, where prel

is referred to as the relative mutation rate. Thus, if prel = 1, there will be
one mutation per individual on average. The mutation is carried out either
as a real-number creep mutation (with probability pcreep) where the creep
rate is set to 10% of the full range, or is carried out as a full-range mutation
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with probability (1− pcreep). Finally, elitism is applied such that one copy of
the best individual overwrites the first individual in the newly formed popu-
lation. The process of decoding, evaluation, selection etc., is then repeated;
see also Fig. 3.4. The GA is terminated once a certain number of individu-
als have been evaluated, which is determined based on the desired average
speed and the length of the road profile. For example, for a road profile of 10
km length, the GA can evaluate just above 1000 individuals, on a standard
laptop.

3.2.3 Performance analysis

For the SPO method a GA was selected as the optimization method, despite
the fact that stochastic optimization methods (such as GAs) generally can-
not guarantee that an optimal solution will be found in finite time [30, 72].
While there are many optimization algorithms that do guarantee optimal-
ity, applying such algorithms in this case would require the problem to be
strongly simplified (e.g. linearized). With GAs, by contrast, no such problem
simplification is required.

There have been plenty of numerical studies devoted to assessing the
performance of GAs (see, e.g. [8, 10, 18, 21]), i.e. RQ3 in Sect. 1.3. Such
studies are generally carried out on benchmark functions for which the global
optimum (or optima) are known. Thus, in such cases, the GA can be run
for many times which allows one to measure its performance. However, this
approach is not applicable to practical applications in which the optimum is
not known, and where the size of the search space (in terms of the number
of possible variable settings that can be defined) is too large (or infinite if
the optimization variables take continuous values), making it impossible to
obtain the global optimum through a brute force search.

In order to make a brute force search possible, so as to find an opti-
mal solution against which the results of the GA can be compared, one can
discretize the optimization variables (while maintaining the full complexity
of the truck model and its evaluation). Discretizing the optimization vari-
ables makes it possible for a brute force search to find the global optimum
in the discretized version of the original problem. Thus, in a discretized n-
dimensional problem where m different discrete levels are defined for each
variable, the number of possible variable settings equals

ntotal = mn, (3.29)
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Figure 3.5: An example of a road profile (top panel), and a piecewise linear speed
profile used in analyzing the performance of the GA in an SPO problem (bottom
panel).

Such discretization of the search space requires two conditions to be met:
First of all, since ntotal grows very quickly with n and m, the number of
dimensions and levels cannot be large. Second, the objective function (fuel
or energy consumption minimization here) should ideally be continuously
differentiable, or at least vary sufficiently slowly so that the discretization
does not result in a significantly distorted version of the true search space;
see also Subsect. 5.5.1.

Assuming that these conditions are fulfilled, the benchmarking proceeds
as follows: First, a discrete search space with m levels for each of the n
variables is generated. Then, the objective function value for each of the mn

possible settings should be evaluated and stored in a process here referred to
as a brute force calculation. From this calculation, one would then also
obtain the global optimum. For benchmarking an optimization algorithm,
one should then carry out a large number of runs, storing the best objective
function value found in each run. Once these runs have been completed,
it is possible to analyze the performance of the optimization algorithm
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Figure 3.6: The distribution of average speeds for the ntotal = 43,046,721 possible
piecewise linear speed profiles for the case n = 8 and m = 9. The nkept = 3,897,389
profiles that fall within the desired speed range 80± 1 km/h are indicated with two
dashed lines.

by comparing the two frequency distributions of the objective value (one
from the brute force calculation and one from the optimization runs) by
measuring how likely it is for the optimization algorithm to find a solution
which is within p% of the optimum.

Turning now to the problem of speed profile optimization, in the SPO
framework the speed profiles are defined using continuous variables, either
as a (discrete) point list with continuous levels (Paper I) or as Bézier curves
(Papers II, III, and VI). Since the control points of a Bézier curve can be
varied in non-discrete manner, the number of possible speed profiles becomes
infinite. Thus, as was discussed above, the search space must be discretized
in order to analyze the performance of the GA. It is then possible (though
very time-consuming) to make a brute force run through all possible speed
profiles, computing the fuel consumption over each of these profiles. In Paper
IV, instead of splines, piecewise linear profiles were used. These, in turn, were
defined using discrete levels as illustrated in Fig. 3.5.

The piecewise linear speed profiles are modeled by defining n equidistant
points over a road profile such that the first point is at the start of the
road profile and the last point at the end. Next, from a set of m discrete
values, speed levels are assigned independently to each of the n points. Thus,
the total number of possible speed profiles (for a given road profile) equals
ntotal = mn as in Eq. (3.29) above. In the analysis considered in Paper IV,
the values used were n = 8 and m = 9.

Since the average speed of a vehicle must fulfill a certain requirement (see
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Subsect. 3.2.2), the piecewise linear speed profiles must have an average speed
whose value falls within a narrow range ∆v around the desired average speed
v̄. Here, the speed range was taken as 80± 1 km/h. Thus, for the purpose of
the brute force calculation, out of ntotal piecewise linear speed profiles only
those profiles (denoted by nkept) are kept whose average speed falls within
the predefined range. This procedure is illustrated in Fig. 3.6 which shows
the distribution of average speeds, along with two vertical lines that define
the subset of speed profiles whose average speed falls in the desired range.

Once the nkept profiles have been found, the brute force calculation can
be carried out. Thus, using the vehicle model described in Sect. 3.1, the
vehicle’s traversal over the road profile in question is simulated, and the
fuel (or energy) consumption is logged. At the end of these computationally
intensive calculations, the fuel consumption for every possible piecewise linear
speed profile (with the constraints defined above) will be available to serve
as a benchmark for the GA applied to the SPO problem.





Chapter 4
Parameter estimation

Access to accurate estimation of road grade and vehicle mass1 has become
essential in recent years due to the higher safety requirements for vehicles [23,
54, 100, 101] as well as the introduction and ongoing improvement of fuel-
efficient driving strategies for which accurate estimation of parameters such
as the vehicle mass and the slope of the road ahead is required. Moreover,
accurate estimation can improve the performance of other control systems
in a vehicle, such as regenerative braking systems [48], power management
systems [45], braking systems [101], etc. Furthermore, the mass of a fully
loaded truck, which stays fairly constant during driving, can be up to 400% of
an unloaded one [23]. Thus, considering that even a mild road grade can put
a serious load on the vehicle, accurate estimation of the vehicle mass becomes
very important for the vehicle’s safety systems such as stability control [17]
and anti-lock braking systems [100].

Simultaneous estimation of road grade and vehicle mass is a challeng-
ing task considering the time-varying nature of the road grade, compared to
the mass which stays rather constant during driving. The methods for esti-
mating road grade and vehicle mass are commonly divided into two general
categories: Sensor-based approaches and model-based approaches. In this
chapter, such estimation techniques will be reviewed, and then an alterna-
tive estimation method based on artificial neural networks (ANNs) will
be introduced and described (RQ4 in Sect. 1.3).

1In addition to these two fundamental parameters, estimation of other parameters such
as tire friction and axle loads, can also be relevant but will not be considered here.
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4.1 Sensor-based estimation

In sensor-based estimation methods, road grade and vehicle mass are es-
timated using dedicated sensors. Road grade can be estimated directly using
GPS receivers and inertial sensors. For example, in [9, 78] a road grade
estimation approach was proposed based on the ratio of the vertical speed
to the horizontal speed, both obtained through a GPS receiver. GPS-based
estimation methods require high precision sensors which are not commonly
available in production vehicles due to high cost. Moreover, estimates ob-
tained from these methods are not reliable (or even available) in areas with
poor signal reception (such as in tunnels or underground mines).

Other sensor-based approaches for road grade estimation use information
available from the accelerometer and vehicle speed sensors; considering that
the measured acceleration from the accelerometer is the sum of the acceler-
ation due to gravity and the vehicle’s longitudinal acceleration (obtained by
differentiating the wheel speed), the road grade can be estimated as [69, 82]

θ ≈ sin−1

(
aaccelerometer − d

dt
(vwheel)

g

)
, (4.1)

where aaccelerometer is the acceleration reading from the accelerometer, vwheel

is the vehicle’s speed obtained from the wheel speed, and g is the constant
of gravitational acceleration. Unlike GPS-based methods, these estimation
techniques are not affected by the GPS signal conditions. However, they
suffer from the signal drift overtime due to unknown sensor biases and oscil-
lation problems caused by the vehicle pitch motion. Filtering techniques can
be used to mitigate these problems and to improve the performance as was
shown in [47, 49]. The root mean square (RMS) error of the estimated road
grade using sensor-based methods is typically around 0.5 to 1 degrees.

The vehicle mass can be estimated either using a conventional parame-
ter estimation method (if the road grade is available) [9], or directly using
dedicated sensors such as inclination sensors, angle sensors, or pressure sen-
sors [53, 92]. For example, in modern trucks that are equipped with pneu-
matic and electronically controlled suspension systems, the vehicle mass can
be estimated directly using the air pressure, see e.g. [53]. The RMS error of
the estimated mass is typically within 2 to 5% of the actual value. These
methods, however, require high-quality sensors which are not always available
in production vehicles. Thus, there has been a growing interest in developing
model-based estimation approaches.
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4.2 Model-based estimation

Model-based methods used for estimating road grade and vehicle mass rely
on the longitudinal dynamics model of a vehicle, along with the signals avail-
able from the on-board sensors via the vehicle’s communication area network
(CAN) such as the vehicle’s speed and acceleration, engine torque, etc. Most
model-based approaches use filtering techniques such as Kalman filtering
methods, recursive least squares (RLS) methods, or a combination of
both.

Model-based methods are commonly used for simultaneous estimation of
the mass and the road grade [64, 84, 89, 94]. For example, in [89], an estima-
tor based on RLS with multiple forgetting factors was introduced whereas
in [84], a combination of the RLS algorithm and an extended Kalman filter
was used for estimating the parameters. In addition, these methods can be
used for single parameter estimation [79, 51]. For example, in [79] a road
grade estimation method based on Kalman filtering was introduced in which
the vehicle mass was assumed to be known known in advance.

The RMS error of the model-based approaches for road grade estimation is
typically within 0.2 to 0.8 degrees while the estimated mass is within 2 to 7%
of its actual value. These methods, however, require persistent excitation of
the input signals causing their performance to suffer depending on the driving
conditions and driver behavior. There have been some efforts to guarantee
the persistent excitation of the signals by, for example, actively controlling
the engine torque [94], or by including an anti-windup mechanism in the
estimator [5]. However, in many situations, a vehicle can coast downhill
without applying any engine torque, or drive within a narrow small range
of accelerations. In these situations, which occur quite often when using a
fuel-efficient driving strategy, the performance of the model-based methods
is generally negatively affected. Moreover, there are other driving situations,
such as during braking, in which the model-based approaches cannot provide
any estimations due to lack of a detailed model.

4.3 Estimation with artificial neural networks

As was mentioned in the previous sections, the methods considered so far
have several drawbacks. An alternative approach is to use a neural net-
work for estimating the road grade and vehicle mass. Even though such
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Figure 4.1: Road grade of the six generated road profiles used for generating the
training data set for Paper V.

approaches have been extensively used in other vehicle-related parameter
estimation problems for example involving the battery state-of-charge esti-
mation in electric vehicles, see e.g. [15, 34, 36, 52, 60], very little work has
been done to date on road grade and mass estimation.

In Paper V, in order to improve the performance and reliability of the
estimation, a simple feedforward neural network (FFNN) augmented by
a feedback mechanism was introduced for simultaneous estimation of the
road grade and vehicle mass for a (simulated) truck driving on highways.
In addition to providing estimates in all driving situations (such as during
braking), the neural network achieved better performance than the model-
based approaches, providing road grade estimates with RMS error of 0.10 to
0.14 degrees and mass estimates with RMS error of around 1% (relative to
the actual value).

4.3.1 Data sets

The data sets used for training and evaluating neural networks were generated
by simulating the motion of a truck following a speed profile over a number
of road profiles, using the truck model from Subsect. 3.1.1 and the simulation
procedure described in Subsect. 3.2.1. Moreover, the mass of the truck was
set to different values to provide enough data points for training.

The data sets used in Paper V were generated using the following pro-
cedure: First, a set of j = 6 synthetic road segments of 10 km length were
generated based on the characteristics of a typical Swedish highway. An ex-
ample of the slope variation over a set of generated synthetic roads is shown
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Figure 4.2: An example of a synthetic road profile (top panel) and a piecewise
linear speed profile (bottom panel) generated for neural network training.

in Fig. 4.1. Then, for each of the generated road profiles, a piecewise linear
speed profile (see Subsect. 3.2.3) was generated to mimic roughly a typical
driving sequence by specifying a set speed every 500 meters (corresponding
to a typical line-of-sight in highway driving). The set speeds were assigned
such that the average speed of the vehicle equaled a certain value (80 km/h
here) allowing the vehicle to vary its speed during the downhills and uphills,
thus emulating a typical driving sequence. An example of a synthetic road
and a piecewise linear speed profile is shown in Fig. 4.2. This procedure was
repeated for all the j = 6 synthetic roads and all the k = 8 mass values, cho-
sen from the set {20, 22, 24, 26, 28, 30, 32, 34} metric tonnes. Thus, a total of
n = j×k = 48 speed profiles were generated from which the following signals
were logged: (1) mass (m, metric tonnes), (2) road grade (α, degrees), (3)
longitudinal speed (v, m/s), (4) longitudinal acceleration (a, m/s2), and (5)
engine torque (Te, Nm).

4.3.2 Data pre-processing

Several data pre-processing steps were carried out for preparing the data
set for ANN training. First, the logged data from every road profile were
split into 10 data elements resulting in a total of 60 (i.e. 10× j) elements for
each mass value. Then, these 60 data elements were sorted based on their
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average road grade over the corresponding 1 km road sub-segment. Next, by
going through the 60 sorted elements, groups of six consecutive data elements
were formed. Finally, out of every group, five data elements were randomly
assigned to the training set and the remaining one was assigned to the
validation set. This procedure was repeated for every mass value resulting
in 400 data elements in the training set and 80 elements in the validation
set. This splitting procedure ensures that both the training and validation
sets contain elements of different range of road grades and mass values.

Once the data sets had been formed, all the signals (both in the training
and validation sets) were standardized using the following expression:

xi,standardized =
xi − x̄i
σi

(4.2)

where xi is the ith signal. x̄i and σi denote the average value and the standard
deviation of the ith signal, over the training set. With this procedure the
signals in the training set will have zero mean and unit variance. Note that
the standardization of the signals for validation set makes use of the mean
and standard deviation from the training set, in order to give a more realistic
measure of the network’s performance over previously unseen data.

4.3.3 Network architecture and training

In Paper V, the FFNN consisted of an input layer, two hidden layers, and
an output layer. A schematic illustration of the FFNN is shown in Fig. 4.3.
In total, 8 features (input signals) were fed to the FFNN. The first six
features were the standardized values of v, a and Te at both the current and
previous time step (single-step lag). For the purpose of the training, the last
two features used in the input layer were the lagged mass, m(t − 1), and
road grade, α(t − 1), but with β% added uniform noise. However, during
validation and testing, the previous mass and road grade features in the input
layer were replaced by the corresponding FFNN output from the previous
time step, denoted by m̂(t−1) and α̂(t−1) in Fig. 4.3. This simple feedback
mechanism allowed the FFNN to model the slowly varying nature of the road
grade variable as well as the almost constant mass of the vehicle.

In the hidden layers, rectified linear unit (ReLU) activation func-
tions were used, with the following form:
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Figure 4.3: A schematic illustration of the fully connected feedforward neural
network (FFNN) for estimating the vehicle’s mass and the road grade used in
Paper V. The input consists of the velocity, acceleration, and engine torque at
the current time step, along with their lagged realizations. During the training
phase, the mass and road grade at the previous time step with added uniform noise,
denoted m̃(t−1) and α̃(t−1), were fed to the FFNN. During the testing, however,
estimated values from the previous step, i.e. m̂(t − 1) and α̂(t − 1), were used.
The FFNN has two hidden layers with eight and four neurons respectively, and
with ReLU activation functions. The two output neurons have linear activation
functions.
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hi = f(xi) =

{
xi if xi > 0

0 if xi ≤ 0
(4.3)

where hi is the ith hidden unit’s output, xi =
∑n

j=1 Wjixj is the weighted sum
of the inputs to the same unit in the previous layer, Wji is the weight between
two connected units, and xj denotes the output from units in previous layer.
The activation function of the output layer was set to a linear function:

ok = f(uk) =
m∑

i=1

Wikhi (4.4)

where ok is the output of the kth output unit, Wik is the weight between the
ith hidden unit in the last hidden layer and the kth output unit, and hi is the
ith hidden unit’s output computed from Eq. (4.3).

The FFNN was trained using the Adam optimization algorithm [55] with
an initial learning rate of 0.0005, a batch size of 20, and using mean-squared-
error loss as the objective function with the L2 regularization method applied
to every layer during the training to reduce overfitting. Moreover, the FFNN
weights were initialized using the method introduced in [35].
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Discussion

In this chapter, the main results are presented and discussed. In the first
section, the results of using the SPO framework for reducing the fuel con-
sumption of single (conventional) trucks and platoons of trucks, as well as
reducing the energy consumption of a fully electric minibus are presented and
discussed (RQs 1 and 2). Next, in Sects. 5.2, 5.3, and 5.4, various aspects of
the SPO framework are discussed and compared to the methods commonly
used for fuel-efficient and energy-efficient driving (see Sects. 2.1 and 2.3).
Sect. 5.5 concerns the optimization methods used in SPO and investigates
their performance (RQ3). Finally, in Sects. 5.6, 5.7, and 5.8, the main results
of the ANN approach introduced for estimating road grade and vehicle mass
are presented and discussed (RQ4).

5.1 SPO results

As mentioned in Chapter 2, SPO-based methods were applied to both conven-
tional vehicles and electric vehicles in simulations as well as in experiments.
In this section, an overview of the results obtained by SPO (related to the
investigation of RQ1) is given for single vehicles (Papers II and VI) and for
platoons of trucks (Papers I and III). Moreover, some of the assumptions
made during the simulation and experimental studies (related to RQ2) as
well as some of the practical aspects of the SPO and P-SPO methods, are
discussed in some detail.
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Figure 5.1: Top panel: One of the ten optimized speed profiles generated from
the SPO method in Paper II. This speed profile was used when driving over the
corresponding road profile (shown in the bottom panel), both in the simulations
and in the experiments, shown in the bottom panel.

5.1.1 Single vehicles

Conventional trucks

In Paper II, the SPO method was used to generate fuel-efficient speed pro-
files for a single truck driving on 10 road profiles of 10 km length both in
simulations and in on-road experiments. The fuel consumption of the truck
was reduced by 11.5% (on average) in simulations and 10.2% (on average)
in experiments, relative to the case in which the truck followed a constant
speed profile using standard CC (see Tables I and II in Paper II). An example
of a road profile and its corresponding optimized speed profile is shown in
Figure 5.1.

The results obtained in Paper II showed that the fuel savings obtained
from SPO are transferable to the case of real trucks despite the simplicity
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of the vehicle model used in the simulations (see RQ2). The average differ-
ence between the truck’s speed in the simulations and in the experiments
was around 0.6 km/h, a value which is not large enough to justify using a
more complex longitudinal model in the simulations. While the differences
in fuel savings obtained in the simulations and in the experiments are small
in general (see Table I in Paper II), there are some exceptions. For example,
an important factor explaining the differences between the simulation results
and the experimental results is the (rare) inability of the truck to follow the
speed profile due to the imposed limits on the requested acceleration from
the truck’s PID controller that were slightly different for the real truck (see
Paper II) from the corresponding limits in the simulations. Furthermore,
there are two other, relatively minor, effects that were not modeled in the
simulation: First, the motion of the truck can sometimes be disrupted by
other traffic (see also Sect. 5.3 below). This happened (briefly) over two road
profiles in Paper II, namely profiles 1 and 9, and the corresponding results
were therefore excluded in the computation of the averages considering that
the main focus of the work in Paper II was on asserting the transferability
of the results from the simulation environment to the trucks. Second, as a
result of driving behind another vehicle, the aerodynamic forces acting on
the truck can be somewhat decreased. While this effect is generally much
smaller than the savings obtained by following the optimized speed profile
(see Sect. 5.3), it nevertheless leads to some differences in the fuel savings
obtained in the simulations and in the experiments.

Electric vehicles

In Paper VI, the SPO method was extended and tested (in simulations) for
a fully electric minibus operating on 10 synthetic short bus routes of 2 km
length. The synthetic bus routes were generated based on a bus route in
Kongsberg, Norway; see Fig. 5.2. In order to evaluate the performance of
the method, two case studies were considered, namely (i) a single round trip
of 4 km and (ii) continuous operation of the minibus until battery depletion.
The total energy consumption of the minibus was reduced by an average of
8.5% to 11.5% (see Table I in Paper VI) relative to the baseline case in which
the minibus drove at a constant speed between bus stops, except for brief
acceleration and deceleration phases; see Fig. 5.3 for an illustration of the
baseline case. In the second case study, the number of completed round trips
was increased by around 12% relative to the baseline case (see Table II in
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Figure 5.2: The bus route (generated using c©OpenStreetMap contributors 1)
considered within the Sohjoa Baltic project which is roughly 2 km long, with a total
of 4 stops and with small slope variations. The synthetic bus routes used in Paper
VI were generated based on this route.

Paper VI). In both case studies, the average speed of the minibus was set
to be either 10 or 15 km/h in order to comply with the regulations imposed
by the authorities for autonomous buses operating on the route considered
within the project2. However, even the higher average speed is on the lower
end of the realistic average speed range for a bus operating in an urban
environment [71]. Nevertheless, higher values of the average speed could be
used in principle (see also Paper II or III).

In both case studies considered in Paper VI, it was assumed that the
vehicle’s mass is known, including the weight of the passengers entering and
alighting from the minibus. Even though the mass of an empty vehicle can
be estimated with high accuracy (see Paper V), for the case of a minibus, the
weight of the passengers must also be considered. This can be done by com-
bining statistical data on the typical passenger weight with on-board sensors
measuring the number of passengers entering or exiting (such as the already

1https://www.openstreetmap.org/copyright
2The study presented in Paper VI was carried out in the framework of the Sohjoa Baltic

project; see www.sohjoabaltic.eu.
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Figure 5.3: Baseline speed profile example, with average speed of 10 km/h (used
in Paper VI) for an entire driving cycle (from start to end, and back again).

installed CCTV cameras in most public buses). A bank of speed profiles can
then be generated for a set of different total masses so that the vehicle can
switch between the profiles depending on its current mass. Alternatively, the
speed profile (for a given mass) could be generated remotely, on demand,
and then uploaded to the bus before it leaves the stop. However, such an
approach would require a faster computing resource (for example, a cloud-
based computing system) since generating an optimized speed profile on a
standard desktop computer might take too long (up to a few minutes).

5.1.2 Platoons

As mentioned in Subsect. 2.3.2, the SPO-based methods for truck platoon-
ing can significantly reduce the fuel consumption of the entire platoon. More
specifically, in Paper I, it was shown that the SPO+ACC combination re-
duced the fuel consumption of a homogeneous platoon of trucks by 15% on
average relative to the baseline case of CC+ACC over ten road profiles of 10
km length (see Table II in Paper I). For a heterogeneous platoon3, however,
considering that all vehicles are following the same speed profile using the
SPO+ACC approach, fuel savings could be sub-optimal. The main idea for
introducing the P-SPO method for platooning (Paper III) was indeed to al-
low the vehicles of a platoon to follow their own individually optimized speed
profiles to achieve higher fuel savings; see also Subsect. 2.3.2.

In Paper III, both homogeneous and heterogeneous platoons of two trucks

3In Paper III, the heterogeneity was limited to differences in the masses of the trucks.
However, heterogeneity can of course also refer to differences in the powertrains as well,
see also Sect. 5.4 below.
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were considered, as in many other works on platooning (see for example [1,
4, 13, 87]). The P-SPO method was applied to the platoons over 10 road
profiles of 10 km length, leading to fuel savings of around 15.8% relative
to CC+ACC. However, compared to SPO+ACC, the fuel savings of the
homogeneous platoon were improved by just 0.2 percentage point (see Table
I in Paper III). Even though the expected fuel savings for a homogeneous
platoon are the same using the either the SPO+ACC method or the P-
SPO method, there are several advantages using the P-SPO method. First
of all, no direct communication is required between the vehicles since they
follow their own speed profiles which have to be uploaded to the trucks when
the platoon is formed. In cases where such speed profiles are not available
for a given road, the optimization must be completed before forming the
platoon. In order to speed up the optimization, a database of speed profiles
for common vehicle masses could be generated so that the lead vehicle’s
speed profile can be made available directly. Then, one could either use
the SPO+ACC (which provides large fuel savings, albeit not as large as
those obtained with P-SPO), or run P-SPO starting from the available speed
profile. In cases where an optimized speed profile is not available for a given
mass, a speed profile can be generated by interpolating between the available
profiles. However, while such interpolation sometimes generates a suitable
speed profile (see the top panel of Fig. 5.4), this is not always the case, as
shown in the bottom panel of Fig. 5.4. Nevertheless, the interpolation can
provide a good starting point for the optimizer in SPO (and P-SPO) and
thus speed up the optimization.

A second advantage of the P-SPO method compared to SPO+ACC is that
with the P-SPO method, the vehicles are not required to follow a particular
spacing policy, which is beneficial in driving over steep uphill or downhill
segments of the road, situations in which maintaining a constant distance
will lead to unnecessarily large accelerations and decelerations. Moreover, in
the ACC function, the desired inter-vehicle distance was set to its absolute
allowed minimum value according to Eq. (3.23). However, while such a small
spacing does reduce the airdrag coefficient, it might not be realistic during
all phases of driving, due to potential failures in the electronic systems and
sensors which would put the safety of the platoon at risk. As was shown in the
Discussion section of Paper III, with a more realistic value for inter-vehicle
distance (15 meters for example) in the ACC function, the total fuel savings
obtained by SPO+ACC dropped by one percentage point, thus providing
further motivation for instead using P-SPO.
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Figure 5.4: Two examples of speed profiles generated by interpolating (for a
35-tonne truck) already optimized speed profiles (for a 30-tonne and a 40-tonne
truck). Top panel: An example of successful speed profile interpolation. In this
panel, the interpolated speed profile (gray curve) is similar to the optimized profile
generated by SPO (black curve) for the 35-tonne truck. Bottom panel: An example
of a case where the interpolated speed profile (gray curve) differs quite strongly from
the optimized speed profile generated by SPO (black curve).

The improvement made by the P-SPO method compared to the SPO +
ACC method is more noticeable in heterogeneous platoons, see Table II in
Paper III. For such platoons, the P-SPO method reduced the fuel consump-
tion of the platoon by 16.8 to 17.4% for different mass configurations, relative
to CC+ACC. This improvement can be attributed to two factors: With the
P-SPO method (i) the inter-vehicle distances are exploited more efficiently
by not requiring the vehicles to follow a specific spacing policy, and (ii) the
speed profiles are optimized independently while also considering the safety
of the entire platoon.
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5.2 SPO vs. MPC

As discussed in Sect. 2.3, the SPO-based methods for single vehicles, as well
as the SPO+ACC and P-SPO methods for platoons, achieve higher fuel and
energy savings compared to the MPC-based methods. Apart from larger
savings, the SPO-based methods have other advantages over MPC: First
of all, with SPO no online iterative re-calculation of the speed profiles is
needed. Instead, the optimized speed profiles are generated for the entire
stretch of road. However, regardless of the method used, the presence of
other traffic (further discussed in Sect. 5.3) may interfere with the vehicles’
ability to follow the speed profiles and therefore cause a platoon to lose its
coherence. In such situations, if MPC-based leader-follower methods are
used, the vehicles are most likely left with no speed trajectories to follow and
thus, there would be no further savings for the platoon once the disturbance
is gone. However, with the P-SPO method, since the vehicles have their own
optimized speed profile to follow (which is available a priori), the vehicles
can resume following their profiles (see Sect. 5.3).

Another advantage of using SPO is its capability of generating speed
profiles for longer horizons (i.e. for longer road sections) without having to
deal with high computational complexity; see below. This is in contrast to
MPC-based methods where larger horizon length leads to computationally
challenging optimization problems, even in offline settings [67]. One should
note that, regardless of the method used for generating speed profiles, the
horizon length must be selected in a way such that there is enough flexibility
for the speed of the vehicle to vary, while still maintaining the required
average speed.

The choice of optimization horizon length used here (10 km) is of course
somewhat arbitrary; other lengths could certainly have been considered.
However, that would raise the following question on algorithmic (run-time)
complexity: How would the optimization method perform as a function of
the horizon length? This was investigated in Paper III by randomly extract-
ing five road profiles (from the road data considered in Papers II and III)
for each of the four different profile lengths, denoted by λ, namely 5 km,
10 km, 15 km, and 20 km. Then, for each of the 5 × 4 = 20 road profiles,
an optimized speed profile was generated in a very long offline run (lasting
several days), so as to generate a benchmark speed profile with fuel efficiency
that is likely to be near-optimal (see also Subsect. 5.5.1). Next, for each of
the road profiles, a total of 30 runs were carried out with a running time
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Table 5.1: The average ratio (rλ) between the fuel consumption obtained in an
online run and that obtained in a long offline run, for four different road profile
lengths λ (5, 10, 15, and 20 km), normalized by the value obtained for the 10 km
case. The running time for the online runs were 3.5 minutes in the case of 5 km
road profiles, 7 minutes for the 10 km road profiles and so on.

Road profile length (λ) 5 10 15 20

rλ/r10 0.996 1.000 0.972 0.974

Table 5.2: The fuel savings obtained with SPO with different horizon lengths,
applied to the case of a single truck. The fuel savings are relative to the case of
CC with a set speed of 80 km/h.

Horizon length (km) 2 5 10 20 40 50

Fuel savings (%) 4.88 9.20 9.24 9.59 9.72 9.91

just below the time required to traverse the road profile in question at the
desired average speed (80 km/h here). These runs are referred to as online
runs. Specifically, for the 5 km road profiles, the running time was set to 3.5
minutes, whereas for the 10 km road profiles it was set to 7 minutes, etc. For
the 5× 30 = 150 runs for each road profile length λ, the ratios rλ = fon/foff

between the fuel consumption in the online runs and the offline runs were
computed. Then, averages were formed over each of the 150 runs for different
profile lengths, resulting in four values r̄5, r̄10, r̄15, and r̄20, which were nor-
malized by the ratio r̄10 (corresponding to the horizon length selected here).
These values are reported in Table 5.1, indicating that the results obtained
for longer profile lengths are slightly better, but that the difference is quite
small, showing that the performance of the SPO method is not very sensitive
to the horizon length. However the actual fuel savings obtained from the
online runs with durations specified as above, does improve with the horizon
length, as shown in Table 5.2.

In MPC-based approaches in which the vehicles are required to track the
generated speed trajectories in a precise manner, the methods often con-
trol the vehicle’s powertrain by calculating and planning the throttle angle
and the gear shifting. As mentioned in Subsect. 2.3.2, the computational effi-
ciency and fuel savings of MPC-based approaches were improved by adopting
multi-layer hierarchical control architectures. In these approaches, a speed
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trajectory is generated in the first layer via either online optimization or
offline optimization. Then, in the lower layers, the problem of tracking the
speed trajectory is handled. Even though the multi-layer control architecture
used in recent MPC-based methods improved their performances, it added
another layer of complexity to the optimization problem. By contrast, in
SPO, the vehicles are not required to track the speed profiles as precisely
since the speed profiles simply provide a reference speed for the vehicle to
follow. Thus, there is no need for using and implementing more advanced
control architectures in case of SPO.

Another advantage of using SPO-based methods is that no discretization
and linearization of the model is required, thus allowing the vehicles to op-
erate in a wider speed range. In contrast, in MPC-based approaches it is
required to discretize and (often) linearize the model during the optimiza-
tion process, to reduce the complexity of the problem. Thus, the vehicles are
forced to operate in a narrower speed range that, consequently, leads to lower
savings. In recent work based on the MPC framework, where a convex for-
mulation of the problem has been considered (see e.g. [43, 67]), larger speed
ranges and, therefore, larger fuel savings were obtained compared to common
MPC-based approaches. However, the reported savings are still below the
savings obtained using the SPO methods; see also the Discussion sections in
Paper II and III.

5.3 Handling of external traffic

One of the main assumptions made in the simulations, which is also common
in the literature (see, for example, [1, 22, 33, 87]), is that the vehicles are able
to follow their speed profiles without much interference from the surround-
ing traffic. There are, of course, situations in which the surrounding traffic
can disturb the motion of the vehicle, regardless of the fuel-efficient driving
strategy used. Fortunately, for the case of single trucks or platoons driving
on highways, such interference is rather rare since these vehicles are among
the slowest on a highway. In fact, during the experimental study carried
out in connection with Paper II, it was noted that only in two instances the
truck was unable to follow the speed profile due to interference from external
traffic. The interruptions lasted for 140 seconds in total, over more than 100
km of driving. Thus, for roughly 97% of the time, the vehicle was able to
follow its speed profile. Similarly, for the case of the autonomous minibuses



5.4. Heterogeneous platoons 53

considered in Paper VI, interference (beyond occasional pedestrians crossing
the street) was minimal since the buses had their own dedicated lane.

Since the SPO-based methods do not modify the speed profile during
driving (see Sect. 5.2), the vehicles can easily resume following their speed
profiles once an obstacle (for example another vehicle, or a pedestrian crossing
the road) is gone. Still, several runs were carried out to investigate how much
the savings are affected by such small disturbances from the surrounding
traffic. In these runs, for each 10 km road profile, a single disturbance was
introduced which lasted for 30 seconds of the 450 seconds total duration. The
disturbance was implemented by artificially placing a slower vehicle, whose
speed was randomly chosen in the interval [60, 70] km/h, in front of the
vehicle under consideration, thus forcing the vehicle to abandon its speed
profile and slow down to match the speed of the other vehicle. Once the
disturbance disappeared, the vehicle could resume following its speed profile.
In these runs, the average fuel savings dropped by 2 percentage points, from
around 12% to around 10%.

In the case of platooning, the external traffic can endanger the safety of
the platoon in cases where another vehicle cuts in between two vehicles. To
handle such cut-in situations in the P-SPO method, as soon as the distance
of a vehicle to its preceding vehicle drops below the safe distance defined
in Eq. (3.23), the vehicle’s ACC function will be activated to ensure that
the inter-vehicle distance remains above the safe limit. Once the disturbance
disappears, the vehicle will resume following its already available speed profile
still saving a significant amount of fuel or energy whether or not the platoon
remains coherent. In order to investigate how much fuel a vehicle could still
save, even after the disruption of the platoon, several reruns were made. In
these runs, the coefficient that quantified the air drag reduction, Eq. (3.8),
was set to zero to remove the air drag reduction effect of platooning. The
vehicles were still able to achieve around 85% of their maximum savings by
just following their speed profiles relative to the case where they were in a
platoon.

5.4 Heterogeneous platoons

In most platooning work to date, in which heterogeneous platoons have been
considered, the heterogeneity comes from the difference in the masses of the
vehicles [1, 4, 87]. However, there are other common types of heterogeneous
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Figure 5.5: Top panel: An optimized set of speed profiles for a heterogeneous
platoon of trucks equipped with different powertrains. The curves show the lead
vehicle’s speed profile (black) and the follower vehicle’s speed profile (gray). Bot-
tom panel: The inter-vehicle distance (solid line) between the two trucks and the
minimum allowed safe distance (dashed line) computed using Eq. (3.23).

platoons where the vehicles have different powertrains. Thus, the P-SPO
method was used to generate optimized speed profiles for a heterogeneous
platoon of two trucks, with identical masses but different powertrains, driving
on the 10 road profiles of 10 km length (as in Paper III). The fuel savings
obtained by the P-SPO method were about 18% (on average) relative to the
baseline case of CC+ACC. These results thus show another advantage of the
P-SPO method to the SPO+ACC. One of the optimized set of speed profiles
is shown in Fig. 5.5. It is clear from this figure that the speed profiles differ
much more than the speed profiles generated for the case of a heterogeneous
platoon where the vehicles have different masses instead (Figs. 3 and 4 in
Paper III). These cases show the importance of optimizing a speed profile
for each vehicle of a platoon rather than optimizing one profile for the entire
platoon.
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5.5 Optimization method

The optimization of the speed profiles has been carried out using two algo-
rithms, namely RMHC (Paper I) and a more conventional GA (Papers II,
III, and VI). The fuel savings obtained with both algorithms are quite similar
in the cases considered here. However, the standard GA has the advantage
of being parallelizable, using GPUs or multiple CPUs (or CPU cores), which
could be useful in online optimization. Nevertheless, both methods are ca-
pable of generating a sufficiently good speed profile for the upcoming road
section while driving on the current one.

The optimization variables defining the speed profiles were represented
either by a simple point list or by a composite Bézier curve. In Paper II,
it was shown that by modeling the speed profiles using the more compact
Bézier representation, the average fuel savings for a truck were increased
by 4 percentage points relative to the case where the simple point list was
used. For a 10 km road profile, using composite Bézier curves, the number
of optimization variables was reduced from 1000 to a range of 38 to 46, thus
significantly reducing the size of the search space.

In both the RMHC and GA approaches, the initial population consisted
of flat speed profiles corresponding to the case of driving using CC. Then, the
question arises whether or not using random initialization of the population
instead (as is common in stochastic optimization) would be a better strat-
egy. For the case of a single truck driving on five road profiles, several runs
were made in which the initial population consisted of randomly generated
speed profiles (within the range). The fuel savings obtained with the random
initialization of the population were about 13% on average, similar to those
obtained when using CC initialization of the profiles. A comparison is shown
in Fig. 5.6. As can be seen from the figure, the initialization affects neither
the final fuel consumption nor its convergence.

However, starting from the flat profile has a few advantages. For instance,
the flat initialization ensures that there is a solution that fulfills the require-
ments and constraints of the optimization problem (such as speed limits and
average speed at all times) which is useful in cases where for any reason,
the optimization must be terminated prematurely. Furthermore, random
initialization of the speed profiles in the case of platooning could hinder the
optimization progress since such profiles are likely to violate the safety con-
straints of the platoon and cause collisions. Additionally, from the brute
force calculation defined in Sect. 3.2.3 (see also in Paper IV), it was found
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Figure 5.6: Performance comparison between two initialization strategies for
the GA, namely, (i) initialization with flat speed profiles (black curves), and (ii)
initialization with random speed profiles (gray curves), for different road profiles.

that the fuel consumption corresponding to a CC profile is rather good, close
to the average of the distribution of the possible speed profiles that fulfill the
speed limits and average speed requirements; see also Fig 5.7 in which the
fuel consumption of the CC profiles is indicated by a red stripe.
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Table 5.3: For each of the five road profiles, this table shows the probability, over
100 runs with the standard GA, to obtain a fuel consumption value at most x %
from the theoretical optimum. The columns have x = 2 % (second column), x = 1
% (third column), and x = 0.5 % (fourth column).

Road profile p2.00 p1.00 p0.50

1 0.98 0.78 0.30

2 1.00 0.99 0.67

3 0.95 0.62 0.21

4 1.00 0.97 0.82

5 1.00 0.95 0.55

5.5.1 Performance analysis

In Paper IV, the approach described in Subsect. 3.2.3 was used to assess the
performance of the SPO method (RQ3) in the case of a single truck driving
on five road profiles. First, the brute force calculation was carried out over
the eligible speed profiles, denoted by nkept (see Subsect. 3.2.3), to form the
benchmark against which the performance of the GA was analyzed. Then,
for each of the five road profiles, 100 runs were made using the GA, resulting
in five distributions of fuel consumption values. In each run, the number of
evaluated individuals was set to 1000, so that they can all be evaluated com-
fortably within the time required to traverse a road profile (see also Sect. 3.4
in Paper IV). The resulting distributions were then compared with the dis-
tributions from the brute force calculation, the outcome of which is shown in
Fig. 5.7. From this figure, it can be seen that, in general, the distributions
of the fuel consumption values obtained by the GA (in orange) are rather
close to the theoretical optimum (indicated by a dashed line). A more de-
tailed comparison is given in Table 5.3, showing the probability of finding a
piecewise linear speed profile (for each road profile) whose fuel consumption
is within 2%, 1%, and 0.5% of the theoretical optimum, respectively. As
can be seen, the GA is almost always able to find values within 2% of the
optimum.

For the purpose of performance analysis, piecewise linear speed profiles
were used. An alternative approach would have been to use splines with
discrete positions for the control points. With such an arrangement, one could
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Figure 5.7: Fuel consumption distributions generated for the performance anal-
ysis. Two panels are shown for each road profile: The upper panel shows the dis-
tribution of fuel consumption values over nkept speed profiles (see Subsect. 3.2.3)
obtained from the brute force calculation. The red vertical line shows the fuel con-
sumption of the CC profile. The bottom panel shows the distribution (over the 100
runs) of the fuel consumption values obtained with the standard GA. The dashed
lines indicate the global minimum of the fuel consumption for the road profile in
question.
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still carry out the brute force calculation and the GA runs described above.
However, with the requirements on positional and derivative continuity of
the splines (see Subsect. 3.2.2), the total number of parameters required for
N splines equals 2N + 2. Thus, for a smilar search space size as was used in
the case of piecewise linear profiles, one could only have defined three splines
over the 10 km road profiles, a number which is much smaller than the 18-20
splines used in the papers, and it was considered to be too small.

While the performance analysis presented in Paper IV was carried out
using piecewise linear speed profiles, the best found profiles (see Fig. 3.5 for
an illustration) were similar to the spline profiles, in regards to the number
of local optima in the speed profile as well as their approximate locations.
Moreover, the average fuel savings obtained for the piecewise linear speed
profiles were 10.0%, whereas the average savings obtained for spline-based
profiles were 12.8%, using the same GA parameters. Therefore, while (as
expected) the spline-based speed profiles give better results, the piecewise
linear profiles are quite close in terms of performance.

Even though the method presented in Paper IV for analyzing the perfor-
mance of a GA (or any other population-based stochastic optimization algo-
rithm) is applicable to other optimization problems, the method has its lim-
itations related to the degree to which the discretized version of the problem
approximates the continuous one. Discretization of the variables obviously
leads to some information loss regarding the possible values of the objective
function. For example, if the objective function is discontinuous with many
sharp jumps, then the approach introduced here would not be suitable. How-
ever, if the objective function, denoted by f(x1, x2, . . . , xn), is continuously
differentiable, and if an upper bound ∇fmax can be found for its gradient,
then one can estimate an upper bound on the deviation between the maxi-
mum value for the discretized case, fdisc

max, and the maximum value of the con-
tinuous function, fmax. If the grid cell size (for discretization) is equal to ∆x
(and if it is the same in all n dimensions), then fmax ≤ fdisc

max +∇fmax

√
n∆x/2.

Of course, in many cases, it may not be possible to obtain an upper bound
on the gradient or to ascertain that the objective function is indeed continu-
ously differentiable. However, considering the absence of formal approaches
for benchmarking GAs (in general, real-world applications), the presented
method for performance analysis can be valuable as exemplified by the speed
profile optimization problem considered in Paper IV.
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Figure 5.8: Test data set II, involving the highway between Göteborg and Bor̊as.
The top panel shows the average performance of the 100 trained FFNNs in esti-
mating the vehicle mass, while the bottom panel shows their average performance
in estimating the road grade. In both panels, the actual value is indicated by red
curves, the average estimated values by dark blue curves, and the standard devia-
tion of the estimated values by light blue areas.

5.6 Mass and road grade estimation

The neural network architecture introduced in Subsect. 4.3.3 for vehicle mass
and road grade estimation (RQ4) was trained on the data set generated
using the procedure described in Subsect. 4.3.1. Considering the stochastic
nature of the optimization algorithm used for FFNN training, the estimated
parameters (the vehicle mass and road grade) will slightly differ between
runs. Thus, the FFNN was trained 100 times to form an average estimation
error and, additionally, to identify possible situations in which the estimation
is less reliable. For the training set, the average root mean square (RMS)
error of the road grade was 0.0455± 0.0382 degrees, while RMS error of the
vehicle mass was 432.9± 463.1 kg.

In Paper V, two additional test data sets were also considered for evalu-
ation of the 100 trained FFNNs. The first data set, referred to as Test data
set I, was generated using the procedure described in Subsect. 4.3.1, with six
10 km road segments (different from the ones used in the training set). Two
mass values were used for test data set I, namely 25 tonnes and 30 tonnes.
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The second test set, referred to as Test data set II was generated with road
segments of 10 km length taken from Paper II, where the vehicle mass value
was set to 30 tonnes. The average RMS errors of the road grade estimation
was around 0.10 degrees for test data set I, and 0.14 degrees for test data
set II, while the RMS error of the estimated vehicle mass was around 1%
(relative to the vehicle’s actual mass) for both test sets; see also Table I in
Paper V. The estimated road grades and the vehicle mass provided by the
FFNN for test data set II are shown in Fig. 5.8.

The piecewise speed profiles used when generating the training data set
were chosen to mimic roughly a typical human driving strategy aiming to
reduce the fuel consumption of a vehicle. To make sure that the performance
of the FFNN is not biased towards a specific driving style, the trained FFNNs
were applied to the case in which the vehicle maintains a constant speed using
standard CC. Thus, a synthetic road segment of 10 km length was generated,
with road grade within ±0.6 degrees (or ±1%, defined as flat, see [70]). The
average RMS error of the estimated road grade and the mass were 0.023
degrees and 303.7 kg (or 1% in relative mass), respectively. These results
illustrate the generalization capability of the trained FFNNs, considering
that such a driving sequence was not even included in the training phase.

5.7 ANN vs. other approaches

The performance of the FFNN in estimation compares favorably with that
obtained using the methods described in Sects. 4.1 and 4.2. However, a
direct comparison with model-based and sensor-based approaches on the level
of implementation is difficult to make, considering the unavailability of the
dedicated sensors used in the methods described in Sect. 4.1, and the lack
of details regarding the settings and parameters used in the model-based
approaches discussed in Sect. 4.2. Nevertheless, a comparison on the level
of results is possible, where it becomes evident that the results obtained
by FFNNs exceed those obtained using the model-based and sensor-based
methods; see the previous section and Chapter 4.

Another advantage of using neural network-based models is their reli-
ability in providing estimation during driving phases (such as braking or
driving through a tunnel) for which the other approaches cannot provide
any estimation. For example, in model-based methods, the estimation is
suspended during braking phases of driving since an accurate longitudinal
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Figure 5.9: Average change in fuel savings, indicated by the dark blue line,
for cases in which the vehicle follows an optimized speed profile generated for an
incorrect mass (due to estimation error) relative to the case where it follows an
optimized speed profile generated for the correct mass. The light blue areas indicate
the standard deviation of the change in fuel savings.

braking model is typically unavailable (see e.g. [64]). Moreover, the method
presented in Paper V provides accurate estimation, also, in situations where
the vehicle’s longitudinal acceleration is rather low (typically in the range
of -0.2 to 0.2 m/s2 (see Fig. 4 in Paper V). In these situations, which occur
quite often when driving fuel efficiently, the input signals are too weak and,
therefore, the model-based methods do not perform well or might even be
completely turned off due to lack of sufficient excitation (see e.g. [61]).

5.8 Effects of inaccurate estimation

In the SPO-based methods, and in other fuel-efficient driving strategies, it
is assumed that the vehicle parameters, such as its mass, rolling resistance
coefficient, and so on, are known with high accuracy. However, in practice,
these parameters are estimated, using various methods (such as the FFNN
approach introduced in Paper V) which could add a level of uncertainty to
the simulation results due to estimation errors. Therefore, to investigate the
effect of such errors on fuel savings, several runs were made in which the vehi-
cle followed an optimized speed profile generated with the estimated vehicle
mass (using various levels of estimation error, in the range of m̂ = m± 10%)
during the optimization process. The estimation errors represent either un-
derestimated or overestimated values of the vehicle mass. For each estimation
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error, the fuel savings as well as the change in fuel savings relative to the case
in which the mass was estimated without any error, were calculated. Then,
averages were formed over changes in fuel savings for each estimation error.
The results are shown in Fig. 5.9 where it can be seen that underestimation
of the mass slightly increases the fuel savings in most cases. However, though
not visible in Fig. 5.9, in certain cases underestimated mass values can lead
to significant reduction (by up to 80%) in fuel savings. Nevertheless, the av-
erage changes in fuel savings are rather small, typically less than 1 percentage
point relative to the case in which the mass was estimated correctly.





Chapter 6
Conclusions and future work

In this chapter, the main conclusions of the thesis are presented along with
some suggestions for future work.

6.1 Conclusions

The main conclusions of this work are as follows:

(i) The speed profile optimization (SPO) framework, for fuel-efficient or
energy-efficient driving, was introduced and tested both in simulations and
in experiments (RQ1). The SPO-based methods resulted in large savings,
namely an average fuel reduction of 11.5% for a single conventional truck
(Paper II), 7.5 to 12.6% average energy savings in electric vehicles (Paper
VI), and 15.8 to 17.4% average fuel savings for (homogeneous and hetero-
geneous) platoons of trucks (Papers I and III), relative to their respective
baseline methods.

(ii) In a study carried out both in simulations and on real roads, the perfor-
mance of SPO was evaluated on a single truck driving on a typical Swedish
highways. The fuel consumption of the truck was reduced by 11.5% (on
average) in the simulations and by 10.2% (on average) in the experiments.
The similarity of the obtained results, which is non-trivial, shows that the
simulation results are transferable to real trucks (RQ2); see Paper II.

(iii) The savings obtained using the SPO-based methods exceed, by a few
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percentage points, those obtained by commonly used methods for fuel-efficient
driving described in Chapter 2.

(iv) In an on-road experiment with a conventional truck, the SPO method
was compared with a common PCC approach for fuel-efficient driving, in
which the savings obtained by SPO surpassed those of the PCC by 3 per-
centage points (almost doubling the savings); see Paper II. In a simulation
study, the P-SPO method was compared with an MPC-based approach, and
it was shown that the P-SPO method achieved higher fuel savings by around
3 percentage points; see Paper III.

(v) The SPO-based methods perform slightly better when longer horizon
lengths are considered during the optimization. However, the run-time per-
formance is not very sensitive to the choice of the horizon length; see Sect. 5.2.

(vi) As for the optimality of the SPO solutions, the performance of the
GA was analyzed using a method introduced in Paper IV. It was shown
that the GA, with a restriction to piecewise linear speed profiles, was able
to find profiles whose corresponding fuel consumption are within 2% of the
theoretical optimum almost all the time (RQ3).

(vii) A feedforward neural network (FFNN) approach for estimating vehicle
mass and road grade was introduced, and tested in simulations (RQ4). The
presented FFNN provided road grade estimations with an average root mean
square (RMS) error of 0.10 to 0.14 degrees, as well as vehicle mass estimations
with an average RMS error of 1% (relative to the actual mass of the vehicle);
see Paper V.

(viii) Apart from providing more accurate estimations compared to the
model-based and sensor-based approaches described in Chapter 4, the FFNN
estimates are more reliable in driving situations (such as during braking
phases) in which the estimation is typically suspended or unavailable with
the other methods; see Sect. 5.7 and the discussion in Paper V.
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6.2 Suggestions for future work

In Paper II, the simulation results from the SPO method were validated in
real trucks. Similar studies would be relevant also for the platooning ap-
proach (P-SPO) and the SPO method for electric minibuses. For example,
considering the simple wind tunnel experiments used for modeling and quan-
tifying the platooning effect (Papers I and III), it would be interesting to
investigate how the results would differ with a more advanced aerodynamic
model (obtained via more detailed wind tunnel experiments).

On real roads and in the presence of other traffic, it is possible that
the motion of a vehicle is affected (though this is typically rather rare in
highway driving, as was noted during the on-road experiments in connection
with Paper II, and discussed in Sect. 5.3). Even though, with the SPO-based
methods, the vehicles are able to resume following their speed profiles once
the external disturbance is gone, the fuel savings will be affected. Thus,
it would be valuable to extend the small study described in Sect. 5.3 on
the effects of external traffic on fuel savings, to include a more detailed and
realistic traffic model. Such studies would help the responsible authorities
and organizations to evaluate the impact of fuel-efficient driving strategies
in more realistic scenarios, and thus to achieve the environmental goals set
by the EU. Moreover, these studies could help city planners to ensure that
the fuel-efficient driving strategies are utilized to their maximum potential.

Vehicle automation offers the potential for substantial reductions in fuel
and energy consumption and emissions by, for example, controlling the longi-
tudinal motion of a vehicle in a more efficient way. The methods considered
here can easily be adapted for automated vehicles (either conventional or
fully electric vehicles). However, these reductions are not assured since they
are not direct consequences of automation. In fact, vehicle automation could
increase vehicle usage by improving accessibility to a wider population (such
as senior adults). Therefore, the overall societal impact of vehicle automation
on fuel and energy consumption and emissions is rather unclear.

In the analysis carried out in [91], the estimated change in energy con-
sumption of heavy-duty vehicles could be between -10% (in the best-case sce-
nario) to 80% (in the worst-case scenario). In this analysis, electric vehicles
were not considered, a factor that could potentially decrease the emissions
by up to 70% [2]. However, the rather short travel-range on a single battery
charge for electric vehicles (especially heavy-duty vehicles) is a limiting fac-
tor. Thus, developing energy-efficient driving strategies that can offer longer
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Figure 6.1: Normalized distributions of the slope values in the training data
(blue curve) set and test data set II (red curve) used for training and evaluating
the FFNNs in Paper V.

travel-range on a single battery charge (as in Paper VI) is of great importance
for accelerating the integration of electric vehicles in the transport sector.

As shown here, and in many other studies, vehicle platooning has sev-
eral advantages including, but not limited to, increased fuel (or energy) effi-
ciency. There have been several studies on the formation and coordination
of platoons, e.g. [59, 90, 57, 93, 95, 99]. However, most of these studies are
concerned with how to form a platoon without considering whether or not
it is beneficial to do so. Thus, considering also that most of the fuel sav-
ings (for a vehicle) come from following an optimized speed profile (see the
last paragraph of Sect. 5.3), and that different goods have different logistic
requirements, it would be important to assess the benefits of forming and
joining a platoon in future studies.

The FFNN approach introduced here for vehicle mass and road grade
estimation achieved high performance during the tests. However, there are
a few situations where the estimated road grade from the FFNN is not very
accurate, for example when the magnitude of the actual road grade is large,
or in cases where the vehicle’s acceleration and engine torque vary fast. This
slight performance drop can be explained by the distribution of the road
grades in the training set, where 67% of the data points have road grade
values in the range of -0.5 to 0.5 degrees; see Fig. 6.1. Therefore, to improve
the performance of the FFNN in those situations, more instances of roads
with steeper slopes could be included in the training set, as could other driv-
ing styles (in addition to following the semi-efficient piecewise linear speed
profiles), thus providing more variability.



Chapter 7
Summary of included papers

This thesis consists of six papers which are concerned with the problems of
(i) fuel-efficient driving using speed profile optimization for vehicles equipped
with either internal combustion engines or electric motors, driving over roads
with varying topography and (ii) estimating the road grade and vehicle mass
for vehicles following an optimized speed profile.

7.1 Paper I

In this paper, the concept of speed profile optimization (SPO) for fuel-efficient
driving was introduced for truck platooning, where the lead vehicle followed
the generated optimized speed profile while the rest of the platoon followed
the lead vehicle using various algorithms such as a non-linear spring-damper
model and the standard adaptive cruise control (ACC). The SPO was im-
plemented using a simple stochastic optimization algorithm referred to as
the random mutation hill climbing (RMHC) method. The performance of
the SPO method, together with the vehicle-following algorithms, was tested
in simulations over 10 road profiles of 10 km length (note that the SPO
method can be applied to road profiles of any length, see Sect. 5.2). These
approaches were then compared to the baseline case of driving with a combi-
nation of standard cruise control (CC) for the lead vehicle and ACC for the
other vehicles. Relative to the baseline case, average fuel savings of around
15% for the entire platoon were achieved using the combination of SPO and
the vehicle-following algorithms. Moreover, the fuel savings of the lead vehi-
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cle were 15.8% (on average) compared to the case where the truck drove at
constant speed using CC.

7.2 Paper II

The main purpose of Paper II was to test the performance of the SPO
method, for a single truck, both in simulations and in experiments with
real trucks. In this paper, it was shown that the results from the simulations
are transferable to a real truck despite the simplicity of the truck model used
in the simulations. Moreover, with a more direct comparison between the
SPO method and the MPC-based methods (see Sect. 5.2), it was shown that
the SPO method’s performance exceeds that obtained with the MPC-based
methods. More specifically, the SPO method obtained 11% fuel savings,
compared to typical savings of 3 to 7% achieved with MPC-based methods
in cases where large variations of speed were allowed (similar to the range
used in SPO). Furthermore, in a more difficult setting with narrower speed
range, the SPO method outperformed a standard predictive cruise control
(PCC) by around 3 percentage points, over the exact same road and speed
range. Finally, in this paper, a more advanced genetic algorithm was used
(compared to the RMHC method used in Paper I), and the representations of
the speed and road profiles were improved by using composite Bézier curves
instead of simple point lists as was used in Paper I.

7.3 Paper III

In Paper III, a method for platooning based on SPO, referred to as pla-
tooning SPO (P-SPO) was introduced and evaluated, in simulations, both
for homogeneous and heterogeneous platoons of two trucks. In the latter
case, the heterogeneity consisted of the trucks having different masses. The
proposed P-SPO method was evaluated on 10 road profiles of 10 km length
resulting in average fuel savings of 15.8% for a homogeneous platoon, and
between 16.8% and 17.4% (on average) for a heterogeneous platoon, relative
to the case where the lead vehicle maintained a constant speed using CC and
the follower vehicle used the ACC function to control its distance to the lead
vehicle. Moreover, it was shown that the P-SPO method further improved
the fuel savings obtained using the SPO+ACC method introduced in Paper I,
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by up to 1.8 percentage points. This improvement was achieved by allowing
the trucks to follow their individually assigned optimized speed profiles. In
the P-SPO method, the fuel-efficient speed profiles were generated together,
while considering the safety of the platoon as a hard constraint during the
optimization. Furthermore, when compared to an MPC-based platooning
approach, the P-SPO method increased the fuel savings by around 3 per-
centage points when applied on identical roads. In addition to improving the
fuel savings of the platooning methods, the P-SPO method eliminates the
problem of controlling the inter-vehicle distance and avoids the complexity
of the multi-layer control architecture used in MPC-based approaches.

7.4 Paper IV

Paper IV presented a method for evaluating the performance of stochastic
optimization algorithms (in this case GAs), in situations where the global
optimum is unknown or cannot be computed, which is a common situation in
practical applications. The method involves discretization of the continuous
search space, which makes it possible to find the global optimum by brute
forcing through the entire discretized search space. The performance of an
optimization algorithm can then be assessed by comparing its best solutions
to the global optimum of the discretized problem. This procedure was applied
to the problem of speed profile optimization of trucks using GAs, in which
the optimization must be carried out under a time constraint. It was shown
that the GA was able to find near-optimal solutions for the considered cases
with the optimized speed profiles having objective function values within 2%
of the global optimum.

7.5 Paper V

In Paper V, an artificial neural network (ANN) approach was presented for
solving the problem of simultaneous estimation of road grade and vehicle
mass. The ANN was applied to the case of simulated trucks driving on
highways while following fuel-efficient speed profiles. It provided road grade
estimates with root mean square (RMS) error of 0.10 to 0.14 degrees, and
mass estimates with an average RMS error of 1% (relative to the vehicle’s
actual mass). The ANN was applied to two data sets, one with data ob-
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tained via simulating a truck driving on synthetic roads and one based on
real roads. Moreover, the estimates obtained from the ANN outperformed
those obtained with model-based approaches (such as Kalman filtering and
recursive least squares methods) whose RMS errors are around 0.2 degrees
for road grade estimates, and around 2% for mass. Moreover, in contrast to
model-based approaches which cannot be used in certain driving situations
(such as during braking), the ANN method can be used at all times.

7.6 Paper VI

In Paper VI, the SPO framework introduced in Paper I was extended to
the case of energy optimization of a fully electric autonomous minibus with
regenerative braking. The performance of the method was evaluated over
10 road profiles of 2 km length in two case studies, (i) optimizing the speed
profile for a round trip of 4 km driving in total and (ii) continuous simulation
of the electric bus until battery depletion, with mass variations representing
passengers entering and alighting. In case study I, the energy consumption of
the minibus was reduced by between 8.5% and 11.5% relative to the baseline
case in which it followed a constant speed with short acceleration and decel-
eration phases. In case study II, it was shown that, using the SPO method,
the minibus increased its total number of round trips by around 10% on a
single battery charge compared to the baseline case.
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