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ABSTRACT: The combination of two two-photon-induced processes in a Förster resonance energy transfer (FRET)-operated
photochromic fluorene-dithienylethene dyad lays the foundation for the observation of a quartic dependence of the fluorescence
signal on the excitation light intensity. While this photophysical behavior is predicted for a four-photon absorbing dye, the herein
proposed approach opens the way to use two-photon absorbing dyes, reaching the same performance. Hence, the spatial resolution
limit, being a critical parameter for applications in fluorescence imaging or data storage with common two-photon absorbing dyes, is
dramatically improved.

Multiphoton processes find extensive use in imaging
applications1−3 and data storage4 with specifically

designed organic chromophores. This preference is tightly
related to the nonlinear dependence of the absorption
probability on the excitation light intensity. For two-photon
absorption (2PA) a quadratic dependence applies,5−8 and for
higher-order multiphoton absorption cubic (3PA)9 or quartic
(4PA),10 dependencies are expected. The practical conse-
quence of this photophysical phenomenon translates into a
much higher density of excited chromophores in the focal
point of the exciting laser beam as compared to areas that are
out-of-focus. If fluorescence emission is used to monitor the
excited state, this translates into superior 3D spatial resolution,
for example in fluorescence microscopy. Noteworthy, there is a
dramatic increase in the spatial resolution with an increasing
number of simultaneous excitations; i.e., 3PA and 4PA are
superior to 2PA. However, on the downside the absorption
probability of 3PA and 4PA is dramatically decreased,
requiring very high laser intensities, and the excitation
wavelength would be shifted to longer than 1200 nm for
typical dyes with one-photon absorption at around 400 nm.
Few reports on 3PA and 4PA dyes9−16 and their occasional use
in bioimaging17−20 can be found in the literature. Even more
rarely, organic dyes21 or materials22 that feature 5PA are
described. However, the mentioned drawbacks widely limit
their generalized application from a technological point of
view, making imaging with 2PA dyes the most frequently
chosen approach.1,3

In this work we introduce a molecular design that builds on
2PA, but presenting the above-described advantages of a
nonlinear dependence beyond a 2PA system. The basic
approach relies on the structural and photophysical integra-
tion23,24 of a 2PA dye (a fluorene derivative, FL) with a
dithienylethene photoswitch (DTE) in a dyad; see Figure
1.25−27 Opposed to multiphotonically addressable DTE
switches that are electronically integrated in π-extended
architectures,28−31 the two chromophores are electronically
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Figure 1. Top: working principle of a photochromic dyad having a
DTE appended to a 2PA dye. Bottom: Structures of model
compounds.
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decoupled by implication of an insulating spacer. However, in
such architectures photophysical communication via electron
or energy transfer is possible.32−35 In our specific case Förster
resonance energy transfer (FRET), implying the colored closed
form DTEc but not the colorless open form DTEo, was
envisioned.36−38 As illustrated in Figure 1, on two-photon
excitation the emission of the FL chromophore is quenched by
a FRET process, which ultimately sensitizes the isomerization
of DTEc to its colorless form. In the latter the unquenched
fluorescence of the FL chromophore is observed on two-
photon excitation.
As follows from the nonlinear (quadratic) dependence of the

2PA probability on the excitation light intensity, the
combination39 of two two-photon-induced processes, i.e., (a)
FRET sensitized DTEc → DTEo isomerization and thereby
the generation of the emissive form of the dyad (FL-DTEo)
and (b) two-photon-excited fluorescence, should lead to a
quartic dependence for the first instances of the photochromic
conversion. On the other extreme, once all DTEc is converted
into DTEo, the “normal” quadratic dependence, arising from
two-photon-excited fluorescence, would apply.
The choice of the FL chromophore was motivated by its

favorable photophysical properties (see Table 1 and spectra in

the Supporting Information).40 In methanol the separate FL
model chromopore (FL-m, see structure in Figure 1) shows a
broad intramolecular charge-transfer fluorescence with a
maximum at 555 nm (Φf = 0.36, τf = 2.4 ns). The 2PA
spectrum features a maximum at 770 nm with a significant 2PA
cross section (σ2PA) of 156 GM. The 2PA spectrum essentially
coincides with the charge-transfer (one-photon) absorption
band of the chromophore, when the wavelength scale of the
former is divided by 2, i.e., λ2PA ≈ 2λ1PA. Importantly, the two-
photon-excited fluorescence spectrum is the same as observed
by one-photon excitation into the absorption band of the
chromophore (λabs,max = 378 nm), confirming that the same
excited state is involved in either process.
When integrated into the FL-DTE dyad (see Supporting

Information for details on the synthesis of the ring-open form;
the ring-closed form is generated in situ by UV-light
irradiation) the fluorene shows its fluorescence only when
the DTE is encountered in its open form; see Figure 2 and
Table 1. However, for the closed form a significant spectral
overlap (J = 1.54 × 1015 nm4 M−1 cm−1) between the FL
emission and the DTEc absorption (see data in Table 1) yields
a practically quantitative FRET process (ΦFRET ≈ 1); see

Supporting Information for details. The critical FRET radius
R0 was determined as 53 Å (see Supporting Information), far
larger than the modeled distance between the centers of the
two chromophores (R = 22 Å). For the colorless FL-DTEo the
experimental fluorescence quantum yield and lifetime are
identical to those of the model FL-m (Table 1), being
reasoned with the zero spectral overlap integral for this form.
This confirms the absence of electronic communication
between the FL excited state and the DTEo ground state.
After formation of FL-DTEc on irradiation with UV light (302
nm; Φo‑c = 0.50), a residual fluorescence (ca. 6% of that of FL-
DTEo) is observed, which, however, is attributed to the minor
content of the open form in the photostationary state (DTEc-
m/DTEo-m = 94/6; determined by 1H NMR spectroscopy for
the model DTE). Hence, in practical terms quantitative FRET
is operative for FL-DTEc, while no such pathway is observed
for FL-DTEo. Although photoinduced electron transfer from
FL to DTEc cannot be excluded, it is very unlikely that that
this process contributes significantly to the quenching (see
Supporting Information). The switching is reversed by shining
red light on the dyad (Φc‑o = 0.008), and 100% of the open
form is observed in the corresponding photostationary state.
Having established the FRET behavior of the dyad we

proceeded to obtain experimental proof for the two-photon-
excited processes in the FL-DTE dyad, i.e., FRET-induced ring
opening of FL-DTEc and fluorescence from FL-DTEo. The
2PA spectrum of FL-DTEo (Figure 2) coincides in shape and
cross section (λ2PA,max = 770 nm, σ2PA = 150 GM) with the one
of FL-m (see Supporting Information). The operation in the
two-photon regime is confirmed by the double logarithmic plot
of the fluorescence versus the laser intensity, yielding the
expected slope of 2 (see Supporting Information). As for FL-
m, the two-photon-excited fluorescence of FL-DTEo spectrally
coincides with the emission resulting from conventional one-
photon excitation (Figure 2). Importantly, starting with the
dyad in its closed nonfluorescent form (FL-DTEc) the
irradiation with 820 nm laser light yields the fast increase of

Table 1. Photophysical Key Data of FL-DTE, DTE-m, and
FL-m in Methanol

λabs,max
(nm)a ε (M−1cm−1)b

λf,max
(nm)c Φf

d
τf
e

(ns)

FL-DTEo 336 34 900 555 0.36 2.4
FL-DTEc 600 10 900 −f −f −f

DTEo-m 302 42 600 −g −g −g

DTEc-m 592 18 700 −g −g −g

FL-m 378 20 400 555 0.36 2.4
aLongest-wavelength absorption maximum. bMolar absorption
coefficient at λabs,max.

cFluorescence emission maximum. dFluor-
escence quantum yield; 15% error. eFluorescence lifetime, measured
by time-correlated single-photon counting; 5% error. fFL-DTEc is
nonfluorescent. Some residual fluorescence is observed due to the
presence of 6% FL-DTEo in the photostationary state. gNot
measured; essentially not fluorescent.

Figure 2. One-photon absorption (left) and fluorescence (right)
spectra of FL-DTEo (black solid lines); 10 μM in methanol. Note
that the absorption spectrum of FL-DTEo shows the FL band as a
shoulder at ca. 384 nm and the accordingly adapted 2PA spectrum
(red dashed line and red points) coincides spectrally with that feature.
The two-photon-excited fluorescence spectrum (black dashed line
and black points) resembles the conventional fluorescence spectrum
(black solid line).
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the FL fluorescence emission (see below). Noteworthy, at half
of this wavelength, i.e., 410 nm, the DTE photochrome shows
negligible absorption (zero for DTEo and <1000 M−1 cm−1 for
DTEc). Hence, it can be safely assumed that 2PA of the DTE
at the chosen excitation wavelength is at most minor, while the
FL features a significant cross section (86 GM at 820 nm).
Thus, the formation of the fluorescent FL-DTEo form by
direct two-photon-induced ring opening is unlikely and instead
the above proposed FRET-sensitized ring-opening isomer-
ization is operative.
The beforehand made observations lay the foundation for

the proof-of-principle experiment, which we expected to
confirm our initial assumption that the combination of two-
photon-induced processes yields a dependence of the
fluorescence intensity versus laser intensity that goes beyond
the “normal” quadratic relationship and which in theory should
approximate a quartic function. In Figure 3 the kinetics of the

buildup of the FL fluorescence on 820 nm light irradiation of
FL-DTEc at full and half laser intensity are shown. The time-
dependent ratio of the kinetics shows a quotient of 10 in the
first instances of the irradiation (ca. 1.5 s under the chosen
irradiation conditions). For a “pure” quartic dependence a
value of 16 (24) would be expected. The deviation from this
number can be modeled and led to the presence of already 6%
FL-DTEo in the initial solution, corresponding to the
experimental value observed for the photostationary state of
the open-to-closed photoisomerization (see Supporting

Information). At longer irradiation times, and with the build-
up of successively higher concentrations of the open
fluorescent form FL-DTEo, this quotient decays and
approaches a value of 4. Expectedly, this corresponds to the
sole two-photon-excited fluorescence of FL-DTEo. Note-
worthy, the fitting of the build-up kinetics (at full and half laser
intensity) yielded two rate components: a fast one, assigned to
the FRET-induced isomerization in the focal volume, and a
second slower one ascribed to diffusion of molecules out of the
focal volume of the excitation light beam. Interestingly, the
ratio of the rate constants of the fast components at different
laser intensities shows a value of 4.2, clearly corroborating the
two-photon nature of the isomerization (see Supporting
Information).
In summary, we propose an innovative approach toward dye

systems that enables the harnessing of a dramatically improved
dependence of the fluorescence signal on the excitation light
intensity. Conventional two-photon absorbing fluorophores, in
concordance with photophysical theory, yield a quadratic
dependence. By combining a 2PA dye with a photochromic
system that can be switched by two-photon-initiated FRET
and the resulting form of the dyad showing two-photon-excited
fluorescence, two 2PA processes are entangled. This would
lead effectively to a quartic dependence for a photochromic
system with quantitative (100%) conversion between the
isomeric forms. We have been able to approach this theoretical
limit, reaching a factor of 10 for comparing excitation with full
and half laser intensity (as opposed to solely 4 for exciting the
2PA dye alone). Noteworthy, in practical terms this still
outperforms a 3PA dye, for which a factor of 8 (23) is expected.
Hence, the presented approach enables success in overcoming
the photophysically imposed limitations of 2PA dyes, while
maintaining the technological benefits of working in the two-
photon excitation regime. Our structurally modular approach
(nonconjugative combination of the two functional units)
allows matching literally any 2PA dye with a FRET-efficient
photochromic system to achieve the herein described
phenomenon.

■ ASSOCIATED CONTENT

*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/jacs.0c07377.

Details on the synthesis of new compounds (FL-m and
FL-DTE), NMR spectroscopic data and copies of 1H
and 13C NMR spectra, HRMS data, details on DFT
calculations (including atomic coordinates of the
optimized FL-DTEc structure), description of photo-
physical/photochemical characterization procedures,
modeling of fluorescence response, considerations on
photoinduced electron transfer, and additional spectral
data for FL-m and DTE-m (PDF)

■ AUTHOR INFORMATION

Corresponding Authors
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(BIONAND), Parque Tecnoloǵico de Andalucıá, E-29590
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