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Abstract

We present a framework to analyze and verify programs containing loops by using a
first-order language of so-called extended expressions. This language can express both
functional and temporal properties of loops. We prove soundness and completeness of our
framework and use our approach to automate the tasks of partial correctness verification,
termination analysis and invariant generation. For doing so, we express the loop semantics
as a set of first-order properties over extended expressions and use theorem provers and/or
SMT solvers to reason about these properties. Our approach supports full first-order
reasoning, including proving program properties with alternation of quantifiers. Our work
is implemented in the tool QuIt and successfully evaluated on benchmarks coming from
software verification.

1 Introduction
One of the major challenges in automating the analysis and verification of programs comes
with the presence of loops. Reasoning about such programs requires inferring and proving
non-trivial properties that describe the loop behavior. Loop properties can be categorized into
two classes: (i) functional properties that describe the loop behavior on program states and
summarize, e.g., partial correctness properties of the loop, and (ii) temporal properties that
focus on the iterative behavior of the loop, in particular its termination. To analyze loops and
reason about their behavior, it is often useful to consider properties that blur the distinction
between those two categories, such as safety and liveness properties. While there has been
tremendous work on analyzing and verifying program loops, see e.g., [11, 16, 18, 19, 24, 26, 29],
traditional means to reason about imperative programs are still poorly equipped to deal with
both types of properties in a uniform manner. Complex functional properties are commonly
expressed as program assertions featuring quantifiers. For example, the program reverse given
in Figure 1 copies the elements of an array a to an array b, reversing their order. To specify
this behavior, we need to use a universally quantified property, e.g., the post-condition:

∀j (0 ≤ j < a.size⇒ b[j] ≈ a[a.size− 1− j])

In some cases, we even need to use properties with quantifier alternations to give precise program
specifications. The program find-max-up-to (also given in Figure 1) computes, for every
position of an array a, the maximum value stored in a up to that position, and stores that value
in b. One the properties that describe its specification is:

∀j∃k (0 ≤ j < a.size⇒ b[j] ≈ a[k])

These quantified properties can be verified using, e.g., Hoare logic. On the other hand, temporal
properties are best expressed in some form of temporal logic, which usually restricts the use
of quantifiers. Furthermore, most verification techniques require program annotations such as
invariants and termination measures to be provided by the programmer, which limits their
potential for automation.
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i := 0 ;
while i < a.size do

b[i] := [a.size− 1− i];
i := i+ 1 ;

end

i := 0;
m := 0;
while i < a.size do

if a[i] > a[m] then
m := i;

end
b[i] := a[m];
i := i+ 1;

end
(a) reverse (b) find-max-up-to

Figure 1: Motivating examples over arrays with first-order properties.

In this paper, we present a framework to verify properties that combine functional and
temporal aspects. The method is based on the first-order language of extended expressions,
which provides a rich way to express both temporal and functional loop properties, including
full quantification over loop iterations and program values. The semantics of a given loop can be
encoded as a formula in this language, thus providing an axiomatization for the set of properties
that hold for this loop (Section 3). Extended expressions are more expressive than program
assertions typically used in program analysis and verification: program assertions reason about
single program states, whereas extended expression correspond to properties over sequences of
states, i.e., program traces.

By expressing the loop semantics as a set of extended expressions, we reduce various appli-
cations of program analysis and verification to problems of first-order logic. In particular, we
show that partial correctness and termination properties of loops can naturally be expressed
as extended expressions. Similarly, the problem of invariant generation is a special instance of
first-order reasoning about extended expressions. Namely, by using consequence finding and
symbol elimination over extended expressions in first-order theorem proving we automatically
infer first-order loop invariants (Section 4).

Analyzing loops in our framework is thus reduced to the problem of reasoning about extended
expressions. This problem can be solved by automated reasoning engines, such as first-order
theorem provers and SMT solvers. We describe how encoding the loop semantics into extended
expressions can be optimized for these tools, in particular by limiting the need to perform
inductive reasoning and exploiting reasoning with both theories and quantifiers (Section 5).

To illustrate the practical application of our framework, we implemented our work in the
tool QuIt, which translates programs into extended expressions and uses automated reasoning
engines to prove these properties (Section 6). We evaluate our work on verification problems
taken from related works [6,14] as well as from the array manipulating program category of the
software verification benchmark suite SV-Comp [5]. For that, we used QuIt in conjunction with
the first-order prover Vampire [25] and the SMT solvers CVC4 [3] and Z3 [13]. We show that,
unlike existing methods, our approach supports reasoning about first-order loop properties with
arbitrary use of quantifiers. We support quantification over loop iterations and program values,
generating and proving loop properties in full first-order theories. By using our framework of
extended expression, we are able to prove the safety assertions of each example of Figure 1.
Contributions. Extended expressions were first introduced for invariant generation in [24]
and later used in [1] for proving partial correctness of programs. The work presented in this
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paper extends this line of work and brings the following contributions:

1. We formalize the semantics of the language of extended expressions;

2. We describe the axiomatization of the theory of extended expressions that hold for a given
loop and prove its completeness (up to completeness of the background theory);

3. We show how extended expressions can be used to express and verify functional and
temporal properties about programs, in particular partial correctness and termination;

4. We prove the soundness of using symbol elimination for invariant generation, based on
extended expressions and consequence finding in first-order theorem proving;

5. We experiment with different background theories, in particular arrays and natural num-
bers, and compare different provers on these encodings.

2 Preliminaries

2.1 First-order logic
We consider standard many-sorted first-order logic modulo a background theory. We denote
the theory with T and its signature with ΣT . We assume that ΣT includes sorts, equality ≈
over each sort and the interpreted functions and predicates of linear arithmetic 0, 1,+, <. For
example, in one set of our experiments, T is the combined theory of linear integer arithmetic and
arrays. We assume a given domain, and a mapping of the symbols in ΣT to this domain. Any
interpretation that respects that mapping is called a T -interpretation. Semantic consequence
under T is denoted A �T B, i.e., any T -interpretation that satisfies A satisfies B.

We call a closed first-order formula a sentence. The valuation of sentences is defined in
the usual way. In particular for the valuation of quantified sentences, we consider extensions of
interpretations to variables: given an interpretation I, we denote by I[x← d] the interpretation
that extends I by mapping the variable x to the domain value d. The sentence ∀x φ (resp.
∃x φ) is true in I if φ is true in I[x ← d] for any (resp. some) value d of the appropriate
domain.

2.2 Program semantics
Throughout this paper, we assume a given loop L = (C, π), where π is a program corresponding
to the loop body and C is a Boolean expression representing the loop condition. The finite set
of program locations1 occurring in π and C is denoted by Loc.

We do not consider a particular programming language for π. Instead, we only rely on
the denotational semantics of π, defined as a transition relation on program states. A state
is a mapping from program locations to values of the appropriate sort. The semantics of π
is described by the relation Sπ: for any pair of states (σ, σ′), the pair belongs to Sπ if the
execution of π in state σ can lead to state σ′. If π is a deterministic program, Sπ is a function,
but in general we do not assume this property. We require Sπ to be total, but this does not
limit our framework to loops with terminating bodies. If the loop body π is not guaranteed to
terminate, we can use a special state σ⊥ to represent non-terminating computations, with the
requirement that (σ⊥, σ) ∈ Sπ if and only if σ = σ⊥.

1We do not use the term “program variables”, in order to avoid confusion with variables occurring in formulas.
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Definition 1 (L-sequence). An L-sequence is an infinite sequence of states σ0, σ1, . . . such that
for any natural number i, (σi, σi+1) ∈ Sπ.

The set of L-sequences correspond to all possible executions of the loop L. A non-terminating
loop execution corresponds to an L-sequence in which the condition C is true in all states σi.
Terminating loop executions correspond to a prefix σ0, . . . , σk of an L-sequence such that the
condition C is true in the states σ0 to σk−1 and false in σk. The requirement on Sπ to be total
is necessary so that L-sequences only include infinite sequences (which is needed to provide a
full interpretation of the language of extended expressions, see Section 3.1).

In practice, for most languages, Sπ can easily be computed when π does not itself contain
loops. In the presence of nested loops, it is possible to rely on an over-approximation of the
actual semantics relation. If invariants are given for the nested loop, they can be used to
improve the accuracy of the approximation. This approach is sound in the sense that, for every
possible execution of the loop, there exists an L-sequence. However, in the rest of this paper,
we assume that Sπ is exact, and for concrete examples, we consider only non-nested loops.

2.3 Language of assertions

The central idea of our work is the use of a language of extended expressions in which formulas
can express properties of executions of the loop L, i.e., L-sequences. Extended expressions are
more expressive than the kind of assertions traditionally used in program verification: program
assertions express properties of a single program state, whereas extended expressions describe
sequences of states (that is, traces). For establishing a correspondence between extended ex-
pressions and assertions, we formally define a language for assertions, denoted by Lasrt.

The signature of the language Lasrt is ΣT ∪ Σasrt, where Σasrt is the set that includes a
constant symbol µl : τ for every location l in Loc, where τ is the sort corresponding to the
type of the location l.

Definition 2. Given a program state σ , the σ-interpretation is the unique interpretation I
for Lasrt such that:

1. I is a T -interpretation;

2. I(µl) = σ(l) for each program location l ∈ Loc.

If a sentence F is true in the σ-interpretation, we write �σ F . Using Hoare triple notation,
we write {P}π {Q} to denote that, for any state σ, if �σ P , then for any state σ′ such that
(σ, σ′) ∈ Sπ, �σ′ Q.

Definition 3. Lasrt is said to be expressive with respect to π if for every formula F in Lasrt,
there exists a sentence preπ(F ) with the following property: for states σ, if F is true in the
σ-interpretation (possibly extended to some variables), then, for all states σ′, preπ(F ) is true
in the (similarly extended) σ′-interpretation if and only if (σ′, σ) ∈ Sπ.

Remark 1. The above definition indicates that Lasrt can be used to express the weakest pre-
condition of π. It is not possible to prove this property without limiting π to specific pro-
gramming constructs and specifying the theory T , but in practice many assertion languages are
expressive. We note that, as in [30], we could define the expressivity of Lasrt by requiring the
existence of a strongest post-condition.
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3 Extended expressions

We now define the first-order language of extended expressions. The semantics of a program
can be expressed in this language and used further as an axiomatization for the set of valid
program properties.

3.1 Syntax and semantics

The language of extended expressions is denoted Lextd. Its signature is ΣT ∪ Σextd, where
Σextd includes, for every location l in Loc, a function symbol νl : N → τ , where τ is a sort
corresponding to the type of the location l. We call these symbols extended symbols and use
the notation ν(i)

l to denote the application of an extended symbol νl to a term i. The semantics
of Lextd is based on the possible executions of the loop L.

Definition 4. Given an infinite sequence of states σ̄ = σ0, σ1, . . . (that is not required to have
the properties of an L-sequence), the σ̄-interpretation is the unique interpretation I such that:

1. I is a T -interpretation;

2. I(νl) = fl for each location l ∈ Loc, where fl is a function such that for any i ∈ N,
fl(i) = σi(l).

If, for a sequence σ̄, a sentence F in Lextd is true under the σ̄-interpretation, we write �σ̄ F .
If for all L-sequences σ̄, we have �σ̄ F , then we say that F is L-valid, denoted �L F . Intuitively,
L-valid sentences are the properties that are true for all executions of L.

3.2 Relativised formulas

We now describe how to obtain a formula in Lextd corresponding to an assertion in Lasrt.

Definition 5 (Relativised formula). Given a (possibly open) formula F in Lasrt and a term t
of sort N, we define the relativised formula, denoted F (t), as the formula obtained by replacing
every occurrence of a symbol µl ∈ Lasrt from F by the term ν

(t)
l .

For example given a term i of sort N and a formula F = ∃x, µl ≈ 2 × x, the relativised
formula F (i) is ∃x, ν(i)

l ≈ 2 × x. The relativised formula is in Lextd, and the set of variables
occurring free in it is exactly the set of variables occurring free in F or in t.

Lemma 1 (Semantics of relativised formula). Let F be a formula in Lasrt, σ̄ an infinite
sequence of states, and m a natural number. Let I denote the σ̄-interpretation. The value of
F (t) under I[t← m] is identical (for any interpretation of the free variables) to the value of F
under the σm-interpretation.

Proof. By induction on the syntactic structure of F . For the base case, it is easy to check
that any term in F has the same interpretation as the corresponding term in the relativised
formula.

3.3 Axiomatization of Valid Loop Properties

Let us consider the theory of L-valid sentences, i.e. the set of sentences F ∈ Lextd such that
�L F . In order to axiomatize this theory, we need to encode in Lextd the semantics of π, and
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thus describe L-sequences. Provided that Lasrt is expressive with respect to π, the semantics
of the loop (ignoring its condition) can be described by the following axiom:

∀x̄l, i
(
S(i+1) ⇒ preπ(S)(i)

)
(StepL)

where S is the formula
∧
l µl ≈ xl, and x̄l is a set of distinct variables (one for each location

l ∈ Loc).
For example, let us consider the following loop:

while a 6= b do
if a > b then

a := a− b;
else

b := b− a;
end

end

The set of locations read or modified by the loop is {a, b}, therefore the formula S is
x ≈ µa ∧ y ≈ µb. Using a typical predicate transformer calculus, we can compute the weakest
pre-condition preπ(S) = (µa > µb ⇒ x ≈ µa−µb∧y ≈ µb)∧(¬µa > µb ⇒ x ≈ µa∧y ≈ µb−µa).
Therefore the axiom StepL for this particular loop is

∀x, y, i
(
x ≈ ν(i+1)

a ∧ y ≈ ν(i+1)
b ⇒

(
ν

(i)
a > ν

(i)
b ⇒ x ≈ ν(i)

a − ν(i)
b ∧ y ≈ ν

(i)
b

)
∧
(
¬ν(i)

a > ν
(i)
b ⇒ x ≈ ν(i)

a ∧ y ≈ ν(i)
b − ν

(i)
a

))
We see that StepL can equivalently be expressed without using variables for locations, in this
case:

∀i
(
ν

(i)
a > ν

(i)
b ⇒ ν

(i+1)
a ≈ ν(i)

a − ν(i)
b ∧ ν

(i+1)
b ≈ ν(i)

b

)
∧
(
¬ν(i)

a > ν
(i)
b ⇒ ν

(i+1)
a ≈ ν(i)

a ∧ ν(i+1)
b ≈ ν(i)

b − ν
(i)
a

)
This simplification is desirable in practice as it limits the number of quantifiers. We will however
consider the syntactic form presented above in order to keep the presentation simple.

Lemma 2 (Soundness). �L StepL.

Proof. Let σ̄ = σ0, σ1, . . . be an L-sequence and I the σ̄-interpretation, we show that StepL is
true in I.

Let m be a natural number and let d̄ be values of the domain corresponding to variables
x̄l. Let I ′ be the interpretation I[i ← m + 1, x̄l ← d̄]. If S(i+1) is false in I ′, the formula
S(i+1) ⇒ preπ(S)(i) is true in I ′. Otherwise, by Lemma 1, it must be the case that S is true
in the σm+1-interpretation (extended with the interpretation d̄ of the free variables x̄l). Since
(σm, σm+1) ∈ Sπ, we have that �σm

preπ(S), therefore preπ(S)(i) is true in I ′. The formula
StepL is true in I for any interpretation of its quantified variables.

Lemma 3 (Completeness). Let F be a sentence in Lextd such that �L F , then StepL �T F .

Proof. Let I be a T -interpretation that satisfies StepL. We define σ̄ = σ0, σ1, . . . to be the
infinite sequence of states such that for any number i and any program location l ∈ Loc,
σi(l) = fl(i), where fl is I(l). Clearly I is the σ̄-interpretation. Let us show that σ̄ is a
L-sequence.

6
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Let m be a number, and let d̄ denote the values of all the program locations l ∈ Loc in
state σm+1. Let I ′ be the interpretation I[i ← m, x̄l ← d̄]. By choice of d̄, �m+1 S with the
σm+1-interpretation extended with [x̄l ← d̄]. Thus by Lemma 1, S(i+1) is true in I ′. Since I ′
satisfies StepL, preπ(S)(i) is in particular true in I ′. By Lemma 1, we have �σm

preπ(S) (with
the same extension of the σm-interpretation as before). By definition of preπ(S), this implies
(σm, σm+1) ∈ Sπ, therefore σ̄ satisfies the definition of an L-sequence.

Since I is a σ̄-interpretation derived from an L-sequence, it must satisfy F .

Theorem 4 (L-validity). For any sentence F in Lextd, �L F if and only if StepL �T F .

Proof. One direction of the equivalence is given by Lemma 3. For the other direction, let σ̄ be
an L-sequence and I the σ̄-interpretation. By Lemma 2, I is a model of StepL. In addition, I
is a T -interpretation, therefore by the assumption it is also a model of F .

Remark 2. The theory of L-valid sentences is a superset of the theory T . Therefore in order for
that theory to be complete, T must be complete as well. Theorem 4 shows that this is indeed
a sufficient condition. In that sense, it can be seen as a result of relative completeness.

4 Applications of Extended Expressions

We now detail how applications of program analysis and verification can be expressed as prob-
lems over extended expressions. In particular, we show that proving partial correctness or
termination of programs can be reduced to proving properties of extended expressions. Fur-
ther, the task of invariant generation can be solved by using consequence finding and symbol
elimination in first-order theorem proving over extended expressions.

4.1 Verifying partial loop correctness

The partial correctness of the loop L with respect to a pre-condition P and a post-condition Q
(both sentences in Lasrt) and the loop condition C can be expressed as a sentence in Lextd:

∀n
(
P (0) ∧ ∀m

(
m < n⇒ C(m)

)
∧ ¬C(n)

)
⇒ Q(n) (Correct)

Lemma 5 (Partial correctness of the loop). If �L Correct, then for any state σ satisfying P ,
any terminating execution of the loop L starting in σ leads to a state that satisfies Q.

Proof. Let σ0, . . . , σk be a finite sequence of states corresponding to a terminating execution of
L, such that σ0 = σ. For any two consecutive states σi and σi+1 in the sequence, (σi, σi+1) ∈ Sπ.
Let σ̄ be an L-sequence such that σ0, . . . , σk is a prefix of σ̄, and I the σ̄-interpretation. By
the assumption, I is a model of Correct. Let I ′ be the interpretation I[n← k].

By �σ0
P and Lemma 1, we have that P (0) is true in I ′. By property of the finite execution

of the loop σ0, . . . , σk, the loop condition C is true in every state of the sequence except the
last. Therefore, �σk

¬C and �σi
C for any number i such that i < k. Using Lemma 1 we can

check that ∀m
(
m < n⇒ C(m)

)
and ¬C(n) are true in I ′. Consequently Q(n) is true in I ′, and

by Lemma 1, �σk
Q, that is, the final state of the execution satisfies Q.
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4.2 Termination, safety, liveness
Similarly, proving the termination of L under a pre-condition P can be reduced to checking the
L-validity of the sentence

P (0) ⇒ ∃n, ¬C(n) (Termin)

Lemma 6 (Termination of the loop). If �L Termin, then for any state σ satisfying P , any
execution of the loop L starting in σ terminates.

Proof. By contradiction let σ̄ be an L-sequence corresponding to a non-terminating execution
of L, i.e., all its states σi verify �σi C, and such that σ0 = σ. Let I be the σ̄-interpretation.
Since �σ0

P , by Lemma 1, P (0) is true in I, and since I is a model of Termin, it is in particular a
model of ∃n ¬C(n). By Lemma 1 there exists a number k such that �σk

¬C, which contradicts
our hypothesis.

Finally, it is possible to express safety and liveness properties as extended expressions. Given
an assertion A, the safety property with respect to A is

∀n, ¬A(n) (Safe)

and the liveness property
∀m∃n

(
m < n ∧A(n)

)
(Live)

It is easy to check that these formulas correspond to the expected semantic properties of the
loop, in a fashion similar to the proofs of lemmas 5 and 6.

4.3 Invariant generation via symbol elimination
Our framework provides a way to verify the correctness of an iterative program without the
explicit use of invariants. Nevertheless, it can be useful to obtain loop invariants for the program,
e.g., to gain some insight in the behavior of the loop or to verify it using another tool, which
typically requires invariants in the form of user annotations. Our framework can be used to
derive invariants as logical consequences of the extended expressions.

In program verification, the notion of invariant typically refers to inductive invariants, i.e.
assertions F such that {C ∧F}π {F}. In practice, interesting invariants are those that hold at
the start of the loop. Therefore in the presence of a pre-condition P , we wish to find invariants
F such that P �T F . Given these two requirements, we use the following definition:

Definition 6 (P -invariant). Given a sentence P in Lasrt, a sentence F in Lasrt is a P -invariant
if for any prefix σ0, . . . , σk of an L-sequence such that �σ0

P and �σi
C for any number i < k,

then any state σ of that prefix verifies �σ F .

Intuitively, if an execution of the loop L starts in a state satisfying P , every state of this
execution satisfies F , up to and including the final state if the loop terminates. It is easy
to show that an inductive invariant I is a P -invariant for any sentence P such that P �T I.
Conversely however, not all P -invariants F are inductive: there may exist a pair of states (σ, σ′)
that violates {C ∧ F}π {F}, but only if σ is not reachable in any L-sequence that starts with
a state satisfying P .

Lemma 7. Let P and F be sentences in Lasrt. Let Inv denote the sentence

∀n
(
P (0) ∧ ∀m

(
m < n⇒ C(m)

)
⇒ F (n)

)
(Inv)

If �L Inv, then F is a P -invariant.

8
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Proof. Let σ̄ be an L-sequence such that �σ0 P and k be a number such that �σi C, for any
number i < k. Let I be the σ̄ interpretation and j be a number such that j 6 k. Since I[n← j]
is a model of Inv, it is in particular a model of F (n). Therefore, by Lemma 1, �σj

F .

Lemma 7 provides a way to check that a given sentence is a P -invariant. More interestingly, it
also gives the basis of a procedure to generate P -invariants. This procedure was first introduced
in [24] but never proven sound until now. We outline it here again in order to provide a formal
argument for its soundness based on Lemma 7.

We have so far only considered reasoning about extended expressions. In order to generate
P -invariants, we must now turn our attention to assertions, i.e., formulas in Lasrt. Firstly, let
us observe that for any formula F in Lasrt and any term t of sort N, the relativised formula F (t)

is equivalent to
∧
l ν

(t)
l ≈ µl ⇒ F (regardless of the interpretation of the symbols µl). Thus Inv

is equivalent to

∀n

(
P (0) ∧ ∀m

(
m < n⇒ C(m)

)
∧
∧

l∈Loc

ν
(n)
l ≈ µl ⇒ F

)

Secondly, if F is a closed formula (in particular, not featuring any occurrence of the variable
n), Inv can be rewritten so that the quantifier is moved to the antecedent

∃n

(
P (0) ∧ ∀m

(
m < n⇒ C(m)

)
∧
∧

l∈Loc

ν
(n)
l ≈ µl

)
⇒ F

Let us denote by InvGen the sentence

∃n

(
P (0) ∧ ∀m

(
m < n⇒ C(m)

)
∧
∧

l∈Loc

ν
(n)
l ≈ µl

)
(InvGen)

By Theorem 4, the condition in Lemma 7 is equivalent to StepL ∪ InvGen �T F . In order to
generate P -invariants, it is therefore enough to find consequences (under theory T ) of StepL ∪
InvGen. Theorem provers based on saturation provide a natural way to perform consequence
finding. The sentences StepL and InvGen are clausified (in the process, a constant symbol n
corresponding to the existentially quantified variable is introduced by Skolemization) and the
resulting set of clauses is saturated: new clauses are repeatedly produced by (sound) inferences
between clauses of the set, and the conclusion added to the set. Typically this process is used
to derive the empty clause as part of a proof by contradiction. However in this case the initial
set of clauses has a model, therefore the process will only stop if no new non-redundant clauses
can be derived.

Any clause generated during saturation by a sound calculus is a logical consequence of the
original set of clauses. To be a P -invariant, it must only contain symbols from Lasrt. Unguided
consequence finding is unlikely to yield such formulas consistently, so we take advantage of the
reduction ordering of the superposition calculus to orient the search. Superposition is a family
of calculii parametrized by a reduction ordering on terms. This ordering is used to restrict the
number of possible inferences while preserving the refutational completeness of the calculus.
For example the superposition rule

l ≈ r ∨A B[l′] ∨ C
(A ∨B[r] ∨ C)θ

9
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which uses an equality literal l ≈ r to rewrite a term l′ (unifiable with l under a most general
unifier θ), is applied only if l 6> r according to the term ordering. By choosing the right
term ordering, we can ensure that symbol-eliminating inferences are favored by the prover. In
particular, terms featuring extended symbols should be larger than others. One possibility to
accomplish this is to choose a Knuth-Bendix term ordering in which extended symbols are given
a large weight and a large precedence.

The set of clauses resulting from the clausification of InvGen contains, for each program
location l, the unit clause ν(n)

l = µl, therefore any clause featuring a term unifiable with ν(n)
l

may be used in a symbol eliminating inference. Every time a new clause is generated that does
not feature an extended symbol, it may be reported as an invariant. Optionally, it may be
preferable to report such clauses only if they feature symbols from Σasrt. Clauses that do not
include such symbols are theory tautologies: they are technically invariant but not very useful
for program verification.

5 Automated Reasoning with Extended Expressions
As shown in Section 4, analyzing loops in our framework is reduced to the problem of reasoning
about extended expressions, which can be solved by automated reasoning engines, such as first-
order theorem provers and SMT solvers. In this section we describe how encodings of the loop
semantics into extended expressions can be optimized for these tools.

5.1 Avoiding induction
Theorem 4 provides a powerful way to reduce loop analysis and verification tasks to the problem
of proving that a certain extended expression is entailed by StepL. Unsurprisingly, induction
often plays a key role in these proofs. StepL essentially describes the semantics of one arbi-
trary iteration of the loop, whereas loop analysis is often concerned with proving properties of
arbitrary iterations, for example for all iterations or for a symbolic iteration in which the loop
condition is negated for the first time.

Extending automated theorem provers with inductive reasoning is a very challenging prob-
lem, with some preliminary yet still limited results in [12, 21, 34]. In order to avoid inductive
reasoning and thus make our framework more friendly to automated provers, we use a number
of so-called trace lemmas in addition to StepL. These lemmas correspond to valid properties of
the loop.

Definition 7. A trace lemma for a given loop is a sentence F such that StepL �T F .

For any set of trace lemmas LemL, it is obvious that StepL ∪LemL is T -equivalent to StepL.
Hence, StepL can be replaced by StepL∪LemL in loop analysis, in particular in the applications
described in Section 4. While this substitution makes no difference on a theoretical level, a
careful choice of LemL often leads to a dramatic improvement of the performance of automated
reasoning tools. The choice of trace lemmas to include in LemL depends on the theory T , the
class of programs targeted, and the type of properties that one wishes to analyze. Consider for
example the extended expression

∀i, j
(
i < j ⇒ ν

(i)
l 6 ν

(j)
l

)
Many loops include so-called monotonically increasing locations l for which this property would
hold. In addition, the property is likely to be useful in many verification tasks. On the other
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hand, proving that it is entailed by StepL requires reasoning by induction and hence automated
theorem provers are unlikely to discover it. For these reasons, the property is a good candidate
trace lemma: every time we perform a verification task, we will first check that the property
holds for each location in the given loop, and if so, add it to the set of trace lemmas that will
later be used in conjunction with StepL.

Proving that a given sentence F is a trace lemma of L is in general as difficult as proving
the L-validity of other extended expressions. Therefore, we rely on sound but incomplete
methods to derive trace lemmas of L. Currently in our work, the verification of trace lemmas
is accomplished by lightweight static analysis techniques. For example, the property described
above is added to the set of trace lemmas when all assignments to the location l are increments
by a positive constant. A more general method to check whether a sentence is a trace lemma
is to reduce it to a minimal condition on one iteration of the loop body π. The property given
in example holds if and only if {µl ≈ x}π {µl > x} for some variable x. Simple properties
such as these can often be verified automatically. This hints at a generic way to describe trace
lemmas and use them: (i) an extended expression F (often a property universally quantified
over iterations) is first proven to be equivalent to an easily verifiable condition on the loop body
in the form of a Hoare triple (ii) any time the condition is verified, F is included in LemL.

A complete description of the set of trace lemmas used in our work is given in an earlier pub-
lication [22]. In general, our trace lemmas fall under two categories: properties of monotonically
increasing or decreasing locations and properties of array updates.

5.2 Encoding of natural numbers

The theory T must include a sort of natural numbers, as well as the predicates and functions
of linear arithmetic that are needed to formulate the axiom StepL. However, not all automated
tools for reasoning in first-order logic support the theory of natural numbers. Therefore we
experimented with two encodings of natural numbers. Our first encoding uses integers, where
every axiom or goal is modified to ensure that only non-negative integers are considered. The
second encoding is based on a term algebra generated by two constructors, a constant zero and
a unary function succ. The predicate < is recursively axiomatized.

Both encodings will be handled differently by provers, and yield different proofs. Linear
arithmetic is a staple of reasoning modulo theory, and all SMT solvers include a solver for
it. For first-order theorem provers based on saturation, reasoning about linear arithmetic
is traditionally accomplished by including a (partial) axiomatization in the set of clauses to
saturate. Recently, these provers have taken advantage of SMT solvers to perform theory
reasoning on ground clauses [31] as well as non-ground clauses [32]. Regarding term algebras, the
SMT solvers Z3 and CVC4 both include theory solvers for the ground theory. The automated
theorem prover Vampire allows reasoning with term algebras, based on a conservative extension
of the theory complemented by dedicated inference rules [7, 23].

In addition, the two encodings allow the expression of different properties. The integer-
based encoding can more easily express relations between integer-valued program locations and
iteration numbers. For example, if a location l of the loop satisfies {µl ≈ x}π {µl ≈ x+ c} for
some variable x and some constant c then the following trace lemma can be used:

∀i
(

0 6 i⇒ ν
(i)
l ≈ ν

(0)
l + i× c

)
If natural numbers are encoded as algebraic terms, an equivalent trace lemma cannot be

expressed without extending the theory to include a function mapping natural numbers to

11



Loop Analysis by Quantification over Iterations Gleiss, Kovács and Robillard

integers. Instead we can use a weaker property, for example (if c 6= 0):

∀i, j
(
ν

(i)
l ≈ ν

(j)
l ⇒ i ≈ j

)
5.3 Representation of arrays
Unlike scalar program locations, the logical encoding of arrays is not straightforward. In earlier
approaches [24], we used the following functional representation of arrays. In Lasrt, arrays are
represented as functions from the sort of indices to the sort of values. In Lextd, arrays are
represented by binary functions: the first argument of the function takes an iteration and the
second an index, so that a(i, p) denotes the value stored at position p at the ith iteration.

Later experiments suggested that using a dedicated theory of arrays might make it easier
to prove properties of programs [9]. In this setting, we have one sort τ for each type of array,
equipped with operations store and select that represent writing to and reading from a array,
respectively. Array locations are then treated like other locations: in Lasrt they are represented
by constants of type τ , and in Lextd they are represented by a function from N to τ .

6 Experiments

6.1 Implementation
We implemented our work in the tool QuIt2. QuIt consists of 12000 lines of C++ code. Inputs
to QuIt are programs written in a guarded command language. In addition to the program
itself, the input also includes pre- and post-conditions (P and Q) in the form of first-order logic
assertions with unbounded quantification. QuIt converts this program to a first-order problem,
according to one of its three modes of operation:

• Verification mode, to prove partial program correctness (Section 4.1). In this setting, the
first-order problem produced by QuIt contains the hypothesis StepL, the trace lemmas
and theory axioms, and the goal Correct to be proven.

• Termination mode, to prove program termination (Section 4.2). In this case, QuIt gen-
erates a similar problem as in its verification mode, but with the goal Termin.

• Invariant generation mode, to generate invariants by symbol elimination (Section 4.3).
The problem produced contains the hypothesis InvGen, trace lemmas and theory axioms.
Extended symbols are marked for symbol elimination. No goal to be proven is provided,
since the aim is to produce consequences of properties of extended expressions, rather
than to find a proof.

QuIt is partially based on code from [22] that was previously integrated in the first-order
theorem prover Vampire. We made QuIt a standalone tool that can interact with various
provers, including both SMT solvers and first-order theorem provers. For that, QuIt outputs
problems in the TPTP syntax of first-order theorem provers [33], in particular in the TFF
input representation of many-sorted first-order logic. Further, QuIt also generates its output
in the SMT-LIB input syntax of SMT solvers [4]. As such, problems generated by QuIt in the
verification and termination modes can be passed to any tool that supports the TPTP and/or
SMT-LIB syntax. Currently, only Vampire is able to perform symbol elimination, which is
necessary to handle the invariant generation problems generated by QuIt.

2http://www.cse.chalmers.se/~simrob/downloads/quit.tar.gz
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Benchmark Vampire CVC4 Z3
A+T A+I F+T F+I A+T A+I F+T F+I A+T A+I F+T F+I

absolute-prop1 X X X X t t t t t t t t
absolute-prop2 X X t X t t t t t t t t
atleast-one-iteration X t X t t t t t X X X X
both-or-none X X X X t t t t t t t t
check-equal-set-flag t t t t t t t t t t t t
copy X X X X t t t t t t t t
copy-nonzero-prop1 t t t t t t t t t t t t
copy-nonzero-prop2 t t t t t t t t t t t t
copy-odd X X X X t t t t t t t t
copy-partial X X X X t t t t t t t t
copy-positive t t t t t t t t t t t t
copy-two-indices t X t X t t t t t t t t
find1-prop1 X t X t t t t t X X X X
find1-prop2 X t X t t t t t t t t t
find1-prop3 X X X X t t t t t t t t
find2-prop1 X X X X X t X t X X X X
find2-prop2 X X X X t t t t t X t t
find2-prop3 X X X X t t t t t X t t
find-max t t t t t t t t t t t t
find-max-up-to-prop1 t t t t t t t t t t t t
find-max-up-to-prop2 X X X X t t t t t t t t
find-max-from-second t t t t t t t t t t t t
find-min t t t t t t t t t t t t
find-min-up-to X X X X t t t t t t t t
find-sentinel X X X X t t t t t X t t
find-two-max-prop1 t t t t t t t t t t t t
find-two-max-prop2 t t t t t t t t t t t X
in-place-max t t t t t t t t t t t t
increment-by-one-prop1 X X X X t t t t t t t t
increment-by-one-prop2 X X t X t t t t t t t t
indexn-is-arraylength X X X X t t t t X X X X
init X X X X t t t t t t t t
init-conditionally-prop1 t t t t t t t t t t t t
init-conditionally-prop2 t t t t t t t t t t t t
init-even t X t X t t t t t X t t
init-non-constant X X X X t t t t t t t t
init-partial X X X X t t t t t X t t
init-previous-plus-one t t t t t t t t t t t X
max-prop1 X X X X t t t t t t t t
max-prop2 X X X X t t t t t t t t
merge-interleave-prop1 t X t X t t t t t t t t
merge-interleave-prop2 t t t t t t t t t t t t
palindrome t t t t t t t t t t t t
partition t t t t t t t t t t t t
partition-init t t t t t t t t t t t t
push-back-prop1 t X t X t t t t t X t X
push-back-prop2 t X t X t t t t t t t t
reverse X X X X t t t t t t t t
set-to-one X t X t t t t t X X X X
str-cpy X X X X t t t t t t t t
str-len X X X X t t t t t t t t
swap-prop1 t t t t t t t t t t t t
swap-prop2 t t t t t t t t t t t t
vector-addition X X X X t t t t t t t t
vector-subtraction X X X X t t t t t t t t
Total 35 1 13
Unique 24 0 2

Table 1: Results of theorems provers on QuIt-generated partial correctness problems. Success
is denoted by X and timeout by t.
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6.2 Experimental results
To evaluate our implementation, we collected benchmarks from the work of [14] and the SV-
Comp repository of software verification benchmarks [5]. We converted these examples manually
into our input-format. Since our approach establishes program correctness rather than searching
for counterexamples, we omitted benchmarks where assertions are violated. We also omitted
examples not supported by our framework due to language features such as multiple loops or
memory management. Lastly, we removed duplicate problems differing from other examples
only in the names of program locations. As a result, our benchmarks include 55 test cases, all
featuring arrays.

The assertion language used in these benchmarks does not allow quantification and relies
on loops to encode some quantified properties. For example, the program fragment:

for(int i = 0; i < a.length; + + i) {assert(F(a[i]))}

is used to encode the universal property ∀i.(0 ≤ i < a.length =⇒ F (a[i])). Using program code
to encode first-order properties is however restrictive, as only universally quantified properties
over finite domains can be naturally encoded. Since our framework supports unbounded quan-
tification in first-order properties, we used quantified assertions rather than loops to describe
the properties to verify.

To overcome the challenges of first-order reasoning with theories, quantifiers and induction
(see Section 5), in QuIt we used four different encodings of the first-order background theory:
(i) theory of arrays and term algebras (denoted by A+T), (ii) theory of arrays and linear integer
arithmetic (denoted by A+I), (iii) first-order theory of term algebras with uninterpreted func-
tions modeling arrays (denoted by F+T), and (iv) first-order theory linear of integer arithmetic
with uninterpreted functions modeling arrays (denoted by F+I). That is, natural numbers were
encoded either by term algebra axioms or by a sound, but incomplete axiomatization of linear
integer arithmetic. By applying these four encodings to our 55 examples, QuIt produced all
together 220 examples for each of its modes. To prove these examples, we interfaced QuIt
with three solvers, namely Vampire, CVC4 and Z3. We report on our experiments, which were
performed on an Intel Core i5 machine running at 2.9Ghz.
Proving partial correctness. For each choice of background theory encoding, we used QuIt
in the verification mode to construct a first-order formalization of partial correctness (which
took less than a second for any benchmark) and then ran each of the provers on the resulting
problem with a timeout of 60 seconds. Our results are summarized in Table 1. The first column
of this table names the benchmark name as in SV-Comp. For each solver, we then report on
its result on the problem generated by QuIt using one encoding of the background theory: X
denotes success (the prover proved the QuIt problem), while t denotes failure due to time-out.
Table 1 also reports on the total number of problems solved by each prover, as well as on the
number of problems that were uniquely solved by only one prover.

Table 1 shows that Vampire outperforms both SMT solvers on problems created by QuIt,
regardless of the options chosen. This likely stems from the use of many quantified properties
among the trace lemmas. Concerning the background theory and the choice of encoding, it is
difficult to identify a winning encoding. Each configuration was able to uniquely solve some
problems. This suggests that a portfolio approach might be advisable: the different possible
encodings of the problem can all be generated, and proof attempts may be conducted by different
provers, possibly in parallel. In order to test the usefulness of trace lemmas, we also ran the
partial correctness experiment without including any such lemmas, and instead only including
the hypothesis StepL. Only 3 programs could be proven correct in this setting, demonstrating
the crucial role of trace lemmas.

14



Loop Analysis by Quantification over Iterations Gleiss, Kovács and Robillard

Proving termination. We used QuIt in the termination mode to construct a first-order
encoding of program termination (which again took less than a second for any benchmark). We
ran each prover on the resulting problem with a timeout of 60 seconds. Some of the 55 exam-
ples differ only by their post-condition, which is irrelevant for termination, so our termination
benchmarks include 43 different programs. Vampire was able to prove termination of 42 of
these programs. The example for which termination could not be proven is find1, in which the
loop condition depends on the value of a location set in the loop body. Z3 managed to prove ter-
mination of 23 programs, whereas CVC4 did not solve any of the termination problems. While
our benchmarks do not yield challenging termination problems, they correspond to common
programming patterns. We believe that the ability to check their termination automatically, in
the same framework used to verify correctness, is of great practical use.
Generating invariants. To generate invariants, we interfaced QuIt only with Vampire since
it is currently the only solver able to perform symbol elimination over first-order properties.
Since the problem created in invariant generation mode is satisfiable, saturation may never
terminate, generating an infinite set of logical consequences. Therefore we ran Vampire with
a fixed time limit of 10 seconds on each QuIt problem. Our experiments show that Vampire
was able to find invariants for all the problems. Depending on the background theory encoding
used in the QuIt problem, Vampire generated between 411 and as many as 11000 clauses
within the time limit, each clause representing a loop invariant. The criteria used to evaluate
the quality of these invariants depends largely on the application. To verify partial correctness
with respect to pre- and post-conditions P and Q, a common task is to use invariants to prove
that Q holds after the execution of the loop (typically one would also need to prove that the
invariant is true under P ; this is guaranteed by our definition of P -invariants). In order to test
the quality of our generated invariants for this application, we used the following procedure: we
constructed a new first-order problem containing the generated invariants and the negation of
the loop condition as hypotheses, and added the post-condition as the goal to be proven. We
then ran Vampire on the resulting problems, by using it in portfolio mode with a time limit
of 60 seconds.

For those benchmarks where partial correctness can be proven from the invariants, we can
analyze the resulting proof in order to gather some interesting invariants. For example for
program reverse (Figure 1) the following invariant was generated and later used to prove
correctness:

∀x, (x < 0 ∨ ¬x < i ∨ b[(a.length− 1)− x] ≈ a[x]) .

We were able to prove partial correctness from the generated invariants for 21 programs in
total, a subset of the programs for which we were able to establish correctness using only
extended expressions. The list of these programs is given in Table 2. Programs for which the
post-condition could be proven by Vampire from the invariants generated are denoted by X.

7 Related work

Our definition of the theory of L-valid sentences is reminiscent of modal logics: we consider
sentences that are true across a certain class of interpretations (one interpretation of each
possible execution of L), akin to the multiple worlds used by Kripke semantics. However in
our setting there is no notion of accessibility between those different worlds. This allows the
use of first-order quantification, without the difficulties that are inherent in defining semantics
for first-order modal logic [15]. In addition, automated reasoning for modal logics remains a
difficult problem, despite efforts in that direction [28].
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Benchmark Vampire
A+T A+I F+T F+I

absolute-prop1 t t t t
absolute-prop2 t t t t
atleast-one-iteration t t t t
both-or-none t t t t
check-equal-set-flag t t t t
copy X X X X
copy-nonzero-prop1 t t t t
copy-nonzero-prop2 t t t t
copy-odd X X X X
copy-partial X X X X
copy-positive t t t t
copy-two-indices t t t X
find1-prop1 t t t t
find1-prop2 t t t t
find1-prop3 X X X X
find2-prop1 X X X X
find2-prop2 X X X X
find2-prop3 X X X X
find-max t t t t
find-max-from-second t t t t
find-max-up-to-prop1 t t t t
find-max-up-to-prop2 t t t t
find-min t t t t
find-min-up-to t t t t
find-sentinel t t t t
find-two-max-prop1 t t t t
find-two-max-prop2 t t t t
in-place-max t t t t
increment-by-one-prop1 X X X X
increment-by-one-prop2 t X t X
indexn-is-arraylength t X t X
init X X X X
init-conditionally-prop1 t t t t
init-conditionally-prop2 t t t t
init-even t t t t
init-non-constant X X t X
init-partial X X X X
init-previous-plus-one t t t t
max-prop1 t t t t
max-prop2 t t t t
merge-interleave-prop1 t X t X
merge-interleave-prop2 t t t t
palindrome t t t t
partition t t t t
partition-init t t t t
push-back-prop1 t X t t
push-back-prop2 t X t X
reverse t t t X
set-to-one t t t t
str-cpy X X X X
str-len X X X X
swap-prop1 t t t t
swap-prop2 t t t t
vector-addition t X t X
vector-subtraction X X X X

Total 14 20 13 21
Unique 0 0 0 2

Table 2: Results of Vampire on proving partial correctness using invariants generated by
symbol elimination.
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Analyzing loops and generating quantified invariants has been addressed by a large num-
ber of approaches. One line of research iteratively generates quantifier-free properties that are
generalized into universally quantified invariants. The work of [19] generates universally quan-
tified inductive invariants by iteratively inferring and strengthening candidate invariants. The
method uses SMT solving and is therefore restricted to first-order theories with a finite model
property. SMT-based invariant generation is also performed in [18] and universal invariants
with a bounded number of universal quantifiers are inferred. In [2], Craig interpolation over
bounded loop executions is used to generate candidate ground invariants and terms to be uni-
versally quantified in those invariants. Candidate invariants are also used in the formula slicing
approach of [20]. In [6], templates of quantified invariants are used to reduce the problem of
quantified invariant generation to computing quantifier-free invariants. Template invariants to-
gether with SMT-based constraint solving is also used in [27] to generate universal invariants.
Unlike these works, we are not limited to universal invariants but can infer first-order loop prop-
erties with alternations of quantifiers. First-order resolution has previously been used to derive
invariants with alternations of quantifiers in [8]. In this work, the derivation is goal-oriented,
whereas our technique does not require a post-condition to be given. The work of [29] relies
on Craig interpolation in superposition theorem proving to generate quantified invariants. The
approach is however restricted to universal invariants.

Our use of trace lemmas to guide the automation shares some similarity with template-
based approaches for invariant generation [10, 17]. Our work, however, does not require any
assumptions on the syntactic shape of the target invariants. Instead, assumptions are made
about semantic patterns that are often shared across many programs. The invariants are not
restricted to the shape of the trace lemmas, and the lemmas are discovered automatically,
without user guidance. Moreover, our approach can be used with arbitrary first-order theories,
even with theories that have no interpolation property and/or a finite axiomatization.

Another line of work focuses on the design of specialized abstract domains to represent
and infer universal properties by abstract interpretation. The fluid updates abstraction of [14]
creates pair-wise points-to relations over arrays and solves these constrains using SMT solving.
The array segmentation domain of [11] reasons about the contents of an array by dividing it
into consecutive subsets of array elements. These methods are very expressive, but limited to
their respective abstract domains, and to universal invariants. For example, the abstraction
domain used in [11] would not be able to handle reverse program from Figure 1. Rather
than performing a custom, domain-specific analysis, our work introduces a generic first-order
framework for deriving and proving first-order loop properties.

8 Conclusion

We described a logical framework for expressing and proving complex properties of loops. Our
framework is based on the first-order language of extended expressions and supports full first-
order quantification over both program values and iterations. We showed how to use our
work to automate various tasks of program analysis and verification, in particular by using
our approach in conjunction with automated reasoning techniques in first-order logic. For
future work, we plan to extend our programming model by considering various background
theories. For example, the theory of term algebras could be used to reason about programs with
recursive data structures. Another interesting question is whether our semantics of iterations
can be extended to support nested and consecutive loops in a way that remains tractable for
automated theorem provers.
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