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A random walk in reactor physics and neutron transport 

IMRE PÁZSIT 
Division of Subatomic and Plasma Physics, Nuclear Engineering Group 

Chalmers University of Technology SE-412 96 Göteborg, Sweden 

E-mail:imre@chalmers.se

The title of this paper alludes to two different meanings of “random”. First, the phrase “Random 
walk” refers to the fact that I selected, at random, a few topics which I myself found fascinating, 
surprising, and hence hopefully entertaining, in the hope that the reader will also find them 
entertaining. The phenomena that will be described and discussed here will reveal some 
unexpected features, which in some cases are puzzling or even counter-intuitive, and their 
explanation sometimes discloses commonly accepted misbeliefs or misunderstandings. I always 
found such cases very intriguing. Inevitably, such subjects do not constitute a continuous story, 
rather they are picked randomly, hence the first meaning of the phrase “random walk” in the title.  

Curiosities similar to the types that will be discussed in this note are usually published as a 
“Letter to the Editor” or a “Technical Note”, since they do not contain new research results. A few 
examples are given in Ref [1] (meaning of the flux) and Refs [2] - [4] (number of collisions until 
slowing down). The readers are encouraged to check up these letters or technical notes. Many are, 
in contrast to the present article, quite short, often only one page, hence the “output/input ratio” in 
intellectual entertainment is quite high. I can also recommend the readers to watch out for such 
short notes by themselves (although, sadly, the number of such notes seems to be decreasing).  

The second reason why the word “random” appears in the title is because the curious facts and 
phenomena which will be discussed here concern the randomness of neutron transport, manifesting 
itself in the fact that the number of neutrons in the system, or the number of detector counts during 
a time period, is a random number or random process (hence often referred to as neutron 
fluctuations or neutron noise). Random processes in general, whether about neutrons or other 
processes, have themselves fascinating and surprising properties. The subjects discussed in this 
small essay will hopefully also expedite a wider understanding of the properties and use of  neutron 
fluctuations in nuclear systems.  

With this introduction, I invite the reader to follow me on the random walk in the fascinating 
world of random particle transport.     

The ubiquity and importance of fluctuations 
Before turning to reactor physics and neutron fluctuations, a few words about randomness and 

fluctuations in general. The randomness treated in this essay is not related to the intrinsically 
stochastic description of quantum mechanics of individual particle processes, where everything 
can only be formulated in terms of the so-called wave function, which evolves deterministically, 
but which only has a probabilistic interpretation. We will deal with macroscopic classical systems, 
which usually have a very large number of freedom (such as a system of 1024 particles), where it 
is impossible to specify each variable with the desired accuracy, hence a statistical description is 
necessary. Thus, we cannot tell the outcome of the energy loss of neutrons in the laboratory system 
for an individual collision, only over a large number of collisions. In some cases quantum 
mechanics also plays a role, such as whether a reaction will be absorption or fission, and in the 
latter how many neutrons will be released. However, this fact will not require a quantum 
mechanical description, only the knowledge of the probabilities or probability distributions of the 
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corresponding processes and variables (such as the probability distribution of the number of 
neutrons in fission).  

Since most systems in the macroscopic (hence observable) world are many-body systems, with 
some exaggerations one can say that everything in the world is random - but often we do not “see” 
the randomness (the fluctuations are too small). The fluctuations are invisible because the 
measurement does not have the proper resolution. Once we have a sufficiently sensitive equipment, 
we can see that most everyday processes (such as the temperature in a well-controlled isolated 
room) shows tiny, but definite fluctuations around the mean value.  

The randomness, or the fluctuations, are often considered a nuisance, and this is expressed with 
the word “noise” which, in the world of acoustics, is surely a phenomenon that with the random 
distribution of its frequencies disturbs the enjoyment of music, consisting only of discrete 
frequencies. However, more often than not, through their rich information content, these 
fluctuations are very useful, and in biological processes even necessary for the existence of life.  

My favourite example to support this last statement is the heart rate variability, which is based 
on the ECG (electrocardiogram) signals that can be easily measured. For a healthy person, they 
look periodical, such as shown in Fig. 1. 

The heartbeats are characterized by the large peaks (denoted in medical praxis with the letter 
“R”), and the time between two beats, the “interbeat intervals” are denoted in the figure as RR1, 
RR2 etc. Of course, a large variation of the interbeat intervals is an indication of heart disorder, but 
the opposite is not true “ad infinitum”. Namely, one would be tempted to think that for a person at 
total rest, these intervals are perfectly equal, and the healthier a person is, the more constant the 
interbeat intervals are. The “perfectly healthy” person in this concept would be one whose RR 
interval periods are exactly the same. However, a doctor would say that such a person is already 
“dead”, because the interbeat intervals must fluctuate with all living organisms. In the terminology 
of a lay mind, one could say that the interbeat intervals must vary such that the heart is “training” 
to be able to adjust the heart’s beat to meet a change in the physical load (running, lifting weights 
etc.).  

Fig. 1 Heartbeat signals 
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Whatever the explanation of these fluctuations, plotting the RR intervals as a function of the 
beat number, one apparently gets a totally random process, seemingly without any structure (see 
the right hand side of Fig. 2).  

However, a wavelet analysis readily reveals a 
self-similar structure (see Fig. 3 to the right).  
The curve in the top is the variation of the 
interbeat signals, the lower two figures show 
their wavelet transforms, which indicates a self-
similar structure: the lowermost figure is an 
enlarged view of the area in the red box in the 
middle figure, which has the same structure as 
the whole of the middle figure. Such a self-
similar structure exhibits a fractal property, 
with a corresponding fractal dimension. 
Experience shows that for healthy persons, 
there is one single fractal dimension associated 
with the heartbeat data; however, the fractal 
structure of the interbeat intervals for persons 
with incipient heart failures changes, e.g. 
develops a bi-fractal structure, which can be 
used both for early detection of beginning heart 
failures, as well as to determine the type of heart 
failure. The analysis of hearbeat signals and 
their use of diagnostics is not very much unlike 
of that of analysing process data from nuclear 
reactors; so much so, that nuclear engineers 
have also been involved in analysis of medical 
data. At several nuclear engineering conferences there are sessions on analysis of medical signals. 
The present author has also endeavoured such a study [5].   

One can easily find some intuitive illustrations of the use of the rich information content of 
random processes. Take as an example birds flying in flocks. The paths of the individual birds 
look disordered and random, as they constantly change directions, partly to avoid collisions with 
each other. But they succeed in this exceptionally well – birds in a flock do not collide with each 
other unintentionally. As a contrast, it often happens that birds are killed by collisions with cars. 
On first sight this might feel surprising; a car usually moves on a straight line with constant speed, 

Fig.3 Interbeat intervals and their wavelet transform 

Fig. 2. Heartbeat signals (left) and a sequence of interbeat time intervals (right), showing a random behaviour 
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so one would think it is very easy to predict its trajectory and hence avoid it. But the bird brain 
does not work this way; the movement on a straight line with constant velocity has too little 
information. A “noisy” movement is much richer in information, and hence the brain of the birds 
processes it easier. Of course, in order to do that, they have to be able to interpret the random 
character of the movement; but apparently it better suits the brain to process a more complex 
information to make predictions than that of a simple process which is poor in information. 
Another example is the vision of a bird of prey hovering above the field. It will often discover a 
prey only when the prey is moving, even if very chaotically. A prey standing still often avoids 
being detected, because it sends too little information compared to that of a moving prey. 

In what follows, we will see how the more complex character of neutron chains in a multiplying 
medium (compared to the emission of neutrons from a radioactive source) help us to extract 
information about the system, once we know how to interpret the increased complexity of the 
underlying physical process. Soon we will also encounter a puzzling observation, which shows the 
beautiful depths of the phenomenon, and that of random processes in general.  

Family trees and neutron chains as branching processes 
Neutron chains and family trees have much in common what regards their random temporal 

evolution. They belong to the category that mathematicians call “branching processes”. The 
branching simply means that at random time points some events will occur, in which one entity 
will be converted into a random number or new entities (“descendants”). Here the probability of 
having at least two descendants must be larger than zero, otherwise the process in not branching. 
In this respect “branching” is synonymous with “multiplication”. On the other hand, the 
probability for a given event that there will be no descendants can also be larger than zero, which 
means that the process can also die out. For neutrons, the branching means fission, where one 
incoming neutron can induce the emission of a random number of new neutrons, zero also allowed 
(especially if absorption is also taken into account). In a family tree, the events are not associated 
with time, rather with generations, as will be later seen more in detail. The randomness of this 
process is expressed in the intuitively clear fact that even if the average of descendants is one, the 
process can still either grow or die out.  

This shows that the statistical properties of a branching process are more involved than the case 
of neutron emission from a radioactive source. This latter has Poisson statistics, which is 
“boringly” simple; it is defined by one single parameter, the emission intensity, and hence all 
statistical moments (mean, variance etc.) carry the same information (e.g. the variance is equal to 
the mean). If we know the mean value, we know everything about the statistics of the process. 
This is a consequence of the fact that the individual events (particle emissions) are independent.  

The reason for the more complicated, and hence more interesting statistics of a branching 
process is that its random variables, such as particle numbers, are not independent, rather they are 
correlated (their covariance, i.e. the joint probability of two variables minus the product of the 
probability of the two variables, is not zero). Here we already arrived to one of the rather subtle 
properties of branching processes which the reader might like to contemplate on. For a neutron 
chain, i.e. a collection of all generations started by a single neutron, in each individual fission, the 
number of new neutrons is independent of any other fissions in the system; and for the new 
neutrons born in fission, their fate is independent from each other in the sense that both the time 
for the next fission, as well as the number of new neutrons born in their respective fissions, are 
independent from each other. The independence of the development of the individual chains is 
actually a basic assumption which we set up for the equations that describe the evolution of the 
probability of the number of the neutrons in the system (so called master equations, or Chapman-
Kolmogorov equations). Yet, due to the fact that they were born simultaneously, will incur 
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temporal correlations in the number of the neutrons at different times in the system. This is 
obtained from the solution of the master equations, set up for the evolution of the probability.  

The apparent contradiction that the independence of the events in the process still leads to 
correlations in the numbers of the entities in the process might be illustrated qualitatively by stating 
that although two twins, born simultaneously, will die independently of each other, none of them 
will survive the other with a thousand years (or hundreds of generations). Their fates, although 
controlled by independent events, will strongly overlap. It is the common birth, the branching, 
which will create correlations between the number of descendants at a given time, despite that the 
individual life events are not affecting each other.  

The significance of the correlations in the statistics of random processes, in comparison with 
that of the independent processes, obeying a pure Poisson process, can be described as follows. 
Positively correlated processes, i.e. when the presence of one entity indicates the increased 
likelihood of the presence of another entity (such as in a family tree or a neutron chain), have 
“over-Poisson” statistics, which simply means that the variance is larger than the mean (the relative 
variance is larger than unity). Random processes that are subject to a conservation law, have the 
property that the presence of one entity excludes or diminishes the probability of the presence of 
another entity, show negative correlations. Such processes have a sub-Poisson variance, i.e. the 
variance is smaller than the mean.  

With this introduction we will now explore some properties of the branching processes by the 
story of the mathematical treatment of the extinction of family lines.  

The extinction of family names 
The question of the extinction of the family names dates back to the early 19th century and is 

associated with the Reverend Henry William Watson, clergyman, mathematician and alpinist, and 
the mathematician Francis Galton. The story is very entertainingly described by D. G. Kendall in 
an essay presented at the 100th anniversary of the London Mathematical Society [6], as well as in 
the book of T. E. Harris [7]. Galton became interested in the observation by a certain M. Alphonse 
De Candolle (1806-1893) regarding the decay of famous families, “men of note”: peers, judges, 
and the like. De Candolle put forth the hypothesis, or question, whether the extinction of the family 
names of such noble families is caused by the fact that “a rise in physical comfort and intellectual 
capacity is necessarily accompanied by diminution of fertility”.  

Galton did not like this conclusion (as I guess most of us having a profession requiring a certain 
intellectual capacity would not like either) and asked the help of Watson who formulated the 
problem in mathematical terms and gave a solution. Before getting to this, I have to attach the 
remark that some aspects of the formulation and interpretation of the problem reflect the standards 
of society as it was then, with a very different view on gender equality as it is today. For instance, 
the extinction of the family names is purely associated with the male line; an assumption that is 
not valid any longer.  

A simplified version of Watson’s statement of the problem is then as follows: 
“A large nation, of whom we will only concern ourselves with the adult males, N in number, 

and who each bear separate surnames, colonise a district. Their law of population is such that, in 
each generation, 𝑝" per cent of the adult males have no male children who reach adult life; 𝑝# have 
one such male child; 𝑝$ have two; and so on. Find (1) what proportion of the surnames will have 
become extinct after r generations; and (2) how many instances there will be of the same surname 
being held by m persons.” (An answer by Kendall, with an interesting side-line, will be given 
later). 
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A simpler task, which Watson solved, is that of the extinction probability q. That is, starting 
with one family, what is the probability, that when r goes to infinity, the family becomes extinct? 

Instead of giving Watson’s solution, which is somewhat complicated, we will quote here a 
simpler one, which was provided by Agner Krarup Erlang in 1929. He wrote down what we today 
would call a backward type master equation for the extinction probability q. He argued that this 
probability is equal to the probabilities of the mutually exclusive events that: either there will be 
no males in the first generation (with probability 𝑝"); or there will be one male descendant with 
probability 𝑝#, which then has to die out (with the same extinction probability q that we are looking 
for); or there will be two male descendants with probability 𝑝$, which then both have to die out; 
since they die out independently, this probability is equal to 𝑞$; and so on. This can be written as  

𝑞 = 𝑝" +	𝑝#𝑞 + 𝑝$	𝑞$ + ⋯ =*𝑝+	𝑞+																																									(1)
/

+0"

 

The right hand side of this equation is actually the definition of the generation function of the 
probability distribution 𝑝+. The generating function 𝑔(𝑧) of a discrete probability distribution 𝑝+ 
is a function of the continuous variable z, which is defined as  

𝑔(𝑧) = *𝑝+	𝑧+																																																															(2)				
/

+0"

 

The generating function can be interpreted as a transform of the discrete probability distribution 
𝑝+ into the continuous function 𝑔(𝑧).	All generating functions have the property of 𝑔(1) = 1, 
which can be easily confirmed from Eq. (2). Further, from the generating function, the moments 
of the probability distribution can be easily obtained. For instance, the first moment (expectation) 
is obtained as  

〈𝑛〉 ≡ 𝜈 = *𝑛	𝑝+ = 𝑔:(𝑧)|<0#																																																			(3)
/

+0"

 

With the concept of the generating function, the extinction equation, Eq. (1), can be written as 

𝑞 = 𝑔(𝑞) (4) 

This is a transcendental equation, since 𝑔(𝑞) is a polynomial in q, whose order is equal to the 
maximum number of descendants which have a non-zero probability. However, a qualitative 
solution, which will actually give an exact quantitative solution with a graphical interpretation, 
shown in Fig. 4. The straight line (orange) at 45° represents the left hand side of Eq. (4), and the 
curve (blue) represents the right hand side of (4). The solution is the q vale were the two lines 
intersect. Here we note that 𝑔(𝑞) is always a convex function, since all coefficients in its Taylor 
series are positive (they are the probabilities 𝑝+). Since 𝑔(1) = 1, it follows that   𝑞 = 1 (extinction 
with 100% certainty) is always a solution of the extinction equation. Interestingly, Watson believed 
(erroneously) that this is the only solution, i.e. all families will always die out. We will see that 
this is not always the case, and is valid only to subcritical or critical processes. 

Assuming that   𝑔(0) = 𝑝" > 0 (otherwise the process never could die out), as the graphical 
illustration on Fig. 4 shows, there are two distinct cases. As long as 𝑔:(𝑧)|<0# 		= 	𝜈 ≤ 1, 𝜈 being 
the average number of male descendants (left hand side of the figure), the only root of the 
extinction equation (4) is 𝑞 = 1, that is the process (the family line) will die out with 100% 
certainty. If 𝜈 > 1, i.e. the average number of male descendants is larger than unity, then the 
extinction equation has two roots,  (right hand side of the Figure); one is less than unity (𝑞 < 1), 

                       炉物理の研究　第72号 (2020年3月)



-7-

the other is the known solution 𝑞 = 1. In this latter case, the relevant solution is the smaller root, 
𝑞 < 1, i.e. the family will not die out with 100% certainty. (The readers who are curious of the 
proof why 𝑞 < 1	 is the “relevant root”, can find the answer in a recent note (Ref. [8]). This is the 
root which Watson overlooked.  

The extinction and multiplication of neutron chains in a critical reactor 
At this point we switch from families to neutrons and interpret the above in terms of neutron 

chains. The only change is that the male descendants will be replaced by neutrons. The above 
results say that in a multiplying medium, for 𝜈 ≤ 1, i.e. subcritical and critical systems, a neutron 
chain started by a single neutron will die out with 100% certainty, whereas for supercritical 
systems (𝜈 ≥ 1), the probability that the chain will die out is less than 100%.  

In the continuation, we will focus on exactly critical systems, with 𝜈 = 1 .  There, one notices 
an apparent contradiction. In a critical system the expectation of the number of neutrons is 
constant. Hence, on the average, a single starting neutron will “live forever”. On the other hand, 
the above results show that in a critical system, all neutrons will die out with 100% certainty.  

But this is not the end of the story yet. It is easy to show (but we abstain from a derivation) that 
in a critical system, the variance diverges; it tends to infinity linearly with the number of 
generations (for families) or with time (for neutron chains). This latter result, i.e. that the variance 
increases linearly with time is also valid to a similar process, the random walk, and in this context 
it is called the “Einstein relation”. The derivation for neutron chains can be found in [9] and [10].  

The divergence of the variance at criticality has long puzzled the nuclear engineering 
community. This would mean that a reactor, operating at critical, would sooner or later experience 
a large power excursion. But such a case, a sudden, uncontrolled burst of the neutron flux in a 
critical reactor, due to purely probabilistic reasons, has never been observed. In Ref. [9] there is a 
detailed discussion of the possible reasons. The most obvious is that it is the reactor control, not 
taken into account in the above considerations, which prevents large deviations from the desired 
flux level. Another suggestion is that a stationary reactor is never critical, only close to critical, 
because there are always extraneous neutron sources, not arising from the chain reaction, such as 
cosmic radiation, decay of fission products etc. And as it can also be easily shown, in a subcritical, 
source-driven reactor (a reactor in which the chain reaction is maintained by an extraneous source), 
the variance remains finite, and asymptotically constant. 

Fig. 4. Solution of the extinction equation 
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We will show now that, contrary to the standard belief, there is no need to refer to reactor 
control or extraneous sources to explain why divergence at criticality has not been observed, the 
explanation lies in the same mathematical theory as the one which creates the apparent 
contradictory facts. Let us summarize these facts:  
In a critical reactor  

• The expectation of the number of neutrons is constant; 
• The extinction probability equals unity; 

• The variance diverges. 
How is this possible at the same time? 

Here we arrived at a very crucial fact in probability theory which is often overlooked in neutron 
noise theory, i.e. the concept of ergodicity and its applicability. Namely, the laws and relationships 
of probability theory are always defined over statistical ensembles, consisting of a large number 
of identical objects and corresponding events. The laws say nothing about the behaviour of the 
individual. However, in practice, we have very seldom an ensemble of a large number of identical 
objects. We do not have thousands of identical reactors to make an experiment; we have only one 
reactor and would like to extract information on its random behaviour based on this only reactor. 
Thus, instead of investigating a thousand of identical reactors, we observe our reactor a thousand 
different times, in the hope that we obtain the same information.  

This is the concept of ergodicity, which means that ensemble averages can be replaced by time 
averages. And the concept sounds plausible. For instance, if we want to investigate if a coin is fair, 
i.e. whether the probability of heads and tails is equal, we can either toss a thousand identical coins, 
and count the number of coins with heads and tails, or toss the same coin a thousand times, and 
count the number of heads and tails. There does not seem to be any difference in the two methods, 
except that the latter is much easier, because it requires only one coin.  

Indeed, in this case there is no difference in the result; and the reason is that the process 
described above is ergodic. In the experiment of tossing the coins and counting the heads and tails, 
there is no difference between the ensemble average and the time average (average over the 
number of tossing the same coin).  

One would be tempted to think that all physically realistic processes are ergodic, and indeed a 
great many physical processes are ergodic. But it might come as a surprise how many are not; and 
in particular how a small change in the definition of a process leads to violating ergodicity. Take 
for instance coin tossing again. But instead of counting the number of heads and tails, we now 
count the difference between heads and tails, as a function of the number of the tosses. Heads 
count as +1, and tails as -1, and if there are more tails than heads, the value of the process is 
negative. This is then a discrete random process, equivalent to a one-dimensional random walk 
with equal probability of stepping to the left and to the right.  

It is easy to prove that this process is not ergodic. A rigorous mathematical proof is not given 
here, it can easily be found in the literature. One indication that this process is not ergodic is that 
only stationary processes, whose statistical properties are invariant to a time shift, can be ergodic. 
For such processes both the mean value and the variance must be constant. But we already 
mentioned that for a random walk, the variance grows linearly with the number of steps. The 
constant mean (expectation), together with the diverging variance, is possible through the fact that 
if we consider a large number of random walks, half of them will diverge to plus infinity, the other 
half to minus infinity. This gives a mean value of zero. But this requires an ensemble average, i.e. 
we never get this result if we continue to follow one and the same process. To get the correct result, 
we must re-start the system.  
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One can experience the corollaries of these facts in everyday life. For instance this is the reason 
why a number of ball games, where the difference of the number of scores decides who wins, such 
as tennis, table tennis, volleyball etc. are played in sets. In tennis, a tournament match goes until 
one player wins three sets, usually consisting of 6 games won (except in a tie break), instead of 
one single match consisting of 18 games won. This latter would not be fair. One has to break the 
“random walk” into pieces, i.e. re-starting the process, to get some ensemble average. One actually 
made a change about 20 years ago in the rules of table tennis, shifting from 3 sets of 21 points to 
4 sets of 11 points, which gives a better ensemble average. The non-ergodicity is part of the reason 
why a player, winning one set quite comfortably, can lose the second set with equally as large 
margins.  

Now getting back to our critical reactor, the explanation of the three “contradicting” properties 
above is based on the fact that due to the non-ergodicity of the neutron multiplication in a critical 
system, it has to be interpreted in terms of ensemble averages, and not time averages, hence they 
only describe the behaviour of a large number of reactors. It is not the same reactor in which the 
neutron population will both die out, will remain constant, and diverge at the same time. Rather, 
if we have a large number of critical reactors, in most of them the process will die out, whereas in 
a small fraction of the reactors the number of the neutrons will reach a very high value. To get the 
extinction probability unity, have a constant expectation, and a diverging variance, we will have 
to take the limit of infinitely many reactors. Then, the fraction of the reactors in which the neutron 
population does not die out must go to zero, and in these reactors the neutron population must 
diverge; in the rest, i.e. in almost all reactors, the population will die out. It is easy to confirm that 
with such a procedure, all three “contradictory” properties can be fulfilled. 

The above shows that the expectation is a value which will never be realised; the neutron 
number dies out in almost every system, and it will diverge in a zero set of all reactors. This also 
means that the fraction of the reactors in which the flux will diverge is negligible; if we select a 
reactor at random, it is almost sure that it is not the one which will diverge. In a loose comparison, 
one could say that the chance that “our” reactor would explode by random fluctuations is 
comparable with the probability that a person would fall out from an aeroplane by the quantum 
mechanical tunnel effect. The main point being that the probability is not zero, but sufficiently low 
that we do not worry about it. According to the above, we should not worry about divergence at 
critical; we should worry about extinction, since in almost all critical reactors the flux should die 
out. It is more to these cases that the effects named in Ref. [9], i.e. the control system, the fact that 
the reactor is slightly subcritical in the presence of extraneous neutrons etc. have to be counted on. 

We close this subject with two quotes. The first concerns the answer to the problem statement 
of Watson, described in the foregoing, i.e. the statistical behaviour of an ensemble of N family 
trees. The answer, for the supercritical case (𝜈 ≡ 𝑚 > 1, and hence 𝑞 < 1) is given in a vivid 
description by Kendall [6] which, although mathematically correct, would find some difficulties 
to be published in this form today if we read the sentence in italics:   

 “What this tells us is that if a large number N of males all having different surnames colonise 
a district, and if (females being available as and when required) they each propagate with a finite 
average replacement rate m > 1 (with ∑𝑘$	𝑝F < ∞ ), then after a long time has elapsed about qN 
of the surnames will have disappeared, while the remainder (1 − 𝑞)	𝑁 will persist forever”. 

The second quote reminds to the difference between the statistical behaviour of an ensemble 
and that of an individual member of the ensemble, especially for non-ergodic processes. This quote 
is also due to Kendall, but the present author found it in a fascinating book with the title “Modern 
Mathematics for the Engineer”, published in 1961 [11]. It will not go unnoticed that what was 
“modern” in 1961 may not sound very modern today, at least regarding computer algorithms, yet 
I would recommend to each engineering student to have a look at the book, because it really 
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conforms to the citation, attributed to the famous Hungarian-born mathematician John von 
Neumann, claiming that “The purpose of computation is insight, not numbers”. The section from 
the book, citing Kendall’s example, is reproduced here with the permission of McGraw-Hill 
Educational:  
6. 13 The Example of D. G. Kendall's Taxicab Stand1

At a perfectly balanced taxicab stand, either customers wait for taxis or taxis wait for customers.
Customers and taxis arrive with equal frequencies. If customers are counted + and taxis -, the 
queue length may be any integer 0, ±1, ±2, … From a queue of length k, the next change leads 
with equal probabilities to k + 1 or k - 1. Thus the successive changes are represented by a 
symmetric random walk. The expected queue length is 0, but it is easily seen that at each individual 
stand the queue length is bound to grow to +∞ or -∞. The zero expectation says nothing about the 
fluctuations at an individual stand; it assures us merely that, in a large ensemble, for any stand with 
thousands of taxis waiting in despair for customers there is somewhere a stand with equally many 
customers waiting vainly for a taxi. 
    It should be borne in mind that in building taxi stands, elevators, etc., we are interested in the 
fluctuations in time at one particular counter, not in large ensembles balanced in the manner 
described. Statistical equilibrium is good where it is really meaningful – e.g., in an ensemble of 
many telephone trunk lines. But little satisfaction can be derived from a judicial statistical 
equilibrium where for each innocently condemned person we find a felon running free. 
1. Kendall, D. G., Some Problems in the Theory of Queues, J. Roy. Statist. Soc.,

ser. B, vol. 13, pp. 151-185, 1951.

The utilisation of neutron fluctuations in reactors 
How, then, can one utilise the stochastic nature of the neutron population in nuclear engineering? 
From the reasoning so far, we might conclude that 1) the neutron fluctuations in a reactor (or any 
system containing fissile material) carry useful, non-trivial information on the system, and 2) we 
need to be careful how we apply our methods, when we only have access to measurement data 
from one reactor, and not from an ensemble of identical reactors.  

One example where the random character of neutron transport and multiplication is utilised is 
the Monte Carlo method. Traditionally, this method was invented as a numerical tool to calculate 
expectations (mean values) of the neutron population, i.e. to obtain a solution of the deterministic 
neutron transport equation. In the method the fate of a large number of neutrons is followed up, by 
simulating the possible events (place of next collision, type of reaction, number of secondary 
neutrons etc.), according to the known probability laws, determined by the material and 
geometrical properties of the medium, i.e. the reactor core. Ensemble averages are calculated by 
arranging the simulations into batches, where in each batch the simulations are re-started and 
repeated a number of times. The advantage of the Monte-Carlo method is that it is very versatile 
and effective to treat realistic, inhomogeneous systems with complicated geometries, by keeping 
all variables (space, angle, energy), without making approximations.  

However, the Monte-Carlo method is not the truly characteristic utilization of the neutron 
fluctuations in the spirit described in the previous sections; it is mentioned here only as an 
illustration of the fact that often, even if only average (“deterministic”) quantities are sought, it 
often gives advantages to utilize the fact that the underlying process is random. But the Monte-
Carlo method does not utilize the information contained in the higher moments of the neutron 
distribution. The archetype of the applications which does utilize this information is the 
determination of the subcritical reactivity 𝜌 < 0	of a reactor, in which a stationary neutron 
population is maintained by an extraneous neutron source. Since in a subcritical system, there is a 
relationship between the flux level and the subcritical reactivity, one could think that the reactivity 
𝜌 can be determined from the measurement of the number of detector counts Z during a time period 

                       炉物理の研究　第72号 (2020年3月)



-11-

t. However, for this we should need to know exactly the intensity (strength) S of the extraneous
source, the detector efficiency 𝜀, and so on, which are usually not known.

However, since the second moment of a branching process contains independent information 
from that of the first moment, a more efficient way is to use the relative variance, or variance to 
mean, of the detector counts Z as a function of the measurement time t. In a simplified form, 
neglecting delayed neutrons, the variance to mean of the detector counts is given by the formula 

LM
N(O)
P(O)

= 1 + 𝑌(𝑡) ≡ 1 + 𝜀	𝐴	 T1 − #UVWX	Y

Z	O
[ ; 													𝛼 = U^

_
(5) 

Here, A is a known nuclear constant, and Λ is the (known) neutron generation time. One can see 
that the source S exactly vanishes from the expression, since both the variance and the mean are 
linearly proportional to it. The detector efficiency 𝜀 is still present; however, due to the non-linear 
dependence of the relative variance on the measurement time, the parameter 𝛼, which contains the 
sought reactivity 𝜌,  can be determined by curve fitting without the knowledge of 𝜀. It is also seen 
that the relative variance is over-Poisson (larger than unity), and that the sought information is 
contained in the deviation from the Poisson variance.  

The variance to mean method is commonly called the Feynman-alpha method, because it was 
first suggested, based on heuristic derivations, by R. Feynman and colleagues [12]. The full 
formula (containing delayed neutrons) was rigorously derived by L. Pál (1925-2019) in his seminal 
work on the stochastic theory of neutron fluctuations, the so-called Pál-Bell equation [13]. 

Concluding remarks 
It is the hope of the author that this small essay will induce some interest in the young readers 

regarding the subtleties and surprises of random processes in general, and neutron fluctuations in 
particular. This latter area (also called “zero power reactor noise”) is under intensive development 
both in reactor physics and in nuclear safeguards. The purpose of the latter is to detect, identify 
and quantify hidden (e.g. smuggled) fissile materials by non-intrusive methods. This is achieved 
by using auto- and cross moments of neutrons and gamma photons, emitted from the item due to 
spontaneous fission, up to the third or fourth order. Neutron fluctuations in power reactors, induced 
by random technological processes (boiling of the coolant, flow-induced vibrations of control rods 
and fuel assemblies) are used for on-line monitoring of operating power reactors, to detect and 
identify incipient failures at an early stage. A review of both zero power and power reactor noise 
is found in Ref. [14] 
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