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Gastric cancer is the fifth most diagnosed cancer in the world, affecting more than a
million people and causing nearly 783,000 deaths each year. The prognosis of advanced
gastric cancer remains extremely poor despite the use of surgery and adjuvant
therapy. Therefore, understanding the mechanism of gastric cancer development,
and the discovery of novel diagnostic biomarkers and therapeutics are major goals
in gastric cancer research. Here, we review recent progress in application of omics
technologies in gastric cancer research, with special focus on the utilization of systems
biology approaches to integrate multi-omics data. In addition, the association between
gastrointestinal microbiota and gastric cancer are discussed, which may offer insights
in exploring the novel microbiota-targeted therapeutics. Finally, the application of data-
driven systems biology and machine learning approaches could provide a predictive
understanding of gastric cancer, and pave the way to the development of novel
biomarkers and rational design of cancer therapeutics.

Keywords: gastric cancer, omics, systems biology, data integration, personalized medicine

INTRODUCTION

Although the incidences and deaths of gastric cancer are declining in Northern America and
Western European, gastric cancer still remains as the fifth most common diagnosed cancer
worldwide, and is second compared to lung cancer in terms of worldwide cancer deaths (Bray
et al., 2018). Gastric cancer is responsible for over one million new cases and an estimated 783,000
deaths in 2018 (Bray et al., 2018). In Eastern Asia, gastric cancer accounts for ∼31% of all cancer
incidences in men and for ∼22% in women. In estimation, most of gastric cancer patients at
advanced stages have a 5-year survival rate of <30% (Parkin, 2001). Therefore, early detection and
targeted treatment of gastric cancer will be potential therapeutic strategies for increasing the 5-year
survival rate of gastric cancer patients.

The vast majority of gastric cancer are adenocarcinomas, which can be classified based on
their histological and etiological characteristics. Traditionally, gastric cancer can be divided
into two major subtypes: intestinal- and diffuse- types of adenocarcinomas according to the
Lauren’s criteria (Lauren, 1965). Additionally, the alternative World Health Organization (WHO)
classification system differentiates gastric cancer into tubular, papillary, mucinous, and poorly
cohesive carcinomas, respectively (Bosman et al., 2010). Both classifications enable a better
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understanding of the pathology of gastric cancer. However,
these classifications have quite limited success in promoting the
development of subtype-specific treatment approaches due to the
heterogeneity of gastric cancer and their disability to identify
potential molecular targets. With the development of next-
generation sequencing (NGS), omics technologies have provided
valuable tools to study gastric cancer at the molecular level.
Omics based data integration have been extensively applied in
gastric cancer research. These studies have successfully identified
numerous mutations, gene expression differences, protein
abundance differences, epigenetic mutations, and metabolite
concentrations to be linked with gastric cancer heterogeneity
and staging, which significantly improve our understanding
of gastric cancer.

Systems biology approaches aim to the transcendence of
individual genes/proteins and to the integration of biological
system that taking account into the intrinsic interactions. With
more and more available omics data, systems biology approaches
have developed many new methods and applications in gastric
cancer research. In this review, we will briefly summarize the
recent progress in “omics” technologies and their applications in
gastric cancer research. We will then highlight the use of omics
data integration to classify gastric cancer, and the application
of systems approaches and machine learning methods to
discover novel biomarkers and potential therapies. Furthermore,
how the gastric cancer research shift from human omics to
human-microbiota omics for current and future applications
will be discussed.

GENOMICS, TRANSCRIPTOMICS, AND
EPIGENOMICS IN GASTRIC CANCER

Next-generation sequencing technologies are mainly based on
the massively parallel sequencing of short DNA/RNA fragments,
which have been extensively reviewed elsewhere (Metzker, 2010).
The advances of NGS enable a variety of applications in both
DNA and RNA sequencing, including whole-genome, whole-
exome, and targeted sequencing of DNA, and total RNA, mRNA,
and small RNA. In addition, methylation and ChIP sequencing
with NGS are also commonly applied, which remove the biases
and limitations generated by previous microarray-based systems
(Hurd and Nelson, 2009).

Comprehensive characterization at the genomic,
transcriptomic, and epigenomic levels have been applied to
define the molecular subgroups of almost all types of cancers.
In early studies, the heterogeneity of gastric cancer had been
characterized by the expression of a large panel of genes (Cho
et al., 2011; Tan et al., 2011). Recently, the genomic landscapes
of gastric cancer have been extensively investigated and reviewed
elsewhere (Lin et al., 2015; Chia and Tan, 2016; Katona and
Rustgi, 2017; Wang et al., 2019). The use of whole genomic
data including TCGA (Bass et al., 2014) and ACRG (Cristescu
et al., 2015) cohort, have enabled the development of novel and
robust molecular classifiers that can guide clinical therapeutics
against gastric cancer (Figure 1). With unsupervised clustering
of molecular data including array-based somatic copy number

analysis, array-based DNA methylation profiling, whole-exome
sequencing, mRNA sequencing, miRNA sequencing, and
reverse-phase protein array (Bass et al., 2014), the gastric
cancer can be classified into four subtypes: (1) Epstein–Barr
virus (EBV) positive (9%), (2) microsatellite instability (MSI,
22%), (3) genomically stable (GS, 20%), and (4) chromosomal
instability (CIN, 50%). Further evaluation of the clinical and
histological characteristics of these molecular subtypes revealed
the enrichment of the diffuse histological subtype in the GS
subtype (Bass et al., 2014). While the ACRG study developed
a distinct 4-subtype classification system with gene expression
microarray, genome-wide copy number microarrays and
targeted gene re-sequencing (Cristescu et al., 2015). As observed
in TCGA cohort, gene mutation profiles (e.g., TP53) and
structural variations are frequently identified in gastric cancer
(Zang et al., 2012; Wang et al., 2014; Cristescu et al., 2015; Hu
et al., 2016), and these four subtypes show strong associations
with clinical phenotypes. Taken together, the accumulation of
multiple omics dataset increases the complexity of gastric cancer
classification, and the treatment of gastric cancer will be benefit
from the clinical-pathological-omics combined subtyping with
an individualized way.

Transcriptomics describes the expression levels of RNA
transcripts. Gene expression had been shown to dramatically
change according to the clinical information of patients, which
led to the identification of novel expression biomarkers in
patients’ group (Tan et al., 2011; Lei et al., 2013). The expression
signatures of gastric tumors derived from microarray or NGS
had been used to improve the early diagnosis and prognosis
prediction (Chia and Tan, 2016). Using 973- and 1024-gene
expression signatures, gastric tumors can be distinguished from
the normal gastric tissues with high precision in early gastric
cancer (Vecchi et al., 2007; Nam et al., 2012). As previous
described, gene expression had also been applied for stratification
of gastric cancer (Shah et al., 2011; Tan et al., 2011), which
reveal distinct transcriptomic subtypes. Moreover, recent advent
of single-cell DNA/RNA sequencing provides an opportunity
enabling the identification of cell types and state. For instance,
the recent study (Zhang et al., 2019) reconstructed single-cell
expression atlas underlying the gastric premalignant lesions and
early gastric cancer. With expression profiles at the single-
cell level, the expression signatures of multiple cell types were
identified across different lesions. Furthermore, the single-
cell atlas revealed a panel of six high-confidence markers
related to early gastric cancer, which could be used as specific
biomarkers for early diagnosis targets to recognize the onset
of gastric cancer (Zhang et al., 2019). Interestingly, the single-
cell RNA sequencing had also been applied to explore the
tumor microenvironment of gastric cancer recently (Sathe et al.,
2020), which showed distinct expression changes in tumor
samples compared with paired normal tissue. The stromal
cells, macrophages and cytotoxic T cells were significantly
enriched in tumor samples with expression of multiple immune
checkpoint and costimulatory molecules (Sathe et al., 2020).
Altogether, gene expression profiling at both the population
and the single-cell level elucidate the heterogeneity of gastric
cancer and the complex relationship between the immune
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FIGURE 1 | The systems biology approach for gastric cancer research. The different types of omics data including genomics, transcriptomics, proteomics,
epigenomics, and metabolomics are obtained using according omics technologies from gastric cancer cohort. Omics data (transcriptome, proteome, or
metabolome) is measured for two or more group that differ in clinical information. Generally, differentially expressed genes (DEGs) based methodology is applied.
DEGs are identified by comparative analysis of measured omics data. With integrative network-based approach, the biological networks, such as gene regulatory
network (GRN), protein-protein interaction network (PPIN), and genome-scale metabolic network (GEM) are used together with omics data in an integrative way.
Then, the up-regulated or down-regulated subnetworks are identified by integrating data into network models. Using network modeling tools, the key driver gene
linked to clinical information can be identified. Identified key driver genes can be further applied into clinical studies. In addition, the multi-omics data are used to
stratify patient into subtypes. Machine learning algorithms utilize omics features to predict potential treatment outcome. The machine learning methodology can be
applied to chemotherapy, immunotherapy or their combinations. Finally, the key driver gene information and the predictive models can be used to design the
personalized treatment strategy, and applied in clinics. The clinical survival outcome then can be evaluated after personalized medicine treatment.

microenvironment and gastric cancer, which may provide
valuable clues to develop rational diagnosis and personalized
therapeutic approaches.

Epigenomics describes the modifications of DNA or histones
that influence gene expression without altering DNA sequence
(Jones and Baylin, 2007). By analyzing the global CpG
methylation profiling of gastric cancer and normal tissues,
cancer-specific epigenetic alternations were observed in 44% of
CpGs in the form of both tumor hyper- and hypomethylation
(Toyota et al., 1999; Zouridis et al., 2012). Interestingly, the
regions of long-range tumor hypomethylation were strongly
associated with increased chromosomal instability (Zouridis
et al., 2012). Besides DNA methylation, other types of epigenetic
changes, such as histone methylation and acetylation, had been
found to be associated with the prognosis of gastric cancer
treatment (Calcagno et al., 2019; Li et al., 2019).

PROTEOMICS AND METABOLOMICS IN
GASTRIC CANCER

Proteomics complements the genomic and transcriptomics
approaches, providing additional information about the protein
expression and post-translational modifications. Most of
proteomics studies in this field so far focused on the discovery

of gastric cancer associated biomarkers from plasma samples
(Uen et al., 2013; Abramowicz et al., 2015; Gao et al., 2015;
Yoo et al., 2017). An early study (Uen et al., 2013) investigated
the glycoprotein profiles of serum samples from gastric
cancer patients and healthy subjects. Seventeen significant
differentially expressed Con A-bound glycoproteins were
identified. Validations using Con A-bound LRG1 glycoprotein
revealed an AUC value of 0.65. Another comparative proteomics
analysis (Yoo et al., 2017) with serum samples was performed
among early gastric cancer, advanced gastric cancer and normal
control groups, leading to the identification of hundred protein
biomarkers. Using clusterin isoform 1, the highest AUC values
to distinguish the advanced or early gastric cancer from normal
controls are 0.94 and 0.88, respectively (Yoo et al., 2017). In
addition, the comprehensive proteomics studies had also been
employed to classify gastric cancer subtypes as genomics data
(Ge et al., 2018; Wippel et al., 2018; Mun et al., 2019). The diffuse-
type gastric cancer can be further classified into three or four
distinct subtypes according to proteome profiling, respectively
(Ge et al., 2018; Mun et al., 2019). Moreover, integration of
phosphoproteome data with other types of omics data elucidated
the signaling pathways associated with somatic mutations
(Mun et al., 2019). Most of the metabolomics studies in this field
so far focused on the discovery of biomarkers associated with
gastric cancer from plasma samples (Abbassi-Ghadi et al., 2013;
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Jayavelu and Bar, 2014). Numerous metabolic changes in plasma,
urine, gastric juice, and carcinoma tissues had been identified by
using targeted or untargeted metabolomics analyses. It provides
efficient ways for diagnosis, prognosis, and drug evaluation of
gastric cancer, which serves as a potential strategy to develop
personalized gastric cancer therapeutics.

GASTROINTESTINAL MICROBIOME IN
GASTRIC CANCER

Human microbiome has been confirmed to play critical roles in
human health and disease (Knight et al., 2017). The intrinsically
heterogeneity of gastric cancer had been extensively explored
in decades based on the omics information from human host.
However, little is known about how the human microbiota
linked to gastric cancer at the function level. Thus, exploring
the gastric microbiota at DNA, RNA, and protein level using
meta-omics technologies will be helpful for us to understand the
potential roles of gastric microbes in cancer development and
stage (Figure 1).

Helicobacter pylori is one of the gastric pathogen that colonizes
in more than 50% persons in the world, and 1% of persons with
H. pylori infections develop into gastric cancer (Wroblewski et al.,
2010; Noto and Peek, 2017; Ferreira et al., 2018). While H. pylori
was not the dominant bacterial species in some gastric cancer
patients, implying other microbes might account for the gastric
cancer development (Noto and Peek, 2017). The gastrointestinal
microbiota directly interacted with gastric tissue, and affected
gastric cancer development (Brawner et al., 2014; Nardone and
Compare, 2015). Recent studies indicated that gastric microbiota
was strongly associated with gastric cancer (Dias-Jácome et al.,
2016). The gastric microbiota of cancer subjects have reduced
microbial diversity, decreased Helicobacter abundance and the
enrichment of other bacterial genera mainly from the intestinal
commensals (Ferreira et al., 2018). In addition, significant
changes of gut microbiota including microbial richness and
diversity were observed in H. pylori positive subjects compared
to H. pylori negative subjects (Guo et al., 2019). Altogether,
metagenomics analyses had provided insights into the scenario
of gastric microbiota and their interaction with human host.
Recently, the drug-microbiota interaction have been extensively
investigated (Maier et al., 2018; Vila et al., 2020). However,
the influence of gastric cancer treatment, especially the adjunct
chemotherapy, on gastric and gut microbiota is still unknown.
Therefore, exploring of the gastrointestinal microbiota and
gastric cancer associations may provide us novel views in gastric
cancer progress and development of microbiota targeted nutrient
supplementations or drugs.

DATA-DRIVEN INTEGRATION
APPROACHES IN GASTRIC CANCER
RESEARCH

Most of gastric studies concentrated on the differential analysis
between gastric cancer samples and normal controls using one

type of omics data. The comprehensive multi-omics studies of
gastric cancer (Bass et al., 2014; Cristescu et al., 2015; Mun et al.,
2019) had create a molecular landscape spanning the genome,
transcriptome, proteome, and even phosphoproteome. However,
there are strong interdependence among different types of omics
data. In order to comprehensively understand the gastric cancer
and develop efficient diagnosis and treatment approaches, it is
critical not only to analyze these omics data as separate layers, but
also to dissect how they interact with each another by integrating
them together (Figure 1).

Cellular processes are represented with networks, whose
structures involve in both the species that participate in the
biological processes and the interactions between these species
(Chiappino-Pepe et al., 2017). The network based multi-
omics data integration thus provides us the opportunity to
incorporate information across multiple biological layers and
describe the gastric cancer (Figure 1). For the transcriptome,
proteome, and metabolome data, network inference, pathway
enrichment analysis and network module identification are three
principal steps in network based integration (Borisov et al.,
2017; Chiappino-Pepe et al., 2017; Yan et al., 2017). Both the
top-down approaches using available experimental data and
the bottom-up approaches using reconstructed networks from
related organisms as a scaffold to assemble new biological
networks with published data are main strategies to infer
biological networks (Chiappino-Pepe et al., 2017).

Pathway and network analysis are the two common
procedures to explore the functional dynamics linked to
cancer. As shown in Figure 1, the differentially expressed
genes (DEG) are firstly identified using available computational
workflows, which are generally performed between gastric
cancer samples and normal controls. With the over-expression
or under-expression profiles of the DEGs, the related biological
pathways are associated with cancer status or stage by pathway
enrichment analysis approaches such as gene set enrichment
analysis (Subramanian et al., 2005; Buzdin et al., 2017). The DEG-
based pathway analysis approach had been successfully applied to
identify potential biomarkers distinguishing gastric cancer with
normal controls samples using the transcriptomics, proteomics
or metabolomics data (Anvar et al., 2018). Nevertheless, DEG-
based approach still has a number of limitations, restricting its
use in clinics. Firstly, the number of DEGs identified usually
exceeds the number that can be experimentally validated. Thus,
only parts of DEGs selected according to literature or knowledge
are experimentally tested in most of studies. Secondly, not all
of DEGs identified are the driver genes for gastric cancer. In
fact, it is not easy to discover key driver genes from DEGs, and
DEG-based approach cannot always guarantee the successful
discovery of key gastric cancer driver genes. Considering such
limitations, integrative network-based approach may be useful
to intercept omics data and discover cancer driver genes in the
context of biological network.

With the predefined biological networks [e.g., protein-
protein interaction network (PPIN), gene regulatory network,
gene interaction network, and metabolic network], the omics
data can be mapped into the biological networks to identify
potential functional subnetworks (Figure 1). The activity of
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subnetwork or modules can be inferred by searching the
alternations in predefined networks, providing related regulatory
or interaction information linked to clinical information.
Furthermore, network-based modeling approaches can be
applied to relate the activities of subnetwork components
with their influences and consequences on other network
components (Creixell et al., 2015). Integrative network analysis
utilizing gene expression data identified seven candidates
for gastric carcinogenesis with increased levels as disease
progression (Takeno et al., 2008; Mansouri et al., 2018).
Recent investigations of miRNA and mRNA expression with
the human PPIN also reveal a novel miRNA that may
function in decreasing gastric tumor proliferation and metastasis
through its regulated protein interaction network (Tseng et al.,
2011). In summary, transforming the gene-level information to
network-level information may provide network biomarkers for
understanding the cancer biology (Takeno et al., 2008; Tseng
et al., 2011; Mansouri et al., 2018).

MACHINE LEARNING IN GASTRIC
CANCER RESEARCH

The applications of machine learning methods, which learn
functional relationships from data, had been largely increased in
cancer research and drug discovery (Angermueller et al., 2016;
Borisov and Buzdin, 2019; Vamathevan et al., 2019; Cuocolo et al.,
2020). One important application of machine learning is medical
images, and image-based recognition with machine learning
had been increasingly applied to diagnosis in various medical
fields (Cuocolo et al., 2020). Esophagogastroduodenoscopy
(EGD) is the standard procedure for gastric cancer diagnosis.
However, the false-negative rate for EGD detection is about 4.6–
25.8% (Yalamarthi et al., 2004; Hirasawa et al., 2018). Using
convolutional neural networks (CNNs), the machine learning
diagnostic system had been trained with >10,000 endoscopic
images of gastric cancer (Hirasawa et al., 2018; Yoon and Kim,
2020). The resulting CNN correctly diagnosed 71 of 77 gastric
cancer lesions with a overall sensitivity of 92.2% (Hirasawa
et al., 2018). Moreover; endoscopic images were used to stratify
gastric cancer risk by CNNs, which can diagnose patients as low,
moderate, and high risk, respectively (Nakahira et al., 2020).

Not only cancer diagnostics, machine leaning also brings
personalized treatment to clinics (Borisov and Buzdin, 2019;
Cuocolo et al., 2020). Surgery is the primary treatment for gastric
cancer, while the high incidence of distant metastases and the
local recurrence of most gastric cancer patients, especially those
with advanced gastric cancer, have paved the way for adjuvant
therapy (Janunger et al., 2001; Sitarz et al., 2018). The adjuvant
treatment may include chemotherapy, targeted drug therapy or
immunotherapy, either alone or in combinations (Cunningham
et al., 2006). In addition, an emerging chemotherapy method
named as neoadjuvant chemotherapy refers to preoperative
chemotherapy is recommended for the treatment of patients
with resectable advanced-stage gastric cancer (Sitarz et al.,
2018). With increased number of omics data linked to gastric
cancer treatment, it provided us the opportunities to explore

the individual responses to chemotherapy or other types of
treatment, and to predict the possible outcome using machine
learning and mathematical modeling methods (Figure 1). With
the gene expression data from TCGA cohort and KUGH
cohort, gene expression signatures specific to each of the four
molecular subtypes was used to develop predictive models
for patients stratification, and the model was tested in other
large independent cohorts (Sohn et al., 2017; Oh et al., 2018).
Interestingly, these results showed that the subtypes could be as
predictors for survival and response to adjuvant chemotherapy
(Sohn et al., 2017). Moreover, a recent study characterized
key mutational features, copy number alternations and gene
expression changes associated with responses to neoadjuvant
chemotherapy with multi-omics data of tumor samples from
patients responding to neoadjuvant chemotherapy or not (Li
et al., 2020). Compared the responders with non-responders
tumors and pre- with post-treatment samples, the C10orf71
mutations were found to be associated with treatment resistance
by statistical models (Li et al., 2020). Taken together, such
machine learning based approach integrates multi-omics data,
providing efficient ways to predict the treatment outcome based
on the host genetic information.

Immunotherapy has revolutionized both the cancer research
and treatment landscape by targeting the host immune system
(Coutzac et al., 2019; Szeto and Finley, 2019). Antibodies
targeting to blocking immune checkpoints such as programmed
cell death-1 (PD-1), programmed death ligand-1 (PD-L1),
and cytotoxic T lymphocyte-associated antigen-4 (CTLA-4)
have proven efficacies in diverse solid cancers. Several studies
had showed the strong correlations between intra-tumoral
immune cells and gastric cancer prognosis (Kang B. W.
et al., 2017), and the efficiency of checkpoint inhibitors
(e.g., nivolumab, pembrolizumab) and their combinations with
chemotherapy had been evaluated in clinical trials (Kang Y.-
K. et al., 2017; Boku et al., 2019). These results suggest
that immunotherapy may be a potential option for patients
with advanced gastric cancer. Machine learning has been used
to build predictors of drug response and immunotherapy
outcomes (Borisov and Buzdin, 2019; Leiserson et al., 2019).
However, there is a lack of mechanistic understanding of
the effects of gastric cancer immunotherapy in both human
host and gastrointestinal microbiota. With the availability of
immunotherapy or chemotherapy related multi-omics data, data-
driven integration approach and machine learning method will
integrate data with known gastric cancer subtyping knowledge
in the tumor-specific and patient-specific ways, which can help
in stratifying patients before the treatment. In addition, data-
driven machine learning or mathematical modeling method may
also be useful to learn knowledge and develop predictive models
to provide insight into the rational design of cancer therapy in
personalized way.

CONCLUSION AND PERSPECTIVES

The advances of omics technologies in decades are enabling the
parallel measurement of millions of biomolecules at the same
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time. Omics-wide association studies have been widely applied
in gastric cancer research, which revealed strong associations
between omics features and the gastric cancer development.
With the omics data from genome, transcriptome, proteome,
and epigenome levels, gastric cancer have been extensively
stratified, and the resulting subtypes show strong correlations
with the therapeutic outcomes. Both the TCGA and ACRG
classifications revealed four distinct gastric cancer subtypes,
and the comparison between these two classification systems
showed similarities such as tumors with MSI in both data sets,
and the TCGA GS, EBV+, and CIN subtypes were enriched
in ACRG dataset (Cristescu et al., 2015). However, strong
inconsistencies between these two subtype systems were also
observed, which covered most of the patient population. The
wide variation in study designs, heterogeneity in study cohorts,
together with the variations in data analysis strategy, especially
in data processing and analysis methods, make the findings of
gastric cancer subtyping difficult to applied in clinics (van den
Boorn et al., 2018). Therefore, applying robust statistical methods
and performing meta-analyses pooling estimates from multiple
multi-omics studies may provide a powerful way to investigate
gastric cancer across multiple cohorts.

With the proteomics and metabolomics data, numerous
gastric cancer-specific biomarkers had been identified, which
pave ways for the diagnosis of gastric cancer at the early
stages. Systems biology based integration of multi-omics data
have provided lot of insights into the cancer diagnosis and

therapeutics. However, the application of such methods in
gastric cancer still lags behind. Moreover, the application of big
data and machine learning approach in gastric cancer studies
are still limited. With increased omics data generating from
the gastric cancer research field, the application of systems
biology approach would provide a systematic scenario of gastric
cancer in the future.
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