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Abstract
Object tracking refers to the problem of using noisy sensor measurements
to determine the location and characteristics of objects of interest in clut-
ter. Nowadays, object tracking has found applications in numerous research
venues as well as application areas, including air traffic control, maritime
navigation, remote sensing, intelligent video surveillance, and more recently
environmental perception, which is a key enabling technology in autonomous
vehicles. This thesis studies conjugate priors for Bayesian object tracking with
focus on multi-object tracking (MOT) based on sets of trajectories. Finite Set
Statistics provides an elegant Bayesian formulation of MOT in terms of the
theory of random finite sets (RFSs). Conjugate priors are also of great interest
as they provide families of distributions that are suitable to work with when
seeking accurate approximations to the true posterior distributions. Many
RFS-based MOT approaches are only concerned with multi-object filtering
without attempting to estimate object trajectories. An appealing approach to
building tracks is by computing the multi-object densities on sets of trajecto-
ries. This leads to the development of trajectory filters, e.g., filters based on
Poisson multi-Bernoulli mixture (PMBM) conjugate priors.
In this thesis, [Paper A] and [Paper B] consider the problem of point object

tracking where an object generates at most one measurement per scan. In
[Paper A], it is shown that the trajectory MBM filter is the solution to the
MOT problem for standard point object models with multi-Bernoulli birth.
In addition, the multi-scan implementations of trajectory PMBM and MBM
filters are presented. In [Paper B], a solution for recovering full trajectory
information, via the calculation of the posterior of the set of trajectories from
a sequence of multi-object filtering densities and the multi-object dynamic
model, is presented. [Paper C] and [Paper D] consider the problem of ex-
tended object tracking where an object may generate multiple measurements
per scan. In [Paper C], the extended object PMBM filter for sets of objects is
generalized to sets of trajectories. In [Paper D], a learning-based extended ob-
ject tracking algorithm using a hierarchical truncated Gaussian measurement
model tailored for automotive radar measurements is presented.

Keywords: Bayesian estimation, conjugate prior, object tracking, extended
object, automotive radar, multi-object tracking, multi-object smoothing, back-
ward simulation, random finite sets, sets of trajectories.
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CHAPTER 1

Introduction

1.1 Background

Object/target tracking refers to the problem of using sensor measurements
to determine the location, trajectory and characteristics of objects of interest
[1], [2]. Initially driven by aerospace and defense applications, object tracking
has a long history spanning over decades. In recent times, with the advances
in object tracking techniques as well as sensing and computing technologies,
there has been an explosion in the use of object tracking technology in numer-
ous research venues as well as application areas, including air traffic control,
maritime navigation, remote sensing, biomedical research, intelligent video
surveillance, and more recently environmental perception, which is a key en-
abling technology in autonomous vehicles.
This thesis studies Bayesian object tracking algorithms. Bayes’s theorem

provides an elegant and powerful probabilistic framework to solve the object
tracking problem. The goal of Bayesian estimation in object tracking is to
compute the posterior density of the random variables of interest, which en-
capsulates all the information contained in the measurements [3]. In object
tracking, the object may not always be detected and the sensor measurements
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Chapter 1 Introduction

are noisy and contain clutter. If detected, the object may occupy multiple
sensor resolution cells, depending on its distance to the sensor and the sensor
resolution. Conventional tracking algorithms consider the problem of point
object tracking with the assumption that an object gives rise to at most one
measurement per scan. The tracking of an object that gives rise to a varying
number of measurements per scan is called extended object tracking (EOT)
[4], which has found more applications with the development of high-resolution
sensors such as automotive radar and lidar [5]–[8].
Automotive radar plays an important role in autonomous driving as it pro-

vides reliable environmental perception in all-weather conditions with afford-
able cost [9]. For an extended object, it is often assumed that the mea-
surements are spatially distributed as a function of individual measurement
likelihoods, also referred to as the spatial distribution. To capture the spatial
characteristics of real-world automotive radar measurements, the development
of spatial models tailored to automotive radar measurements have started to
attract more attention in recent years. Moreover, with the release of large-
scale automotive radar datasets, data-driven approaches are becoming a hot
spot of EOT with automotive radar.
In a multi-object scenario, the measurements may originate from one of

the various objects and the number of objects is time-varying due to objects
appearing in and disappearing from the surveillance area [10]. Fundamen-
tal to this problem is the estimation of both the number of objects and their
trajectories by partitioning measurements into the sets of measurements origi-
nating from different objects and false alarms. The major approaches to multi-
object tracking (MOT) include the global nearest neighbor (GNN) filter, the
joint probabilistic data association (JPDA) filter [11], the multiple hypothesis
tracker (MHT) [12], and random finite sets (RFSs) based multi-object filters.
Finite Set Statistics [13] provides a theoretically elegant Bayesian formula-
tion of MOT in terms of the theory of RFSs where the multi-object state is
represented as a finite set of single-object states [14], [15].
Exact closed-form solutions of RFS-based MOT Bayes filters are given by

multi-object conjugate priors [16], which are defined as “if we start with the
proposed conjugate initial prior, then all subsequent predicted and posterior
distributions have the same form as the initial prior”. MOT conjugate priors
are of great interest as they provide families of distributions that are suitable
to work with when seeking accurate approximations to the true posterior
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distributions.
Two well-established MOT conjugate priors are the Poisson multi-Bernoulli

mixture (PMBM) [17], based on unlabeled RFSs, and the generalized labeled
multi-Bernoulli (GLMB) [16], based on labeled RFSs. The difference between
these two MOT conjugate priors mainly lies in the modeling of newborn ob-
jects, i.e., objects appearing in the surveillance area. With Poisson point
process (PPP) birth model, the solution to the multi-object filtering problem
is given by the PMBM filter [18], [19]. If the birth model is multi-Bernoulli
(MB) instead of Poisson, the filtering density is given by the multi-Bernoulli
mixture (MBM) filter, which corresponds to the PMBM filtering recursion by
setting the intensity of the Poisson process to zero and adding Bernoulli com-
ponents for newborn objects in the prediction step [20]. The MBM filter can
also be extended to consider MBs with deterministic object existence, which
we refer to as the MBM01 filter, at the expense of increasing the number of
global hypotheses [18]. Both MBM and MBM01 filters can consider object
states with labels, and the (labeled) MBM01 filtering recursion is analogous
to the δ-GLMB filtering recursion [21], [22].
Vector-type MOT methods, e.g., the JPDA filter and the MHT, describe

the multi-object states and measurements by random vectors. They explicitly
estimate trajectories; i.e., they associate a state estimate with a previous state
estimate or declare the appearance of a new object. For MOT methods based
on set representations, time sequences of tracks cannot be constructed easily
as the multi-object states are order independent. For this reason, many RFS-
based MOT approaches, e.g., the probability hypothesis density (PHD) filter
[23] and the cardinalized PHD (CPHD) filter [24], are only concerned with
multi-object filtering, in which one aims to estimate the current set of objects,
without attempting to estimate object trajectories. The PMBM filter has a
hypothesis structure similar to MHT [25], however, track continuity in the
form of trajectories is not explicitly established as the posterior itself only
provides information about the current set of objects. A categorization of the
multi-object filters mentioned so far is illustrated in Fig. 1.1.
One approach to building trajectories from posterior densities is to add

unique labels to the object states and form trajectories by linking object state
estimates with the same label [16], [26], [27]. Sequential track building ap-
proaches based on labeling can work well in many cases but it is not always
adequate due to ambiguity in object-to-label associations, e.g., when object
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Multi-object filter

Vector-based

Set-based

GNN

JPDA

MHT

PMBM

CPHD

PHD

GLMB

MBM

PMB

Moment approx.

Conjugate prior

Figure 1.1: A chart categorizing different multi-object filters.

birth is independent and identically distributed, and when objects get in close
proximity and then separate. The above track building problems can be solved
by computing multi-object densities on sets of trajectories [28]. This leads to
the development of trajectory filters including, for example, the trajectory
PHD filter [29], the trajectory CPHD filter [29], the trajectory PMBM filter
[30] and its approximation the trajectory PMB filter [31].
Bayes filters use the measurements obtained before and at the current time

step for computing the estimate of the current object state. However, some-
times it is also interesting to exploit the entire measurement history to arrive
at more accurate object state estimates at all of the preceding time steps. This
problem can be solved with Bayesian smoothing. The multi-object general-
ization of a Bayes smoother is an algorithm that computes the multi-object
densities at all of the preceding time steps given the entire batch of measure-
ments. Existing literature on multi-object smoothing [15, Chapter 14] only
focus on computing the multi-object smoothing densities at each time step,
which, even if labeled, may not be enough to provide trajectory information.
Multi-object trajectory filters compute the filtering densities of sets of trajec-
tories and therefore are able to directly produce smoothed trajectory estimates
using e.g., the accumulated state densities [32]. Nevertheless, there are many
MOT methods in the literature that can efficiently estimate the object states
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but that cannot easily produce trajectory estimation in a principled manner.
Therefore, how to leverage on filters that do not keep trajectory information
to compute the posterior density of sets of trajectories needs further investi-
gation.

Contributions
This thesis investigates Bayesian object tracking methods for both point object
and extended object, with particular focus on Bayesian MOT methods based
on sets of trajectories. [Paper A] and [Paper B] consider the problem of point
object tracking. In [Paper A], the filtering recursions for the trajectory MBM
filter and the trajectory MBM01 filter using an MB birth model are presented.
In addition, the multi-scan implementations of trajectory PMBM, MBM and
MBM01 filters using dual decomposition and N -scan pruning are proposed. In
[Paper B], a solution for multi-object smoothing is presented. The proposed
multi-object smoother computes the posterior of the set of trajectories from
a sequence of multi-object filtering densities and the multi-object dynamic
model.
[Paper C] and [Paper D] consider the problem of extended object tracking.

In [Paper C], the extended object PMBM filter for sets of objects is extended
to sets of trajectories. Specifically, the prediction and update equations of
two trajectory PMBM filters for extended object tracking are presented: one
in which the set of current (i.e., “alive”) trajectories is tracked, and one in
which the set of all trajectories (both “dead” and “alive”) up to the current
time is tracked. In [Paper D], a data-driven measurement model EOT with
automotive radar is presented, in which the spatial distribution of automotive
radar measurements is modeled as a hierarchical truncated Gaussian (HTG)
with structural geometry parameters that can be learned from the training
data. The learned HTG measurement model is further incorporated into a
random matrix based EOT approach with two (multi-sensor) measurement
updates.

1.2 Thesis outline
The remainder of Part I of the thesis is organized as follows. Chapter 2 reviews
Bayesian filtering and smoothing in dynamical systems. Chapter 3 covers
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the basic concepts and properties of random finite sets as well as metrics
for tracking performance evaluation. Chapter 4 introduces the multi-object
dynamic and measurement models used in this thesis. Chapter 5 presents
the single-object and multi-object conjugacy for object tracking. Chapter 6 is
about multi-object tracking based on sets of trajectories. Chapter 7 provides
a summary of the included papers in this thesis. Chapter 8 summarizes the
conclusions and possible future work directions. Part II of the thesis includes
the appended papers.

1.3 Notation
This section introduces the notations used in Part I of the thesis. Vectors are
generally represented by lower-case letters (e.g., x). Matrices are generally
represented by upper-case letters (e.g. X). Sets of vectors are represented
by bold lower-case letters (e.g., x). Sets of trajectories are represented by
bold upper-case letters (e.g., X). Classes of distributions are represented by
calligraphy letters (e.g, X ). Spaces are generally represented by blackboard
bold letters. For example, the n-dimensional Euclidean space is denoted by
Rn and the space of positive integers is denoted by N. The more general
spaces are represented by fraktur letters (e.g., X). The class of finite subsets
of a space X is represented by F(X).
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CHAPTER 2

Bayesian filtering and smoothing

Bayesian filtering and smoothing refer to a class of methods that can be
used for estimating the state of a dynamical system which is indirectly ob-
served through noisy measurements. This chapter covers the basic aspects
of Bayesian filtering and smoothing. The reader is referred to [3] for further
readings on this topic.

2.1 Bayesian inference in dynamical systems
The state of the dynamical system at time step k is denoted as xk ∈ Rnx where
nx is the dimension of the state. In the context of object tracking, xk may
represent the object’s position, velocity and any other motion parameters of
interest of the object at time step k. The state has an initial prior density p(x0)
at time 0, and it evolves in time according to a Markov system with transition
density p(xk|xk−1). At each time step k, the state is observed through a noisy
measurement zk ∈ Rnz whose density is p(zk|xk). Let x0:k = (x0, x1, . . . , xk)
denote the sequence of states from time step 0 to k. Note that in object
tracking the sequence x0:k is used to represent the object trajectory up to
time step k. Also, let z1:k = (z1, . . . , zk) denote the sequence of states from
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time step 1 to k. The joint density of all the states and measurements up to
time step k is given by

p(x0:k, z1:k) = p(x0)
k∏
j=1

p(xj |xj−1)p(zj |xj). (2.1)

In the Bayesian framework, all information of interest about the state se-
quence x0:k is given by the posterior density p(x0:k|z1:k), which denotes the
density of x0:k given the measurement sequence z1:k. This density can be
computed by applying Bayes’ rule on (2.1)

p(x0:k|z1:k) = p(x0:k, z1:k)
p(z1:k)

=
p(x0)

∏k
j=1 p(xj |xj−1)p(zj |xj)

p(z1:k)

(2.2)

where p(z1:k) is the normalization constant defined as

p(z1:k) =
∫
p(x0:k, z1:k)dx0:k. (2.3)

Because it is intractable to compute the posterior density (2.2) on the state
sequence without approximations for long time sequences, Bayesian inference
in dynamical systems usually focuses on the following simpler problems:

• Filtering: the objective is to compute the density p(xk|z1:k) of the cur-
rent state xk given the measurements up to the current time step.

• Smoothing: the objective is to compute the density p(xj |z1:k) of a past
state xj with 0 ≤ j < k given the measurements up to the current time
step k.

• Prediction: the objective is to compute the density p(xj |z1:k) of a future
state xj with j > k given the measurements up to the current time step
k.

However, sometimes it is actually necessary to approximate the posterior den-
sity on the state sequence rather than focusing on simpler problems, such as
filtering or smoothing. Typical examples include backward simulation par-
ticle smoother [33], view-based simultaneous localization and mapping using
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delayed-state filters [34] and MOT where the objective is to infer object tra-
jectories [28].

2.2 Bayesian filtering
In Bayesian filtering, the objective is to compute the filtering density p(xk|z1:k).
This can be done using Bayesian filtering recursion, which consists of two
steps, prediction and update. Given the filtering density p(xk−1|z1:k−1) and
the transition density p(xk|xk−1) at time step k − 1, the predicted density
p(xk|z1:k−1) is given by the Chapman-Kolmogorov equation

p(xk|z1:k−1) =
∫
p(xk|xk−1)p(xk−1|z1:k−1)dxk−1. (2.4)

In the update step, given the predicted density p(xk|z1:k−1) and the measure-
ment distribution p(zk|xk) at time step k, the filtering density at time k is
given by Bayes’ rule

p(xk|z1:k−1) = p(zk|xk)p(xk|z1:k−1)
p(zk|z1:k−1) (2.5)

where the normalization constant is

p(zk|z1:k−1) =
∫
p(zk|xk)p(xk|z1:k−1)dxk. (2.6)

Kalman filtering
The Kalman filter is the closed-form solution to the Bayesian filtering equa-
tions for linear Gaussian dynamic and measurement models:

p(xk|xk−1) = N (xk;Fk−1xk−1, Qk−1), (2.7a)
p(zk|xk) = N (zk;Hkxk, Rk) (2.7b)

where Fk−1 ∈ Rnx,nx is the transition matrix, Qk−1 ∈ Rnx,nx is the covariance
matrix of the process noise, Hk ∈ Rnz,nx is the observation matrix and Rk ∈
Rnz,nz is the covariance matrix of the measurement noise. The prior density
of the state at time 0 is p(x0) = N (x0; x̄0|0, P0|0), where x̄0|0 and P0|0 are the
mean and covariance matrix of the state at time step 0.
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The prediction and filtering densities at time step k are Gaussian and de-
noted as

p(xk|z1:k−1) = N (xk; x̄k|k−1, Pk|k−1), (2.8a)
p(xk|z1:k) = N (xk; x̄k|k, Pk|k) (2.8b)

where x̄k|k−1 and Pk|k−1 are the mean and the covariance of the predicted
density and x̄k|k and Pk|k are the mean and the covariance of the filtering
density. The parameters of the distributions (2.8) can be computed with the
following Kalman filter prediction and update steps.

• The prediction step is

x̄k|k−1 = Fk−1x̄k−1|k−1, (2.9a)
Pk|k−1 = Fk−1Pk−1|k−1F

T
k−1 +Qk−1. (2.9b)

• The update step is

x̄k|k = x̄k|k−1 + ΨkS
−1
k (zk − z̄k), (2.10a)

Pk|k = Pk|k−1 −ΨkS
−1
k ΨT

k , (2.10b)
z̄k = Hkx̄k|k−1, (2.10c)

Ψk = Pk|k−1H
T
k , (2.10d)

Sk = HkPk|k−1H
T
k +Rk (2.10e)

where Ψk and Sk are usually referred to as the Kalman gain and the innovation
covariance, respectively. The recursion is started from the prior mean x̄0|0 and
covariance P0|0.

Extended Kalman filter

The Kalman filter is not appropriate when the dynamic and measurement
models are not linear. However, the filtering distributions of nonlinear models
can often be approximated by Gaussian distributions. The extended Kalman
filter (EKF) is a nonlinear Kalman filter based on Taylor series expansions.
For dynamical systems with additive Gaussian noise, the transition and mea-

12



2.2 Bayesian filtering

surement densities have the form [3, Chapter 5]

p(xk|xk−1) = N (xk; fk−1(xk−1), Qk−1), (2.11a)
p(zk|xk) = N (zk;hk(xk), Rk) (2.11b)

where fk−1(·) and hk(·) are possibly nonlinear dynamic and measurement
model functions, respectively.
The idea of the EKF is to assume Gaussian approximations

p(xk|z1:k−1) ≈ N (xk; x̄k|k−1, Pk|k−1), (2.12a)
p(xk|z1:k) ≈ N (xk; x̄k|k, Pk|k) (2.12b)

to the prediction and filtering densities using first-order Taylor series approx-
imations to the non-linearities fk−1(·) and hk(·) around x̄k−1|k−1 and x̄k|k−1,
respectively. Let Fk−1(x̄k−1|k−1) be the Jacobian matrix of fk−1(·) evaluated
at x̄k−1|k−1 and let Hk(x̄k|k−1) be the Jacobian matrix of hk(·) evaluated at
x̄k|k−1. The parameters of the distributions (2.11) can then be computed with
the following EKF prediction and update steps.

• The prediction step is

x̄k|k−1 = fk−1(x̄k−1|k−1), (2.13a)
Pk|k−1 = Fk−1(x̄k−1|k−1)Pk−1|k−1Fk−1(x̄k−1|k−1)T +Qk−1. (2.13b)

• The update step is

x̄k|k = x̄k|k−1 + ΨkS
−1
k (zk − z̄k), (2.14a)

Pk|k = Pk|k−1 −ΨkS
−1
k ΨT

k , (2.14b)
z̄k = hk(x̄k|k−1), (2.14c)

Ψk = Pk|k−1Hk(x̄k|k−1)T, (2.14d)
Sk = Hk(x̄k|k−1)Pk|k−1Hk(x̄k|k−1)T +Rk. (2.14e)

Other non-linear Kalman filter based on Gaussian approximations includ-
ing, for example, the posterior linearized filter (PLF) [35], unscented Kalman
filter [36], cubature Kalman filter [37], and iterated approaches, such as iter-
ative EKF and iterative PLF [35].
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2.3 Bayesian smoothing

In Bayesian smoothing, the objective is to compute the smoothing density
p(xk|z1:K), which is the distribution of the state xk at time step k after re-
ceiving the measurements up to a time step K where K > k. The backward
recursive equation for computing the smoothed densities p(xk|z1:K) for any
k < K is given by

p(xk|z1:K) = p(xk|z1:k)
∫
p(xk+1|xk)p(xk+1|z1:K)

p(xk+1|z1:K) dxk+1 (2.15)

where p(xk|z1:k) is the filtering density at time step k and p(xk+1|z1:k) is the
predicted density at time step k + 1.

Rauch-Tung-Striebel smoother

The Rauch-Tung-Striebel smoother (RTSS) [38] gives the closed-form smooth-
ing solution to linear Gaussian models. The smoothing density at time step
k is Gaussian and denoted as

p(xk|z1:K) = N (xk; x̄k|K , Pk|K) (2.16)

where x̄k|K and Pk|K are the mean and the covariance of the smoothed density,
respectively. The parameters of the distribution (2.16) can be computed with
the following backward recursion equations [38]:

Gk = Pk|kF
T
k P
−1
k+1|k, (2.17a)

x̄k|K = x̄k|k +Gk(x̄k+1|K − x̄k+1|k), (2.17b)
Pk|K = Pk|k +Gk(Pk+1|K − Pk+1|k)GT

k (2.17c)

where x̄k|k and Pk|k are the mean and covariance computed by the Kalman
update and x̄k+1|k and Pk+1|k are the mean and covariance computed by the
Kalman prediction. The recursion is started from the last time step K with
x̄K|K and PK|K .
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Backward simulation

Bayesian inference in dynamical systems often requires generating samples
from the posterior density p(x0:K |z1:K). This problem can be addressed using
backward simulation [33]. An alternative recursion for the posterior density
p(xk:K |z1:K) without marginalizing out the states after time step k is

p(xk:K |z1:K) = p(xk|xk+1, z1:K)p(xk+1:K |z1:K),
= p(xk|xk+1, z1:k)p(xk+1:K |z1:K),

(2.18)

where p(xk|xk+1, z1:k) is usually referred to as the backward kernel. The
recursion (2.18) evolves backward in time and starts with the filtering density
p(xK |z1:K) at time step K.
Using (2.18), the posterior density p(x0:K |z1:K) can be factorized as

p(x0:K |z1:K) = p(x0)

K−1∏
j=1

p(xj |xj+1, z1:j)

 p(xK |z1:K). (2.19)

Initially, a sample is generated from the filtering density p(xK |z1:K) at time
step K,

xK ∼ p(xK |z1:K). (2.20)

Then this backward trajectory is successively augmented with samples gener-
ated from p(xk|xk+1, z1:k),

xk ∼ p(xk|xk+1, z1:k), (2.21)

for k = K − 1, . . . , 1. At time step 0, the backward trajectory is augmented
with a sample generated from the initial prior density p(x0). After a complete
backward sweep, the backward trajectory x0:k can be regarded as a realization
from the posterior density p(x0:K |z1:K).
For linear Gaussian models, the backward kernel density p(xk|xk+1, z1:k) is

a Gaussian
p(xk|xk+1, z1:k) = N (xk;µk,Mk), (2.22)
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with

µk = x̄k|k +Gk(xk+1 − Fkx̄k|k), (2.23a)
Mk = Pk|k −GkFkPk|k (2.23b)

where Gk is the smoothing gain (2.17a) in RTSS, and x̄k|k and Pk|k are the
mean and covariance of the filtering density p(xk|z1:k) computed by a Kalman
filter.
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CHAPTER 3

Random finite sets and metrics

Random finite sets (RFSs) are set-valued random variables whose elements
and cardinality are random. This chapter covers the basic concepts and rele-
vant properties of RFSs that will be used in the rest of the thesis. The reader
is referred to [14], [15] for further readings on this topic. Common metrics
used for tracking performance evaluation are also introduced.

3.1 Definition
Let Y be an underlying space, such as a single-object state space X. The state
of a single-object contains the information of interest about the object, which
is usually represented by an n-dimensional vector x in some Euclidean space
Rn. An RFS is a random variable x on the set F(X) of all the finite subsets
of X. In general, Y can be any Hausdorff, locally compact, and completely
separable topological space [15, Appendix B]. In this thesis, the following
three types of spaces that meet these properties are considered:

• The single-object state space X, which usually contains the object’s lo-
cation and any other motion parameters of interest.
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• The single-measurement space Rnz for measurement models based on
detections, where nz is the dimension of the single-measurement vector.

• The single-object trajectory space T, which contains the information
that characterizes the trajectory of an object.

3.2 Multi-object statistics
This section covers basic multi-object concepts and statistics in terms of the
the theory of RFSs.

Set integral and multi-object densities
Given a real-valued function f(·) on the space F(Rnx), its set integral is
defined as ∫

f(x)δx =
∞∑
i=0

1
i!

∫
f({x1, . . . , xi})dx1 · · · dxi. (3.1)

The set integral sums over all possible cardinalities and all possible object
states for each cardinality. A function f(·) is a multi-object density, if f(·) ≥ 0
and its set integral is one.

Convolution formula for multi-object densities
Let x1, . . . ,xn ⊆ F(X) be n statistically independent RFSs with multi-object
densities f1(·), . . . , fn(·), respectively. Then the multi-object density f(·) of
the union y = x1 ∪ · · · ∪ xn is given by the convolution formula

f(y) =
∑

y=x1]···]xn

n∏
i=1

fi(xi) (3.2)

where ] stands for disjoint union and the summation is taken over all mutually
disjoint (and possibly empty) subsets x1, . . . ,xn whose union is y.

Probability generating functionals
Let h be a test function on the single-object space such that h(x) is unitless
and 0 ≤ h(x) ≤ 1. The probability generating functionals (PGFL) of an RFS
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x is defined as
G[h] =

∫
hxf(x)δx (3.3)

where f(·) is the multi-object density of x and hx is the power functional
defined as

hx =
{

1 if x = ∅∏
x∈x h(x) if x 6= ∅.

(3.4)

The PGFL of an RFS completely characterizes its multi-object density, and
it is useful for deriving multi-object filters.

Cardinality distribution
The cardinality of a set x, denoted by |x|, is the number of elements in the set.
The number of elements of an RFS is a random variable and characterized by a
probability mass function, which is referred to as the cardinality distribution.
The cardinality distribution of an RFS with multi-object density f(·) is given
by

ρ(n) = 1
n!

∫
f({x1, . . . , xn})dx1 · · · dxn. (3.5)

The number ρ(n) is the probability that x contains n elements.

Probability hypothesis density
The probability hypothesis density (PHD), also referred to as the intensity
function, of an RFS with multi-object density f(·) is defined on the single-
object space X as

D(x) =
∫
f({x} ∪ x)δx

=
∞∑
i=0

1
i!

∫
f({x, x1, . . . , xi})dx1 · · · dxi.

(3.6)

The integral of the PHD in a region A ⊆ X yields the expected number N̂A of
objects in this region

N̂A =
∫
A
D(x)dx. (3.7)
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3.3 Multi-object processes

This section introduces some standard types of multi-object processes that
will be used in this thesis. They are the Poisson RFSs, the Bernoulli RFSs,
the multi-Bernoulli (MB) RFSs and the MB mixture (MBM) RFSs.

Poisson RFSs

In a Poisson RFS, also referred to as Poisson point process (PPP), the cardi-
nality of the set is Poisson distributed and, for each cardinality, its elements
are independent and identically distributed. The multi-object density for a
Poisson RFS x is given by

f(x = {x1, . . . , xn}) = e−λλn
n∏
i=1

p(xi) (3.8)

where λ ≥ 0 is the parameter of the Poisson cardinality distribution and p(·)
denotes a single-object density. A Poisson RFS can be characterized by either
its PHD/intensity function D(x) = λp(x) or by λ and p(·). Therefore the
multi-object density of the Poisson RFS x can be alternatively expressed as

f(x = {x1, . . . , xn}) = e−
∫
D(x)dx

n∏
i=1

D(xi). (3.9)

Bernoulli RFSs

In a Bernoulli RFS, the cardinality of the set is Bernoulli distributed. The
multi-object density for a Bernoulli RFS x is given by

f(x) =
{

1− r if x = ∅
rp(x) if x = x

(3.10)

where r is the probability of existence and p(·) is the single-object density of
the object if it exists. A Bernoulli RFS is characterized by r and p(·).
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Multi-Bernoulli RFSs
An MB RFS corresponds to the union of a finite number n of independent
Bernoulli RFSs. The multi-object density of an MB RFS x is given by

f(x) =
∑

x1]···]xn=x

n∏
i=1

fi(xi) (3.11)

where fi(·) is the ith Bernoulli component characterized by a probability ri
of existence and a single object density pi(·). Therefore an MB RFS is char-
acterized by the set {(r1, p1(·)), . . . , (rn, pn(·))}.

Multi-Bernoulli mixture RFSs
AnMBmixture (MBM) RFS is a weighted sum of MB RFSs. The multi-object
density for an MBM RFS x is given by

f(x) =
H∑
h=1

wh
∑

x1]···]xn=x

n∏
i=1

fhi (xi) (3.12)

where w1, . . . , wH are non-negative weights such that
∑H
i=1 w

h = 1 and fhi (xi)
are Bernoulli RFS densities for i = 1, . . . , n and h = 1, . . . ,H.
A Bernoulli RFS density can be written as a mixture of Bernoulli RFS

densities with probabilities of existence that are either zero or one. Therefore
an MB can be expanded into an MBM01 with deterministic probabilities of
existence in each Bernoulli component.

3.4 Metrics
This section introduces some standard single object metrics and MOT metrics
for sets of objects.

Definition
It is important that the tracking performance is measured in a consistent
way. Metrics ensure that the “distance” between the estimate and the truth
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Chapter 3 Random finite sets and metrics

is mathematically meaningful. A metric d on a space X is a distance function

d : X× X→ [0,∞) (3.13)

where for all x, y, z ∈ X the following four conditions are satisfied:

Non-negativity: d(x, y) ≥ 0. (3.14a)
Identity of indiscernibles: d(x, y) = 0⇔ x = y. (3.14b)

Symmetry: d(x, y) = d(y, x). (3.14c)
Triangle inequality: d(x, z) ≤ d(x, y) + d(y, z). (3.14d)

Single-object metrics
The Euclidean metric of order q between a state x and a corresponding esti-
mate x̂ is defined as

dq(x, x̂) = ‖x− x̂‖q. (3.15)

For performance evaluation of extended object estimates with ellipsoidal
extents, a comparison study in [39] has shown that the Gaussian Wasserstein
distance (GWD) is a good choice. The GWD between an extended object
state ξ = (x,X), where X is positive symmetric matrix used to represent the
extent of an elliptic object, and a corresponding estimate ξ̂ =

(
x̂, X̂

)
of order

2 is defined as [40]

dGW(ξ, ξ̂) =
(
‖Hx−Hx̂‖22 + trace

(
X + X̂ − 2

(
XX̂

) 1
2
)) 1

2

(3.16)

where the observation matrix H picks out the position from the kinematic
state vector.

Multi-object metrics
In MOT, it is important to measure not only the state estimation error but
also the cardinality estimation error due to misdetections and false detections.
The different cardinality-related errors include

• Misdetections: true objects for which there are no corresponding esti-
mates.
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3.4 Metrics

• False detections: object estimates for which there are no corresponding
true objects.

An MOT metric computes the “distance” between a set of object states x
and a corresponding set estimate x̂. It is assumed that a single object metric
d(x, x̂) is given. Further, let

d(c)(x, x̂) = min(c; d(x, x̂)) (3.17)

denote the distance cut-off at a distance c > 0 where c is a parameter.

OSPA

The Optimal Sub-Pattern Assignment (OSPA) multi-object metric is defined
as [41], [42]

d(c)
p (x, x̂) =
(

1
|x̂|

(
minπ∈Π|x̂|

∑|x|
i=1 d

(c) (xi, x̂π(i)
)p + cp (|x̂| − |x|)

)) 1
p if |x̂| ≥ |x|(

1
|x|

(
minπ∈Π|x|

∑|x̂|
i=1 d

(c) (x̂i, xπ(i)
)p + cp (|x| − |x̂|)

)) 1
p if |x̂| < |x|

(3.18)

where c > 0, 1 ≤ p < ∞ and Πi is the set of permutations of the set of
integers {1, . . . , i} for any i ∈ N and for any element π ∈ Πi be a sequence
(π(1), . . . , π(i)). The parameter p determines the severity of penalizing the
outliers in the localization component. The OSPA metric (for the case |x̂| ≥
|x|) can be decomposed into two parts:

• Normalized sum of state errors: 1
|x̂|
∑|x|
i=1 d

(c) (xi, x̂π(i)
)p.

• Normalized cardinality error: 1
|x̂|c

p(|x̂| − |x|).

GOSPA

The OSPA metric only accounts for localization error for the objects in the
smallest set and cardinality mismatch; this is not desired in traditional MOT
performance evaluation. For example, OSPA does not encourage trackers to
have as few misdetections and false detections as possible. As a solution to
this, the generalized OSPA (GOSPA) multi-object metric was proposed in
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Chapter 3 Random finite sets and metrics

[43], which is able to penalize localization errors for properly detected objects,
misdetections and false detection. The GOSPA metric is defined as

d(c,α)
p (x, x̂) =
(

minπ∈Π|x̂|
∑|x|
i=1 d

(c) (xi, x̂π(i)
)p + cp

α (|x̂| − |x|)
) 1
p if |x̂| ≥ |x|(

minπ∈Π|x|
∑|x̂|
i=1 d

(c) (x̂i, xπ(i)
)p + cp

α (|x| − |x̂|)
) 1
p if |x̂| < |x|

(3.19)

where c > 0, 1 ≤ p <∞ and 0 < α ≤ 2.
Compared to the OSPA metric (3.18), there is no normalization factor

max(|x|, |x̂|) and an additional parameter α has been introduced. Setting
α = 1 gives the OSPA metric without normalization. Moreover, it has been
shown in [44] that the spooky effect arises in optimal estimation of multiple
objects with the OSPA metric; however, this is not the case for the GOSPA
metric.

When the GOSPA metric is used for MOT performance evaluation to mea-
sure the “distance” between the true set of object states x and the estimated
set of object states x̂, it is most appropriate to set α = 2. In this case, the
GOSPA metric can be re-written as

d(c,2)
p (x, x̂) =

 min
θ∈Θ(|x|,|x̂|)

∑
(i,j)∈θ

d(c) (xi, x̂j)p + cp

2 (|x| − |θ|+ |x̂| − |θ|)

 1
p

(3.20)
where Θ(|x|,|x̂|) is the set of all possible 2D assignments. An assignment set
θ between the sets {1, . . . , |x|} and {1, . . . , |x̂|} is a set that has the following
properties: θ ⊆ {1, . . . , |x|} × {1, . . . , |x̂|}, (i, j), (i, j′) ∈ θ ⇒ j = j′ and
(i′, j), (i, j) ∈ θ ⇒ i = i′ where the last two properties ensure that every i and
j gets at most one assignment. Equation (3.20) facilitates the decomposition
of the GOSPA metric into three parts:

• Sum of state errors:
∑

(i,j)∈θ d
(c) (xi, x̂j)p.

• Misdetection error: cp

2 (|x| − |θ|)

• False detection error: cp

2 (|x̂| − |θ|).
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CHAPTER 4

Multi-object modeling

The formulation of an MOT problem needs systematic formal modeling for
multi-object dynamics and measurements. This chapter introduces the multi-
object dynamic and measurement models used in this thesis.

4.1 Multi-object dynamic model
Multi-object dynamic models should include models for the motion of indi-
vidual objects as well as models for object appearance and disappearance to
handle an unknown and time-varying number of objects. In MOT literature,
object appearance and disappearance are often referred to as object birth and
death, respectively. The multi-object dynamic model p(xk+1|xk) used in this
thesis is based on the following assumptions:

• Single object with state xk at time step k moves to a new state xk+1 at
time step k + 1 with a Markov transition density πk(xk+1|xk).

• A single object with state xk at time step k has a probability PS(xk) of
surviving into time step k + 1.
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Chapter 4 Multi-object modeling

• The RFS of objects at time step k+ 1 is the union of the RFS of objects
that survive from time step k to time step k+ 1, denoted xSk+1, and the
RFS of newborn objects, denoted xBk+1,

xk+1 = xSk+1 ∪ xBk+1. (4.1)

• Object birth, object death, and object motion are conditionally inde-
pendent of the previous multi-object state.

Birth models
The common RFS models for object birth include a model for the number of
objects expected to be born, i.e., a birth cardinality distribution, and a model
for the states of the newborn objects, i.e., a birth state density. In many cases,
a new object can appear anywhere in the surveillance area, so it is important
to use a spatial distribution that covers the entire area. In some cases, objects
may only be born in specific areas, and it is then more suitable to use a spatial
distribution localized to those areas.

Poisson birth model

To model the number of new objects that appear at a time step as being
Poisson distributed is the most common choice in MOT. When using RFSs
to model MOT, a Poisson number of new objects means that the object birth
is modeled as a Poisson RFS. For a Poisson birth model, at time step k a
possibly empty set of newborn objects xBk appears, distributed according to
a Poisson RFS with intensity λBk (xk). That the set is possibly empty means
that it is possible that no object is born at all.

The birth cardinality distribution is Poisson, with parameter λ̄Bk ,

ρ(nBk = j) = e−λ̄
B
k

(
λ̄Bk
)

j! (4.2)

where
λ̄Bk =

∫
λBk dxk (4.3)

and the expected number of births is λ̄Bk . For a non-empty set of new objects,
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4.1 Multi-object dynamic model

their states are independent and identically distributed (i.i.d.) with density

λBk (xk)
λ̄Bk

. (4.4)

The most common representation of the Poisson RFS birth intensity is an
un-normalized density mixture,

λBk (xk) =
NBk∑
i=1

wB,ik pB,ik (xk). (4.5)

With a mixture intensity, the Poisson RFS birth parameters are the set of
weights and densities, {(

wB,ik , pB,ik (·)
)}NBk

i=1
. (4.6)

For Gaussian models, it is suitable to let the Poisson RFS intensity be a
Gaussian mixture,

λBk (xk) =
NBk∑
i=1

wB,ik N
(
xk; x̄B,ik , PB,ik

)
. (4.7)

Bernoulli and multi-Bernoulli birth models

Object birth models can be also built upon Bernoulli RFSs. For a Bernoulli
birth model, at time step k an object is born with probability rBk (i.e., no
object with probability 1 − rBk ), and if an object is born, the initial object
state xk has density pBk (xk). In a Bernoulli birth model, the probability of
birth rBk gives the birth cardinality distribution, which is a Bernoulli,

ρ(nBk = j) =


1− rBk if j = 0
rBk if j = 1
0 otherwise

(4.8)

where nBk denotes the number of births at time step k.
It is more general to use an MB birth model, which is the union of indepen-

dent Bernoulli births. The parameters of an MB birth are the set of Bernoulli
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birth parameters, {(
rB,ik , pB,ik (·)

)}NBk
i=1

. (4.9)

For an MB birth model, the expected number of births is given by the sum
of the probabilities of birth

∑NBk
i=1 r

B,i
k . The MB birth cardinality distribution

is given by the convolution of the Bernoulli birth cardinality distributions. In
case rB,ik = r for all i, then the birth cardinality distribution is a Binomial,

ρ(nBk = j) =
{(

nBk
j

)
rj(1− r)nBk −j if nBk = 0, 1, . . . , NB

k

0 if nBk > NB
k .

(4.10)

Compared to the Poisson birth model, the MB birth model bounds a priori
the number of objects that can appear in the surveillance area. For linear and
Gaussian models, it is suitable to let the Bernoulli birth densities be Gaussian,

pB,ik (xk) = N (xk; x̄B,ik , PB,ik ). (4.11)

Single-object dynamic models

This section introduces two common 2D single-object dynamic models used
in this thesis. A survey of dynamic models for object tracking is given in [45].

Nearly constant velocity model

The single object state is x = [px, vx, py, vy]T where [px, py]T is the position
vector and [vx, vy]T is the velocity vector. The single object state transition
density from the object state x to the object state y at the next time step is

π(y|x) = N (y;Fx,Q) (4.12)

where

F = I2 ⊗
[
1 T

0 1

]
, (4.13a)

Q = σ2
v̇I2 ⊗

[
T 3/3 T 2/2
T 2/2 T

]
. (4.13b)
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4.2 Multi-object measurement model

Here T is the sampling time, σv̇ is a parameter controlling the process noise
level and In is the identity matrix of size n.

Coordinate turn model with polar velocity

The single object state is x = [px, py, v, φ, ω]T where [px, py]T is the position
vector, v is the polar velocity, φ is the heading and ω is the turn rate. By
linearization first and then discretization, the relation between the object state
x at the current time step and the object state y at the next time step can be
written as

y =


px + (2v/ω) sin(ωT/2) cos(φ+ ωT/2)
py + (2v/ω) sin(ωT/2) sin(φ+ ωT/2)

v

φ+ ωT

ω

+ w (4.14)

where w is white noise with covariance

Q = blkdiag
([

0 0
0 0

]
, T 2σ2

v̇ ,

[
T 3/3 T 2/2
T 2/2 T

]
σ2
ω̇

)
(4.15)

where blkdiag denotes block diagonalization, and σ2
v̇ and σ2

ω̇ are parameters
controlling the process noise level.

4.2 Multi-object measurement model
Multi-object measurement models should include models for the measure-
ments originating from individual objects as well as models for clutter mea-
surements, i.e., measurements not originating from objects. This section intro-
duces the (single-sensor) multi-object measurement models p(zk|xk) for both
point and extended objects. The two measurement models are based on the
following common assumptions:

• The measurement set zk at time step k is an RFS consisting of the RFS
zOk (xk) of measurements generated by the set of objects with states xk
and the RFS zCk of clutter measurements, i.e.,

zk = zOk (xk) ∪ zCk . (4.16)
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• The RFSs zOk (xk) and zCk are statistically independent.

• No measurement is generated by more than one object.

• Given a set xk of objects, each object x ∈ xk is either detected with
probability PD(x) and generates a set of measurements zO(x) with con-
ditional density g(zO(x)|x), or missed with probability 1− PD(x).

• The RFS zO is a Poisson RFS with intensity λC(·).

Point objects
In point object tracking, each object generates at most a single measurement
per time step, i.e., a single resolution cell is occupied by an object. In this
case, |zO(x)| ≤ 1.

Extended objects
In EOT, each object may generate multiple measurements per time step and
the measurements are spatially distributed around the objects, i.e., multiple
resolution cells are occupied by an object. In this case, the object-generated
measurements zO(x) are typically modeled by a Poisson RFS. This models the
number of detections as |zO(x)| Poisson distributed with a rate λO(x) that is
a function of the object state x. The single-object measurement likelihood for
an extended object is

p(zO(x)|x) = e−λ
O(x)λO(x)|z

O(x)|
∏

z∈zO(x)

g(z|x). (4.17)
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CHAPTER 5

Multi-object conjugate priors for multi-object tracking

Due to the unknown correspondence between measurements and object states,
MOT is combinatorial in nature, and thus is highly computationally demand-
ing. MOT conjugate priors are one tool for managing complexity, by ex-
ploiting forms which maintain structure through prediction and update steps.
This chapter introduces single-object and multi-object conjugacy used in this
thesis.

5.1 Conjugate prior
If L is a class of measurement likelihoods g(z|x), and F is a class of prior
distributions for x, then the class F is conjugate for L if

p(x|z) ∈ F ∀ g(z|x) ∈ L and p(x) ∈ F . (5.1)

Many examples of conjugate priors can be found from the exponential family
of distributions. In each of these cases, the posterior has the same form with
the same number of parameters as the prior.
Another common structure is when the prior family contains mixtures of
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distributions of a given form. Let F̄ denote the family of mixtures of dis-
tributions in F , and let L̄ denote the family of mixtures of likelihoods in
L . It can be shown that, if F is a conjugate prior for the measurement
likelihood L , then F̄ is also conjugate prior for L , and the posterior will
contain the same number of mixture components as the prior. Further, F̄

is also conjugate prior for L̄ , but the number of mixture components in the
posterior will be the product of the number of components in the prior and in
the measurement likelihood. In this case, the posterior is in the same form,
but the complexity of the representation grows and eventually approximation
becomes necessary. Many examples of this kind can be found in (multiple)
object tracking in clutter.

5.2 Single-object conjugate prior
If L is a class of measurement likelihoods gk(zk|xk), T is a class of transition
densities πk(xk|xk−1), and F is a class of single-object densities for x, then
the class F is single-object conjugate for L and T if

p(xk|z1:k−1) ∈ F ∀ πk(xk|xk−1) ∈ T and p(xk−1|z1:k−1) ∈ F , (5.2)
p(xk|z1:k) ∈ F ∀ gk(zk|xk) ∈ L and p(xk|z1:k−1) ∈ F . (5.3)

Single-object conjugate prior can be understood as a generalization of con-
jugacy, which originally only concerns Bayes update, to the whole filtering
recursion.

Gaussian conjugate prior
Single point object tracking typically concerns the following Bayesian filtering
recursions:

p (xk|z1:k) = gk (zk|xk) p (xk|z1:k−1)∫
gk (zk|x′k) p (x′k|z1:k−1) dx′k

, (5.4)

p (xk|z1:k−1) =
∫
πk (xk|xk−1) p (xk−1|z1:k−1) dxk−1. (5.5)

The Kalman filter and the EKF, introduced in Section 2.2, are two examples
of single-object filters based on single-object conjugate prior where both the
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5.2 Single-object conjugate prior

predicted density and the posterior density are Gaussian.

Gamma Gaussian inverse-Wishart conjugate prior

For EOT using the Poisson spatial model and the random matrix approach,
the objects are assumed to have elliptic shapes, and the Bayesian filtering
recursions are

p(ξk|z1:k) = p(zk|ξk)p(ξk|z1:k−1)∫
p(zk|ξk)p(ξk|z1:k−1)dξk

, (5.6)

p(ξk|z1:k−1) =
∫
πk(ξk|ξk−1)p(ξk−1|z1:k−1)dξk−1 (5.7)

where ξk = (γk, xk, Xk) is a combination of a Poisson rate γk, a kinematic state
vector xk and an extent matrix Xk. Various random matrix approaches with
different prediction and update steps have been proposed in the literature;
see [4, Section III.A] for an overview. Here the random matrix approach with
improved noise modeling proposed in [46] is taken as an example to motivate
the use of a gamma Gaussian inverse-Wishart (GGIW) conjugate prior in
EOT.
For the improved noise modeling with the number of measurements being

Poisson, the measurement likelihood can be factorized as

p(zk|ξk) = e−γkγ
|zk|
k

∏
zk∈zk

N (zk;Hkxk, ρXk +Rk) (5.8)

where ρ is a scaling factor and Rk is the measurement noise covariance matrix.
The Bayesian conjugate prior for an unknown Poisson rate is the gamma dis-
tribution. Also, for Gaussian measurements, the conjugate priors for unknown
mean and covariance are the Gaussian and the inverse-Wishart distributions,
respectively. This motivates the use of a GGIW representation for the object
state density,

p(ξk|z1:k) = G(γk;αk|k, βk|k)N (xk; x̄k|k, Pk|k)IW(Xk; νk|k, Vk|k). (5.9)

For a GGIW prior of the form (5.9), and a measurement likelihood of the form
(5.8), the measurement update (5.6) is not analytically tractable; however,
the filtering density p(ξk|z1:k) can still be approximated as a GGIW. The

33



Chapter 5 Multi-object conjugate priors for multi-object tracking

approximate update can be based on either the approximation of non-linear
functions of the extent using matrix square roots [46] or variational Bayesian
approximation [47].
The GGIW conjugacy also holds for the prediction step. Though no closed

form solution exists for a Wishart transition density of the extent matrix, the
predicted density (5.7) can be approximated as a GGIW by either applying a
simple heuristic or minimizing the Kullback-Leibler divergence (KLD) [48].

5.3 Multi-object conjugate prior
If L is a class of multi-object measurement likelihoods p(zk|xk), T is a class
of multi-object transition densities p(xk|xk−1), and F is a class of multi-object
densities for x, then the class F is multi-object conjugate for L and T if

p(xk|z1:k−1) ∈ F ∀ p(xk|xk−1) ∈ T and p(xk−1|z1:k−1) ∈ F , (5.10)
p(xk|z1:k) ∈ F ∀ p(zk|xk) ∈ L and p(xk|z1:k−1) ∈ F . (5.11)

Multi-object conjugacy is a generalization of the single-object conjugacy to
consider the multi-object prediction and update,

p(xk|z1:k−1) =
∫
p(xk|xk−1)p(xk−1|z1:k−1)δxk−1, (5.12)

p (xk|z1:k) = p (zk|xk) p (xk|z1:k−1)∫
p (zk|x′k) p (x′k|z1:k−1) δx′k

. (5.13)

Multi-object conjugacy is important for designing MOT algorithms. With the
use of multi-object conjugacy, it is convenient to

• express the theoretically exact density (for the given models),

• describe which parameters are needed to represent the density,

• find computationally tractable approximations, and

• analyze the approximation error.

For the multi-object models introduced in Chapter 4, there are two known
classes of multi-object conjugate priors for both point and extended objects:
the MBM densities [16], [20], [22] for MB birth model and the Poisson MBM
(PMBM) densities [17]–[19] for Poisson birth model.
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Multi-Bernoulli mixture conjugate prior

For MB(M) birth, the MBM density MBMk|k(xk) is a multi-object conju-
gate prior to the multi-object transition density p(xk|xk−1) and measurement
model p(zk|xk) [20]. In other words, if the posterior density at time step k−1
is MBM, then the predicted density at time step k is MBM,

MBMk|k−1(xk) =
∫
p(xk|xk−1)MBMk−1|k−1(xk−1)δxk−1. (5.14)

Further, if the prior density at time step k is MBM, then the Bayes posterior
at time step k is MBM,

MBMk|k (xk) =
p (zk|xk)MBMk|k−1 (xk)∫
p (zk|x′k)MBMk|k−1 (x′k) δx′k

. (5.15)

The MBM density is defined as

MBMk|k(xk) =
Hk∑
hk=1

whkk|kMB
hk
k|k (xk) (5.16a)

=
Hk∑
hk=1

whkk|k

∑
]xi

k
=xk

N
hk
k∏
i=1
Bi,hkk|k

(
xik
)

(5.16b)

whereMB(x) and B(x) denote multi-Bernoulli density and Bernoulli density.
Each global hypothesis hk corresponds to a sequence of data associations, Hk
denotes the number of global hypotheses, and the weight whkk|k is the proba-
bility of the global hypothesis. The MBM density is fully parameterized by
the parameters, {(

whkk|k,
{(
ri,hkk|k , p

i,hk
k|k (·)

)}Nhk
k

i=1

)}Hk
hk=1

. (5.17)

Predicting (5.14) and updating (5.15) the MBM density then comes down to
computing the predicted and updated parameters.
The MBM filter is an MOT algorithm based on the MBM conjugate prior

and consists of four building blocks: 1) prediction, 2) update, 3) reduction,
and 4) estimation. A block-diagram for the MBM filter is presented in Fig.
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Figure 5.1: MBM filter block diagram

5.1. MBM reduction typically consists of 1) pruning MBs with low weights
and 2) pruning Bernoullis with low probability of existence. The reader is
referred to [20] for explicit equations and implementation details of the MBM
filter. The MBM01 filter is based on the MBM01 conjugate prior. It has the
same filtering recursion as the MBM filter but performs MBM01 expansion
after the prediction step. This results in an exponential increase in number
of global hypotheses in the MBM01 filter. The δ-generalized labeled multi-
Bernoulli (δ-GLMB) filter [21], [22] is equivalent to the labeled MBM01 filter
where labels are used for sequential track formation.

Poisson multi-Bernoulli mixture conjugate prior
With a Poisson birth, the PMBM density PMBMk|k(xk) is a multi-object
conjugate prior to the standard models [17], [18]. If the posterior at time step
k − 1 is PMBM, then for the multi-object transition density p(xk|xk−1) the
predicted multi-object density is also PMBM,

PMBMk|k−1 (xk) =
∫
p (xk|xk−1)PMBMk−1|k−1 (xk−1) δxk−1. (5.18)

Further, if the predicted multi-object density at time step k is PMBM, then
for the multi-object measurement model p(zk|xk) the Bayes posterior is also
PMBM

PMBMk|k (xk) =
p (zk|xk)PMBMk|k−1 (xk)∫
p (zk|x′k)PMBMk|k−1 (x′k) δx′k

. (5.19)

When using the PMBM conjugate prior for MOT, the set of objects xk
at time step k is the union of detected objects and undetected objects, i.e.,
xk = xdk ] xuk . The set of detected objects xdk consists of objects that the
sensors have detected at least once. The set of undetected objects xuk consists
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of objects that have never been detected by any of the sensors (but that are
within the surveillance region of the sensors).
The PMBM density is defined as

PMBMk|k (xk) =
∑

xu
k
]xd

k
=xk

Puk|k (xuk)MBMd
k|k
(
xdk
)

(5.20)

with a PPP density Puk|k(·) for undetected objects, and an MBM density
MBMd

k|k(·) for detected objects. The undetected PPP intensity is typically
an un-normalized density mixture,

λu
k|k (xk) =

Nu
k∑

t=1
w̃u,t
k|kp

u,t
k|k (xk) , (5.21)

whose parameters are {(
w̃u,t
k|k, p

u,t
k|k(·)

)}Nu
k

t=1
. (5.22)

The MBM density, defined in (5.16), for detected objects has parameters,{(
whkk|k,

{(
ri,hkk|k , p

i,hk
k|k (·)

)}Nhk
k

i=1

)}Hk
hk=1

. (5.23)

Therefore the PMBM density is fully parameterized by the parameters,

{(
w̃u,t
k|k, p

u,t
k|k(·)

)}Nu
k

t=1
,

{(
whkk|k,

{(
ri,hkk|k , p

i,hk
k|k (·)

)}Nhk
k

i=1

)}Hk
hk=1

. (5.24)

A PMBM becomes an MBM if the intensity of the PPP is zero.
The PMBM density captures relevant uncertainties in MOT in an elegant

way. In MOT the number of objects is unknown, and in the PMBM density
this is captured by both the Bernoulli probabilities of existence, and by the un-
detected PPP intensity. The uncertainty about the object states are captured
by the Bernoulli state densities for detected objects, and by the PPP inten-
sity for undetected objects. Lastly, the unknown data association in MOT is
captured by the MB mixture, where each mixture component corresponds to
a sequence of (global) data associations, and the component weights are the
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Chapter 5 Multi-object conjugate priors for multi-object tracking

Figure 5.2: PMBM filter block diagram

estimated probability of the corresponding global associations.
The PMBM filter is an MOT algorithm based on the PMBM conjugate

prior. The PMBM filter has a hypothesis structure in analogy to MHT, see,
e.g., [25], [49] for detailed discussions. Similar to the MBM filter, the PMBM
filter also consists of four building blocks: 1) prediction, 2) update, 3) reduc-
tion, and 4) estimation. A block-diagram for the PMBM filter is presented
in Fig. 5.1. Here recycling means that Bernoullis with low probability of
existence are approximated as a PPP and added to the PPP for undetected
objects [50]. Compared to Bernoulli pruning, the information contained in
the Bernoullis can be approximately retained in the PPP via recycling. The
reader is referred to [17]–[19] for explicit equations and implementation details
of the PMBM filter. The PMBM filter has a more efficient representation of
the hypotheses than the MBM filter, thanks to the fact that the initiation
of new Bernoullis is measurement-driven. Comparisons of MBM and PMBM
filters have shown that, in terms of computational cost and estimation error,
PMBM filter have better performance, see, e.g., [19], [20], [51], [52].
It is also useful to consider a PMB approximation to the PMBM density

(5.20), which offers a trade-off between computational complexity and estima-
tion performance. The PMB filter is a computationally efficient approximation
of the PMBM filter by performing the PMB approximation after each update.
Various PMB approximation methods exist for both point and extended ob-
jects [49], [53], [54], among which the one based on variational approximation
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[53], [54] has the best performance when objects move in close proximity.
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CHAPTER 6

Multi-object tracking based on sets of trajectories

In RFS-based algorithms for MOT, the main focus has been on the filtering
problem. The object state estimation can be easily extracted from the multi-
object filtering densities; however, it is not obvious how to build trajectories
in a sound manner. A full Bayesian approach to MOT should characterize
the distribution of the trajectories given the measurements, as it contains
all information about the trajectories. This can be attained by considering
multi-object density functions in which objects are trajectories [28], referred
to as multi-trajectory densities. This chapter briefly reviews basic concepts
of sets of trajectories and PMBM conjugate priors for sets of trajectories. In
addition, a metric on the space of finite sets of trajectories [55] is introduced
for MOT performance evaluation in terms of trajectory estimation error.

6.1 Sets of trajectories

This section reviews the state representations of trajectories and the inte-
gration of trajectory densities. In addition, possible problem formulations of
MOT based on sets of trajectories used in this thesis are introduced.
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Chapter 6 Multi-object tracking based on sets of trajectories

Single trajectory

A trajectory consists of a sequence of object states that can start at any
time step and end at any time after it starts. Mathematically, a trajectory is
represented as a variable X = (t, x1:i) where t is the initial time step of the
trajectory, i is its length, and x1:i = (x1, . . . , xi) denotes a sequence of length
i that contains the object states at consecutive time steps of the trajectory. If
k is the current time step, t + i − 1 < k means that the trajectory ended at
time t+ i− 1, and t+ i− 1 = k means that the trajectory is ongoing.

As a trajectory (t, x1:i) exists from time step t to t+ i− 1, variable (t+ i)
belongs to the set,

I(k′) = {(t, i) : 0 ≤ t ≤ k′ <∞ and 1 ≤ i ≤ k′ − t+ 1 <∞}. (6.1)

A single trajectory X up to a finite time step k′ therefore belongs to the space

Tk′ = ](t,i)∈I(k′){t} × Xi (6.2)

where Xi represents i Cartesian products of single object state space X. Given
a real-valued function p(·) on the single trajectory space T(k′), its integral is∫

p(X)dX =
∑

(t,i)∈I(k′)

∫
p
(
t, x1:i) dx1:i (6.3)

where single trajectory density p(t, x1:i) can be factorized as

p(t, x1:i) = p(x1:i|t, i)P (t, i). (6.4)

This integral goes through all possible start times, lengths, and object states
of the trajectory.

Multiple trajectories

A set of trajectories up to a finite time step k′ is denoted by X ∈ F(T(k′))
where F(T(k′)) is the set of all the finite subsets of T(k′). Given a trajectory
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6.1 Sets of trajectories

X = (t, x1:i), the set of the object state at time step k is

τk(X) =
{
{xk+1−t} if t ≤ k ≤ t+ i− 1
∅ otherwise

. (6.5)

A trajectory X is present at time step k if and only if |τk(X)| = 1. Given a
set X of trajectories, the set τk(X) of object states at time step k is

τk(X) =
⋃
X∈X

τk(X). (6.6)

The number of trajectories present at time k is given by |τk(X)|.
Given a real-valued function f(·) on the space F(T(k′)) of sets of trajectories,

its set integral is∫
f(X)δX =

∞∑
n=0

1
n!

∫
f ({X1, . . . , Xn}) dX1:n (6.7)

where X1:n = (X1, . . . , Xn). If f(·) is a multi-trajectory density, then f(·) ≥ 0
and its set integral is one.
Multi-trajectory processes are analogous to multi-object processes for sets

of object. A trajectory Poisson RFS has density

f(X) = e−
∫
λ(X)dXλX (6.8)

where the trajectory Poisson intensity λ(·) is defined on the trajectory state
space, i.e., realizations of the Poisson RFS are trajectories with a birth time,
a length, and a state sequence. A trajectory Bernoulli RFS has density

f(X) =


1− r if X = ∅
rp(X) if X = {X}
0 otherwise

(6.9)

where p(·) is a trajectory state density and r is the Bernoulli probability
of existence. A trajectory MB is the disjoint union of multiple trajectory
Bernoulli RFSs; trajectory MBM RFS is an RFS whose density is a mixture
of trajectory MB densities.
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Problem formulation
There are many ways in which an MOT problem can be formulated depending
on the application at hand. In this thesis, the following two variants are
considered:

• The set of current trajectories: the objective is to estimate the trajecto-
ries of the objects who are present in the surveillance area at the current
time.

• The set of all trajectories: the objective is to estimate the trajectories of
all objects that have passed through the surveillance area at some point
between time step 0 and the current time step, i.e., both the objects
that are present in the surveillance area at the current time, and the
objects that have left the surveillance area (but were in the surveillance
area at at least one previous time).

Depending on the problem formulation, the variable that we are interested in
is different. For the set of current trajectories, Xk is the set of trajectories for
which t+ i− 1 = k. For the set of all trajectories, Xk is the set of trajectories
for which t+ i− 1 ≤ k.
With the set of trajectories Xk as variables of interest in MOT, the Bayesian

filtering recursions are

p (Xk|z1:k−1) =
∫
p (Xk|Xk−1) p (Xk−1|z1:k−1) δXk−1, (6.10)

p (Xk|z1:k) = p (zk|Xk) p (Xk|z1:k−1)∫
p (zk|X′k) p (X′k|z1:k−1) δX′k

(6.11)

where p(Xk|Xk−1) and p(zk|Xk) are multi-object dynamic and measurement
models for sets of trajectories, defined analogously to their counterparts for
sets of objects in Chapter 4. See [28] for details.

6.2 PMBMs for sets of trajectories
This section introduces the PMBM conjugate prior for sets of trajectories
[30], [56], [57]. It was shown in [30] that the PMBM multi-trajectory density
PMBMk|k(Xk) is a conjugate prior to multi-object models with point objects
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Figure 6.1: Trajectory PMBM filter versus object PMBM filter.

assumption and Poisson birth:

PMBMk|k−1 (Xk) =
∫
p (Xk|Xk−1)PMBMk−1|k−1 (Xk−1) δXk−1,

(6.12)

PMBMk|k (Xk) =
p (zk|Xk)PMBMk|k−1 (Xk)∫
p (zk|X′k)PMBMk|k−1 (X′k) δX′k

. (6.13)

In a PMBM multi-trajectory density, the trajectory Poisson RFS models tra-
jectories of the set of undetected objects, whereas the trajectory MBM RFS
models trajectories of objects that have been detected (in one of observed
measurement sets). In a trajectory MBM, each Bernoulli RFS models a single
potential trajectory given a sequence of associations, an MB RFS models a
set of detected trajectories for a global hypothesis, and the weights of MBs
are the estimated probability of the corresponding associations.
A trajectory Poisson/Bernoulli RFS density can be marginalized to the cur-

rent time step to obtain an object Poisson/Bernoulli RFS density. Therefore
marginalizing a PMBM set of trajectories density gives a PMBM set of object
states density. The trajectory PMBM filter is an MOT algorithm based on the
PMBM conjugate prior for sets of trajectories; see [30] for explicit equations
and implementation details. The relation between a trajectory PMBM filter
and an object PMBM filter is illustrated in Figure 6.1. Two key insights are:
1) in object PMBM filter the object state history is marginalized out in every
prediction step, and 2) in trajectory PMBM filter information about the past
object states is maintained such that trajectories can be estimated directly
from the posterior.
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6.3 Metric on the space of sets of trajectories

A metric for sets of trajectories based on multi-dimensional assignments was
proposed in [55]. This metric penalizes localization costs for properly detected
objects, misdetections, false detections and track switches. Let ΠX,Y be the
set of all possible assignment vectors between the index sets {1. . . . , |X|} and
{0, . . . , |Y|}. An assignment vector πk = [πk1 , . . . , πk|X|]T at time step k is a
vector πk ∈ {0, . . . , |Y|}nX such that its ith component πki = πki′ = j > 0
implies that i = i′. Here πki = j 6= 0 implies that trajectory i in X is assigned
to trajectory j in Y at time step k and πki = 0 implies that trajectory i in X
is unassigned at time step k.

For 1 ≤ p <∞, cut-off parameter c > 0, switching penalty γ > 0 and a base
metric db(·, ·) in the single object space X, the multi-dimensional assignment
metric d(c,γ)

p (X,Y) between two sets X and Y of trajectories in time interval
1, . . . , T is

d(c,γ)
p (X,Y) = min

πk∈ΠX,Y

(
T∑
k=1

dkX,Y
(
X,Y, πk

)p +
T−1∑
k=1

sX,Y
(
πk, πk+1)p) 1

p

(6.14)
where the costs (to the p-th power) for properly detected objects, misdetec-
tions and false detections at time step k are

dkX,Y
(
X,Y, πk

)p =
∑

(i,j)∈θk(πk)

d
(
τk(Xi), τk(Yj)

)p +

cp

2
(∣∣τk(X)

∣∣+
∣∣τk(Y)

∣∣− 2
∣∣θk (πk)∣∣) (6.15)

with

θk
(
πk
)

=
{(
i, πki

)
: i ∈ {1, . . . , nX} ,

|τk(Xi)| =
∣∣∣τk(Yπk

i
)
∣∣∣ = 1, d

(
τk(Xi), τk(Yπk

i
) < c

)}
(6.16)

and the switching cost (to the p-th power) from time step k to k + 1 is given
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by

sX,Y(πk, πk+1)p = γp
|X|∑
i=1

s
(
πki , π

k+1
i

)
(6.17)

s
(
πki , π

k+1
i

)
=


0 if πki = πk+1

i

1 if πki 6= πk+1
i , πki 6= 0, πk+1

i 6= 0
1
2 otherwise

. (6.18)

It should be noted that, for (i, j) ∈ θk, τk(Xi) and τk(Yπk
i
) contain precisely

one element and their distance is smaller than c, so d
(
τk(Xi), τk(Yj)

)
coin-

cides with db(·, ·) evaluated at the corresponding single object states, which
corresponds to the localization error. Therefore, (6.15) represents the sum of
the costs (to the pth power) that correspond to localization error for properly
detected objects (indicated by the assignments in θk(πk)), number of misde-
tections (|τk(X)| − |θk(πk)|) and false detections (|τk(Y)| − |θk(πk)|) at time
step k.
The metric (6.14) can be computed by solving a multi-dimensional assign-

ment problem, which may be computationally heavy for large T . It was further
shown in [55] that an accurate lower bound on the metric (6.14) can be ob-
tained using linear programming, which can be computed in polynomial time.
Note that this lower bound is also a metric.
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CHAPTER 7

Summary of included papers

This chapter provides a summary of the included papers.

7.1 Paper A
Yuxuan Xia, Karl Granström, Lennart Svensson,
Ángel F. García-Fernández, Jason L. Williams
Multi-scan implementation of the trajectory Poisson multi-Bernoulli mix-
ture filter
Published in Journal of Advances in Information Fusion,
vol. 14, no. 2, pp. 213–235, Apr. 2019.
c©2019 ISIF ISBN: 1557-6418 .

The Poisson multi-Bernoulli mixture (PMBM) and the multi-Bernoulli mix-
ture (MBM) are two multi-target distributions for which closed-form filtering
recursions exist. The PMBM has a Poisson birth process, whereas the MBM
has a multi-Bernoulli birth process. This paper considers a recently developed
formulation of the multi-target tracking problem using a random finite set of
trajectories, through which the track continuity is explicitly established. A
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Chapter 7 Summary of included papers

multi-scan trajectory PMBM filter and a multi-scan trajectory MBM filter,
with the ability to correct past data association decisions to improve current
decisions, are presented. In addition, a multi-scan trajectory MBM01 filter,
in which the existence probabilities of all Bernoulli components are either 0
or 1, is presented. This paper proposes an efficient implementation that per-
forms track-oriented N -scan pruning to limit computational complexity, and
uses dual decomposition to solve the involved multi-frame assignment prob-
lem. The performance of the presented multi-target trackers, applied with an
efficient fixed-lag smoothing method, are evaluated in a simulation study.

7.2 Paper B
Yuxuan Xia, Lennart Svensson, Ángel F. García-Fernández,
Karl Granström, Jason L. Williams
Backward simulation for sets of trajectories
Published in 23rd International Conference on Information Fusion,
Jul. 2020.
c©2020 ISIF: 978-0-964527-6-2 .

This paper presents a solution for recovering full trajectory information, via
the calculation of the posterior of the set of trajectories, from a sequence of
multitarget (unlabelled) filtering densities and the multitarget dynamic model.
Importantly, the proposed solution opens an avenue of trajectory estimation
possibilities for multitarget filters that do not explicitly estimate trajecto-
ries. In this paper, we first derive a general multitrajectory forward-backward
smoothing equation based on sets of trajectories and the random finite set
framework. Then we show how to sample sets of trajectories using back-
ward simulation when the multitarget filtering densities are multi-Bernoulli
processes. The proposed approach is demonstrated in a simulation study.

7.3 Paper C
Yuxuan Xia, Karl Granström, Lennart Svensson,
Ángel F. García-Fernández, Jason L. Williams
Extended target Poisson multi-Bernoulli mixture trackers based on sets
of trajectories
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7.4 Paper D

Published in 22nd International Conference on Information Fusion,
Jul. 2019.
c©2019 ISIF: 978-0-9964527-8-6 .

The Poisson multi-Bernoulli mixture (PMBM) is a multi-target distribution
for which the prediction and update are closed. By applying the random finite
set (RFS) framework to multi-target tracking with sets of trajectories as the
variable of interest, the PMBM trackers can efficiently estimate the set of
target trajectories. This paper derives two trajectory RFS filters for extended
target tracking, called extended target PMBM trackers. Compared to the
extended target PMBM filter based on sets on targets, explicit track continuity
between time steps is provided in the extended target PMBM trackers.

7.4 Paper D
Yuxuan Xia, Pu Wang, Karl Berntorp, Lennart Svensson,
Karl Granström, Hassan Mansour, Petros Boufounos, Philip V. Orlik
Learning based extended object tracking using hierarchical truncation
measurement model with automotive radar
Submitted to IEEE Journal of Selected Topics in Signal Processing,
2020. .

This paper presents a data-driven measurement model for extended object
tracking (EOT) with automotive radar. Specifically, the spatial distribution of
automotive radar measurements is modeled as a hierarchical truncated Gaus-
sian (HTG) with structural geometry parameters that can be learned from
the training data. The HTG measurement model provides an adequate re-
semblance to the spatial distribution of real-world automotive radar measure-
ments. Moreover, large-scale radar datasets can be leveraged to learn the
geometry-related model parameters and offload the computationally demand-
ing model parameter estimation from the state update step. The learned HTG
measurement model is further incorporated into a random matrix based EOT
approach with two (multi-sensor) measurement updates: one is based on a fac-
torized Gaussian inverse-Wishart density representation and the other is based
on a Rao-Blackwellized particle density representation. The effectiveness of
the proposed approaches is verified on both synthetic data and real-world
nuScenes dataset over 300 trajectories.
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CHAPTER 8

Concluding remarks and future work

This thesis studies Bayesian object tracking problem for both point and ex-
tended objects with focus on MOT based on sets of trajectories. The con-
cluding remarks and possible future work directions of the included papers
are given as follows:

• Paper A: “Multi-scan implementations of the trajectory Pois-
son multi-Bernoulli mixture filter”
This paper shows that multi-scan data association algorithms used in
classical track-oriented MHT can be utilized in trajectory filters based on
multi-object conjugate priors, resulting in the multi-scan implementa-
tions of the trajectory filters. An interesting future work is to benchmark
the multi-scan trajectory filters against efficient track-oriented MHT al-
gorithms in the literature.

• Paper B: “Backward simulation for sets of trajectories”
This papers presented a general backward-forward smoothing equation
for sets of trajectories and proposed a tractable implementation of a
multi-trajectory smoother using backward simulation and ranked assign-
ments. Though the proposed algorithm considers a batch solution, there
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is still room for improvement on the computational efficiency of current
implementation. The proof that the multi-object conjugacy also holds
in the backward smoothing recursion should be done as well. Lastly,
it would be interesting to consider a one-time-step lagged implementa-
tion of the multi-trajectory smoother, such that trajectories can be built
upon the computation of multi-object filtering densities.

• Paper C: “Extended target Poisson multi-Bernoulli mixture
trackers based on sets of trajectories”
This paper presented an extended object PMBM tracker based on sets
of trajectories that can directly produce trajectory estimates. Inter-
esting future work directions include the developing of a smoothing-
while-filtering GGIW implementation and a multi-scan extended object
PMBM tracker that considers the multi-scan data association problem.

• Paper D: “Learning-based extended object tracking using hier-
archical truncation measurement model with automotive radar”
This paper presented a new measurement model for EOT with automo-
tive radar by modeling the measurement spatial density as a HTG, which
can be learned from real-world automotive radar data. The learned HTG
measurement model has been further incorporated into a random ma-
trix based EOT approach with two measurement updates based on two
different density representations. To apply the proposed methods in
more practical applications, follow-up directions include the integration
of range rate measurements and the extension to multiple EOT.
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