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Engagement is a concept of the utmost importance in human-computer interaction, not

only for informing the design and implementation of interfaces, but also for enabling more

sophisticated interfaces capable of adapting to users. While the notion of engagement

is actively being studied in a diverse set of domains, the term has been used to refer to a

number of related, but different concepts. In fact it has been referred to across different

disciplines under different names and with different connotations in mind. Therefore,

it can be quite difficult to understand what the meaning of engagement is and how

one study relates to another one accordingly. Engagement has been studied not only

in human-human, but also in human-agent interactions i.e., interactions with physical

robots and embodied virtual agents. In this overview article we focus on different factors

involved in engagement studies, distinguishing especially between those studies that

address task and social engagement, involve children and adults, are conducted in a lab

or aimed for long term interaction. We also present models for detecting engagement

and for generating multimodal behaviors to show engagement.

Keywords: engagement, human-robot interaction (HRI), human-agent interaction (HAI), engagement perception,

engagement generation

1. INTRODUCTION

Engagement is a concept of the utmost importance in human-machine interaction, not only for
informing the design and implementation of interfaces, but also for enabling more sophisticated
interfaces capable of adapting to users. This is particularly true when the interface is an agent (see
Figure 1), be it virtual or robotic, that converses with human users. In the former case, the agents
detect users’ engagement (see Figure 2) while in the latter case the agents adapt to the detected
engagement. These agents all have a common goal, namely to have users continue interacting with
them and thus manage users’ engagement in the interaction. Thus, for human-agent interaction
engagement, both perception and generation are important issues. Perceiving how engaged users
are can be beneficial information for adapting agent behavior. It can also be a sign of the quality of
the interaction and user’s experience with the system. Similarly generating engaged behaviors in an
agent can be beneficial for human-perception in terms of social awareness.

The term engagement is being used across a number of diverse research domains, both scientific
and commercial. Its definition and use varies considerably and can be confusing, especially for
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FIGURE 1 | Examples of virtual and physical agents in typical engagement scenarios with humans.

FIGURE 2 | Examples of engagement detection systems.

researchers approaching the topic for the first time. In fact
engagement recently gained increasing popularity, in particular
with the development of interaction paradigms between humans
and embodied agents, such as virtual characters and robots (see
for example Leite et al., 2016). Yet, there remains great variability,
overlap and often vagueness with respect to the definition
of engagement. It is often used synonymously to refer to a
number of related concepts, such as interest, sustained attention,
immersion and involvement. Recently several papers attempted
to provide definition(s) of engagement. Researchers have also
proposed computational models to compute engagement, both
to analyse a human’s level of engagement and to drive agent’s
behavior to show its engagement. See Sanghvi et al. (2011) and
Sidner et al. (2003) for respective examples. The models vary
in terms of definition of engagement (which phenomenon is
modeled) and of expressive manifestation (which multimodal
behaviors are involved). The fact that more and more papers are
trying to provide an overview of engagement is warranted by
the great diversity of definitions of engagement across different
papers. The purpose of this article is to provide insights into the
use of engagement, particularly as it pertains to human-agent
interaction, with a focus on embodied agents such as embodied
conversational agents and social robots.

In this article, we review the literature with the aim of
answering the following questions:

(1) Specifically for human-agent interaction, what are the
engagement definitions most commonly used and how do
they differ from one another?

(2) How does the definition of engagement and its
implementation differ along several factors such as
interaction settings (real world or laboratory), interaction
types (short or long interaction), interaction goals (social
interaction or task performance), and user types (adults
or children)?

(3) How are engagement annotations being conducted?
Which methods and features are being used to detect
engagement and which expressions are being used to
generate engagement behaviors?

(4) What are the functions of engagement and which adaptation
strategies are applied by the agent in order to maintain it,
increase it or show disengagement?

The structure of the paper is as follows. First we present our
method to gather articles in the literature. We present the
annotation schema we follow to analyse and cluster these papers.
In section 3, we list the various definitions of engagement found
in the selected papers. From the next section onward, each
section focuses on specific aspects of engagement. In section
4, we review how engagement is defined through the different
scenarios that are commonly used in human-agent interaction.
Section 5 focuses on computational models to detect engagement
while section 6 describes the models to drive agent’s behaviors
to display engagement. Section 7 considers the additional issues
and requirements when humans are to engage in sustained
interaction over long periods of time with artificial systems.
Since many of the studies considered here have adult participant
groups, in section 8 we specifically report those studies that
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TABLE 1 | This table illustrates a selected list of articles, based on section 3, to represent our annotation procedure and to provides an overview of the attributes annotated including embodiment, role, affect,

participants, study design, type of interaction capabilities, and measurements.

Article Embodiment Role Affect Participants Study Type Measurements

R
o
b
o
t

V
irtu

a
lA

g
e
n
t

H
o
st

G
a
m
e
P
la
ye
r

In
stru

c
to
r/Tu

to
r

S
to
ryte

lle
r

C
o
m
p
a
n
io
n

E
n
te
rta

in
e
r

C
o
n
ve
rsa

tio
n
a
lP

a
rtn

e
r

In
te
rvie

w
e
r

M
u
ltip

le
R
o
le
s

In
c
lu
d
e
d

C
h
ild
re
n

A
d
u
lts

<
3
0

≥
3
0

L
a
b
S
tu
d
y

R
e
a
l-tim

e

A
u
to
n
o
m
o
u
s

W
o
Z

S
e
n
so

rs

P
e
rc
e
p
tio

n

G
e
n
e
ra
tio

n

P
e
rc
e
p
tio

n

S
im

u
la
tio

n

Q
u
e
stio

n
n
a
ire

s

V
id
e
o

D
ia
lo
g
u
e

C
o
n
te
xtu

a
l

Tra
c
kin

g
Te
c
h
.

O
b
se

rva
tio

n
s

P
h
ysio

lo
g
ic
a
l

T
im

e

Sidner and Dzikovska (2002) – –

Alami et al. (2005) – – –

Nakano and Nishida (2005) – –

Castellano et al. (2009)

Bohus and Horvitz (2009b)

Szafir and Mutlu (2012) – – – –

Vázquez et al. (2014)

Moshkina et al. (2014)

Rehm and Jensen (2015)

Anzalone et al. (2015) – –

Subramainan et al. (2016a) – – – – – – – – – – – –

Salam et al. (2017)

Trinh et al. (2018)

Inoue et al. (2018)

Sohail et al. (2019)

Biancardi et al. (2019a)

Youssef et al. (2019)

, Yes; , No; “−′′. N/A; , In-between.

F
ro
n
tie
rs

in
R
o
b
o
tic
s
a
n
d
A
I
|w

w
w
.fro

n
tie
rsin

.o
rg

3
A
u
g
u
st

2
0
2
0
|
V
o
lu
m
e
7
|
A
rtic

le
9
2

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Oertel et al. Engagement in Human-Agent Interaction

involve children. Finally, we conclude by highlighting gaps in the
literature and point to possible future research.

2. METHOD

We started curating a list of relevant papers, in November 2017,
by doing a search query using the terms “engagement+human-
robot interaction” in Scopus and Google Scholar, two popular
citation databases. Thereafter, to consolidate a full list of any
newly published articles, the search was repeated every 6 months
up until December 2019. The curated list of papers went through
the following inclusion criteria:

• Is the paper covering the topic of engagement in human-agent
interaction, including detecting it and generating behavior to
manifest engagement? This criterion entails that papers can
include robotic agents or virtual agents.

• Is the paper over four pages in length? With this criterion, the
inclusion of abstracts or poster publications is eliminated.

• Is the content of the paper not overlapping significantly
with another paper from the same author(s)? If the paper
does overlap, then the most elaborated paper is selected
for inclusion.

The initial curated list resulted in 189 papers in total and, based
on the inclusion criteria above, 20 were excluded resulting in a
final set of 169 papers. Based on a preliminary review of the 169
papers and the questions enumerated in the Introduction section,
we developed an annotation schema (see Table 2) to allow us
investigate and answer each of the questions.

Using the selected 169 relevant articles, we conducted
a full review on each paper to extract the details of
the annotation schema categories presented in Table 2. The
procedure commenced with an assignment of annotation
task to authors of this paper. During the process, the
annotators discussed and resolved any ambiguous statements
in papers that relate to any of the annotation categories. In
order to facilitate the reviewing process and to guarantee
reproducibility, a shared spread-sheet was created containing all
annotated data. The schema categories represent factual data
extracted from each paper. While all 169 papers contribute
to the general overviews, discussions and statistics in this
survey, due to space constraints, it is not possible to
report in detail on all of them. Therefore, all papers are
included in the references section, but only a subset of
those papers are cited when they have been discussed in
more detail.

2.1. Statistics
See Figure 3 for a graph of the number of publications covered in
this survey according to year. Overall, a total of 169 publications
were considered between the years 2001 and 2019. Of the 169
papers, 139 concerned a physical robot (88 papers, i.e., 52%
of overall papers) and/or virtual agent (51, 30%) embodiment.
39 (23%) papers involved studies that included or focused on
children as participants.

Papers were categorized according to the application area of
the paper, the role of the agent/robot, type of robot, the number

TABLE 2 | A summary of the annotation schema categories used.

Category Description

Title The title of the research paper or article

Year Publication Year

Scenario A description of the human-robot scenario used

in the article

Application What is the main application domain presented

in the article

Robot Type of robot(s) presented in the article

Role The main role of the robot/agent with in the

scenario presented

Definition The definition of “engagement” presented in the

context of the article

Affect Is there an affective component to the engagement definition

Participants’ type Are the participants of the study children,

adults or both

Number of Indicates the number of participants included

participants in any study (or studies) presented in the article

Lab study Did the article include a study that is conducted

in a laboratory settings

Sensors used What sensors are used to measure engagement (if any)

perception/how?

Perception Is sensory information used for training an ML model?

Research objectives What are the aims (purpose), research questions

and/or hypotheses presented in the article

Engagement type Is the article focusing on the perception,

generation or simulation of engagement

Study attributes What are the main evaluated attributes

presented in the article

Scenario tag In what context is the interaction taking place?

Finding/s The main finding presented in the article

Mode Was the operating mode of the robotic agent automated

or based on a Wizard-Of-Oz approach?

Language What language was the study conducted in?

Country Where was the study conducted?

Perception How is participant perception measured?

measurements Questionnaires/video analysis/observation

Mode of use Was the technical setting conducted in real-time,

simulated or crowd sourced

Type of paper What is the main type of the article presented

(e.g., Technology, User evaluations etc.)

of participants in the study and the age of participants (adults
or children). For each specific category, labels were enumerated
by surveying all included papers and then maintaining those
labels that appeared in more than one paper. See Figure 4

for a graph of the different robot embodiments used in
studies covered in this survey. The labels consisted of a type
or name of robot or virtual agent if more than one study
took place with it. Otherwise the label other was used. Greta,
Relational1, Haptek and TAMER refer to specific virtual agent

1MIT Media Lab Relational Agents, https://affect.media.mit.edu/projectpages/
relational/.
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FIGURE 3 | The distribution of publications per year covered in this survey. A total of 169 publications were considered in total between the years 2001 and 2019.

FIGURE 4 | Overview of number of mentions of specific (Left) robot types and (Right) virtual agent types used in studies. Note that some studies involved the use of

multiple robot/agent types, while others did not use any robot or virtual agent, or did not specify the type involved.

solutions or frameworks, while Chatbot, Simulation, Custom,
and Other are categories. A graph of the applications related to
engagement covered in the papers in this survey is presented in
Figure 5. They cover the categories of education, health, games,
companion, conversation, sales, therapy, host, and collaboration.
See Figure 6 for a graph of the role of the agent. The role
category included the labels assistant, storyteller, game opponent,
demonstrator, collaborator, teleoperated, tutor, therapist, elicitor,
entertainer, learner, instructor, conversation partner, persuader,
host, interviewer, contact seeker, motivator, audience, multiple (for
multiple categories) and other. A few of the less well-known roles
can be better explained by examples; for instance, in Anzalone
et al. (2015), the robot is used as an elicitor, i.e., it elicits
certain behaviors in humans in various face-to-face interaction
scenarios. Furthermore, in Rani and Sarkar (2005), a teleoperated
robot detects the engagement levels of its operator through
physiological sensors and adapts its behavior accordingly. Lastly,
in Baek et al. (2014), where the robot acts as a contact seeker,
a study is conducted to explore how a communicator type

(human, robot, product) impacts social presence and shyness
of participants when they come in physical contact with each
of them.

2.2. Evaluation Methodology
To understand how evaluations in the curated list of papers
investigated the users’ perception in their work, we extracted
the type of evaluation data collected in each of the papers.
After an initial review of all the papers, it was apparent
that 23 papers did not include an evaluation study and were
found to be focused on technical, modeling or conceptual
contributions. For the remaining papers, we found thirteen types
of evaluation tools, both objective and subjective, to measure
the users’ perception in the presented works. The data types
reported include questionnaires, RGB video recordings, depth
camera recordings, time/temporal performances, post study
interviews, observations, physiological sensor data, tracking
sensor technologies (motion, eye, and laser tracking), speech and
dialogue recording, and contextual and application records (such
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FIGURE 5 | Overview of all publications in this survey according to application type when it was specified (140 in total specified, 29 unspecified, or could not be

identified).

FIGURE 6 | Overview of all publications in this survey according to the role of the robot or virtual agent when it was specified (107 in total specified, 62 unspecified, or

could not be identified).

as game scores, number of moves, implicit touch gestures, logs
etc). Figure 7 represents the percentage of each type used in the
curated list of papers.

It is apparent from Figure 7 that authors approached
measuring the users’ perception in HRI engagement research
mainly through video analysis (33.5%), speech/dialogue analysis
(16.3%), contextual and application performance data (9.0%),
and questionnaires (22.2%).

3. DEFINITION OF ENGAGEMENT

As previously mentioned, there is great variation concerning
definitions of engagement. Papers can be divided into those

that consider engagement as a process and those that treat
engagement as a state. The state point of view assumes that
one is either engaged or not engaged (e.g., Inoue et al., 2018),
while the process point of view assumes that there are different
processes that unfold during an interaction. Here the action of
getting engaged is part of the construct of engagement itself. The
most commonly used example of a process definition is in Sidner
et al. (2003), which defines engagement as “the process by which
interactors start, maintain, and end their perceived connections
to each other during an interaction.” Examples of studies which
are using this definition are Holroyd et al. (2011), Bohus and
Horvitz (2009b), Alami et al. (2005), Sidner et al. (2006), Nakano
and Nishida (2005), and Anzalone et al. (2015). There are also
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FIGURE 7 | The type of data collected in the evaluation studies conducted in the curated list of papers. Note that many studies collected multiple data types while

some did not collect any.

those who slightly adapt or alter the definition. One example is
Bohus and Horvitz (2009a). Their definition of engagement is
“the process subsuming the joint, coordinated activities by which
participants initiate, maintain, join, abandon, suspend, resume,
or terminate an interaction.” It also includes the concepts of
abandon, suspend, and resume.

A second distinction can be made depending on who or what
is the receiver of user engagement. For example, in human-agent
interaction, the human user can be engaged with the agent (and
vice-versa), the task that user and agent are be involved in, or the
whole system (i.e., agent and task). The former case is often called
social engagement and the next one task engagement.

Regarding the definition of engagement in a conversational
setting, Coker and Burgoon (1987) were the first, to our
knowledge, who attempted a definition. They are referring to a
concept called conversational involvement which, for all intents
and purposes of this paper, refers to the same concept as
engagement. They defined four distinct variables: “the degree
of animation and dynamism,” “the tendency to be interested
in, attentive to, and adaptive to the other in a conversation,”
the “immediacy” in the behavior of the interlocutors, and their
degree of “social anxiety.”

Engagement with an agent is typically referred to as social
engagement. There is variation in the definition of social
engagement. It can be defined as any interaction a human has
with either another human being or a robot (Sidner et al.,
2003; Poggi, 2007). Another definition of “social engagement”
is provided by Moshkina et al. (2014) as “a core social activity
that refers to an individual’s behavior within a social group.” The
commonality which can be highlighted between both of these two
definitions is that social engagement happens in interaction with
one another. These definitions remain relatively vague and leave
space to encompass a great variety of activities and experimental

set-ups with different degrees of socialness. Within the studies
reviewed in this article, the activities that could be classified as
being more social include storytelling (see for example Szafir and
Mutlu, 2012), followed by unstructured conversations and games.
While unstructured conversations can encompass many aspects
of conversation, generally they are not task-driven.

Social engagement very often also includes an affective
component (see for example Corrigan et al., 2016; Biancardi et al.,
2019a; Sohail et al., 2019; Youssef et al., 2019). The definition
of the affective component of engagement often remains vague.
It is sometimes related to fun, as is the case in Rehm and
Jensen (2015), entertainment, as exemplified in Vázquez et al.
(2014). One way in which it is being used is to capture the
perception of the inner state of a participant and the value he/she
attributes to the interaction, as in the case of Castellano et al.
(2009). Poggi (2007), for example, defined engagement as “the
value that a participant in an interaction attributes to the goal
of being together with the other participant(s) and continuing
the interaction.” Other works highlight the emotion component
more predominantly such as Subramainan et al. (2016a), Choi
et al. (2012), and Sanghvi et al. (2011). For example, in Sanghvi
et al. (2011), user’s engagement with the iCat is characterized
by an affective and attention component. Similarly also Youssef
et al. (2019) rely on several levels of engagement annotation
including both the affective as well as the (non-)verbal cue
level that includes head rotation and eye-gaze. Finally, Biancardi
et al. (2019a) combines affective- with attention- and cognitive
engagement components in their detection model. Every person
might of course differ to a certain degree in the way that he/she
expresses the different forms of engagement.

Engagement with a task is typically referred to as task
engagement. There is great variety in definitions of task
engagement. On the one hand, task engagement is defined as
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a human involved in a task (Corrigan et al., 2015). In such a
context, the human does not interact with an interface, a robot,
an agent to perform the task. Since our focus is on human-agent
interaction, we will not consider this case. Rather we will consider
task engagement in the context of human-agent interaction
where a human and an embodied agent interact together around
a task. On the other hand, task engagement can also refer to any
kind of human-agent interaction in which behaviors are centered
around a task. Examples of such interactions include the one of
moving objects, or an object learning experiment where the agent
asks participants to identify the name of objects so that it can
learn them (Ivaldi et al., 2014), or mobile robots approaching
humans (Ramírez et al., 2016).

In recent years there has also been an increasing amount of
work going beyond dyadic to group interactions. This includes
work on engagement as well. There are different ways to approach
quantifying engagement in a group. Gatica-Perez et al. (2005)
defined group interest as “the perceived degree of interest
or involvement of the majority of the group.” Salam et al.
(2017) defined “group engagement” as “the engagement state
of two entities in the interaction together with another entity.”
Oertel et al. (2011) defined group involvement as “a group
variable which is calculated as the average of the degree to
which individual people in a group are engaged in spontaneous,
non-task-directed conversations.” Similarly, Salam et al. (2017)
defined group engagement as “the engagement state of two
entities in the interaction together with another entity.” They
stress the importance of distinguishing group engagement from
other group related constructs such as “cohesion” (Carless and
De Paola, 2000) and “mutual engagement.” Goffman (2017), who
built on Clark (1996), refers to people within an interaction
as belonging to different participation categories. To make
this classification, he first distinguishes between participants
and non-participants. The group of participants he considers
consist of “the speaker,” “the current addressee,” and “the
sideparticipant.” The group of non-participants includes the
categories of “bystanders” and “overhearers.” This highlights that
a group is not a simply a set of dyads.

Finally, engagement is also being investigated within the
context of long-term human-agent interaction. In such a context
(Trinh et al., 2018) separate between three user categories: Those
who “dropout,” those who are “moderately engaged” and those
who are “highly engaged.”

As can be seen in Table 1, there is quite some variation
in roles taken on by the virtual agent or robot respectively.
No clear distinction becomes apparent between roles taken on
by the robot or roles taken on by the agent. However, the
more recent papers seem to use more often the role of a
conversational partner. At the same time many of the recent
papers also have an affective component to their engagement
definition. A probable reason for this might be that recent
developments have lead to great improvements in multi-
modal sensing in general and speech recognition in particular,
which makes the implementation of mixed-initiative interactions
more feasible.

It can be concluded that there are several definitions of
engagement. These definitions are not contradictory but rather

complementary. They show that engagement is a multi-faceted
phenomenon. However, we also notice that the majority of
papers reviewed do not directly define engagement or remain
vague in its definition. Similarly, papers do not always make
a clear distinction between task and social engagement as the
scenarios they use often involve both social and task components.
For example, a robot as an assistant is a common scenario.
However, the role of an assistant comprises both social and
task components.

4. SITUATED INTERACTION

In the following sections we are referring to engagement as it
pertains to interaction in general. In many of the examples given,
however, engagement is discussed in the context of conversation.
We see and reviewed engagement, however, in general and see
conversation as a specific instance of interaction. The fact that
conversation as an interaction scenario is represented particularly
frequently is an artifact of the papers reviewed.

It appears that situations and scenarios do vary considerably
across studies. Examples, of such scenarios include museum
guides (Pitsch et al., 2009; Salam and Chetouani, 2015; Biancardi
et al., 2019a), games (Díaz et al., 2011; Klotz et al., 2011; Leite
et al., 2014), hospitality (Sidner and Lee, 2003; Sidner and
Dzikovska, 2005), education (Leyzberg et al., 2014; Papadopoulos
et al., 2016), sales (Ishii et al., 2011), and receptionist/direction
giving (Michalowski et al., 2006; Bohus and Horvitz, 2014). With
regards to museum guides, the overarching goal in the studies
has been on making visitors more interested in the artwork
and to provide information on the artwork on demand. Such
studies have been done both with virtual agents and with robots.
These interactions require a knowledge base of the paintings as
well as interaction management with the users. Interactions in
general are made more difficult by the surroundings in which
the interaction is taking place. In a museum generally the noise
level is high, participants are passing by in an uncoordinated
manner and the number of interaction partners can vary from
one to many. This situation puts certain constraints on human-
robot interaction, such as the robustness of speech recognition
and turn-taking regulation. However, not all interactions rely
on dialogue. Some Human-Robot interactions are text-based
or picture based. In addition also the degree of interactivity
varies. Some systems are based more on providing information
on demand whereas others act more interactively (Bohus
and Horvitz, 2009b). Other interactions are in contrast being
designed for or already situated in a home environment (for
example, supporting health-care, or also in the context of a social
companion) (Sidner, 2016). Researchers have many purposes.
Generally in a context like these there is not so much noise, the
environment is quieter and the interaction is more focused on a
single user or a smaller group of people. However, the interaction
is also required to go more into depth and social aspects are more
important. Also, memory and variability of interaction become
more essential. One further aspect is that of an experiment being
situated within a controlled laboratory environment vs. an open,
uncontrolled environment.
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4.1. Lab or Real World
If we want to go toward more long-term interactions and away
from very context dependent interactions, then it is important
to gather data and build models of how interactions happen
in real-world situations. Questions then arise including how to
capture changes of engagement over the course of an interaction,
how group size effects engagement and what implications this
has on model building. To capture more of these conversational
dynamics, Oertel et al. (2013) recorded five participants over
the course of two days. All interactions were recorded with
audio and video and also motion captured. Instead of providing
participants with a task or guiding the interactions, they were
simply asked to talk to one another. While this data led to several
research papers on investigating engagement, it was also limited
in that still several multi-modal cues needed to be annotated
manually. Specifically, the engagement label itself but also lower-
level cues such as eye-gaze and voice activity still needed to be
annotated manually. Oertel et al. (2014) created a corpus which
allowed them to study engagement in a setting that fostered
free flowing interaction. However, at the same time it was much
more controlled in terms of interaction phases. Participants were
much more restricted in terms of conversation topic (i.e., their
PhD studies) and movement (they were asked to remain seated
around a table). Due to this set-up it was however possible to infer
gaze and speech activity automatically as well as to optimize for
changes in conversational dynamics.

There are more corpora available which try to capture
engagement in lab or in the-wild settings to different degrees.
Many of them are however not publicly available. Such corpora
are then often used in order to predict engagement states of
participants, examples include Kim et al. (2016a, 2018), Oertel
and Salvi (2013), and Oertel et al. (2011).

In the HRI community, research is going more and more
toward bringing robots out of the classical lab environment
and evaluating them “in the wild.” The notion of what “in the
wild” entails often remains unclear. In the following section we
are going to highlight differences between in the wild and lab
settings and point toward challenges and advantages associated
with each scenario. The vast majority of studies reviewed are
lab studies. The “in the wild” studies were mainly concerned
with long-term interaction or robot child-interactions or both.
Examples of child-robot interaction scenarios often concern
museum environments. The manner in which the interaction is
then realized can vary widely. For instance, Rehm and Jensen
(2015) and Siegel et al. (2009) evaluate engagement in the
context of a museum. However, in the former case, the agent
is a monster agent which ate artworks and the children had to
find information about these cultural artifacts. This interaction
is quite different to an experimental set-up which is centered
around conversations between an agent and a human. Ahmad
et al. (2017), for example, carry out a long-term interaction
experiment in which children play a game of snakes and ladders
with a Nao robot. The children’s engagement is later analyzed
offline. Similar to this experiment, also Moshkina et al. (2014)
carried out their experiments in a public space but here the
difference was that the authors were interested in short-term
interaction. That interaction revolved around story telling and

the experiment was more concerned with investigating how a
change of different multimodal cues of the agent effects the social
engagement of the human.

A middle ground for lab or real-world settings is the
school setting as for example used in Zaga et al. (2015),
Castellano et al. (2017), and Leite et al. (2014). Students are
situated in environments they are more familiar with but most
school experiments are still pull-out studies. This means that
experiments are typically more controlled than if they were
carried out in a public space such as a museum. Castellano
et al. (2017) look at the effect of task, social context, and their
interdependencies in human–robot interaction. Yet, it needs
to be noted that engagement is here only evaluated indirectly
through an assessment of interaction quality. Castellano et al.
(2014), also in a school context, evaluated the effect of robot
initiative on the students learning task and the perceived
engagement. Similarly, Leite et al. (2014) investigated the effect of
an empathetic robot designed for long-term interaction on social
presence, engagement and perceived support in children. Similar
scenarios are also found in Castellano et al. (2017), Castellano
et al. (2014), Leite et al. (2014), and Castellano et al. (2013).

Pitsch et al. (2009) investigated contingent versus non-
contingent behavior strategies and the effect on the engagement
of the user. This approach is quite different in terms of the
scenario than the more game oriented approaches listed earlier;
although, also here the task of the robot was to provide
information about paintings. Moshkina et al. (2014) investigate
the behavior of a robot in a public space. Similar to the previous
examples, the scenario is concerned with story telling and game
playing and is notable for the large number of participants
(around 400) involved in the experiment. Alač et al. (2011) use
a game-like interaction to focus on the interaction of a robot and
the effect of different activities on the engagement of children.
An additional scenario in the wild, conducted by Šabanović
et al. (2013), involves studying the effect of robots on participant
engagement in nursery homes. Finally, in the wild scenarios also
include office environments in which agents take on the role
of receptionists (Bohus and Horvitz, 2009b) or direction givers
(Bohus and Horvitz, 2014).

4.2. Annotations
The way in which engagement is being measured is crucial
for its quantification and generalizability across different
studies. However, in a similar manner to defining engagement,
conducting annotations of engagement is also a challenging
endeavor since there are no generally accepted and established
annotation schemes in use. With regards to perception studies,
there are two general approaches for annotating engagement.
The first relies on first-person annotations of the interaction
and the second one on third-party observer annotations. First-
party observer annotations are generally provided at the session
level. While this approach has the advantage that it captures the
perception of the participants in the study, it has the disadvantage
that it is not well-suited for capturing the conversational
dynamics within the session. To capture conversational dynamics
within a session, a third-party observer approach using thin-
slicing, see for example Ambady and Rosenthal (1993), might be
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better suited. In a thin-sliced approach, video segments ranging
from 5 to 30 s are extracted. These segments of audio and/or
video are then being rated by several annotators and inter-
rater reliability is calculated. The scale on which engagement is
measured also determines how inter-rater reliability measured.
There are several ways of conducting the annotation. Some
approaches use a binary annotation scheme whereas others
use a scalar or ordinal scale annotation schemes. Commonly
used inter-rater reliability measures are Cohen’s kappa, Fleis’
kappa, and Krippendorf ’s alpha. Regarding the generation of
engagement, there does not seem to be an equally established
trend. Engagement and disengagement are here often associated
with the presence or non-presence of an interaction event.

5. PERCEPTION

The vast majority of studies reviewed here investigate
engagement from a perception system point of view which
means that sensors are used as a primary means of input for
estimating the degree of engagement or an engagement state.
One common task is to estimate a human user’s engagement in
a conversation or task and to then adapt the robot’s behavior
accordingly. The purposes and research questions behind it vary
widely which is also linked to the issue of differing definitions
of engagement. For example, a case in which engagement is
defined by the proximity to a robot will have very different
implications for sensors and the perception system than in a
case where engagement is defined by subjects’ participation in
a conversation. Another different approach is the perception of
engagement through visual attention mechanisms. Yet again, the
perception of signals related to engagement is used to evaluate
the impact different tasks have on the unfolding of conversations.
A further application for the perceptual detection of engagement
is long-term interaction. In order to engage a human for a
longer period of time, engagement detection and reactions are
becoming increasingly important.

5.1. Automatic Prediction of Engagement
Several works have addressed the automatic prediction of
engagement. In general a distinction can be made between rule-
based and machine learning-based approaches for the prediction
of engagement. Examples of studies that report rule-based
approaches are Brown et al. (2013), Glas et al. (2015), Ishii and
Nakano (2008), and Rich et al. (2010). There are differences in
how rules are implemented. For example, in Ishii and Nakano
(2008), rules are based on gaze-transition patterns, whereas in
Brown et al. (2013) they are based on the speed of students’
responses to a math test. In many studies however, social
engagement is measured through eye-gaze (see Nakano and Ishii,
2010; Qureshi et al., 2013), due to the close relationship between
visual attention and engagement. Ishii et al. (2013a), for example,
found that the use of various gaze features provides a good
estimate of the user’s conversational engagement.

In addition to eye gaze, other measures of user attention
have been proposed in the literature. Szafir and Mutlu (2012),
for example, designed a system that allows a robotic agent to

monitor student attention in real-time using measurements from
electroencephalography (EEG).

As far as machine learning-based methods are concerned,
while the proposed methods vary to a great extent, many of
the studies rely on Support Vector Machines (SVMs) and use
eye-gaze or head-pose as input-features for the engagement
prediction. Oertel and Salvi (2013) investigated individual
involvement and group engagement. They used different gaze
variables to first summarize and explain group actions and
then to investigate whether changes in these variables are good
predictors of engagement. Moving beyond user attention as a
measure of engagement, works by Sanghvi et al. (2011) and
Castellano et al. (2014) found that patterns of postural behavior
can be used to accurately predict the engagement of children
with a robot during game play and that the latter can also be
predicted using information about the children’s valence, interest
and anticipatory behavior. In their work, social engagement is
modeled as a state consisting of affect and attention components
in the context of the interaction. Castellano et al. (2009) also
found that an approach that includes both task and social
interaction-based features to measure engagement with a robot
outperforms those based solely on non-verbal or contextual
information. Castellano et al. (2017) showed that game and social
context-based features can be used to predict engagement with
a robot and that their integration with context-based features
encoding their interdependencies leads to higher recognition
performances. Kim et al. (2016b) proposed to approach the
automatic prediction of engagement using an ordinal learning
method and showed that such a method can successfully be
used to predict children’s engagement using non-verbal features.
Foster et al. (2017) used Conditional Random Fields to predict
engagement in multi-party HRI using audio-visual data. In their
work the task was to estimate engagement of customers for a
robot bartender based on the data from audiovisual sensors,
which relates to the need for a robot in a dynamic real world
environment to infer people’s intentions in the scene in order
to only attend to those who wish to interact with it. Ishii
and Nakano (2010) found that taking into account individual
differences of users in gaze transition patterns performs the best
in predicting user’s conversational engagement. Ishii et al. (2011)
then extended their model by adding to gaze transition patterns
other gaze parameters such as the occurrence ofmutual gaze, gaze
duration, distance of eye movement (toward objects of interest
in the interaction), and pupil size. They found that considering
gaze behaviors in their complexity enhances the performance for
predicting user’s conversational engagement.

In addition to verbal and non-verbal behavior and context,
other modalities, and social variables have been identified as
important for the automatic prediction of engagement. Choi et al.
(2012), for example, found that people’s physiological reactions
such as heart rate and electrodermal activity can predict the
extent to which people will engage affectively or strategically
with an agent. Moreover, Salam et al. (2017) found that taking
into account personality for the classification of engagement is
important. Similarly, Ivaldi et al. (2017) showed that engagement
models classically used in human-robot interaction should take
into account attitudes and personality traits.
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5.1.1. Deep Learning Approaches

As mentioned in previous paragraphs, machine learning
techniques have been widely used for engagement recognition.
The success of these techniques heavily depends on both the
choice of data representation (input features) and annotation
on which they are applied. Most of the input features are
domain specific and data representation usually results in a
feature engineering phase, as exemplified in Anzalone et al.
(2015). The main advantage is the explanatory dimension of
the input features. In Leclère et al. (2016), the percentage of
time spent face to face or oriented to the task is used to
assess face-to-face and task engagement in clinical settings.
However, the features are not easily transferable to new tasks,
situations and applications. Improving data representation for
classifiers is the main objective of representation learning, as
described in Bengio (2011). Deep learning is a specific method
for achieving representation learning using multiple non-linear
transformations. Representation learning based on deep learning
is particularly of interest in multimodal processing of human
behavior data by reducing the need of priors on the nature of
relations between modalities, the dynamics of non-verbal signals,
nature of the task and their impact on the prediction of socio-
cognitive states such as engagement.

In Rudovic et al. (2019a), a deep learning approach called PPA-
net (Personalized Perception of Affect network) is introduced
to jointly analyse visual (face and body), audio, and physiology
data for the prediction of valence, arousal and engagement in
autism therapy. The network is designed with three layers: (i)
a feature layer, learning representation of each modality, (ii)
a context layer, processing of heterogeneous data and expert
knowledge, and (iii) an inference layer, predicting the level
of arousal, valence, and engagement. Feature representation
learning is performed by Auto-Encoders (AE), which transform
signals to a hidden representation. Interestingly the approach
allows one to integrate the correlations among modalities into
the representation learning. The context layer aims to augment
the feature representation with expert’s inputs, which are domain
specific (mainly the assessment of children). The last layer is
a multitask learning phase, which aims to learn child-specific
layers for valence, arousal and engagement estimation. Taken all
together, this architecture allows learning correlations between
modalities, introducing expert knowledge, personalization as well
as relations between affective states.

Another strong motivation for deep learning approaches is
learning the dynamics between features. Even with the use
of explainable features such as head pose, the relationship
between the dynamics of such features and engagement is
not always straightforward. Explicitly learning the temporal
dynamics between the features as the mapping to engagement
could be performed by deep learning approaches. In Hadfield
et al. (2018), a Long Short-TermMemory (LSTM) neural network
is employed to classify engagement of children to the task using
pose data. LSTM are recurrent neural networks able to capture
the different dynamics of time series and they have been shown
to be efficient in sequence prediction problems. These models
have been successfully applied to engagement recognition using
head movements in Hadfield et al. (2018) and Lala et al. (2017)

and facial expression in Dermouche and Pelachaud (2019a).
Temporal models such as LSTM and Gated Recurrent Unit
(GRU) are compared to static deep leaning approaches as well
as logistic regression. The results show that temporal dynamics
as well as the observation window and buffer delay are important
factors in the performance of classifiers.

All these approaches rely on the availability of engagement
annotation. Recently Rudovic et al. (2019b) propose
a multimodal active learning approach based on deep
reinforcement learning to find the optimal policy for active
selection of the user’s data. The classification of individual
modalities into engagement levels (high/low/medium) is
performed by LSTM models followed by fully-connected layers.
The output of classifiers are also fed to a Deep Reinforcement
Learning agent (Q-function). The agent receives a reward related
to its decision: a positive reward is given for correct predictions,
and negative rewards is given for incorrect predictions or label
requests to human expert. This approach is designed for adapting
the engagement predictionmodel to new tasks, using a minimum
number of queries. In addition, as in Rudovic et al. (2019a), the
approach also allows multimodal processing and personalization.

5.2. Automatic Prediction of
Disengagement
While most of the works reported in the literature address
the automatic prediction of engagement, examples of systems
capable of automatically predicting user disengagement can also
be found. Leite et al. (2016), for example, developed an algorithm
to predict disengagement in small groups of children interacting
with two robot actors playing out interactive narratives around
emotional words, using visual and auditory features such as voice
activity, smiles, postural and gaze behavior. Bohus and Horvitz
(2014) also investigated disengagement. They used proximity,
stability and attention persistence in order to estimate the degree
of user disengagement. Conversational hesitation markers were
used to estimate whether a participant is still interested in
continuing to engage in a conversation.

More recently, Youssef et al. (2019) addressed the detection
of engagement decrease in users spontaneously interacting with
a socially assistive robot in a public space. Recurrent and
Deep Neural Networks were used to detect user engagement
decrease in real-time based on analysis of user’s behaviors such
as proxemics, gaze, head motion, facial expressions, and speech.

6. GENERATION

Engagement aware behavior generation can be accomplished
through a multitude of strategies, which is also exemplified in
the papers reviewed in this article. First of all, it can be noted
that behavior generation is dependent on its target audience.
Engagement strategies will have to be adapted for children or
for people with special needs. Moreover, strategies for behavior
generation are also dependent on the conversational contexts.
Humans are generally very good at estimating an interlocutor’s
level of engagement and reacting appropriately. Agents need to
learn more explicitly when to engage and when to disengage
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from a conversation. Strategies to achieve exactly this can be both
based on verbal cues as well as audio-visual ones. Concerning
visual cues, a very important process is the establishment of joint
attention, either guiding the interlocutor’s attention toward an
object or indicating its shared focus of attention by reciprocating
the focus of attention.

Investigating the impact of robot types of autonomy (robot
teleoperated by a remote operator vs. autonomous robot)
on emotional engagement, Choi et al. (2014) reported that
participants felt more social presence to teleoperated robots
than autonomous robots. Moreover, participants felt more
embarrassment when they were interviewed with teleoperated
robots than autonomous, for example Baek et al. (2014) found
that participants felt more social presence in the company of
a person, than a product or a robot. As in Choi et al. (2014),
the authors observed that an autonomous robot is not able to
easily invoke social emotions. Short et al. (2010) found that
participants displayed a greater level of social engagement and
made greater attributions of mental state when playing against
the robot in the conditions in which it cheated. Moshkina et al.
(2014) reported that the more human-like the robot behaves
during story-telling, the more social engagement was observed.
However, robot’s game-playing did not elicit more engagement
than other, less social behaviors.

6.1. Adaptation Mechanisms
The following section provides an overview of studies concerned
with strategies used for generating behaviors both adapted
to conversational context and user group, especially focusing
on the adaptation mechanisms used. During an interaction,
interlocutors adapt to each other at various levels. Several
computational models have been proposed to decide when the
robot should display a particular behavior or use a specific
conversational strategy to call for user’s engagement or increase it.

Several works report how the timing of agent’s behavior
in relation to user’s behavior is important in maintaining the
engagement and enhancing user’s experience of the interaction.
Ishii et al. (2013b) find that the use of probing questions by
the engagement-sensitive agent successfully recovers the subject’s
conversational engagement, changes the gaze behaviors of the
participant and elicits more verbal contribution. Sidner et al.
(2003) argue that, in robot-user interaction, users are sensitive
to the robot’s gaze and gestures. They found that a robot’s
gestures attract the attention of users. The authors also report
that users gazing at the object relevant to the conversation at
the same time as the robot is a strong sign of user engagement.
So detecting user’s behavior in relation to the conversation and
to the robot’s behavior is crucial to gain information about how
users participate in the interaction. They also note that the rules
for driving a robot’s engagement maintenance behavior must be
more complex than simply copying users’ behavior. Robins et al.
(2005) found that the provision of feedback from the robot in
a timely manner was important for the interaction as well as
the rhythm, timing of movement and turn-taking in general. Xu
et al. (2013) report similar results for multi-party interaction.
The authors conducted an experiment where a robot interacted
with multiple people at once. There were two conditions: the

first involved the robot gazing at its main interlocutor and
managing the distribution of turn-taking between interactants,
while the second involved the robot gazing and managing turn-
taking randomly. The results show that when the robot shows
engagement-aware behaviors in the first condition, it significantly
improved the effectiveness of communication and positively
affected users’ experience.

While most studies consider gaze behaviors, Cafaro et al.
(2016) studied how different interruption types affect the
perception of engagement. Interruptions may be cooperative
when the interrupter participates to the ongoing conversation
by asking for clarification, showing agreement, while they may
be disruptive when the interrupter shows disagreement, changes
topic of conversation, etc. Cafaro et al. (2016) found that when
using a cooperative interruption strategy such as completing
the speaker’s sentence or asking a clarification question, e.g., to
increase affiliation, i.e., liking or friendliness (as opposed to a
disruptive one that includes showing disagreement or changing
topic of conversation), an interrupter is perceived as more
engaged and more involved in the interaction.

Other works propose learning approaches for the agent to
increase user’s engagement. To this aim, the agent learns how
to adapt to user’s behavior. Szafir and Mutlu (2012) developed
an adaptive robotic agent that employs verbal and non-verbal
immediacy cues, such as modulating spoken volume and using
gaze, head nodding, and gestures, to regain attention during
drops in engagement. The robot acted as an instructor telling
stories to students wearing EEG headsets. A trained model to
detect reductions in engagement from the EEG data was used
to trigger robot’s immediacy cues. A robot displaying adaptive
behaviors to students’ behaviors improved their recall abilities.
For female students, their motivation in the education task and
rapport with the robot.

Keizer et al. (2014) explored social state recognition in
multi-party HRI, with a specific focus on building machine
learning methods to determine whether a user within a group is
seeking to engage with a robot bartender using a combination
of multimodal features. Markov Decision Processes (MDPs)
were employed to generate socially appropriate behavior by the
bartender robot based on each individual user’s engagement.

Pelachaud and colleagues have developed several adaptation
mechanisms to control a virtual agent whose aim is to maintain
user’s engagement during the interaction. The adaptation
mechanisms work at three different levels: the nonverbal
behavior, conversational strategy, and signal levels. Each of
these mechanisms have been implemented in the same agent
architecture but affect different modules. Adaptation of the
conversational strategies is done within the dialog module
described in Biancardi et al. (2019a). The adaptation at the
non-verbal level is done in the behavior generation module of
the Greta platform, as described by Biancardi et al. (2019b).
Finally, the adaptation at the signal level is done within the
animation module found in Dermouche and Pelachaud (2019b).
During an interaction with a user, the agent will optimize each
of the adaptation mechanisms by relying on either reinforcement
learning or LSTMmethods. Biancardi et al. (2019a) conducted an
experiment in a science museum where the agent played the role
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of a museum guide to validate their adaptationmodels. The agent
that adapted its behavior to maximize user’s engagement was
perceived as warm by participants, but they did not find any effect
of agent’s adaptation on users’ evaluation of their experience of
the interaction. As noted in Dermouche and Pelachaud (2019a),
engagement was defined by user’s behaviors that included gaze
directions, facial expressions, and posture shifts.

Bickmore et al. (2011) found that the use of relational behavior
lead to significantly greater engagement by museum visitors.
In this study, that had 1,607 visitors participating, engagement
was measured by session length, number of sessions, and self-
reported attitude, as well as learning gains, measured by a
knowledge test.

Other works have explored personalized tutoring from the
perspective of affective policy learning: for example, affect-related
states such as engagement have been used by Gordon et al.
(2016) to build reward signals in reinforcement learning (RL)
frameworks to select motivational strategies. Gao et al. (2018)
developed an RL framework for robot personalization that allows
a robot to select verbal supportive behaviors to maximize the
user’s task progress and engagement (i.e., positive reactions
toward the robot) in a learning scenario where a Pepper robot
acts as a tutor and helps people to learn how to solve grid-based
logic puzzles.

Some papers explicitly focus on engagement toward a task.
For example, Zaga et al. (2015) found that students engaged and
focused more on a task (puzzle) when the robot acts as a peer
than as a tutor. Brown et al. (2013) reported that engaging with
the robot during a computer-based math test showed that, while
various forms of behavioral strategies increase test performance,
combinations of verbal cues result in a slightly better outcome.
Ivaldi et al. (2014) found that whether the robot or human
initiates the learning task makes a difference on the pace of the
interaction and the reaction to attention cues. When the robot is
the initiator of the learning task, the pace of interaction is higher
and the reaction to attention cues faster. Whether the robot
initiates the interaction does not affect the perceived engagement.

Some studies focused on children interacting with robots.
Brown and Howard (2013) monitored students’ engagement
levels while conducting math exercises in the presence of a robot
using interaction features such as speed and validity of submitted
answers. When student disengagement was detected, for example
when there was inactivity for too long or the student was not
challenged enough, the robot would employ verbal and non-
verbal behaviors that were found to reduce children’s boredom
during the education task (Brown et al., 2013). These behaviors
could be a combination of socially supportive utterances,
backchannels, gaze contact, gestures, and head movements. Leite
et al. (2016) developed an algorithm to monitor engagement in
small groups of children interacting with two robot actors and
trigger disengagement repair interventions when necessary.With
the help of elementary school teachers, repair strategies were
designed. They include the robots addressing the whole group
and making generic comments that imply responsibility of all
participants, looking at each of the children in the group, and
then generating a verbal comment without targeting any specific
child, or directly addressing the child with the highest level

of disengagement. They found that participants who received
targeted interventions had higher story recall and emotional
understanding, and their valence increased over time after
the interventions.

7. LONG TERM INTERACTION

Longitudinal interactions or “long-term interactions” in HRI are
defined by several researchers as a set of interactions over several
sessions. For example, Leite et al. (2013) address the question
on what defines a long-term interaction with a robotic agent. In
their work, they state that the main aspects to define a long-term
interaction are based on the number of interaction sessions and
the duration of each session. Specifically, they suggest that what
constitutes long-term interaction is the point in time when the
novelty effect wears off.

Adopting the definition by Leite et al. (2013) on long-term
interaction, we could find only four papers explicitly investigating
long-term interactions and engagement: Ahmad et al. (2017),
Leite et al. (2014), Díaz et al. (2011), and Bickmore et al. (2010).

Ahmad et al. (2017) presented a study with children to
investigate adaptive capabilities of a robot that can sustain a
long-term social engagement when interacting with children.
In their work, they designed a study that has three adaptive
conditions that include game-based adaptations, emotion-based
adaptation, and memory-based adaptation. Their study had
23 school participants (aged 10–12 years) that were randomly
assigned to each of the three conditions. Participants were asked
to do three recorded sessions (10 min for each session) over
a period of 10 days. The authors, thereafter, conducted video
based analysis to investigate the participant’s facial expression,
gaze, verbal interaction, and gestures. Their analysis revealed
that the emotional-based adaptive robot maintained a longer
interaction compared with the game-based and memory based
adaptive robots.

Leite et al. (2014) presented an empathic model that is
designed to allow for a long-term interaction. In their work, they
present a study with 16 elementary school children (8–9 years)
interacting with a robot in a chess game scenario. The aim of their
study was to investigate children’s perception of social presence,
engagement, and support toward the robot over time. Their study
extended over five weeks in which each participant had one
session per week (average of 20 min per session). The authors
collected data from open ended interviews, questionnaires, video
recordings, affect sensors, and game play logs. Their analysis
revealed that in long term child-robot interactions, a robot
endowed with an empathetic model was perceived to support
children in a similar manner to the support received from their
peers. Furthermore, children found the emotion-based support
to be their preferred supportive behavior, echoing the results
presented by Ahmad et al. (2017).

Díaz et al. (2011) aimed to build a robot capable of
maintaining the engagement of children. The authors presented
a study to investigate the social bonds associated with child-
robot interaction in order to design for long-term interaction
for hospitalized children. In their study, they had two phases,
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the first was a field study using four robots at a school with 49
children (11–12 years). The second phase had 7 children from
the 49 to contribute in a lab study with one of the robots 2
months later. Data collected from both phases include video,
questionnaires, observations, interviews, and interaction choices.
Their analysis reveals that appearance and performance aspects
are important design considerations for long term interaction,
in particular, they shape the expectations of children toward
interactive behaviors and social processes.

Bickmore et al. (2010), on the other hand, presented two
studies on maintaining engagement in a long-term interactions
with virtual agents. In the first study, the authors investigated
the effect of the agent’s dialogue repetitiveness behavior on
retention and adherence for elderly persons. Elderly participants
were randomly assigned to each of the two conditions (variable
dialogue and non-variable repeated dialogue). Participants
interacted with the virtual agent 102.32 days on average. The
results of the first study revealed a positive effect on the
variable dialogue behavior toward long term engagement. The
second study presented by Bickmore et al. (2010), looked
at the effect of using personal human back stories, i.e., first
person compared to third-person narrative dialogue. In the
second study participants were assigned randomly to each of the
two conditions. Participants conducted the study over different
durations (with an average of 28.8 days). The results revealed that
participants rated the first-person dialogue of the virtual agent to
bemore enjoyable and usable, thus leading to higher engagement.

Overall, the presented HRI studies highlight that long
term interactions require the support of emotional robotic
characteristics, both at the perception level and at the generation
level. In addition, adaptive emotional based engagement helps to
maintain a long-term interaction.

8. CHILDREN

Several studies have investigated engagement in child-robot
or child-agent interaction. The majority of them address
automatic prediction of engagement and adaptation mechanisms
in educational and edutainment scenarios.

In Sanghvi et al. (2011), Castellano et al. (2014), and
Castellano et al. (2009), Castellano and colleagues proposed
computational approaches for the automatic prediction of
engagement in children learning to play chess with an iCat robot
in a classroom environment with primary school children. They
investigated the role that different behavioral and contextual
features play in the automatic prediction of engagement. Their
work shows that children’s affective expressions emerging in a
chess play scenario are very subtle and that performance increases
for models that include a combination of social interaction and
context-based features. Kim et al. (2016a) showed that levels
of engagement can be characterized by relative levels between
children. Another example is the work by Rudovic et al. (2019a),
who addressed the automatic prediction of engagement from
videos in preschool children using deep reinforcement learning.

When it comes to adaptation mechanisms, Procter et al.
(2016) investigated improving conversational engagement

through data-driven agent behavior modification, by adapting
to a variety of different student data sources. Szafir and Mutlu
(2012) reported that a robot that increases behavioral cues during
passages of low student engagement to regain student’s attention
improved student’s recall abilities. Approaches for the automatic
prediction of children’s disengagement while interacting with
a robot in an educational context and disengagement repair
strategies have also proposed by Brown and Howard (2013) and
Leite et al. (2016).

Other works explored the interrelationships between affect,
empathy, synchrony, and engagement. Hall et al. (2006), for
example, found that children are able to recognize and interpret
affect in synthetic characters and are empathetically engaged with
them in specific scenarios. Chaspari et al. (2015) reported that
verbal synchrony between children during game play increases
as they become more engaged in a speech-controlled robot-
companion game. They showed an interaction with the children’s
level of engagement: more engaged pairs show higher synchrony
in word rate, speech loudness and fundamental frequency.
Castellano et al. (2013) showed that a robot’s ability to perceive
and adapt to children’s affect has an effect on their perception of
the robot in that children perceive the robot as more engaging
and helpful.

Finally, a number of studies investigated engagement
perception and generation in long-term interaction. Leite et al.
(2014) developed an empathic model for child-robot interaction
and found that robot empathic behavior had a positive impact
on long-term interaction between children and the robot. They
found that ratings of social presence, engagement, help, and self-
validation remained similar after five weeks of interaction with
the robot. Ahmad et al. (2017) proposed adaptation mechanisms
to enable a robot to sustain a long-term social engagement when
interacting with school children over a period of ten days. In
a different context, Díaz et al. (2011) investigated the social
bonds emerging in child-robot interaction in order to design for
long-term interaction for hospitalized children.

In summary, this literature survey shows that engagement has
been extensively studied in the context of child-robot interaction.
It shows that models for engagement prediction and generation
via adaptation mechanisms need to be tailored to the specific
end-users i.e., children. This represents both a challenge and an
opportunity, as it highlights the need to focus on the development
and the study of the effects of personalized technologies, if long-
term interactions with robots are to be achieved in the future.

9. OPEN QUESTIONS

Even though many models of engagement have been proposed,
there are still important open questions that ought to be
addressed. We list a few in this section.

9.1. Multi-Party Interaction
Previous computational models of engagement have focused
mainly on dyadic situations. Few models have been proposed
for group interaction. Interaction in a group can be very
complex. Not everyone in the group may be involved in a
task, or participate to the discussion with equal interest. One
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can address the whole group, a specific person in the group,
there may be several sub-groups, etc. Often, the participants
in a group conversation are clustered into three main classes:
speaker, hearer, and over-hearer. In HCI there may be multiple
humans and/or multiple robots. It remains a challenge to define
engagement in groups given the multiple conformations that
a group may have and given the variety of parameters (role,
position, relation to name a very few) group members may take.
Measuring engagement in multi-party may require considering
more features than in dyads to capture the engagement of
each individual in the group, or of sub-groups composing
the group. Engagement in multi-party may involve more than
involvement and emotion component, such as degree of cohesion
and collectivity.

9.2. Dynamics of Engagement Process
Another challenge in defining engagement is related to the
dynamism of the process of engagement. Engagement is not a
static variable. It is a process that dynamically evolves between
(two of more) members of an interaction. They may go through
different phases of engagement, ranging from disengaged to fully
engaged. Most existing works have focused on detecting when
participants are fully engaged; very few looked at disengagement
(see Leite et al., 2016’s work for group disengagement). The
question of characterizing the different phases of engagement
and defining computational model for their detection is still an
open question.

9.3. Long-Term vs. Short-Term
Engagement
A further open question remains on whether long-term
engagement and short-term engagement are referring to the same
underlying concept or not. There are some obvious differences in
the way engagement is conceptualized depending on the duration
of interaction. While turn-taking and visual attention appear to
be of more importance in shorter-term interaction, variability of
generation and social bonds become more prominent in studies
related to longer-term interaction. It appears to be logical that
short and long-term engagement are related and that there is
an intricate interplay between the two. However, we are not
aware of any studies that have investigated their relationship
so far.

9.4. Task vs. Social Engagement
In this article we discussed studies around task and studies
around social-engagement. Most of the studies having haven
been carried out so far appear to be in the realm of social
engagement followed by studies whose scenarios require a
combination between the two. This is very likely also an
artifact of currently available sensor technology and thereof
resulting limitation in scenario design. There is a high
probability, however, that the current developments in sensor
technologies will enable a much wider range of scenarios in
the near future. A likely application domain appear to be in
the factories-of-the future where human-agent collaboration
around a task will be in the center of attention. Another
likely application domain appears to be in education where

currently a lot of emphasis is being given to bringing robots
to the classroom. This will necessitate a stronger focus on the
conceptualization of task engagement and in depth analysis
of how social and task engagement are related to one
another in a wider range of application scenarios and longer-
duration interactions.

9.5. Data Annotation
As far as the implementation of systems for the automatic
recognition of engagement in human-agent and human-robot
interaction is concerned, an open question is how to annotate
data corpora to train prediction models. Specifically, identifying
an appropriate ground truth remains a challenge. Trends
in the automatic affect recognition community have pointed
to the need to move toward the automatic prediction of
continuous affect (Gunes and Schuller, 2013). Initial work in
the direction of annotating continuous signals of engagement
or engagement-related variables in videos of human-robot
interactions has been conducted (Corrigan et al., 2016). However,
open questions remain about the role of engagement-related
variables (e.g., user attention toward robot or toward task) and
their interrelationships in task-based interactions, where user and
robot (or agent) jointly work on a task, and how this affects
the annotation process. Moreover, inter-annotator agreement
also remains a challenge for research in this area, due to the
multifaceted nature of engagement and its definitions as a process
or a state.

9.6. On-Line Adaptation
Engagement can be considered as a rich cue that could be then
employed to adapt or train machine learning and decision-
makingmodels. However, developing computational models that
are able to adapt on-line to non-verbal cues is a current challenge
in machine learning. The few attempts to exploit non-verbal
cues for adaptation and learning require the prior definition of
a communication protocol (i.e., meaning of non-verbal cues)
between the human and the machine (Broekens and Chetouani,
2019). Training adaptive machine learning with non-verbal cues
are facilitated by the prior categorization of limited discrete
signals such as pointing or stop hand gesture (Najar et al., 2016).
The current on-line adaptive models of engagement exploit a
similar approach. In Khamassi et al. (2018), the authors develop
an on-line adaptationmodel to changes in human engagement by
considering head pose as an estimator of engagement. However,
as discussed in this paper, engagement is a complex construct for
which adaptation to it will require the analysis ofmultimodal cues
during a longer period of time.

9.7. Context Specificity and Scalability
Many existing human(s)-robot(s) interaction models have been
designed for a specific scenario where many of the variables
defining an interaction are pre-defined such as the role of the
robot, the task to be performed, the interaction setting, the
culture of the participants, even the type of the robot, or virtual
agent. The models are very context-specific. It is not clear if
an engagement model that has been framed so specifically can
be applied to any other context. The question of scalability
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is raised. It is not clear whether a model for a given context
may be transferred to another one, or should a new model
be drawn. In addition, engagement computational models are
usually learned for a specific context and task with a given agent
either virtual or physical. How to generalize or transfer such
engagementmodels to other situations is an open-question which
in turn not only leads to the problems of defining engagement,
data collection and annotation, but also how humans engage
in complex interactions with those artifacts. The embodiment
of the agent plays a critical role in the nature and quality of
those interactions.

9.8. Complex Real World Scenarios
A further open question is how to continue to extend engagement
research to agents capable of handling more complex, real-world
scenarios, which require a blend of social, task and environment
engagement. These may be multi-party, multi-task interactions
and may involve the agent moving or manipulating the
environment, thus requiring it to maintain a greater knowledge
of aspects that are often considered outside the context of the
interaction in current scenarios. Fundamentally, engagement has
relationships to attentive processes and states. As the complexity
of interactions increases, more robust foundations may be
needed to address these issues. For example, computational visual
attention frameworks represent a generic way of resolving the
allocation of processing resources across multiple social stimuli,
tasks and unexpected encounters in the greater environment in
a continuous and flexible manner. Currently in many research
studies, the potential foci of attention of the agent are restricted
to at most two aspects: the task and the human interactor. A
more detailed approach is desirable if more realistic scenarios
are to be considered, especially those that are to be robust
to the complex, uncertain, dynamic environments in the real
world in which important interruptions can take place at any
time. For example, one can consider the difficulty of modeling
a mobile social agent that is to move down a street in a
formation of people. Such an agent would need to attend to
unexpected obstacles in order to safely avoid them and maintain
its formation while engaging in a socially appropriate manner
with the others in the group. These activities would likely
lead to many differences in behavior (and in behaviors the
agent would be expected to produce) when compared to those
observed in contemporary scenarios in which the agent is often
static in the environment and facing the interlocutor when the
interaction commences.

10. CONCLUSION

This article reviewed studies on engagement within the area
of human-agent interaction. It can be concluded that there
exists a wide range of definitions. In general, distinctions can
be made between studies that treat engagement as a process
variable and studies that treat engagement as a state variable.
Also the emphasis on task or social aspects of engagement
varies widely. In the vast majority of cases the distinction is not
made transparently.

A distinction can be made between studies focusing on
the (automatic) perception of engagement behaviors and those
that focus on the generation of engagement relevant behaviors.
Studies reviewed show that both adapting to a target group
but also to conversational context is essential. In this article
we provide examples of adaptation mechanisms used. Examples
of such mechanisms include the use of probing questions or
adapting in terms of verbal and non-verbal behavior to the
user. While most approaches are rule-driven, there are also
some approaches that use machine learning for adaptation,
including reinforcement learning and social-state recognition.
While several adaptation approaches have been explored, they
vary widely in approach and scenario chosen. Due to a lack of
benchmarks, a more detailed comparison at this stage does not
appear to be feasible.

In terms of the automatic perception of engagement, studies
can be divided into two main groups. Those studies which use
rule based approaches and those studies which use machine
learning based approaches. While the vast majority of studies
that are concerned with the automatic prediction of engagement
still use traditional machine learning techniques and are mainly
SVM-based, there are also a number of recent studies that use
deep learning based approaches. Finally, instead of focusing on
detecting binary engagement, or different degrees of engagement,
there are also a number of studies that focus on detecting
disengagement instead.

Regarding robot-child interaction the following conclusions
can be drawn. First of all, all studies focus on different
aspects of the interaction. These aspects include for example
the robot’s reaction toward the children’s engagement state.
This can, but does not necessarily have to be linked to their
performance, for example in the context of education. It also
seems important that the models for engagement prediction and
generation via adaptation mechanisms need to be specifically
tailored to children. However, there is still a need to explore the
aforementioned point more extensively for definite conclusions.
This represents both a challenge and an opportunity, as it
highlights the need to focus on the development and the
study of the effects of personalized technologies, if long-term
interactions with robots are to be achieved in the future. In the
studies reviewed no direct comparisons are made to adult-robot
interaction, rather the reaction of the children toward the robot
were in the center of attention.

Regarding engagement designed for long-term interaction,
not many studies have been carried out yet. There is also no
clear-cut definition of what constitutes long-term interaction
although Leite et al. (2013) suggest that it is the point in
time when the novelty effect wears off. Emotional adaptation,
appearance and performance, variable dialogue and first-person
narrative all appear to be contributing positively to long-
term interaction.

More and more work is also concerned with “in-the-wild”
studies in contrast to lab studies. Challenges associated with
“in-the-wild” studies are that it is much harder to control the
interaction. For example noise and suboptimal light sources
can interfere with the sensors; the context of the interaction
may vary a lot as the number of participants interacting
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with the robot. The papers reviewed in this article address
these challenges in different ways. Some papers focus on
collecting corpora which portray non-task-directed interaction
to best model engagement dynamics, whereas other papers
directly focus on creating an interaction scenario and test it
“in-the-wild.” Common scenarios appear to be information-
giving, story-telling and game-like interactions. A middle
ground between the lab and completely “in-the-wild” location
appears to be a pull-out-study in a school setting. Students
remain situated in a familiar environment, yet noise level and
number of participants etc. can be controlled by the experimenter
more easily.

In summary, this review covers a broad range of studies on
engagement in human-agent and human-robot interaction. To
the best of our knowledge, it is the first review on engagement
research that reports on how the human-agent and human-robot
interaction communities have addressed issues and challenges
relating to engagement definitions and implementations in
different interaction settings, engagement annotation, and
automatic engagement prediction and generation in adaptive
human-agent interactions. The picture that emerges is one of
engagement as a highly complex phenomenon that permeates
human-agent interaction and determines its success over
sustained periods of time. We review open questions and
challenges for the community, offering the reader a starting point
for making new, interesting research contributions in a research
area that is still growing.
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