
Testing Safety PLCs Using QuickCheck

Downloaded from: https://research.chalmers.se, 2025-06-18 03:20 UTC

Citation for the original published paper (version of record):
Thonnessen, D., Smallbone, N., Fabian, M. et al (2019). Testing Safety PLCs Using QuickCheck.
IEEE International Conference on Automation Science and Engineering, 2019-August: 1388-1393.
http://dx.doi.org/10.1109/COASE.2019.8843227

N.B. When citing this work, cite the original published paper.

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, or reuse of any copyrighted component of this work in other
works.

(article starts on next page)



c© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be ob-
tained for all other uses, in any current or future media, including reprinting/republishing this
material for advertising or promotional purposes, creating new collective works, for resale or redis-
tribution to servers or lists, or reuse of any copyrighted component of this work in other works.

1



Testing Safety PLCs Using QuickCheck

David Thönnessen1, Nick Smallbone2, Martin Fabian2, Koen Claessen2, and Stefan Kowalewski1

Abstract— The testing of safety-related industrial systems is
usually carried out by means of checklists. A tester has a list
of scenarios that he or she manually applies to the system to
check whether the system behaves according to its specification.
However, operators behave unpredictably. Their behavior may
not be covered by the set of scenarios tested and may lead
to dangerous situations. To avoid this, randomized test case
generation can be useful as it allows for unanticipated scenarios.
The presented framework uses a tool for randomized test
case generation, QuickCheck, to trigger event sequences that
are then applied to a Safety Programmable Logic Controller
(Safety PLC). Experiments show that this concept is capable of
finding errors in safety code or increasing the tester’s confidence
in the correctness of the code by exhibiting a large number of
passing test cases. While this concept proves to be powerful, it
does not require much effort from the tester as the execution
of test cases is done without user interaction.

I. INTRODUCTION

The main contribution of the presented approach is to
improve the process of testing safety-related parts of a plant.
Virtual commissioning is one method of testing industrial
controllers before setting them into operation [1], [2]. In
previous work, we specialized Hardware-in-the-Loop (HiL)
[3], [4] simulation to testing of PLCs [5]. This work applies
our approach to safety controllers. Our scenario consists of a
Safety PLC that supervises a set of safety-related sensors in
a plant, such as emergency buttons, door switches, and light
barriers.

One of the key issues with testing Safety PLCs is that most
manufacturers use checklists as the main testing procedure.
Such a checklist consists of a set of actions, which are
applied to the plant manually by the tester, such as “open
the front door”. The tester checks if the safety equipment
behaves according to a given specification and declares a
system to be safe if all test cases pass without failure. Our
motivation for improving this process is as follows: First,
the checklist only contains those scenarios that a tester has
thought of, i.e. there might be scenarios that are potentially
hazardous but never tested. Secondly, the test cases defined
in the checklist are applied and supervised only by hand, i.e.
the tester might make a mistake and miss important details
during testing. Finally, safety-related systems are meant to
protect operators working in the surroundings of a plant.

1RWTH Aachen University, Informatik 11 – Embedded Soft-
ware, Ahornstraße 55, 52074 Aachen, Germany, {thoennessen,
kowalewski}@embedded.rwth-aachen.de

2Chalmers University of Technology, Gothenburg, Sweden, {nicsma,
fabian, koen}@chalmers.se

This work was supported by a fellowship within the FITweltweit pro-
gramme of the German Academic Exchange Service (DAAD), and by the
Swedish Research Council (VR) grant 2016-06204, Systematic testing of
cyber-physical systems (SyTeC).

However, operators behave unpredictably so that writing test
cases covering their behavior is a non-trivial task.

As a solution for this, we consider randomized generation
of test cases [6], [7]. For the generation process, the tester
has to define a test suite with so-called atomic events. An
atomic event is an action that changes the state of one safety
component of the System Under Test (SUT), for example
opening a door. Another atomic event closes the same door
again. Given atomic events for a plant, the test case generator
creates randomized sequences of those, which can then be
executed on the SUT.

Our approach is designed in a way that all possible real-
world scenarios could be generated. Consequently, the more
test cases are generated and executed, the higher the tester’s
confidence in the system not containing any errors will be.
We will show the capabilities of our approach using a real-
world plant as a use case in Section IV.

This paper describes how test cases are generated and
executed. Test results are evaluated using the framework
previously described in [5]. In this framework, test cases are
evaluated using an oracle, which carries out the evaluation
following an Input-Output Conformance (IOCO)-based ap-
proach [8], that is, having acceptance criteria that calculate
reference signals for a SUT and a so-called supervisor that
compares these signals with the actual signals of the SUT
[9], [10]. In related work, we apply our approach to on-the-
fly IOCO testing of Safety PLC code [11] using Supervisory
Control Theory [12].

In the test case generation process, we use a so-called
fuzzer [13], [14], [15] to come up with a randomized
sequence of given events. Fuzzing is a technique of auto-
mated software testing where a program is provided with
randomized data as an input and monitored for unintended
behavior. Fuzzers can generate an initial test case to execute
and, if the test fails, reduce the complexity of the failing test
case in order to support the tester with diagnosis [16], [17].

II. TEST CASE GENERATOR

The fuzzer we use is called QuickCheck [18]. Testing
a piece of software usually involves coming up with test
cases and defining the expected outcome of each test case. In
QuickCheck, the tester instead gives a general specification
of how the software should act in response to an unknown
test case. QuickCheck then automatically generates a large
set of randomized test cases and checks them against the
specification. Any failing test case is simplified as far as
possible and then reported to the tester. In more detail,
QuickCheck works as follows:

1) Generate a random test case.



2) Execute the test case and check its result against the
specification.

3) If the test case fails, simplify it as far as possible.
4) Otherwise, repeat from step 1.
This remainder of this section describes how random

test cases are generated and how failing test cases are
simplified. We have specialized both of these processes for
PLC testing. Section III describes how the generated test
cases are executed.

A. What is a test case?

A PLC has a collection of Boolean inputs, each of which
may be set to low or high at each execution of its scan
cycle [19]. In this context, inputs denote input signals of the
SUT (sensors) which are generated by the HiL simulator.
In principle, a test case should define the value of each
input at each PLC cycle. However, to be able to print test
cases compactly, we instead represent a test case as a list of
timed events. Each timed event consists of an event e ∈ E,
which is either setting an input to low, setting an input
to high, or doing nothing, followed by a delay d ∈ D.
D := [dmin, dmax] is the range the delay can be in, i.e. there
is a minimum and maximum delay for the generator. Once
an input is set to high, it remains high until a subsequent
event sets it low, and vice versa.

The following is an example of a list of timed events:

input 1 high, wait 500 ms
do nothing, wait 300 ms
input 3 high, wait 200 ms
input 2 high, wait 800 ms
input 1 low, wait 200 ms
input 3 low, wait 500 ms

Input 1 is set to high first. After 500ms there is a “do
nothing” event followed by a further delay of 300ms, after
which input 3 is set to high. After another 200ms input 2
is set to high. After 800ms, input 1 is reset to low. After
200ms, input 3 is set to low again. The execution then waits
500ms before ending the test.

B. Generating good test data

In order to get good test coverage, it is vital to get a good
distribution of random data when generating test cases. One
approach would be to generate data uniformly at random:
each input would be assigned a fresh random value on each
PLC cycle. This approach would not work well, because
all inputs would be constantly changing, and any behavior
requiring an input to be held constant (“if the emergency
button is held down for 1 second, then. . . ”) would have little
chance of being tested.

We can solve this problem by generating a random list
of timed events, such as the one above. Even if we choose
the events and the delays uniformly at random, inputs will
often be held constant for a while because only a few inputs
change at a time.

There are some other properties we would like our test data
to have that are not satisfied by a uniform distribution. Firstly,

we should often change several inputs simultaneously, i.e.,
delays of 0ms should be overrepresented in the generated
test cases. Secondly, we should only set an input to high if
it is currently low, and vice versa. Finally, it takes a few
seconds to reset the PLC after each test case, so we should
generate test cases that are several seconds long.

For our case study, there is one property that is more
desirable. Many of the inputs correspond to sensors that
shut down the plant when triggered; we should not leave too
many sensors triggered on average, otherwise the plant will
be constantly shut down. For that reason, we allow the tester
to identify certain events as negative; all other events are
called positive. Negative events are those events that tend to
cause the safety controller to shut down the system or parts of
it. An example of a negative event might be opening a door,
which shuts down some machinery to protect the human that
possibly enters. Note that the inverse of a negative event (in
this case, closing the door again) is positive.

Our test data generator captures all the requirements above
and works as follows. First, it generates a random number,
which represents the total number of events that the test case
should contain. This number is chosen to be between 50 and
150, so that we get reasonably long test cases.

Next, the delay of each event is chosen. To capture the
idea that inputs may change simultaneously, we choose each
delay to be 0ms with 50% probability. Otherwise, the delay
is uniformly chosen from the delay range D.

Finally, we have to choose events to accompany the
selected delays. Each event either changes the value of an
input or does nothing. The choice of events is independent
of the delays. The mechanism we use to choose an event is
a QuickCheck feature called weighted choice. A weighted
choice takes a list of alternatives x1, . . . , xn and a list of
associated weights w1, . . . , wn. It then makes a random
choice between the alternatives, choosing alternative xi with
a probability P (xi) that is proportional to wi:

P (xi) :=
wi∑n
i:=1 wi

Events with higher weights are thus more likely to be chosen.
The events that we choose from are doing nothing, and

changing the value of an input, i.e. setting an input to high
that is currently low or vice versa. In order to avoid triggering
too many negative events, we choose the following weights,
based on empirical observations: doing nothing has weight
wnothing = 1, triggering a negative event has weight wneg =
2, and triggering a positive event has weight wpos = 10.
For example, suppose that there are 10 inputs i1 to i10, that
setting any input to high is a negative event, and that i1 is
currently high and the others are low. We choose between
resetting i1 to low (with weight wpos = 10), setting one of
the other inputs to high (each with weight wneg = 2), or
doing nothing (with weight wnothing = 1). The weights sum
up to 29 so we reset i1 to low with probability 10/29, set
one of the other inputs to high with probability 2/29 each,
or do nothing with probability 1/29.

This choice of weights results in about one sixth of



negative events on average being active at any given time,
which captures the requirement that not too many doors or
emergency buttons be opened/pressed at the same time.

The test data generator itself is generic and works for any
PLC code, but the particular weights are chosen for our case
study, and might not be appropriate for every application.
The weights are important: if we set wpos = wneg = 1, most
test cases make the plant shut down and not start up again. It
would be straightforward to let the tester control the weights,
or to set them automatically given e.g. a target number of
inputs that should be simultaneously high. Furthermore, the
tester may want to state assumptions about what sort of test
data is physically realistic or reasonable; future work is to
make the test data generator configurable in this way.

C. Shrinking of test cases

Our test data generator produces test cases of between 50
and 150 events, which are too long to be easily understood
by humans. When a test case fails, QuickCheck therefore
tries to reduce it to a minimal failing example, a process
called shrinking [20].

The way shrinking works in general is as follows. Given a
failing test case, QuickCheck generates various simpler test
cases. Each one of these simpler test cases is then run, and if
it fails, it replaces the original test case. The process is then
repeated: simpler variants of the new test case are generated
and tried. When the process stops, we have a failing test
case, such that simplifying it in any way results in a passing
test case. Thus, this is a minimal failing test case, and it is
reported to the tester.

To customize the behavior of shrinking, the user provides
rules to QuickCheck that, given a failing test case, produce
a set of simpler test cases to try. We have defined rules that
are appropriate for shrinking a list of timed events.

The first rule is about removing all events from the list
that are not necessary to provoke the failure. QuickCheck is
already able to shrink a list of items by trying to remove
each element of the list in turn. We keep this shrinking rule
for the timed event list. If we assume that the example on
page 2 is a failing test case, then having only this rule for
shrinking might result in the following failing test case:

input 1 high, wait 500 ms
input 3 high, wait 200 ms
input 2 high, wait 800 ms
input 1 low, wait 200 ms

Now suppose that the event “input 3 high” is not necessary
for the failing test case, but that we need to have a 500ms+
200ms = 700ms delay between “input 1 high” and “input
2 high”. In that case, “input 3 high” will not be removed
from the test case, even though it is not really needed. We
fix this by adding two more shrinking rules: any event can be
replaced with “do nothing”, and a “do nothing” event ei can
be absorbed into the preceding event ei−1, adding the delays
of the two events such that d′i−1 := di−1+di. Given a failing
test case, shrinking tries all possible ways in which these

Start Test

Initialize SUT

Execute Test Case

Shrinking

[FAILED][PASSED]

[TERMINATE]

[TRY MORE]
Show 

Counterexample

Generate Test Case

Fig. 1. Execution of Multiple Test Cases

rules could apply. Now the original test case would shrink to:

input 1 high, wait 700 ms
input 2 high, wait 800 ms
input 1 low, wait 200 ms

Finally, we also try shrinking the delays. We try replacing
each delay with a smaller one, trying all multiples of 100ms
up to but not including the current delay. This may give us
the minimal test case:

input 1 high, wait 700 ms
input 2 high, wait 300 ms
input 1 low, wait 100 ms

An important aspect of shrinking is that, when the final
failing test case is reported to the tester, it is guaranteed to
be minimal. In our case, this means that no event-delay pair
can be removed from the test case, no event can be replaced
with a “do nothing” event, and the delays are as small as
possible, within a tolerance of 100ms. Because of shrinking,
the tester can be sure that every single part of the test case
is important. This often makes it simpler to diagnose faults.

III. TEST CASE EXECUTION

We use the HiL testing framework as presented in [5],
[9], [10] to apply test cases to a SUT. HiL testing allows
incorporating the control hardware into the testing process,
which is beneficial for safety testing as it incorporates more
components of the control system than other approaches
like Model-in-the-Loop or Software-in-the-Loop. The testing
framework includes an oracle which comes with an IOCO
based analysis [8], [21], comparing the actual behavior of
the SUT against a given specification; refer to [5] for more
details. In the context of this paper, the details of the HiL
testing framework are not important. It is used to execute
test cases as described in this section and delivers the test
result to QuickCheck to be processed.



E_Stop

EStop_Right

EStop_Left

EStop_Operator

EStop_Robot

EStop_Mirror

EStop_Bottom

&

TOF

t#300ms

TOF

t#300ms

TOF

t#300ms

Door_Operator

Door_Back

Door_Front

≥1
Key_Switch

&

&

TOF

t#300ms

&

Delayed [t#100ms]

Instant

Motors_Enabled

Robot_Enabled

Laser_Enabled

&

Fig. 2. Simplified Safety Code of Use Case Plant

The execution of test cases is illustrated in Figure 1. The
tester initiates a test run. QuickCheck then generates a test
case as described in Section II, i.e. consisting of 50 to 150
events. The test case is transferred to the HiL framework,
which has to initialize the SUT first.

Initialization consists of resetting the SUT and transferring
it into a state-to-test, which is defined by the tester. The state-
to-test is usually a state of the control system in which it is in
normal operation such that events like pressing an emergency
button have an effect on the system. The time consumed by
this step heavily depends on the control system being tested.

After initialization, the test case is executed by applying
the generated events one-by-one to the SUT while obeying
the delay associated with each event. As soon as the test case
execution has finished and the oracle has finished evaluating,
the result is passed to QuickCheck.

If the test passed, i.e. no failures occurred with respect
to the given specification, either more test cases can be
generated and applied or the tester can terminate the test.

If a test case failed, the actual behavior of the SUT is
inconsistent with the specification. QuickCheck starts its
shrinking process as described in Section II-C (not shown in
Figure 1 due to lack of space). After the shrinking process is
completed, the found counterexample, i.e. the minimal test
case leading to a failure, is shown to the tester for further
diagnosis. With this step, the test case execution terminates.

This methodology is an instance of black-box testing [22],
since the testing framework has no information about the
control code of the SUT. Consequently, the code must be
inspected manually to find the location of the failure, but the
failing test case hints at where the problem is.

IV. USE CASE

We utilize a real-world plant as a use case for our
approach. We test the safety code running on this real plant
against a specification using generated test cases.

The plant consists of a laser, a robot and several motors.
It processes fibers, which are supplied by the robot and
then processed by the laser. Motors are used to position
the fibers. As the plant operation has a potential risk for
operators, it is enclosed by a fence. Three doors serve as

entrances to provide the robot with raw fibers and to allow
maintenance. Six emergency buttons are distributed around
the plant to allow an operator to stop the operation in case of
an emergency. A key switch allows the operator to open the
front door without shutting down the laser for maintenance
purposes. All doors, emergency buttons and the key switch
are realized using two-channel, redundant signal wires but
considered as one signal in this paper. Figure 2 illustrates
a simplified version of the safety code, implemented in
Function Block Diagram. This simplified version was used
for the implementation of the safety code.

Pressing any emergency button stops the robot and laser
immediately and the motors after 100ms. Opening the op-
erator’s door stops the robot after 300ms. Opening the back
door stops the robot and the laser after 300ms and the motors
after 600ms. Opening the front door stops the robot after
300ms. Furthermore, it stops the laser after 300ms as well
and the motors after 600ms if the key switch was not turned
on (to maintenance mode). According to the manufacturer’s
information, the given Timer Off-Delay (TOF) blocks are not
required for safety purposes but to compensate for inaccurate
(bouncing) signals coming from the door switches. Please
note that the real plant delivers the emergency signals to the
non-safety PLC as well. In case of an emergency the control
code tries to shut down laser, robot and motors softly within
the time windows, i.e. 300ms or 600ms. If the PLC does
not shut down all actuators within these time windows, the
Safety PLC shuts down the actuators by emergency, using
their emergency ports and switching off their power supplies.

To execute tests on this plant, we were provided with
the simplified safety code as described above as well as the
actual safety code. Due to PLC incompatibilities, we needed
to re-implement the actual safety code in the development
environment we use. The acceptance criterion is that the
simplified and actual safety code behave the same modulo
small timing differences. The HiL testing framework [5]
provides an oracle that checks this acceptance criterion.

The test setup consisted of a PLC running the safety code,
considered as the SUT in the following, a HiL simulator [5]
including the oracle, and a computer running QuickCheck
with the described test case generator. Test cases were
executed by the HiL simulator by resetting and initializing
the SUT before each test case and then applying the given
event sequence as described in Section III.

A. Found bugs

This section describes two bugs found by our approach.
The first bug is rather trivial and was due to an implemen-

tation error during the re-implementation of the real safety
code. The real safety code does not contain this error. That it
was found in the very first test case execution demonstrates
its triviality.

The initial counterexample consisted of 50 events and was
automatically simplified to the following test case:

EStop_Right press, wait 100 ms

This means that pressing the emergency button on the right



&

Door_Operator_TOF

Door_Back_TOF

Door_Front_TOF

E_Stop_Instant

Robot_Enabled

Fig. 3. The Function Block implementation of the Robot Enabled signal.
The missing signal connection of Bug 1 is marked.

v

t
0 200 400 600 800 1000 1200

0

1

Laser Enabled, Robot Enabled, Motors Enabled

Fig. 4. Reference Signals of Bug 2

side and waiting 100ms leads to unwanted behavior. Inspect-
ing the system state after the test case execution showed that
the robot was not shut down although it was specified to be.

We traced the cause of the failure back to a missing signal
connection in the safety control code as shown in Figure 3.
The figure shows one And-block of the safety control code.
The block was only connected to the door-states (after their
respective TOF blocks) but not to the emergency stop unit
E Stop. Adding this connection led to 15 passed test cases
with an average event sequence length of 62 events.

The second bug was discovered in the 16th test case and
simplified to the following counterexample:

EStop_Right press, wait 300 ms
Door_Back open, wait 100 ms
EStop_Right release, wait 100 ms

This bug is not trivial and needs some extra explanation about
the way the acceptance criteria are specified. Regarding the
simplified safety code given in Figure 2, pressing any emer-
gency button or opening any door should lead to a system
shutdown after at most 600ms (we neglect the key switch, as
it is not part of the failed test case). The acceptance criteria

v

t
0 200 400 600 800 1000 1200

0

1

Laser Enabled, Robot Enabled
v

t
0 200 400 600 800 1000 1200

0

1

Motors Enabled

Fig. 5. Actual Signals of Bug 2

ignore the timers given in the safety code (see Figure 2)
as they are implementation-specific. Consequently, it expects
the SUT to shut down all related actuators right away. As this
is not practicable and not required for safety, we replaced the
maximum possible shutdown delay of 600ms by a constraint
saying that all related actuators have to be shut down at
most 800ms (including 200ms time buffer) after triggering
shutdown. The timespan 800ms is the specified maximum
time for the system to be shut down in case of an emergency.
We realized this constraint by using a signal change tolerance
of 800ms of the HiL testing framework as defined in [9]. In
simple terms, this tolerance means that a signal must change
to the value of the reference signal within 800ms. In other
words, the plant has to shut down at the latest 800ms after
a critical event took place. The resulting reference signal
for the given failed test case is shown in Figure 4. The x-
axis shows time t in ms and the y-axis value v ∈ {0, 1}.
As the emergency button EStop Right is pressed at the
very beginning of the test case, all three reference signals
{Laser, Robot, Motors} Enabled are set to 0.

The actual signal is stated in Figure 5 with the same
axes as Figure 4. Signals {Laser, Robot} Enabled are
equivalent and therefore combined in one diagram. Coming
back to the failed test case, the first event EStop Right
press shuts down the laser and robot right away and the
motors after 100ms. The evaluation detects correct signal
changes to the reference signal at t = 100ms and would not
allow the signals to turn on again. At t = 300ms event
Door Back open takes place. This event has no effect
on the signals {Laser, Robot, Motors} Enabled at
this point in time. However, they start operation of the TOF
blocks of the safety control code (see Figure 2), meaning that
they would shut down devices after 300 / 600ms (laser, robot
/ motors) if they were not shut down already. At t = 400ms
event EStop Right release takes place. The reference
signal stays constant because although the emergency button
is released, the back door is still open. Therefore, the devices
should remain shut down according to the acceptance criteria.
However, the safety control code allows all three devices
to operate again as they are not shut down by the (now
released) emergency button anymore and the shutdown from
the opened door is still pending for 200 / 500ms.

This is an inconsistency between the implementation and
the acceptance criteria and leads to failing the test case.
Nevertheless, the actual implementation does conform to the
simplified implementation but not to our acceptance criteria.
While one could think that the acceptance criteria are just
wrong, the key is that the safety code would allow the
system to operate for 200 / 500ms even though there was
an emergency and a door to the plant is open. We consider
this as a fault and recommend redesigning the control code
in a way that it does not allow system operation in any state
where an emergency button is pressed or a door is open.

V. CONCLUSION

The presented testing framework showed in the given use
case that it is capable of finding both trivial and complex



errors. We use this section to highlight and discuss the
characteristics of the approach before we conclude the paper.

A. Finding bugs

Our approach performed well in finding bugs for our use
case. The presented bugs were found after 1 and 16 test case
executions, respectively. We were surprised that the second
bug was found after only a few test cases.

It cannot be calculated or estimated how long it takes to
find an error, which however is not the focus of randomized
testing. The focus is on coming up with test scenarios that
a tester would not come up with. Accompanied with the
automatic generation and execution of these test scenarios
it is possible to execute a large amount of tests without
user interaction. Nevertheless, the given approach should be
considered as an addition to existing testing methods, such
as checklists or virtual commissioning.

B. Costs

Costs are an important factor for testing techniques and
can be split up in costs for user interaction (by a tester) and
the overall amount of time consumed. The effort a tester
has to put into testing using the presented approach is to
set up the testing environment and specify the input signals
(see Section II) and the acceptance criteria that are used
for evaluation. After starting execution of the test suite our
framework operates without user interaction as long as it has
not found a bug. If a bug was found, the approach applies the
described shrinking process until the minimal failing event
sequence is found and terminates. The tester then has to
debug the control code and start a new testing sequence.

C. Diagnosis of failed test cases

Shrinking down test cases is an essential part of the
concept, as test cases are usually too complex for a tester
to understand, i.e. 50 or more events. The shrinking process
works automatically and tries to first remove unnecessary
events out of the sequence and then reduce the timings of
single events. The result is a minimal test case leading to a
failure, which is, depending on the complexity of the error,
much easier to understand for a human than the original
failed test case. It has to be noted that a shrunken test
case does not necessarily provoke the same fault as the
original failed test case (if the control code contains more
than one fault). Since our approach is black-box, our testing
framework has no knowledge about the safety control code.
It relies on the oracle and does not get more feedback than
a “passed” or “failed” per executed test case.

D. Future work

In future work our approach should be compared to exist-
ing testing methods applied to safety control code regarding
time consumption and error detection rate. The test case
generator we designed can be improved to generate better test
cases using probabilities for groups of events (see Section
II-B). Tuning these probabilities by observing the output
state of the system is one interesting aspect and should be
considered in future work.

REFERENCES

[1] C. G. Lee and S. C. Park, “Survey on the virtual commissioning
of manufacturing systems,” Journal of Computational Design and
Engineering, vol. 1, no. 3, pp. 213–222, 2014.

[2] M. Dahl, K. Bengtsson, P. Bergagård, M. Fabian, and P. Falk-
man, “Integrated virtual preparation and commissioning: supporting
formal methods during automation systems development,” IFAC-
PapersOnLine, vol. 49, no. 12, pp. 1939–1944, 2016.

[3] F. Gu, W. S. Harrison, D. M. Tilbury, and C. Yuan, “Hardware-in-the-
loop for manufacturing automation control: Current status and identi-
fied needs,” in Proceedings of the 3rd IEEE International Conference
on Automation Science and Engineering, IEEE CASE 2007, 2007, pp.
1105–1110.

[4] B. Lu, W. McKay, S. Lentijo, A. Monti, X. Wu, and R. Dougal, “The
real time extension of the virtual test bed,” in Huntsville Simulation
Conference, 2002.

[5] D. Thönnessen, N. Reinker, S. Rakel, and S. Kowalewski, “A concept
for PLC hardware-in-the-loop testing using an extension of Structured
Text,” in Emerging Technology and Factory Automation (ETFA).
IEEE, 2017, pp. 1–8.

[6] R. Hamlet, “Random testing,” Encyclopedia of software Engineering,
2002.

[7] J. W. Duran and S. C. Ntafos, “An evaluation of random testing,” IEEE
transactions on Software Engineering, no. 4, pp. 438–444, 1984.

[8] J. Tretmans, “Test generation with inputs, outputs and repetitive
quiescence,” Software-concepts and tools, vol. 17, no. 3, pp. 103–120,
1996.

[9] D. Thönnessen, S. Rakel, N. Reinker, and S. Kowalewski, “Match-
ing discrete signals for hardware-in-the-loop-testing of PLCs,” in
Conference on Embedded Systems, Computational Intelligence and
Telematics in Control (CESCIT). IFAC, 2018, pp. 1–8.

[10] D. Thönnessen, N. Reinker, S. Rakel, A. Svetlakov, and
S. Kowalewski, “Correctness properties and exemplified applicability
of a signal matching algorithm with multidimensional tolerance
specifications,” in 2018 IEEE 14th International Conference on
Automation Science and Engineering (CASE). IEEE, 2018, pp.
1197–1202.

[11] A. Khan, D. Thönnessen, and M. Fabian, “On-the-fly conformance
testing of safety PLC code using QuickCheck,” in International
Conference on Industrial Informatics (INDIN) Industrial Applications
of Artificial Intelligence. IEEE, 2019, to be published.

[12] P. J. Ramadge and W. M. Wonham, “Supervisory control of a class of
discrete event processes,” SIAM journal on control and optimization,
vol. 25, no. 1, pp. 206–230, 1987.

[13] M. Sutton, A. Greene, and P. Amini, Fuzzing: brute force vulnerability
discovery. Pearson Education, 2007.

[14] P. Godefroid, M. Y. Levin, and D. Molnar, “SAGE: whitebox fuzzing
for security testing,” Communications of the ACM, vol. 55, no. 3, pp.
40–44, 2012.

[15] S. K. Cha, M. Woo, and D. Brumley, “Program-adaptive mutational
fuzzing,” in 2015 IEEE Symposium on Security and Privacy. IEEE,
2015, pp. 725–741.

[16] M. Zalewski, “American fuzzy lop,” 2017. [Online]. Available:
http://lcamtuf.coredump.cx/afl/

[17] G. Misherghi and Z. Su, “HDD: hierarchical delta debugging,” in Pro-
ceedings of the 28th international conference on Software engineering.
ACM, 2006, pp. 142–151.

[18] K. Claessen and J. Hughes, “QuickCheck: a lightweight tool for
random testing of Haskell programs,” Acm sigplan notices, vol. 46,
no. 4, pp. 53–64, 2011.

[19] H. Berger, Automatisieren mit STEP 7 in AWL und SCL: speicher-
programmierbare Steuerungen SIMATIC S7-300/400. Publicis Publ.,
2011.

[20] J. Hughes, “QuickCheck testing for fun and profit,” in International
Symposium on Practical Aspects of Declarative Languages. Springer,
2007, pp. 1–32.

[21] C. Gregorio-Rodrı́guez, L. Llana, and R. Martı́nez-Torres, “Input-
output conformance simulation (iocos) for model based testing,” in
Formal Techniques for Distributed Systems. Springer, 2013, pp. 114–
129.

[22] S. Nidhra and J. Dondeti, “Black box and white box testing techniques-
a literature review,” International Journal of Embedded Systems and
Applications (IJESA), vol. 2, no. 2, pp. 29–50, 2012.


