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Abstract—Digital backpropagation (DBP) is an electronic
scheme for compensating nonlinear distortions in fiber trans-
mission systems. Due to the nonlinearity-induced spectral broad-
ening, the data must be oversampled to avoid aliasing, which
increases the complexity and power consumption of the scheme.
In this work, we show that aliasing can alternatively be prevented
by distributed antialiasing filters, at a lower complexity. We pro-
posed a new modified split-step Fourier method (SSFM) with
easy-to-implement low-pass filters (LPFs) in the linear steps to
avoid aliasing due to spectral broadening. Both the forward fiber
propagation and a transmitter-side DBP are simulated using the
modified SSFM. High-order modulation formats such as 256-ary
quadrature-amplitude-modulation (256-QAM) and 1024-QAM
transmissions at 28 Gbaud and 64 Gbaud over 1000 km fiber
are considered, and our results show that the complexity of the
DBP can be reduced by up to 50%. The optimal bandwidth of
the LPFs is studied for both forward propagation and the DBP.

Index Terms—Digital backpropagation, split-step Fourier
method, antialiasing, low-pass filter, dispersion and nonlinear
impairments compensation, oversampling rate.

I. INTRODUCTION

HE split-step Fourier method (SSFM) is a numerical

method to simulate the signal propagation along the
nonlinear optical fiber. The SSFM not only can be used for
modeling fiber propagation, but also is an effective technique
for compensating the linear and nonlinear impairments of fiber
transmission, which is widely known as digital backpropaga-
tion (DBP). DBP can be implemented either at the transmitter
side to precompensate the impairments of the fiber link before
signal transmission [1]-[4], or at the receiver side to undo
channel distortion after transmission [5]—[11], or both at the
transmitter and the receiver sides [12].

However, the main drawback of the SSFM/DBP is the high
cost of complexity, which makes it hard to implement in
reality and time-consuming for simulation. The computational
complexity of the SSFM/DBP is proportional to the oversam-
pling rate of the signal (a multiple of the baud rate), and the
number of spatial steps. Much work has been done to reduce
the complexity of both the forward SSFM [13]-[18] and the
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DBP [7]-[11]. In [7], [13]-[17], various step size selection
schemes and optimization rules are studied. In [18], the com-
plexity of the SSFM was reduced by replacing the linear
frequency domain step and the successive Fourier transforms
with an optimized time-domain filter. In [8], [9], low-pass
filters (LPFs) are used to filter the nonlinear steps of the DBP
(the intensity waveform used to calculate the nonlinear phase
modulator), which leads to reduction of the required oversam-
pling rate and number of steps. In [10], [11], the complexity
were reduced by replacing the traditional linear operator of
the DBP with learned short and symmetric finite impulse
response filters. Nevertheless, aliasing of the spectrum, which
might happen during the process of the SSFM/DBP due to
spectral broadening, has never been avoided in the previous
research, apart from increasing the oversampling rate which
adds complexity.

In order to avoid aliasing to maintain the signal qual-
ity without additional complexity, we investigate a modified
SSFM algorithm by replacing the standard all-pass fitler with
a low-pass filter (LPF) in each linear step in the frequency
domain. Similar LPFs were proposed in [19] to reduce channel
crosstalk in wavelength-multiplexed systems. In contrast to
[19], we do not propose to physically modify the propaga-
tion channel—our aim is instead to simulate the unmodified
nonlinear propagation channel with improved accuracy. Our
approach is also different from [8], [9], where LPFs were
applied in the nonlinear step of the SSFM. The LPFs can be
implemented at no added complexity—in fact, the complexity
is slightly reduced, because the LPFs have fewer nonzero
coefficients than the regular all-pass filters that otherwise build
up the linear steps. Just as with the traditional SSFM, the filter
coefficients can be precomputed and stored.

Our simulations show that with these LPFs, the simulation
accuracy is improved given a fixed simulation complexity [20].
In this letter, we extend our work in [20] and use the modified
SSFM to precompensate the fiber impairments before trans-
mission (performing a transmitter-side DBP (TS-DBP)). This
filtering method achieves more effective compensation, i.e., the
bit error rate (BER) is reduced for a given DBP complexity.
The optimal bandwidth of the LPF is also analysed for some
high-order modulation formats.

II. SYSTEM MODEL
A. Forward SSFM for Modelling the Channel

Let a(t, z) = [ax(t, Z) ay(t, 7)]T be the electrical field of
X and Y polarizations in complex baseband propagating along
the fiber at time ¢ and distance z. The Manakov equation for
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Fig. 1. The improved SSFM structure with LPFs for modeling fiber
propagation.

the evolution of a(z,z) in an unamplified fiber span can be
written as

oa(r,z) _ -8
oz

B d%a,2)
12 T

a(t,z2)
8
+J'V§IIa(f,Z)IIZa(t,z)Jrn(t,z) (1)

where a(z,0) is the input signal, a is the attenuation fac-
tor, S, is the dispersion parameter, and y is the nonlinear
parameter, g(z) is the gain profile function, and n(z, z) is
the amplified spontaneous emission (ASE) noise. Here we
consider the two-polarization transmission governed by the
Manakov equation. However, this filtering method also works
for the scalar nonlinear Schrodinger equation. The SSFM
discretizes the transmission distance Z into Ngeg spatial steps

a i 0%

in which a linear operator —5 — j&5 e and a nonlinear

operator N = j yg la(z, z)||> can be applied separately in
each step. We modify the linear step by replacing the standard
all-pass filter with an LPF with bandwidth W, as shown
in Fig. 1. The proposed linear step is a multiplication with

H(f) = [exp(—am F2 b IISW

0, W<l|fl=3
in the frequency domain, where f is the frequency component
of the signal, Az; = Z/Ny. is the step size, W is the
sampling rate and the filter bandwidth W < W;/2. When
W = Wy/2, H(f) represents an all-pass filter, which is the
linear step in traditional SSFM. Thus, since fewer complex
exponentials and multiplications need to be computed when
W < Wi/2, the proposed scheme has slightly lower complex-
ity than the traditional one. There will be power loss since
the LPF filters out some part of the signal in each step. These
lost frequency components are exactly the parts that would
otherwise be transferred to the wrong frequencies during
spectral broadening and cause aliasing, so it is beneficial to
lose some of the signal power. However, the LPF bandwidth
W intuitively cannot be too narrow to avoid erasing too much
information of the signal.

B. Transmitter-Side Precompensation

The SSFM can also be used for compensating the nonlinear
and linear impairments by solving the inverse Manakov equa-
tion. The DBP uses K ps compensation steps in each of which
the nonlinear compensator N~! = —jy% la(z,z)]|* and the
linear compensator 5 + %% are performed separately. The
proposed transmitter-side DBP structure is shown in Fig. 2,

IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 32, NO. 18, SEPTEMBER 15, 2020

77777777 ST x K,
One compensation step! °ps

H(f)"' Nt

a(t,0)

a(t,Z)
\

Fig. 2. The improved transmiter-side DBP with LPFs for precompensating
transmission impairments.

where H(f)~! is the low-passed linear compensator

exp(aAzy — 2ja2 f2prAz2), |fl < W
0, W<|fl<¥
©)

H(H ' = {

where the compensation step length Azx = Z/K.p,, together
with the oversampling rate, determines the DBP complexity.

III. IMPROVED SIMULATION ACCURACY

We consider 16-ary quadrature amplitude modulation
(16-QAM) transmitted at 28 Gbaud and 64 Gbaud through
single-mode fiber using a root-raised-cosine pulse with roll-off
factor 10% and ideal distributed amplification [24, pp. 69-70]
which compensates the attenuation. The fiber parameters are
fr = —21.7 ps’/km and y = 127 (W-km)™ !, g(z) = a =
0.2 dB/km, and amplifier noise is neglected. The need for
small enough time resolution Az for simulating the nonlinear
fiber propagation is illustrated in Fig. 3, where 7 is the
symbol time [21], [22]. In this example, the SSFM output in X
polarization d, (¢, Z) converges to the output of the Manakov
equation ay (f, Z) with 30 samples per symbol (the black curve
in Fig. 3). As Ar increases, a,(t, Z) becomes increasingly
deviated from a, (¢, Z). After increasing At to Ty/4, ax(t, Z)
is completely independent of a,(z, Z). This phenomenon is
caused by aliasing resulting from spectral broadening [23].
With LPFs, all the outputs with different At become closer to
ax(t, Z), provided that W is carefully selected and optimized.

To evaluate the simulation error, we define the normalized
squared difference (NSD)

[, z) —a, 2) ||2 dt

NSD =
[lla@, 2)|* dt

“)

between the converged Manakov output a(z, Z) (without
LPFs) and another simulated output a(¢, Z). Let Ary = Ty/30
and Azy = 0.02 km denote the time discretization and step
size to simulate a(¢, Z). It was numerically validated that in
all cases within this section, these parameters are sufficient for
the SSFM to converge to a(t, Z). The relative filter bandwidth
W/(Ws/2) for some example cases is analyzed in Fig. 4.
Under such high launch power, the transmission at 28 Gbaud
needs larger oversampling rates (more spectral extension) to
avoid aliasing. The minimum NSD appears when W/(Ws/2) is
between 70% and 90%, while 100% means the SSFM without
LPFs. The power loss for all cases with optimized W in Fig. 4
is less than 2.5%.
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Fig. 3. The SSFM output with different At becomes more similar to the

converged output of the Manakov using LPFs. Parameters: 28 Gbaud symbol
rate; P = 15 dBm; Z = 1000 km; Az; = 0.02 km. In case (b), the LPF
bandwidth W is optimized for each Ar.
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Fig. 4. The NSD is improved with the LPFs and the optimal relative filter
bandwidth appears at 70%—90%. Parameters: Z = 1000 km. The right-hand
edge (100%) represents the NSD with the traditional SSFM.

IV. REDUCED COMPLEXITY DIGITAL BACKPROPAGATION

We consider 256-QAM and 1024-QAM with Gray mapping
transmitted at 28 and 64 Gbaud through 1000 km single-mode
fiber using a root-raised-cosine pulse with roll-off factor 10%
and ideal distributed amplification which compensates the
attenuation, i.e., g(z) = a. The fiber parameters o, £ and y
are the same as in Section III. To simulate the fiber channel,
we use traditional SSFM and choose the pretested converging
parameters Azy = 2 km and Any = T,/30 for all cases.
The ASE noise power of each step is 2a Azy Kthv Wy [25],
where the photon occupancy factor Kt is 1.13, and the photon
energy is hv = 1.28 - 10719 J. We simulate a system with
TS-DBP, since our purpose is to reduce the signal distortion
caused by aliasing resulting from spectral broadening. With
receiver-side DBP, aliasing happens during the simulation of
fiber propagation, but the DBP after is a process of spectral
narrowing, in which LPFs cannot help too much.

With TS-DBP, we compare the BER as a function of the
input power P for different modulation formats, baud rates,
and oversampling rates in the DBP as shown in Fig. 5.
For 256-QAM transmission at 28 Gbaud with 2 samples per
symbol, with our LPFs, the minimum BER is reduced from
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Fig. 5. The BER is reduced with the LPFs in the TS-DBP for 256-QAM

and 1024-QAM with 50% lower DBP complexity. The lines with the same
colors share the same parameters. The solid lines refer to the cases without
LPFs, while the dashed lines refer to using LPFs.

3.1 x 107° to 1.1 x 107%, which is even lower than that
with 4 samples (2.1 x 107°). At 64 Gbaud with 2 samples
per symbol, the BER with LPFs is reduced from 2 x 10°
to 2.7 x 1077, which is even lower than with 4 samples
(1.3 x 1079). Similar trends apply to 1024-QAM transmission,
i.e., 2 times oversampling with LPFs outperforms 4 times over-
sampling. We also give an example with lumped amplification!
at 28 Gbaud, and show similar performance as distributed
amplification. Thus, our modified DBP can effectively reduce
aliasing and achieve simultaneously better performance and up
to 50% complexity reduction compared with traditional DBP.

We also study the BER dependence on the filter bandwidth
W for the cases using distributed amplification with the lowest
BER values, as illustrated in Fig. 6. When W is around
the baud rate, the BER is much higher than using standard
all-pass filters, since the LPFs also remove useful signal
information. The optimal W which achieves the lowest BER
depends on how strong the aliasing is. For example, in Fig. 6a,
at 64 Gbaud, the optimal W appears at around 1.5 times the
baud rate both for 2 and 4 times oversampling. We illustrate
the signal spectrum after the TS-DBP without LPFs for these
two cases (marked with stars). When the LPFs filter out the
the frequency noise above 1.5 times the baud rate, the lowest
BER is achieved. Thus, the complexity of the linear step in

IParameters: K = 3 fiber spans of L = 100 km; g(z) = alL Z,le
o(z — kL)); noise figure F, = 6 dB; total ASE noise power:
2K (e*L — 1) Fhv Ws.
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Fig. 6. BER as a function of the filter bandwidth W for 256-QAM and
1024-QAM. The optimal W depends on the extent of aliasing. Parameters:
Z = 1000 km.

the DBP is reduced by around 55%—-70% for the transmission
with 4 samples per symbol using LPFs. Provided that W is
optimized, the power loss due to the LPFs also depends on the
extent of aliasing, which is less than 3.5% in all cases in Fig. 6.

V. CONCLUSION

We proposed a modified aliasing-reduced SSFM algorithm
with slightly reduced complexity by replacing the traditional
all-pass filter with LPFs in the linear operator. A set of
transmission cases with different system parameters such as
modulation formats, baud rates, and oversampling rates were
simulated. Our results show that 1) for forward propagation,
the simulation error can be reduced with LPFs and 2) for
TS-DBP, the complexity (the oversampling rate in the DBP)
can be reduced by up to 50% with LPFs and the optimal
bandwidth depends on the extent of aliasing. This filtering
method allows for improved signal performance and reduced
complexity both for the SSFM and the DBP. Although there is
no universal answer to what value the optimal filter bandwidth
should be, presimulations/experiments can always be done
before the transmission/compensation given a SSFM/DBP
complexity. In future work, further optimization of the filter
parameters, such as the filter shape [10], [11], [18], could be
considered to seek better performances.
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