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Abstract: Sweden has committed to reducing greenhouse gas (GHG) emissions to net-zero
by 2045. Around 20% of Sweden’s annual CO2 emissions arise from manufacturing, transporting,
and processing of construction materials for construction and refurbishment of buildings and
infrastructure. In this study, material and energy flows for building and transport infrastructure
construction is outlined, together with a roadmap detailing how the flows change depending on
different technical and strategical choices. By matching short-term and long-term goals with specific
technology solutions, these pathways make it possible to identify key decision points and potential
synergies, competing goals, and lock-in effects. The results show that it is possible to reduce CO2

emissions associated with construction of buildings and transport infrastructure by 50% to 2030
applying already available measures, and reach close to zero emissions by 2045, while indicating
that strategic choices with respect to process technologies and energy carriers may have different
implications on energy use and CO2 emissions over time. The results also illustrate the importance
of intensifying efforts to identify and manage both soft and hard barriers and the importance
of simultaneously acting now by implementing available measures (e.g., material efficiency and
material/fuel substitution measures), while actively planning for long-term measures (low-CO2 steel
or cement).

Keywords: construction; building; supply chain; decarbonization; roadmap; heavy industry;
CO2 emissions; carbon abatement; emissions reduction; climate transition

1. Introduction

Sweden has committed to reducing greenhouse gas (GHG) emissions to net-zero by 2045 and
to pursue negative emissions thereafter, in line with its obligations to the Paris agreement [1,2]. It is
clear that the future development over several decades of the economic, social, and technical dynamics
that govern demand for energy and materials, and the associated greenhouse gas emissions, are likely
to be speculative. Nevertheless, as there is an urgent need to start a transformation towards deep
decarbonization, decisions must be made now as to how to best manage the transition, while taking the
future into account [3]. This includes starting with the current situation to map mitigation measures to
see which measures that can be applied already at present and those which will require longer lead
times to be implemented.
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Seeing that the energy and climate performance of the user phase of the built environment in
Sweden keeps improving, the climate impact of the construction process has increasingly come in
to focus [4]. Emissions arising from manufacturing, transporting, and processing of construction
materials to buildings and infrastructure account for approximately one-fifth of Sweden’s annual CO2

emissions [5–7]. However, current estimates of the climate impact from building and construction
processes in Sweden is associated with a significant degree of uncertainty. Environmentally extended
input-output data has provided estimates for the year 2015. These determine territorial emissions
associated with building construction to be 6.6 Mt CO2e, increasing to 11.6 Mt CO2e when including
imports [7,8]. Territorial emissions linked transport infrastructure construction is similarly estimated at
1.5 Mt CO2e increasing to 1.9 Mt CO2e including imports [7,9]. The imported emissions are associated
with greater uncertainty as they are estimated by calculating differences in emissions from trading
partners compared to emissions in Sweden, giving the limitation of not capturing differences between
different industries in the importing countries [10]. On the other hand, a process-based bottom-up
life cycle analysis (LCA) approach, combining statistics detailing new net area from newbuilds and
refurbishments with LCA data per building type, provides a lower estimate of 5.4 Mt CO2e emissions
associated with building construction in 2015 [8,11].

Indeed, as demonstrated in literature, there is evidence that life-cycle assessments based on
process data and environmental extended input–output (EEIO) tend to lead to very different results,
where EEIO LCAs often lead to higher emissions and process LCAs to lower emissions [12]. There are
several reasons for these discrepancies, with EEIO LCAs suffering from inherent homogeneity and
linearity assumptions, along with aggregation errors due to several different industries being comprised
into one input-output sector [12,13]. The combination multiple economic subsectors with quite different
emissions profiles into one sector, along with the assumption that the market price linearly correlates
with higher emissions results in systematic overestimations [14]. On the other hand, process LCA
suffers from an inherent ‘truncation error’ due to indirect impacts (e.g., capital goods) or excluding
upstream processes along the supply chain due to the need for a system boundary leading to systemic
underestimation [14–16]. Comparative building case studies demonstrate 20–73% higher embodied
carbon emissions for EEIO LCA versus process LCAs [12,17–19].

In view of the differences in the LCA approaches, several studies regard EEIO methods most useful
in assessments of entire economies or industries [13,20,21]. We conclude that, to enable analysis into
the ongoing development in the construction sector and the opportunities for the sector to contribute
to the national climate targets, better estimates are needed, including the main components making up
those emissions, from different materials to transport of those materials and construction processes.

The focus of this study was on the path towards net-zero emissions in 2045, which necessitates
not only looking at current emissions and the components therein but also require comprehensive
assessments into current, as well as prospective future, abatement options and potentials. In literature,
one can find an array of sector-specific or industry level studies focused on future carbon
abatement options (see, e.g., Reference [22–26]) for steel, Reference [27–29] for cement/concrete,
and Reference [30–33] for heavy transport and construction equipment). A comprehensive review
of 40 energy-intensive industry roadmaps was recently performed by Gerres et al. [34]. This review
remarked that roadmaps with a focus on subsector specific technology assessments often disregard the
cross-sectorial dimensions of the abatement options considered, while top-down approaches tend to
provide limited details on technological and economic feasibility. Gerres et al. found little consensus
on how deep decarbonizations of industry are to be achieved but could identify a few key areas of
importance and agreement, including alternative feedstock and carbon capture in the cement industry,
carbon neutral steelmaking, and decarbonization of low temperature heat in the petrochemical industry.
The authors finally noted that carbon capture, transport and storage (CCS), the electricity system,
and the hydrogen economy, i.e., external system transformations, must be considered when evaluating
decarbonization pathways.
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In addition to sector-specific abatement studies, we have found recent evidence, particularly in grey
literature of synthesis reports, reports which integrate the perspectives from different industries [35–41].
The target of these reports is predominantly either a European or a global level, emphasizing the
cross-sectorial potential of reducing demand for products and services via circular economy, logistic
optimization, and material efficiency measures while highlighting the potential and alternatives
contributed by biomass, carbon capture, and electrification, including links to hydrogen.

Thus, we see that roadmaps detailing industry decarbonization on a sector by sector or
multinational level are prevalent. However, focusing in on the building and construction sector,
there are limited examples in literature of national assessments of future abatement options and
potentials and the pathway towards close to zero emissions [42,43], with most studies pertinent to the
UK [44–47].

In Sweden, within the government-initiated Fossil Free Sweden (http://fossilfritt-sverige.se/in-
english/) initiative, business industries have drawn up roadmaps towards 2045, describing in varying
details technological solutions, investment needs, and obstacles required to be removed. These provide
some key information on abatement options within individual industry sectors with the construction
sector roadmap capturing a cross-sectorial perspective [48,49]. Some initial assessments have also
been made on emissions reductions and energy needs on a cumulative level for the year 2045 [50,51].
However, to explore critical factors on the pathway towards 2045, including impacts from upscaling
and the risk of lock-in effects, there is a need for studies that take a broader perspective while combining
a short and long-term perspective of abatement potential across the supply chain.

In this study, we used material and energy flow analysis combined with an extensive literature
review to assess (i) the current status of emissions from the Swedish construction sector and (ii) the
extent to which abatement technologies across the construction supply chain could reduce the GHG
emissions if combined to its full potential based on implementation timelines linked to their technical
maturity and expected readiness for implementation. The ambition was to analyze the current and
future GHG emissions reduction potential by considering the development, over time, of emission
abatement measures in different parts of the construction supply chain.

With support of scenarios, we created a roadmap exploring different future trajectories of
technological developments in the supply chains for buildings and transportation infrastructure.
By matching short-term and long-term goals with specific technology solutions, the roadmap made it
possible to identify key decision points and potential synergies, competing goals, and lock-in effects.
While the study is performed in a Swedish setting, and the updated estimate of current emissions
are predominantly based on northern European LCAs, the analysis of abatement options, timelines,
and pathways are relevant and applicable on a European, if not a global level.

2. Materials and Methods

This work combines quantitative analytical methods, i.e., scenarios and stylized models, with a
participatory process involving relevant stakeholders in the assessment process. The participatory
process served to identify the main abatement options but also to adjust decisions and assumptions
regarding abatement portfolios and timelines to make these as realistic and feasible as possible.
Stakeholders have thus provided input and feedback via workshops undertaken during the study
development period. Stakeholders include industry representatives and experts along the supply
chain: material suppliers, contractors, consultants, clients, and governmental agencies.

Estimates are provided of the magnitude of current and future GHG emissions reduction potential
across the building and transport infrastructure construction supply chain by (i) estimating the
current emissions, material, and energy flows associated with the sector; (ii) identifying possible
GHG abatement options relevant to the construction works and their estimated abatement potentials;
(iii) using (i) and (ii) to assess the impact of combining abatement measures along the construction
supply chain; and (iv) crafting scenarios to highlight challenges and possibilities up to 2045 given
different assumptions regarding future practices and technological development.

http://fossilfritt-sverige.se/in-english/
http://fossilfritt-sverige.se/in-english/
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Current emissions from the Swedish building and construction industry is analyzed by comparing
existing estimates with a mapping of the material and energy flow through the supply chain of building
and transport infrastructure construction produced via a literature review of life cycle analyses and
equivalent studies (where literature searches were conducted in Scopus and Web of Science with search
string algorithms targeting a combination of LCA OR “life cycle analysis” OR “life cycle assessment”
OR “carbon footprint” AND building* OR construction OR infrastructure with subsequent screening
to identify studies of relevance for the scope of this study, e.g., transport infrastructure and buildings
of equivalent design and construction techniques, as in Sweden.). In the technology roadmap of this
work, we analyze the climate impact linked to construction of buildings and transport infrastructure,
i.e., we do not include construction of for example utilities, such as waterworks, wastewater treatment
plants, power plants, and power lines. Construction of buildings and transport infrastructure is
equivalent to around 80% of construction investments in Sweden [52]. Focus of the analysis is on
emissions from materials production and the construction phases (i.e., corresponding to life cycle stage
A1–A5 [43]). The latter includes emissions from mass and material transport and the construction
process. A schematic of the mapping is shown in Figure 1.
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Figure 1. Schematic figure of material flow mapping for buildings and transport infrastructure
construction in Sweden. The height of the category to frame-type boxes represent the approximate
relative sizes of the associated emissions. Regarding materials, the dark orange boxes depict materials
studied in detail, while the dark orange contours in the primary production column depict material
production processes evaluated in detail. The analysis also includes emissions from mass and material
transport and construction processes.

The Swedish Transport Administration (STA) provides a breakdown of the emission share from
various materials and activities regarding new construction of state-owned transport infrastructure.
However, this is not a complete picture of transport infrastructure as around half of the transport
infrastructure investments in Sweden are made by regional and local government [53]. More detailed
analysis has been performed by [9], including both state, municipal, and privately-owned transport
infrastructure. The analysis by Liljenström et al. describes the emissions share of material
production and on-site activities (transports and construction processes) for both new construction and
reinvestments (defined as larger projects intended to restore the infrastructure to its original state by
replacing a construction component (for example, the bounded base layer and tunnel lining) with the
same, or a similar, type of construction component.) for road and rail infrastructure, ports, and fairways



Energies 2020, 13, 4136 5 of 40

and airports. In this study, we slightly refined the emissions shares given by Liljenström et al. based
on additional data [52,54], while excluding airports due to the minor emissions associated with airport
construction (0.03 kt CO2e [9]). We further used the total emissions for construction of transport
infrastructure provided by the detailed bottom-up analysis performed by Liljenström et al. [9] and
national environmentally extended input-output modeling [7], as these provide a coherent result of
1.9 Mt CO2e emissions for the year 2015.

As this coherence does not apply for building construction, an estimate for the national emissions
associated with building construction was developed using data on the emissions share from different
lifecycle stages and materials sourced from the literature review combined with validated emissions
levels of different components. Where available, the literature review was concentrated to LCA studies
in a Northern European setting as to account for equivalent design and construction techniques, along
with requirements stemming from climatic conditions. While LCA studies of buildings are prevalent,
studies that describe and separate material inputs, material transports, and construction processes are
more limited, particularly regarding non-residential buildings and refurbishments (see, e.g., reviews
in Reference [55–57]). As LCA studies are limited for refurbishments, no detailed breakdown for
refurbishments has been developed here. We instead use an adjustment factor to reflect emissions from
transports and specific materials considered dominant in refurbishments in the few studies available.

The share of emissions for specific materials for construction of different building types was
calculated based on the estimates in literature for these building types and the estimated share of
emissions per building type. The total share of emissions for different material/activities for building
construction were subsequently calculated using estimates for different life cycle stages for the various
building types.

The compilation of material, energy, and emissions flow serves as the baseline when applying
identified abatement potentials from the abatement options review. The inventory of GHG abatement
options (described in detail in Section 2.2) is established by means of a comprehensive literature review,
including industry and governmental agency reports (grey literature), together with input from supply
chain stakeholders. (Literature searches were conducted via a combination of academic bibliometric
databases (Scopus and Web of Science) and web browser searches was used to enable the sourcing of
the relevant grey literature, which is not as evident in academic bibliometric databases. Search string
algorithms targeted a combination of the material/activity in question together with “carbon emissions”
OR CO2 OR GHG OR “greenhouse gas emissions” AND abatement OR “emission* reduction” OR
mitigation OR decarbonization.), The main types of abatement options considered in the assessment are
material efficiency and optimization measures together with shifts in: material production processes,
transport vehicles and construction equipment technologies, and fuel substitutions in both equipment
and production plants. The options include certain reuse and recycling measures resulting in emissions
reductions, but not for the specific purpose of resource conservation. The inventory comprises both
current best available technology and technologies assumed to be available over time to 2045.

A timeline is applied to test the potential implications to the climate impact when constructing
the same assets while applying a combination of GHG abatement measures along the supply chain
appraised to have reached commercial maturity at different points in time (over 5-year time periods
until 2045). From this inventory, portfolios of abatement measures for the respective supply chain
activities are constructed with selections of measures applied on a timeline up to the year 2045.
The abatement measures are combined in pathways according to strategic choices [58], namely access
to biofuels and renewable electricity, as well as enactment of material efficiency measures (as described
in detail in Section 2.3).

The analysis assumes emission factors for electricity and district heating declining in accordance
with scenario analysis from the Swedish Energy Agency, implying that GHG emissions related to
electricity generation are close to zero in 2045 [59].
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2.1. Pathway Generation and Quantification Approach

Total emissions from buildings and infrastructure construction in each time period t is calculated as:

Etot,t = Eb,t + Eti,t, (1)

where Eb,t is the emissions resulting from building construction, and Eti,t is the emissions resulting
from transport infrastructure construction. The analysis includes emissions from materials production
and the construction phase (i.e., corresponding to life cycle stage A1–A5 according to EN 15978 [60]),
with the latter comprising emissions from mass and material transport, and the construction process
(A4 and A5, respectively).

2.1.1. Emissions from Transport Infrastructure Construction

The transport infrastructure construction emissions, Eti,t, are calculated as the sum of emissions
from the material production stage and the construction activities as:

Eti,t =
∑

m
(Eti,m,t) +

∑
tc
(Eti,tc,t), (2)

where Eti,m,t is the emissions associated with material production of material m in timestep t; and Eti,tc,t
is the emissions for construction activities tc in timestep t. Construction activities tc comprise mass
and material transport and the construction process. Five material categories (m) are included in the
analysis: concrete, reinforcement steel, construction steel, asphalt, and others.

The share of emissions from transport infrastructure construction coming from materials
production and the construction process activities, respectively, in the base year, year 2015, is based on
data from the Swedish Road Administration [53,61] and Liljenström et al. [9]. The emissions Etc,2015

from the construction activities, tc, in the base year, year 2015, is calculated as:

Eti,tc,2015 = Eti,2015 ∗
∑

i,c,tc
(ei,c ∗ ei,c,tc), (3)

where Eti,2015 is the total emissions from transport infrastructure construction in 2015; ei,c is the
share of emissions from transport infrastructure type i (i.e., road, railway, ports, and fairways) and
construction type c (i.e., new construction and reinvestment); ei,c,tc is the share of emissions from
transport infrastructure type i, construction type c and construction activities tc.

Correspondingly, emissions from material production are calculated as:

Em,2015 = Eti,2015 ∗
∑

i,c,m
(ei,c ∗ ei,c,m), (4)

where Em,2015 is the emissions from material production in 2015 for the specific material m; Eti,2015 is
the total emissions from transport infrastructure construction in 2015; ei,c is the share of emissions from
transport infrastructure type i and construction type c; ei,c,m is the share of emissions from transport
infrastructure type i, construction type c and material m.

2.1.2. Emissions from Building Construction

The building construction emissions are also calculated as the sum of emissions from the material
production stage and the construction activities:

Eb,t =
∑

m

(
Eb,m,t

)
+

∑
tc

(
Eb,tc,t

)
, (5)

where Eb,m,t is the emissions associated with material production of material m in timestep t; and
Eb,tc,t is the emissions for construction activities tc in timestep t. The analysis covers seven material
categories, m, including: concrete, reinforcement steel, construction steel, insulation, gypsum and
plaster, plastics and paint, and others (glass, aluminium, and wood).
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For the base year of 2015, validated emissions for construction equipment (as per data from the
national EEIO data reported in [7]) was used to extrapolate total building construction emissions:

Eb,2015 =
Ecp,2015

ecp
, (6)

where Eb,2015 is the total annual emissions associated with building construction and refurbishment
in 2015; Ecp,2015 is the emissions estimate for construction equipment in 2015 according to the national
EEIO data; and ecp is the emissions share estimated for construction processes.

The construction equipment data from the national EEIO data is considered reliable as construction
equipment contribute to domestic emissions only and is used in construction and refurbishments
(and not in operation of buildings). Once the total emissions estimate is produced, it is validated
by means of comparing the resulting emissions for specific materials with available data to confirm
its feasibility.

The share of emissions for the construction processes, material transports and material production
were calculated using estimates for different life cycle stages for various building types

elc =
∑n

i=0

(
ei ∗ elc,i

)
, (7)

where elc is the emissions share associated with the different life cycle stages lc (equivalent to A1–A3
for material production, A4 for material transport, and A5 for the construction process according
to the European standard for “Sustainability of construction works - Assessment of environmental
performance of buildings” (EN 15978)); ei is the emission share for building type i; and elc,i is the
emissions share for life cycle stage lc and building type i. The analysis covers three building types, i,
including: multi-family dwellings, single-family dwellings, and non-residential buildings.

The share of emissions for different materials for construction of different building types were
calculated based on the estimates in literature for these building types and the estimated share of
emissions per building type. Where available and most applicable (i.e., for multi-family dwellings),
the building type was also divided into building typology and frame type, namely concrete frame and
wood frame. The emissions share em associated with material production of the material m is thus
calculated as:

em =
∑n

i=0
(ei ∗ em,i), (8)

where ei is the emission share for building type i; and em,i is the emissions share for material m and
building type i.

The initial estimated shares for both life cycle stages and materials were subsequently amended
based on validated data for certain components in combination with adjustments for materials
commonly used in refurbishments.

2.1.3. Material and Energy Demand

Emissions and energy intensity factors for materials, activities, and fuels were combined with the
emissions figures to estimate material and energy demand. The emission intensity factors for materials,
activities, and fuels, along with data for associated quantity and source of energy used for material
production, were sourced in a literature review. Table 1 lists the details for the reference energy carriers,
materials or material combinations used in the calculation of material and energy demand for the
construction of buildings and transport infrastructure in the year 2015. Details on specific materials,
material production processes, and energy sources can be found in Tables A1 and A2 in Appendix A.
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Table 1. Emissions and energy intensity factors along with energy mix in the production of reference
materials and energy carriers used in the construction of buildings and transport infrastructure in the
base year of 2015.

Reference
Materials

(m)/
Activities

(tc)

U
ni

t

Em
is

si
on

s
In

te
ns

it
y

Ef
m

(t
C

O
2/

un
it

)

En
er

gy
In

te
ns

it
y

Q
f m

(M
W

h/
un

it
) Energy mix qsh,m, s (%) Comment References

Fo
ss

il
Fu

el
s

C
oa

l/
C

ok
e

O
il
/D

ie
se

l

G
as

Fo
ss

il
W

as
te

B
io

m
as

s

El
ec

tr
ic

it
y

Concrete m3 353 656.0 6% 22% 37% 17% 15%

18% cement share
(corresponding to 420

kg cement per m3

concrete) as the average
of building and

infrastructure concrete

[7,62,63]

Cement t 0.82 1.35 25% 43% 20% 10%

Cement with 86%
cement clinker and 14%

alternative binders.
Thermal energy in
clinker production;
electrical energy in
cement production

[51,64,65]

Reinforce-ment
steel t 0.78 2.50 29% 1% 16% 54% 85% scrap-based, 15%

primary steel [24,62,66–75]

Construction
steel t 2.12 6.40 64% 2% 17% 17% Galvanized steel, 100%

primary steel [69,71,72,76–79]

Asphalt t 0.35 0.90 100%

Hot mix asphalt with
6.2% bitumen. Does not
include transports and

paving

[80–82]

Insulation t 3.30 17.40 89% 11%

Varying depending on
insulation material;

Assuming 60%
polystyrene and 40%

mineral wool

[66,74,79,83,84]

Gypsum and
plaster t 0.30 1.50 87% 13% Average of values for

gypsum plasterboards [62,79,85–87]

Plastic t 2.50 20.00 89% 11%

Average of
polyvinylchloride

(PVC) and polyethylene
(PE)

[37,62,67,74,75,79]

Aluminium t 11.0 19.70 12% 88% Primary aluminium [67,74,75,88,89]

Glass t 1.00 3.50 70% 30% [67,74,85,90]

Timber t 0.28 2.60 15% 70% 15%

Average of
cross-laminated timber,

glulam beams and
sawn timber

[62,69,75,85,91]

Construction
process kWh 0.24 - 2% 64% 17% 17%

Based on 75% diesel
use, 17% electricity use

and 8% heat from
district heating

[11,75,92–94]

Material
transports kWh 0.30 - 85% 15%

Low biofuel blended
diesel (Diesel MK1)
with the Swedish

national biofuel share
from 2015

[95]

The specific emission intensity figures were combined with emission shares to calculate the
resulting material and energy demand. Accordingly, the material demand Mm for each material m for
the base year of 2015 is calculated as:

Mm =

(
Eb,2015 + Eti,2015

)
∗ em

E fm
, (9)
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where Eb,2015 is the total annual emissions associated with building construction and refurbishment;
Eti,2015 is the total annual emissions associated with construction of transport infrastructure; em is the
emissions share associated with material m; and E fm is the emission intensity factor associated with
material production of the material m.

The energy demand for material transports and construction processes for the base year, year
2015, is calculated as:

Qtc =
∑

s

(
Eb,2015 + Eti,2015

)
∗ etc,s

E fs
, (10)

where Qtc is the energy demand for construction activities tc; etc,s is the emissions share associated with
energy source s for construction activity tc; and E fs is the emission intensity factor for energy source s.

The total energy demand per energy source is calculated by using energy intensity factors
combined with the energy mix data for production material processes and fuels used in transport and
construction processes:

Qtot,s =
∑

m
(Mm ∗Q fm ∗ qm,s) +

∑
tc

Qtc ∗ qtc,s (11)

where Qtot,s is the total energy demand associated with energy source s; Mm is the material demand
of each specific material m; Q fm is the energy intensity associated with the production of material m;
qm,s is the share of energy in the material production of material m of the energy source s; Qtc,s is the
energy demand for construction activity tc and energy source s; and qtc,s is the energy share in the
reference fuel used for construction activity tc of the energy source s. Three energy sources are detailed
in the analysis: fossil fuels (coal, gas, oil, and fossil waste), biofuels, and electricity.

2.1.4. Pathway Generation

Pathways are subsequently created were portfolios of abatement measures for the respective
supply chain activities are constructed with selections of measures applied on a timeline up to year
2045. In the pathway analysis, the production levels of each material in each time step was estimated
based on the remaining material demand after implementation of abatement options affecting demand
of each material:

Mm,t = (1−Are,m,t) ∗ (1−Ams,m,t) ∗ (1−Ame,m,t) ∗Mm, (12)

where Mm,t is the material demand of material m in time step t; A is the total material demand reduction
of material m in time step t associated with each of the following abatement measures: re- recycling,
ms–material substitution, me–material efficiency measures; and Mm is the original material demand
of each specific material m in the base year of 2015. An illustration of how this generic calculation is
performed for concrete demand (and resulting demand for cement and Supplementary Cementitious
Material, SCM) is illustrated in Figure 2.

In the pathway analysis, the emissions and energy demand associated with material production,
material transports and construction processes were adjusted based on the abatement options selected
and applied in the assessment for each supply chain activity, as described in Section 2.3. The energy
intensity factors, and energy mixes, were adjusted based on abatement measures, including energy
efficiency and hybridization, biofuel substitution, and electrification. The energy demand for Qcp,t

construction process cp in timestep t is consequently calculated as:

Qcp,t =
(
1−Aop,cp,t

)
∗

(
1−Aee,cp,t

)
∗Qcp, (13)

where A is the total energy demand reduction for construction processes in time step t associated with
each of the following abatement measures: op–optimization and ee–energy efficiency (including from
hybridization and electrification); Qcp is the energy demand for construction processes in the base year
of 2015.
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The energy demand Qmt,t for material transport mt in timestep t is, consequently, calculated as:

Qmt,t =
(
1−Ame,mt,t

)
∗

(
1−Aop,mt,t

)
∗ (1−Aee,mt,t) ∗Qcp, (14)

where A is the total energy demand reduction for construction processes in time step t associated
with each of the following abatement measures: me–average of material efficiency measures for
main materials (concrete, steel, asphalt), op–optimization and ee–energy efficiency (including from
hybridization and electrification); Qmt is the energy demand for material transports in the base year
of 2015.

The energy demand per energy source in each time steps is consequently calculated as:

Qtot,t,s =
∑

m
(Mm,t ∗Q fm,t ∗ qm,t,s) +

∑
tc

Qtc,t ∗ qtc,t,s, (15)

where Qtot,s,t is the total energy use of energy source s in timestep t; Mm,t is the material demand of
material m in timestep t; Q fm,t is the energy intensity factor for production of material m in timestep t;
qm,s,t is the share of energy source s for the production of material m in timesteps t; Qtc is the energy
demand for construction stage tc; qtc,t,s is the energy share for construction processes and material
transports in timestep t for energy source s.
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Figure 2. Schematic illustration of the calculation of concrete, cement, and Supplementary Cementitious
Material (SCM) demand, along with associated energy demand and emissions for concrete manufacture
and SCM. Boxes linked with an encircled x are multiplied, a box linked with an encircled x combined
with 1-in brackets are reduced by the percentage figure in the box closest to the brackets, while a box
linked via an encircled minus sign is subtracted. Boxes with thick outlines are metrics that are adaptable
over time in the pathways depending on the abatement measures applied, while boxes with cursive
texts are input data provided in Tables A1 and A2 in Appendix A. The initial material demand figure is
only adaptable in the sensitivity analysis. Blue boxes are result figures. The cement demand figure is
used as input for the cement production calculation, as displayed in Figure 3.
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Figure 3. Schematic illustration of the calculation of emissions and energy demand per energy source
for cement production. The cement production figure stems from the concrete calculation depicted in
Figure 2. Boxes linked with an encircled x are multiplied, a box linked with an encircled x combined
with 1-in brackets are reduced by the percentage figure in the box closest to the brackets, while a box
linked via an encircled minus sign is subtracted, and boxes linked with an encircled plus sign are added
up. Boxes with thick outlines are metrics that are adaptable over time in the pathways depending on
the abatement measures applied, while boxes with cursive texts are input data provided in Table A1,
Table A2, and Table A3 in Appendix A. Blue boxes are result figures.

For material production, emissions from direct energy use, together with process emissions,
were also adjusted based on the level of carbon capture applied. The resulting emissions for each
material m are calculated as:

Em,t = Mm,t ∗
(
(E fpr,m + Q fm,t ∗

∑
s
(qm,s,t ∗ E fs)) ∗ (1−CCm,t) + Q fm,t ∗ qm,el,t ∗ E fel,t

)
, (16)

where Em,t is the emissions resulting from the production of material m in timestep t; Mm,t is the
material demand of material m in timestep t; E fpr,m is the process emissions intensity factor to produce
material m; Q fm,t is the energy intensity factor for production of material m in timestep t; qm,s,t is the
share of direct energy sources s for the production of material m in timesteps t; E fs is the emissions
intensity factor of direct energy source s; CCm,t is the share of direct and process emissions captured via
carbon capture technologies in the production of material m in timesteps t; qm,el,t is the share of energy
use from electricity in the production of material m in timestep t; E fel,t is the emissions intensity factor of
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electricity in timestep t. Illustrations of how the generic calculation of materials emissions is performed
for cement and primary steel production is displayed in Figures 3 and 4. The abatement options
considered and applied are described in Sections 2.2.1 and 2.2.2, respectively. Below, an example
calculation is made for construction steel in Pathway 1 for the year 2040, where 30% of the coal use is
substituted for biofuel and 30% of the thermal emissions are captured:

Econstruction steel,2040(ktCO2e) =

414 (kt) ∗
((

0 + 6.4
(

GWh
kt

)
∗ (0.34(%) ∗ 0.37

(
ktCO2e
GWh

)
+ 0.02(%) ∗ 0.228

(
ktCO2e
GWh

)
+0.17(%) ∗ 0.248

(
ktCO2e
GWh

))
∗ (1− 0.30) + 6.4

(
GWh

kt

)
∗ 0.17(%) ∗ 0.115

(
ktCO2e
GWh

))
= 372 ktCO2e,

where the energy intensity factor and energy source shares are taken from Table 1 with the coal share
reduced by 30%, and the emissions intensity factors are taken from Table A2 in Appendix A for the
thermal energy sources and Table A3 in Appendix A for electricity.

For material transport and construction process, construction activities tc, the emissions in each
timestep t is calculated as:

Etc,t = Qtc,t ∗
∑

s
(qtc,s,t ∗ E fs,t), (17)

where Etc,t is the emissions for construction stage tc in time step t, Qtc,t is the energy for lifecycle stage
tc in timestep t; qtc,s,t is the energy share for construction stage tc of energy source s in timestep t; E fs,t is
the emissions factor for energy source s in timestep t.Energies 2020, 13, x FOR PEER REVIEW 13 of 43 
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Figure 4. Schematic illustration of the calculation of emissions and energy demand per energy source
for steel production. Boxes linked with an encircled x are multiplied, a box linked via an encircled
minus sign is subtracted, and boxes linked with an encircled plus sign are added up. Boxes with thick
outlines are metrics that are adaptable over time in the pathways depending on the abatement measures
applied, while boxes with cursive texts are input data provided in Table A1, Table A2, and Table A3 in
Appendix A. The initial material demand figure is only adaptable in the sensitivity analysis. Blue boxes
are result figures.
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2.2. Abatement Options

2.2.1. Cement/Concrete

The cement clinker production is responsible for the majority of GHG emissions related to concrete
use with around 65% of the CO2 emissions stemming from the calcination process and 35% emanating
from the fuels used in the cement ovens, the so-called kilns. The main current emission abatement
options comprise of replacing fuels in the cement kilns with waste- or bio-based fuels, reducing
the amount of cement clinker by using Supplementary Cementitious Material (SCMs or so-called
alternative binders), and optimizing the concrete recipes to use less cement [27,29,96,97]. Sweden is a
frontrunner when it comes to alternative fuels [51] but is behind the rest of Europe in using alternative
binders with a clinker share of 86% [98] compared to the European average of 73% [29]. In addition,
the average cement/binder content used in concrete is higher in Sweden than in other countries,
with around 420 kg binder per m3 concrete compared to an average 400 kg binder per m3 concrete in
Europe overall [7,99,100]. It is worth noting that high levels of SCMs require process adjustments due
to additional hardening times prolonging project timelines, while optimized concrete recipes impact
site practices as multiple specific concrete mixes require further logistics and on-site coordination.

Other prominent abatement options include design optimization to slim constructions, increased
prefabrication to reduce waste and minimized construction process emissions, and material substitutions
towards wood-based solutions [37]. For building construction, the development of engineered wood
products has increased the opportunities for building multi-floor building with a structural core
of timber.

Indeed, engineered wood products have recently experienced annual growth rates between
2.5% and 15% [101], with a range of studies showing that buildings with wooden structures
have a lower carbon footprint than buildings with other types of structures (see reviews in,
e.g., Reference [57,102–105]).

However, even if current abatement options are combined to its full potential, transformative
technologies are still required to reach the goal of close to or net zero emissions in the cement industry
by 2045 [54]. Carbon capture technologies (CCS) with or without electrification of the cement kilns are
key deep decarbonization alternatives. The Swedish cement industry roadmap is targeting climate
neutrality by 2030, with the main focus being on biofuels together with CCS [98]. However, Cementa is
also pursuing electrification together with Vattenfall through its CemZero project, with a pre-feasibility
study released in 2018 [106].

2.2.2. Steel

Construction steel, often galvanized, is predominantly produced by primary steel, i.e., from iron
ore in integrated steel plants, while reinforcement steel is mainly produced by scrap steel in secondary
steelmaking plants, called electric arc furnaces (EAF), although depending on the availability of scrap
steel, this varies globally [107]. Predominant current abatement options to reduce embodied emissions
associated with steel are enhanced material efficiency and circularity measures [9,15,58,108]. The main
opportunities lie in reducing waste during the construction process; reduce the amount of material
in each building by avoiding over-specification and using higher-strength materials; and reusing
buildings and building components [38,44,109]. With better sorting and separation, there is also a
potential for increased scrap share for construction steel production [38,110].

Regarding the different production methods, EAFs mainly use electricity but also require fueling
by natural gas (25–30%) and a smaller share of coal (<5%) [70–73]. With electricity as the main energy
carrier, the emission intensity of the electricity used is an important factor [107,108]. Refurbishments and
upgrades of current electric arc furnaces provide potential for decreased electricity consumption [70,111,112],
and there is also potential for biomass to substitute fossil process energy in EAFs, both as a reducing
agent and as fuel in reheating furnaces [70,73,113]. Fuel substitution from natural gas to bio-based
syngas or biooil is similarly proposed in metallurgical processes [114].
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For primary steel production, about 80% of the CO2 emissions stem from the reduction of
iron ore [22,23,115]. The main options for deep emission reduction in primary steel production
are electrification with renewable electricity (either via hydrogen direct reduction or through
electrowinning) [22,26,71,90,115–117], use of biomass to replace coke as fuel and reducing
agent [26,76,113,118–122], and/or use of carbon capture and storage (CCS) [22,26,40,117,123,124].
Partial CO2 capture is a mature and low-cost technology that can be implemented in the coming
10–15 years without major changes to the existing process and which can be combined with biomass
substitution [123,125,126].

2.2.3. Other Materials

At present, polystyrene and mineral wool are the most frequently used for insulating buildings [127],
with mineral wools in general having a lower carbon footprint, which is why material substitution
together with recycling is a current abatement measure for insulation [74,104]. Other abatement
measures include fuel change together with energy efficiency measures for production of both mineral
wool and polystyrene insulation [37,128,129]. Steam cracking is responsible for a large share of the
carbon footprint (~40%) of plastics production [37] (which is also a raw material in polystyrene
insulation), which is why deep abatement options for plastics production include electrification or
carbon capture in cracking and polymerization [37,90]. Other abatement measures for plastics include
material efficiency measures and recycling either by mechanical or chemical means [38,41,47].

In the production of gypsum for plasterboards, the most prominent abatement measure is the use
of recycled gypsum which can be combined with electrification or biofuel substitution in the heating
furnaces used in the gypsum production [130].

Main abatement options for asphalt include biofuel substitution, lowered temperatures,
and increased recycling rates [80,131,132].

2.2.4. Material Efficiency

Material efficiency is a key abatement measure for all construction materials, and a measure that
generally deserves more attention in policy and climate mitigation discussions. Evidence (see, e.g.,
Reference [37,38,44,47,133]) suggests that, on average, one-third of all material use could be saved if
designs were optimized for material use rather than for cost reduction, since downstream production
(and design) are generally dominated by labor costs and not material costs. For example, it is easier to
use constant cross-sections across a structure than to design each beam and column individually since
this leads to more rapid construction.

In addition, motivations to use excess material are driven by an asymmetry costs of product
failure compared with the costs of over-specification, by over-specified components copied across
projects to minimize costly design time, by cheaper manufacture of standard parts, and by the fact that
many products experience higher loads prior to use (in installation or transport) than in use [46].

2.2.5. Construction Equipment and Heavy Transports

High potential abatement measures for heavy vehicles and machinery in the short to medium
term include biofuel substitution, energy efficiency measures, hybridization, and optimization of
logistics and fleet management. Over the longer term, deeper emissions reductions would result from
electrification of construction equipment, crushing plants and heavy trucks. For the latter, options
include plug-in hybrid or fuel-celled heavy-duty trucks/haulers potentially in combination with electric
road systems. Model shifts for heavy transport to rail and ship is also an abatement measure with
large potential. While such shifts are out of scope for this analysis, this is an important level towards a
more transport-efficient society [134].
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2.2.6. Summary of Abatement Options

A summary of all abatement options and their identified emission reduction potential are described
in Figure 5. The graph illustrates the range of GHG emissions reduction potential recognized in
literature for each of the abatement options explored, where the range may depend on the level of
the abatement measure that is adopted. Full details of measures for all activities, including timelines,
potentials, and references, are available in the Supplementary Material.Energies 2020, 13, x FOR PEER REVIEW 16 of 43 
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Figure 5. Range of greenhouse gas (GHG) emissions reduction potential for the abatement options
identified in the literature review for the main emissions sources (color coded). The study analysis is
based around reaching the medium-high range of the emission reduction potentials for each selected
abatement measure when fully implemented. The Supplementary Material provides full details of
measures for all activities, including timelines, potentials, and references.
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2.3. Alternative Pathways

Four pathways have been devised for buildings and transport infrastructure, describing different
future trajectories of technological developments in the supply chains of buildings and transportation
infrastructure in Sweden, two with a focus on bio-based measures together with CCS and two with a
focus on electrification:

• Pathway 1: Biofuels and CCS;
• Pathway 2: Electrification;
• Pathway 3: Biofuels, CCS and material efficiency; and
• Pathway 4: Electrification and material efficiency.

The second of the two within each focus explores the role material efficiency measures may play
in the low-carbon transition. Details of the emissions reduction measures applied over the timeline for
the different pathway scenarios are displayed in Table 2.

For cement, the bio/CSS pathway adopts post-combustion carbon capture with amine scrubbing,
which is the technology tested by HeidelbergCement in Breivik in Norway [135]. In all pathways,
a progressive realization of cement clinker substitution and cement demand reduction from optimization
of concrete recipes is assumed.

For primary steel production, the bio/CCS pathways adopt process modification enabling top
gas recycling combined with carbon capture and storage, while the electrification pathways pursue
a hydrogen direct reduction (H-DR/EAF) steelmaking process. Current electric arc furnaces for
scrap-based secondary steel production are being refurbished and upgraded at a continuous rate in all
pathways, alongside partial bioenergy substitution in the bio/CCS pathways.

Separate pathways have also been devised for construction equipment and heavy transports, while other
materials follow a common decarbonization pathway (based on, e.g., Reference [37,41,74,83,108,130,136]).

The pathway portfolios are predominantly based around reaching the medium-high range of
the emission reduction potentials for each selected abatement measure when fully implemented
(as per Figure 5) with measures and timelines largely compatible with roadmaps and pathways
developed within the EU Commission long term climate strategy (combination of electrification and
hydrogen scenarios), along with relevant industry roadmaps developed within the Fossil Free Sweden
project [48,137].

Table 2. Details of abatement measures applied across pathways with percentage figures depicting the
diffusion of the specific mitigation option.

Material/Process Pathway 2025 2030 2035 2040 2045

Cement/concrete

All pathways

20% alternative
binders (SCM)

5% reduced binder
intensity
2% wood

substitution

25% alternative
binders (SCM)

12% reduced binder
intensity
3% wood

substitution

28% alternative
binders (SCM)

15% reduced binder
intensity
5% wood

substitution

32% alternative
binders (SCM)

22% reduced binder
intensity
7% wood

substitution

35% alternative
binders (SCM)

28% reduced binder
intensity

10% wood
substitution

Biofuel + CCS 40% biofuels 45% biofuels
45% CCS

50% biofuels
45% CCS

52% biofuels
80% CCS

55% biofuels
90% CCS

Electrification 40% biofuels 45% electrification 45% electrification 90% electrification 100% electrification

Material
efficiency 8% 15% 20% 25% 30%

Reinforcement
steel

Biofuel + CCS 100% secondary
steel

10% energy
efficiency

7% biofuel
14% biofuel 25% biofuel 35% biofuel

Electrification 100% secondary
steel

10% energy
efficiency

7% electrification
(plasma heating)

14% electrification 14% electrification
10% biofuel

14% electrification
21% biofuel

Material
efficiency 5% 10% 15% 20% 25%
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Table 2. Cont.

Material/Process Pathway 2025 2030 2035 2040 2045

Construction
steel

Biofuel + CCS 20% biofuel 30% biofuel 30% CCS
30% biofuel

60% CCS
30% biofuel

Electrification 20% biofuel 30% biofuel 50% electrification
(hydrogen-reduction)

100%
hydrogen-reduction

Material
efficiency 10% 15% 20% 25% 30%

Construction
equipment

All pathways 5% optimization 10% optimization 10% optimization 10% optimization 10% optimization

Biofuel + CCS
42% biofuel

9% hybridization
5% electrification

63% biofuel
14% hybridization
9% electrification

78% biofuel
23% hybridization
13% electrification

85% biofuel
31% hybridization
15% electrification

81% biofuel
31% hybridization
19% electrification

Electrification
42% biofue

l9% hybridization
5% electrification

75% biofuel
14% hybridization
9% electrification

76% biofuel
23% hybridization
24% electrification

59% biofuel
23% hybridization
41% electrification

50% biofuel
23% hybridization
50% electrification

Heavy
transports

All pathways 5% efficiency/
optimization

10% efficiency/
optimization

15% efficiency/
optimization

20% efficiency/
optimization

25% efficiency/
optimization

Biofuel + CCS 42% biofuel
5% electrification

63% biofuel
10% electrification

78% biofuel
15% electrification

80% biofuel
20% electrification

75% biofuel
25% electrification

Electrification 42% biofuel
5% electrification

63% biofuel
20% electrification

70% biofuel
30% electrification

55% biofuel
45% electrification

40% biofuel
60% electrification

Insulation All pathways
2% energy efficiency

20% material
substitution

4% energy efficiency
50% material
substitution

10% electrification

6% energy efficiency
70% material
substitution

20% electrification

70% material
substitution

30%
electrification/CCS

70% material
substitution

30%
electrification/CCS

Gypsum/ plaster All pathways
25%

biofuel/material
substitution

25%
biofuel/material

substitution
25% recycling

25%
biofuel/electrification

50% recycling

50%
biofuel/electrification

50% recycling

100%
biofuel/electrification

75 recycling

Plastic
All pathways 20% energy

efficiency/biofuel
40% energy

efficiency/biofuel
40% energy

efficiency/biofuel
50%

electrification/CCS
100%

electrification/CCS

Material
efficiency 5% 10% 15% 20% 25%

Asphalt All pathways
66% biofuel

37% recycling
4% energy efficiency

66% biofuel
45% recycling

8% energy efficiency

85% biofuel
50% recycling
12% energy
efficiency

85% biofuel
55% recycling
15% energy
efficiency

85% biofuel
60% recycling
15% energy
efficiency

Sensitivity Analysis

The main assumption in the model is a constant construction demand up until 2045.
However, this assumption is uncertain and different sources provide diverse interpretations of
how the demand for building and transport infrastructure construction will develop. For example,
the Swedish Energy Agency, in its long-term prognosis, predicts the energy use of the building
construction sector to increase until 2020 due to extensive construction of new housing and to then fall
back to previous lower levels after 2025 [138]. This would imply reductions of around 20% to 2030 and
30% to 2045 based on 2020 levels.

On the other hand, Boverket estimates that, by 2025, Sweden needs 600,000 new dwellings,
implying a level of construction not anticipated in the prognosis of the Swedish Energy Agency [7,139].
Further, a great need for renewed transport infrastructure has been identified to enable the climate
transition of the transport network to be realized while meeting increased transport demands, including
the anticipated but heavily discussed construction of a highspeed railway network [140,141].

Consequently, a scenario analysis has been performed to test the implications of reductions/increases
in construction demand of ±20% to 2030 and ± 30% to 2045.

3. Results

3.1. Current Emissions from Building and Infrastructure Construction

As described in the Introduction the range of current estimates of GHG emissions linked to the
construction of buildings in Sweden is notable (8.5 MtCO2e based on a process-based bottom-up LCA
approach, 8.1 MtCO2e for territorial emissions, and 13.5 MtCO2e including imports based on EEIO
data) with potential variances including different system boundaries (e.g., agricultural properties
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not included in the bottom-up model) and possible overstating of the importance and emissions
intensity of imports in the input-output analysis [7,8,11]. Further, a great majority of construction steel
is imported [142], and, while the cement market is mostly domestic (85% of Swedish cement use) [143],
the concrete market is turning more international, at least pertaining to precast elements [143–145].

To validate the estimates of the current GHG emissions, and to specify emissions components,
further analysis into the existing estimates were combined with a literature review focused on relevant
LCA studies detailing embodied emission sources for different construction types.

3.1.1. Estimate and Validation of Current Emissions from Building Construction

Around 2/3 of the construction emissions correspond to new buildings and 1/3 to refurbishments
and maintenance. In addition, around 40–50% of the annual climate impact from building construction
stem from construction of non-residential buildings, such as offices, schools, and other premises.
A growing share of around 40–50% arise from multi-family dwellings and the remaining 10–15%
from single family houses [7,52]. Multi-family buildings are predominantly constructed with concrete
frames (85% in 2018), with smaller shares of timber frames (13%) and steel frames (2%) [146].

A detailed overview of the share of emissions components, and share of individual materials,
related to new building construction for new builds of various building and frame types can be
found in Tables A4 and A5 in Appendix A. The total share and amount of emissions for different
material/activities for building construction were calculated using estimates for different life cycle
stages for various building/frame types from the literature review, with the initial estimates shown in
Table 3.

Table 3. Initial and updated annual emissions estimates per lifecycle stage for building construction in
the base year of 2015.

Emissions Estimate Building Materials
(A1–A3) Transport (A4) Construction Process

(A5)

Initial estimate share of embodied
emissions (%) 85% 5% 12%

Initial estimate amount of embodied
emissions (Mt CO2) 6.5 0.4 0.9

Updated estimate share of
embodied emissions (%) 80% 9% 11%

Updated estimate amount of
embodied emissions (Mt CO2) 6.3 0.7 0.9

Worth noting about these estimates is that ground preparation is often not included in LCA studies,
which would increase the share of construction processes. On the other hand, the estimates do not
include refurbishments, which would increase the share of material transports and certain materials.

The estimates can be compared to the approximate sector division for the building and real
estate sector (territorial emissions including emissions associated with real estate management during
building use) from the Swedish EEIO analysis. The sector division include 3.9 Mt CO2 from building
materials (only domestically produced materials), 0.9 Mt CO2 from construction equipment, and 1.5 Mt
CO2 from transports, while the share of the transport emissions estimate belonging to construction
versus real estate management is not entirely clear [7]. The level of transport emissions nonetheless is
significantly higher than the level and share of emissions allocated to transports resulting from the
LCA studies in the literature review (~24% versus 5% or 0.4 Mt CO2), noting that the latter figure does
not encompass refurbishments. Further, the process-based bottom-up approach estimates transport
emissions from building construction of 0.9 Mt CO2 (17% of building construction emissions), while also
including people transport in this estimate [8]. The initial emissions share and estimate for material
transports is consequently adjusted upwards.
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The initial and updated emissions estimates from materials are displayed in Table 4.

Table 4. Initial and updated annual emissions estimates per material for building construction in the
base year of 2015. The initial estimates are based on a combination of emissions share data per lifecycle
stage for construction of new buildings together with data on construction of different building/frame
types, while the updated estimates are the data used in the model after adjustments for refurbishments
and validation.
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Initial estimate share of building material emissions (%) 44% 10% 11% 8% 6% 4% 17%

Initial estimate amount of material emissions (Mt CO2) 2.8 0.6 0.7 0.5 0.4 0.3 1.1

Updated estimate share of building material emissions (%) 40% 10% 11% 10% 6% 4% 19%

Updated estimate amount of material emissions (Mt CO2) 2.5 0.6 0.7 0.6 0.4 0.3 1.2

The sector division in the Swedish EEIO analysis further details an approximate 2.4 Mt CO2 from
the mineral industry (predominantly cement) [7]. Regarding cement, emissions from Cementa were
2.5 Mt CO2 in 2015 [147], which corresponds to 85% of Swedish cement use [143]. In total, emissions
from Swedish cement use were thus about 2.9 Mt CO2 in 2015. However, while the cement market is
mostly domestic, the concrete market is turning more international, particularly pertaining to precast
concrete. There is a lack of data and reporting to determine the extent of concrete imports, but an
estimate can be made based on the import-export balance of concrete, cement and gypsum products of
SEK 1.8 billion [143].

If these imports are considered to correspond to concrete elements and the concrete costs
60–70 EUR/ton (about SEK 600–700/ton) [148,149], this would correspond to concrete imports of
2.5–3 Mt per year, corresponding to emissions of about 0.4–0.5 Mt CO2, giving a total emissions estimate
of 3.3 Mt CO2e from Swedish concrete use. With around 75% of concrete being used in building
construction [150], the emissions from concrete use in building construction would correspond to
around 2.5 Mt CO2. The emissions estimates of concrete and material production overall are adjusted
accordingly in the model.

Additional upwards adjustments are based on literature detailing refurbishments which report
the main embodied emissions resulting from insulation, windows and metals for new ventilation,
and heating systems [55,151,152].

3.1.2. Estimate of Current Emissions from Building and Transport Infrastructure Construction

The total climate impact of building and transport infrastructure construction in Sweden is
estimated to around 9.8 Mt CO2 per year, with building construction responsible for 80% and transport
infrastructure for 20%. This can be compared with the national territorial GHG emissions of 51.8 MtCO2e
in 2018 [6]. As can be seen in Figure 6, this carbon impact derives predominantly from concrete and
steel together with diesel use in construction processes and material transports.
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Figure 6. Carbon impact from (a) construction of buildings and (b) construction of transport
infrastructure with the size of the pie charts reflecting the relative magnitude of emissions.

3.1.3. Validation of Building and Transport Infrastructure Construction Emissions Estimate

The total estimated emissions from buildings and transport infrastructure construction of 9.8 Mt
CO2e is in the middle of the range of estimates of 8.1–13.5 Mt CO2e, as reported by Naturvårdsverket
and Boverket [7,8].

Focusing in on concrete, the resulting concrete emissions estimate for building and transport
infrastructure combined is 3.0 Mt CO2e, which corresponds well to the estimate of concrete use in
Sweden discussed in the building construction Section 3.1.1 (considering the exclusion of utilities in
this analysis).

Another validation can be made regarding steel use. A great majority of steel used in construction
is imported [143]. Swedish steel imports were 3.2 Mt in 2015 [142,153] with research demonstrating
that around 25–50% of steel consumption goes to the construction industry [154,155]. This would
correspond to the use of 0.8–1.6 Mt steel in constructions, matching the model estimate of 1.4 Mt steel
(based on the equivalent emissions intensities for reinforcement and construction steel).

3.2. Pathway Results

The main results from the pathway analysis, i.e., energy use per energy carriers and carbon
emission reductions, for the construction of buildings and transport infrastructure up until 2045,
are depicted in Figures 7 and 8. The results show that it is possible to reduce CO2 emissions associated
with construction of buildings and transport infrastructure by at least 50% to 2030 (51–62%), and reach
close to zero emissions by 2045 (90–94%) with the electrification and material efficiency pathways
demonstrating the highest reductions. The energy use is also reduced in all pathways albeit with more
variance between the pathways (6–19% to 2030 and 16–37% to 2045). In addition, regarding energy
use, it is the electrification and material efficiency pathway which demonstrates the highest reductions.

The analysis demonstrates that currently, construction of buildings and transport infrastructure
use approximately 32 TWh energy, accounting for around 8% of total Swedish energy use [156]. All the
pathways demonstrate a reduction in total energy use over time, with the reduction varying from
6–19% to 2030 and 16–37% to 2045.

When comparing the total energy use, the electrification pathways demonstrate a total energy use
of around 6–8% lower than the biofuel pathways in by 2045. This is mainly a result of the lowered energy
requirements from electric propulsion compared to combustion engines for construction equipment
and heavy-duty trucks combined with the energy penalty for post-combustion carbon capture for
cement production.
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Figure 7. Energy use for each energy carrier over time for the buildings and transport
infrastructure pathways.

A focus on material efficiency has the potential to reduce total energy use by 8–10% to 2030 and
18–20% by 2045 for both the biofuel and electrification pathways (noting that the reduction potential
would be even higher compared to a reference scenario).

Regarding biofuels, they are at current mainly used in the transport sector, and in asphalt, timber
and cement production. Over time, the use is set to expand with the overall share of biofuels increasing
from 15% of total energy use at current to around 30% in the electrification pathways and to 40% in the
biofuel pathways by 2045. This would mean an increase from 5 TWh to 9 TWh, which can be compared
with the current total bioenergy use of 89 TWh in 2017 [156].

Electricity use remain almost constant in the biofuel pathways, while increasing from 7 TWh
up to 13–16 TWh in 2045, reaching a share of around 40% in the biofuel pathways and 65% in the
electrification pathways.

As can be seen in Figure 8, all pathways reach close to zero emissions in 2045, with total emissions
reduction of 90–94%, with the highest emission reduction potential in the electrification pathways.
Up until 2030, we see potential emissions reductions of 51–56% for Pathways 1 and 2, indicating that
the emissions reduction goal of 50% set by the Construction and Civil Engineering sector in in its
own roadmap [49] could be met if the measures suggested in this roadmap would be implemented.
Before 2030, most emissions reductions stem from increased use of alternative binders combined with
reduced binder intensity in concrete (25%), as well as optimization and energy efficiency measures
on the construction sites combined with biofuel substitution in construction equipment and material
transports (36–40%). The biofuel substitution partly ensues as a result of the Swedish reduction duty
regulation, which specifies increasing emissions reductions in line with a growing share of renewable
content in diesel fuel [157]. The emission reduction up until 2030 is also supported by the use of
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reinforcement steel produced only from recycled steel combined with measures, such as improved
electricity emissions factors together with material and fuel substitutions regarding insulation materials.
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Figure 8. Results on CO2 emissions for the buildings and transport infrastructure pathways from 2020
to 2045.

A focus on material efficiency provides for additional reductions, particularly in the medium term.
An additional 12% brings the total emissions reductions down to around 56–62% by 2030, implying a
difference of 0.5–0.6 Mt CO2 emissions per year.

After 2030, deeper emissions reductions come about as a result of continued biofuel substitution
combined with hybridization and electrification for construction equipment and trucks (contributing
to a large share of the emissions reductions in 2030–2035). Fuel substitution also plays a role in primary
and secondary steelmaking in 2030–2035.

In the biofuel+CCS pathways, this fuel substitution is combined with CCS in primary
steelmaking, as well as in cement kilns (contributing to around 40% of the emissions reductions
in 2040–2045, respectively).

In the electrification pathways, plasma heating is instead used to create the necessary temperatures
in secondary steelmaking, cement kilns, in cracking, and polymerization for plastic production, as well
as mineral wool production (contributing to around 45% of the emissions reductions in 2040–2045
combined). Electrification in the primary steelmaking in the form of hydrogen reduction also contributes
considerably in the electrification pathway (40% in 2045).

In view of the remaining carbon budget, up to 2045 the material efficiency pathways could reduce
the total cumulative amount of CO2 emitted from construction of buildings and transport infrastructure
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over the years 2020 to 2045 by 10% compared to its corresponding biofuel/electrification pathways,
equivalent to 10–11 MtCO2.

Sensitivity Analysis

The results from the sensitivity analysis into impacts on emissions and energy use from
reduced/increased construction demand (denoted as low/high) are shown in Figure 9. The percentage
values indicate the reduction from the reference level (cf. the pathway reduction results in
Figures 7 and 8).Energies 2020, 13, x FOR PEER REVIEW 25 of 43 

 

  

Figure 9. Sensitivity analysis based on reduced or increased construction demand for the different 726 
pathways with (a),(b) depicting the impact on total energy demand, and (c),(d) depicting the impact 727 
on emissions, for low and high construction demand, respectively. 728 

The sensitivity analysis demonstrates that great variances are found in between scenarios of 729 
reduced or increased construction demand regarding total energy use. The main implications are 730 
seen with regards to an increased construction demand potentially leading to the energy demand 731 
remaining relatively stagnant (Pathway 2 and 3) or even growing by 13% to 2030 as in the 732 
biofuel+CCS pathway. 733 

In this case, the biofuel demand increases to 11 TWh in 2030 and to 15 TWh in 2045 (compared 734 
to 4 TWh in 2015). For the electrification pathway, the electricity demand increases to 13 TWh in 2030 735 
and 21 TWh in 2045 (compared to 8 TWh in 2015). In contrast, reduced construction demand 736 
combined with material efficiency measures could reduce to total energy demand by 41–56% 737 
implying a total energy demand of between 14–18 TWh in 2045. 738 

Regarding emissions, the sensitivity analysis demonstrates that even with an increased 739 
construction demand, it will be possible to reduce CO2 emissions by at least 85% to 2045 compared 740 
to 2020 with the combination of measures proposed in this roadmap. However, it also demonstrates 741 
that the emissions reduction in the short and medium terms could be slowed down further and 742 
possibly impact the potential to reach the sector goal of 50% emissions reduction to 2030 [49]. On the 743 
other hand, a slowdown in construction rates could make emissions reductions of over 60% to 2030 744 
possible. 745 

4. Discussion 746 

Cement and steel, together with diesel use in construction processes and material transports, 747 
account for the majority of the CO2 emissions associated with building and infrastructure 748 
construction (cf. Figure 6). While the analysis in the study has served to improve the current estimate 749 

-25%

-41%

-35%

-56%

0

5

10

15

20

25

30

35

2020 2025 2030 2035 2040 2045

TW
h

a) Sensitivity analysis total energy use - Low

Pathway 1: Biofuel and CCS Pathway 2: Electrification

Pathway 3: Biofuel, CCS and ME Pathhway 4: Electrification and ME

+13% +9%

-3%

-18%

0

5

10

15

20

25

30

35

40

2020 2025 2030 2035 2040 2045

TW
h

b) Sensitivity analysis total energy use - High

Pathway 1: Biofuel and CCS Pathway 2: Electrification

Pathway 3: Biofuel, CCS and ME Pathhway 4: Electrification and ME

-26%

-61%

-93%

-31%

-69%

-96%0

1

2

3

4

5

6

7

8

9

10

2020 2025 2030 2035 2040 2045

M
t C

O
2e

c) Sensitivity analysis emissions - Low

Pathway 1: Biofuel and CCS Pathway 2: Electrification

Pathway 3: Biofuel, CCS and ME Pathhway 4: Electrification and ME

-10%

-41%

-87%

-15%

-54%

-93%0

1

2

3

4

5

6

7

8

9

10

2020 2025 2030 2035 2040 2045

M
t C

O
2e

d) Sensitivity analysis emissions - High

Pathway 1: Biofuel and CCS Pathway 2: Electrification

Pathway 3: Biofuel, CCS and ME Pathhway 4: Electrification and ME

Figure 9. Sensitivity analysis based on reduced or increased construction demand for the different
pathways with (a,b) depicting the impact on total energy demand, and (c,d) depicting the impact on
emissions, for low and high construction demand, respectively.

The sensitivity analysis demonstrates that great variances are found in between scenarios of
reduced or increased construction demand regarding total energy use. The main implications are seen
with regards to an increased construction demand potentially leading to the energy demand remaining
relatively stagnant (Pathway 2 and 3) or even growing by 13% to 2030 as in the biofuel+CCS pathway.

In this case, the biofuel demand increases to 11 TWh in 2030 and to 15 TWh in 2045 (compared to
4 TWh in 2015). For the electrification pathway, the electricity demand increases to 13 TWh in 2030 and
21 TWh in 2045 (compared to 8 TWh in 2015). In contrast, reduced construction demand combined
with material efficiency measures could reduce to total energy demand by 41–56% implying a total
energy demand of between 14–18 TWh in 2045.

Regarding emissions, the sensitivity analysis demonstrates that even with an increased construction
demand, it will be possible to reduce CO2 emissions by at least 85% to 2045 compared to 2020 with
the combination of measures proposed in this roadmap. However, it also demonstrates that the
emissions reduction in the short and medium terms could be slowed down further and possibly impact
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the potential to reach the sector goal of 50% emissions reduction to 2030 [49]. On the other hand,
a slowdown in construction rates could make emissions reductions of over 60% to 2030 possible.

4. Discussion

Cement and steel, together with diesel use in construction processes and material transports,
account for the majority of the CO2 emissions associated with building and infrastructure construction
(cf. Figure 6). While the analysis in the study has served to improve the current estimate of the
climate impact of building and transport infrastructure construction, it is still associated with a degree
of uncertainty. To provide well-grounded decision support for the climate transition ahead, it is
important that sufficient resources and competence are allocated so that development of emissions
can be properly evaluated and so that the effects of planned measures and policies can be assessed
before implementation.

Based on the updated estimate, this roadmap served to illustrate how the basic materials industry
and supply chains for buildings and transport infrastructure construction are affected, in terms of
energy and material use and associated greenhouse gas emissions, by different technical choices.
The study also aimed to illustrate the timing of measures needed to reach intermediary and long-term
emission reduction targets. The results show that it is possible to reduce CO2 emissions associated
with construction of buildings and transport infrastructure by at least 50% to 2030, applying already
available measures, and reach around 90% emissions reductions by 2045, while the energy use may be
reduced by varying degrees (6–19% to 2030 and 16–37% to 2045), indicating that strategic choices with
respect to process technologies and energy carriers may have different implications particularly on the
energy use over time. It is worth noting that no pathway reaches zero carbon emissions, which is why
it is important to further investigate the potential for and accounting of negative emissions (e.g., carbon
capture of biogenic emission) and carbon sinks (e.g., use of long-lived wood products in construction)
as to enable an approach towards net-zero emissions by 2045. The measures proposed in this roadmap
could (and perhaps should) also be backed by strategies to avoid building by exploring alternatives
and by repurposing assets, as well as reduce the floor area per capita by smarter floor plans and
increased shared spaces [38,43,158].

This study, in alignment with previous analysis, as reported in, e.g., Gerres et al. [34], demonstrates
the importance of ensuring sufficient availability of sustainable biomass/bioenergy, electricity and
hydrogen. The urgency in upscaling these energy sources becomes particularly evident as experience
shows that planning, permitting, and construction of both support infrastructure (renewable energy
supply, electricity grid expansion, hydrogen storage, CCS infrastructure) and piloting and upscaling to
commercial scale of the actual production involve long lead times. Strategic planning for key support
infrastructure therefore needs to be initiated as early as possible, even if not all uncertainties will be
fully resolved.

As there are already today known measures and technologies which can reduce emissions to zero,
from circularity and material efficiency measures, biofuel or biomaterial substitution, electrification
(direct or indirect) with renewable electricity, and/or carbon capture and storage, the challenge to
meet climate targets is not only a technological challenge but relative to economics and financial risk,
particularly since the current climate policy is too weak [159]. Indeed, large scale demonstration of key
processes is required to obtain confidence in technologies, gain experience, and reduce financial risk,
but technologies are available at high maturity levels. This would also serve to reduce the uncertainties
inherent in the span of emission reduction potential from different abatement measures found in
literature (ref. Figure 5).

A key message from this work (as illustrated in Figure 10) is the importance of simultaneously
focusing on short- and long-term abatement measure. With this statement, we that that the pursuit
of ‘low-hanging fruits’ (e.g., material substitution and efficiency measures) cannot be an excuse for
not acting to lay the foundation for the high-cost long lead-time measures (zero-CO2 basic materials)
required to reach deep decarbonization. Vice versa, we cannot let the promise, e.g., of low-CO2 steel or
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cement, be an excuse not to act to unlock the potential for measures that already exists today. Successful
decarbonization of the supply chains for buildings and infrastructure, including the production of basic
materials, will involve the pursuit—in parallel—of emission abatement measures with very different
characteristics. Consequently, to facilitate the transition, the support tools box will need to encompass
a variety of policies and strategies.Energies 2020, 13, x FOR PEER REVIEW 27 of 43 

 

 798 

Figure 10. Successful decarbonization of the supply chains for buildings and infrastructure in less 799 
than three decades will require the parallel pursuit of emission abatement measures with very 800 
different characteristics. Figure adapted from Vogt-Schilb and Hallegatte (2014) [160]. 801 

The results thus illustrate the importance of intensifying efforts to identify and manage both soft 802 
(organization, knowledge sharing, competence) and hard (technology and costs) barriers and the 803 
importance of both acting now by implementing available measures (e.g., material efficiency and 804 
material/fuel substitution measures) and actively planning for long-term measures (low-CO2 steel or 805 
cement). Unlocking the full abatement potential of the range of emission abatement measures that 806 
are described in this study will require not only technological innovation but also innovations in the 807 
policy arena and efforts to develop new ways of co-operating, coordinating, and sharing information 808 
between actors in the supply chain. Key priorities include, e.g., 809 

• Continuous efforts around process optimization, material efficiency, and material 810 
substitution [43] to reduce the climate impact from basic materials and construction, 811 
particularly in the short to medium terms. This includes efforts in all planning process, and 812 
among all actors, to: 813 

o avoid building (where possible), 814 
o re-using old assets, 815 
o recycle building materials and components, 816 
o optimize material use, and 817 
o shift to low-CO2 materials and services. 818 

• Development of integrated industrial climate strategy including adaptation of legislation, 819 
and innovative schemes to share the risk and costs associated with developing and 820 
implementing new process technology and infrastructures (see, e.g., Reference [161,162]). 821 

• Strategic planning for support infrastructure. Lead times related to planning, permitting, and 822 
construction of both support infrastructure (renewable electricity supply, electricity grid 823 
expansion, hydrogen storage, CCS infrastructure) and piloting and upscaling to commercial 824 
scale of the actual production units will influence the speed of change [163,164]. Historical 825 
transition processes provide valuable lessons around the importance of going beyond the 826 
physical planning, ensuring transparency, broad participation, and fairness (e.g., acceptable 827 
distributional effects) early on, as well as planning for agility and endurance in the face of the 828 
unforeseen (e.g., delays, changing market conditions). Similar planning processes, including 829 
identification of designated strategic areas/zones, have previously been carried out for wind 830 
and hydro power [165,166]. 831 

• Ensuring focus on logistical optimization (via, e.g., digitalization), sufficient availability of 832 
sustainably produced second-generation biofuels and support for hybridization and 833 

tC
O

2/y
ea

r

T(year)0

€/tCO2

Low cost – Short lead times
E.g. material substitution/ 
efficiency

High cost – high lead times
E.g. Zero-CO2 basic materials

Medium cost – medium lead 
time
E.g. electrification of construction 
equipment

Figure 10. Successful decarbonization of the supply chains for buildings and infrastructure in less than
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The results thus illustrate the importance of intensifying efforts to identify and manage both
soft (organization, knowledge sharing, competence) and hard (technology and costs) barriers and
the importance of both acting now by implementing available measures (e.g., material efficiency and
material/fuel substitution measures) and actively planning for long-term measures (low-CO2 steel or
cement). Unlocking the full abatement potential of the range of emission abatement measures that
are described in this study will require not only technological innovation but also innovations in the
policy arena and efforts to develop new ways of co-operating, coordinating, and sharing information
between actors in the supply chain. Key priorities include, e.g.,

• Continuous efforts around process optimization, material efficiency, and material substitution [43]
to reduce the climate impact from basic materials and construction, particularly in the short to
medium terms. This includes efforts in all planning process, and among all actors, to:

◦ avoid building (where possible),
◦ re-using old assets,
◦ recycle building materials and components,
◦ optimize material use, and
◦ shift to low-CO2 materials and services.

• Development of integrated industrial climate strategy including adaptation of legislation,
and innovative schemes to share the risk and costs associated with developing and implementing
new process technology and infrastructures (see, e.g., Reference [161,162]).

• Strategic planning for support infrastructure. Lead times related to planning, permitting,
and construction of both support infrastructure (renewable electricity supply, electricity grid
expansion, hydrogen storage, CCS infrastructure) and piloting and upscaling to commercial scale
of the actual production units will influence the speed of change [163,164]. Historical transition
processes provide valuable lessons around the importance of going beyond the physical planning,
ensuring transparency, broad participation, and fairness (e.g., acceptable distributional effects)
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early on, as well as planning for agility and endurance in the face of the unforeseen (e.g., delays,
changing market conditions). Similar planning processes, including identification of designated
strategic areas/zones, have previously been carried out for wind and hydro power [165,166].

• Ensuring focus on logistical optimization (via, e.g., digitalization), sufficient availability of
sustainably produced second-generation biofuels and support for hybridization and electrification
of heavy transport and construction equipment (as called for in, e.g., Reference [30,31,54,167–169]).

• Using public procurement as a tool to spur innovation, creating markets for low-CO2 products and
opening up for economies of scale [35]. Public procurers in governmental agencies, municipalities,
and county councils, with their significant purchasing power, can play an important role as drivers
and by setting examples. In addition, private actors can help to legitimize public strategies and
increase the volume of demand for low-CO2 products [163]. It is imperative that embodied carbon
emissions start weighing as heavily as project costs, timescales, functionality, and aesthetics do
regarding client priorities [170]. At the same time, the applicability of procurement requirements
for carbon reduction depends on how well these requirements are aligned with industry culture,
policies, and capabilities in the local context (see, e.g., Reference [171]).

• Capacity building and information spreading to change the culture and established practices of
the conservative, cost-driven, and risk averse construction industry [46] via, for example:

◦ Establishment of an (public or private) umbrella organization with the responsibility to
oversee and support the low-CO2 transition.

◦ Securing new competence by including low-CO2 building and construction as a central
part of the in upper secondary school and higher education.

◦ Training of active practitioners (engineers, architects . . . ).

It is of course also important to continue to find ways to sharpen existing climate policies, such as
the EU-ETS and renewable policies, most important being to make them as long term as possible [35].
There is no guarantee that investments in the development and implementation of hydrogen direction
reduction in the steel industry, CCS in the cement industry, nor other low-carbon technologies for
industrial applications will pay off [172,173]. However, choosing not to, or failing to act within the next
few years, to create the economic, organizational, and infrastructural conditions that could facilitate a
shift towards low-CO2 production and practices will severely compromise the chances of a successful
decarbonization of the steel and cement-industries, as well as the supply chains for buildings and
transport infrastructure, up to the year 2045.

Although the findings reported in this paper draw primarily on Swedish experiences, with some
of the conclusions valid only under certain conditions and circumstances, it is clear that many of the
challenges that have been raised here, which must be overcome to achieve a transition to zero-CO2

production and practices in the supply chains for buildings and infrastructure, are universal [43,174,175].
Whereas rapid improvements of the climate performance of the use phase (i.e., related to heating and
cooling) of the existing and new building stocks is a key priority in many parts of the world, it is
equally important to take measures to reduce the climate impact of the construction process and the
production and supply of building materials.

From a global perspective, this is important, not the least, since there are still many regions of the
world where much the of the buildings and the infrastructure to provide shelter from the elements,
mobility for people and goods, and infrastructures for the supply of water, electricity, and heat remains
to be built. Estimates suggest that more than half of the urban infrastructure that will exist in 2050 has
yet to be built [175,176] and that total global floor area of buildings will double within the next three or
four decades [43,174].
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5. Conclusions

In this paper, material and energy flow analysis is combined with a literature review to improve
and validate the estimate of the current climate impact from building and construction processes in
Sweden. The result is an estimate of around 9.8 Mt CO2 per year, close to 20% total Swedish GHG
emissions, deriving predominantly from concrete and steel, together with diesel use in construction
processes and material transports.

From the current estimate, the work provides a roadmap with an analysis of different pathways of
technological developments in the supply chains of the buildings and construction industry, including
primary production of steel and cement. The analysis combines quantitative analysis methods, including
scenarios and stylized models, with participatory processes involving relevant stakeholders in the
assessment process. By applying a combination of circularity and material efficiency measures, biofuel
or biomaterial substitution, electrification (direct or indirect) with renewable electricity, and carbon
capture and storage, this roadmap demonstrates that the CO2 emissions associated with construction
of buildings and transport infrastructure could be reduced by over 50% to 2030 and by over 90% to
2045. At the same time, strategic choices with respect to process technologies, energy carriers, and the
availability of biofuels, CCS, and zero CO2 electricity may have different implications on energy use
and CO2 emissions over time.
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Abbreviations

The following abbreviations are used in this manuscript:

Parameter Definition Unit

E Emissions tCO2

e
Emissions share for specific emissions sources (e.g., lifecycle stages,

materials, etc.)
%

M Material demand/production metric tonne (t)
Q Energy demand kWh
q Energy share for specific energy sources in material production or fuels %

Ef
Emissions intensity factor per unit (t for material production and kWh for

transport/ construction processes)
tCO2/unit

Qf
Energy intensity factor per unit (t for material production and l for

transport/ construction processes)
kWh/unit

A

Abatement measures reducing material/energy demand, i.e., re - recycling,
ms-material substitution, me - material efficiency measures,

op–optimization of logistics and construction process, ee–energy efficiency
measures (including from hybridization and electrification)

%

CC Emissions from material production abated via carbon capture. %

http://www.mdpi.com/1996-1073/13/16/4136/s1
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The following indexes are used in this manuscript:

Index Definition Index Components

lc Lifecycle stages Material production, material transports, construction process

tc
Lifecycle stages after
material production

Material transports, construction process

m Materials
Concrete, reinforcement steel, construction steel, asphalt, insulation,

gypsum and plaster, plastics and paint, others
b Building type Multi-family dwellings, single-family dwellings, non-residential buildings
i Infrastructure type Road, railway, ports and fairways
p Construction phase New construction, reinvestment
s Energy sources Fossil fuels (coal, gas, oil, fossil waste), biofuels, electricity
t Timesteps 2025, 2030, 2035, 2040, 2045

Appendix A

Table A1. Emissions and energy intensity factors along with energy mix for specific materials or
material production processes.
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Only concrete
production
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from cement or SCM in

concrete)

[62,68,69]

Clinker
production

process
emissions

0.51 - [27,29,177]

Clinker
production

carbon
capture

- 1220

Energy penalty based on
post combustion via

amine scrubbing (90%
capture rate)

[40,106,149,178–181]

SCM
(alternative

binders)
0.10 2 100%

Supplementary
Cementitious Materials.
Average of fly ash, blast

furnace slag (GGBS),
limestone and calcined

clay

[40,149,182–184]

Primary steel
production 1.90 5400 77% 2% 9% 12% [23,37,71,72,111]

Electrolysis
energy

intensity
- 2600 100% [112,185]

Secondary
steel

production
0.40 1200 3% 28% 69%

Assuming European
average electricity
emissions factor

[23,71,72]

Metallurgy 0.14 400 100% Assuming reheating
furnaces run on gas [37,72,186]

Galvanizing 0.08 600 100% Assuming furnaces run
on gas [76–78]

Polystyrene-
based

insulation
4.70 22200 98% 2%

Average of expanded
polystyrene (EPS) and
extruded polystyrene

(XPS)

[66,74,83,84,128,187]

Mineral wool
insulation 1.30 7700 75% 25% Average of rock and

glass wool [66,74,83,128,187]
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Table A2. Emissions intensity factors for energy sources.

Energy
Sources

Emissions Intensity
Efs (kgCO2/kWh) Comment References

Coal/coke 0.370 Average of coking coal and bituminous coal
(including upstream emissions) [188,189]

Oil 0.228 Fuel oil (including upstream emissions) [188,189]

Fossil diesel 0.338 Component in Swedish standard Diesel MK1 (85%
fossil diesel and 15% biofuel in 2015) [95]

Gas 0.248 Natural gas (including upstream emissions) [188,189]

Fossil waste 0.288 Average of tyres and plastic waste [190,191]

Biofuel 0.299

Average of forest and agricultural residues; biogenic
emissions (not included in emissions calculation due
to assumption of carbon neutrality from sustainable

forest management); may however contribute to
negative emissions when carbon capture is applied

[190]

Electricity
(Sweden) 0.047

Swedish average electricity emissions factor in 2015
(including upstream emissions). Used for

construction processes, cement and concrete and
non-mineral materials

[95,192]

Electricity
(Europe) 0.314 European average electricity emissions factor in 2015.

Used for steel and other metals production [193]

District
heating 0.069 Swedish national average from 2017; 23% fossil fuels,

68% biofuels, and 9% electricity (from heat pumps) [189]

Table A3. Predicted emissions intensity factors for electricity and district heating.

Energy
Sources Year Emissions Intensity

Efs (kgCO2/kWh) Comment References

Electricity
(Sweden)

2025 0.034
According to a linear reduction to the figure

in 2045 from the emission factor in 2015.
2030 0.025

2035 0.017

2040 0.008

2045 0.003
According to the average figure in 2045 from

the scenario analysis Four energy futures
from the Swedish Energy Agency

[194]

Electricity
(Europe)

2025 0.261 Calculated according to estimated EEA
projections [195]

2030 0.230

2035 0.172 According to a linear reduction from the
estimated figure in 2030 down to zero

emissions in 2050
2040 0.115

2045 0.057

District
heating

2025 0.064
According to a linear reduction to the figure

in 2045 from the emission factor in 2015
2030 0.059

2035 0.055

2040 0.050

2045 0.045
According to the average figure in 2045 from

the scenario analysis Four energy futures
from the Swedish Energy Agency

[194]
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Table A4. Overview of the share of emission components from life cycle analysis (LCA) literature for
new builds of various building and frame types.

Building
Type

Building
Sub-Type

Building/Frame
Type

Façade
Type

Building
Materials
(A1-A3)

Transport
(A4)

Construction
Process (A5) Comments References

Non-
residential

Offices

Reinforced
in-situ cast

concrete
Concrete 89% 2% 9% [196]

Reinforced
in-situ cast

concrete

Plaster/
wood
panel

86% 2% 12% [197]

Hybrid
precast/in-situ
cast concrete
and timber

N/A 95% 3% 2% [198]

Reinforced
in-situ cast

concrete
Plaster 93% - 7%

Transports
included in

material
emissions

[199]

Industrial
Concrete/steel Brick 97% - 3% [200]

Prefab concrete/
steel Steel 97% 1% 2% [201,202]

Residential

Multi-family
dwellings

In-situ cast
concrete Plaster 81–84% 3–4% 13–16% [92,93]

Prefab concrete Plaster 79% 9% 13% [92]

Prefab concrete Plaster 86% 8% 16% [75]

Hybrid prefab
concrete/wood Plaster 74% 5% 13% [203]

Wooden volume
element Plaster 79% 8% 17% [92]

Cross-laminated
timber Plaster 75% 9% 17% [92]

Cross-laminated
timber

Wood
panel 78% 6% 16%

Including
ground

preparation of
8%

[204]

Single-family
dwellings

Wooden Wood
panel 82% 2% 16% A5 including

14% from waste [205]

Wooden Brick 85% 2% 14% A5 including
12% from waste [205]

Masonry Brick 86% 3% 12% A5 including
10% from waste [205]

Wooden Wood
panel 96% 4% 0% [206]
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Table A5. Overview of the share of emission components from different materials in LCA literature for
new builds of various building and frame types.
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Comments References

Non-
residential

Offices

Steel-reinforced
in-situ cast

concrete
35% 4–12% 33–39% 6–11% 3–4% 4% 11% [196]

Steel-reinforced
in-situ cast

concrete
70%* * 11% 4% 3% - 12%

*Reinforcement
steel included

in concrete
emissions

[197]

Hybrid
precast/in-situ

cast concrete and
timber

20% - 32% 9% <1% - - [198]

Reinforced
in-situ cast

concrete
48% * 22% 14% 14% - 2%

*Reinforcement
steel included
in construction

steel

[199]

Municipal Wood frame and
panel 34% 2% 15% 14% 9% 3% 21% Pre-school [207]

Industrial Prefab concrete/
steel 35% 20% 28% 1% 1% 4% 17% [208]

Residential

Multi-family
dwellings

In-situ cast
concrete 58–65% 6% 0–2% 6–9% 2–5% 3–6% 14% [92,93]

Prefab concrete 43% 23% 6% 10% 3% 7% 8% [92]

Prefab concrete 62% 11% 2% 10% 4% 1% 10% [75]

Wooden volume
element 13% - - 14% 36% 11% 26% [92]

Cross-laminated
timber 12% 2% 9% 16% 15% 9% 37% [92]

Cross-laminated
timber 34% 10% 8% 11% 5% - 54% [204]

Single-family
dwellings

Wooden 15% 0% 3% 4% 3% 2% 73% [205]

Wooden 40% 0% 9% 5% 7% 1% 38% [206]
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