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Rotations in the Presence of Laser Phase Noise
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Magnus Karlsson, Senior Member, IEEE, Fellow, OSA, and Henk Wymeersch, Member, IEEE

Abstract—The effects of transmitter-side multidimensional
signal rotations on the performance of multichannel optical
transmission are studied in the presence of laser phase noise. In
particular, the laser phase noise is assumed to be uncorrelated
between channels. To carry out this study, a simple multichannel
laser-phase-noise model that has been experimentally validated
for weakly-coupled multicore-fiber transmission is considered. As
the considered rotation scheme is intended to work in conjunction
with receiver-side carrier phase estimation (CPE), the model
is modified to further assume that imperfect CPE has taken
place, leaving residual phase noise in the processed signal. Based
on this model, two receiver structures are derived and used to
numerically optimize transmitter-side signal rotations through
Monte Carlo simulations. For reasonable amounts of residual
phase noise, rotations based on Hadamard matrices are found
to be near-optimal for transmission of four-dimensional signals.
Furthermore, Hadamard rotations can be performed for any
dimension that is a power of two. By exploiting this property, an
increase of up to 0.25 bit per complex symbol in an achievable
information rate is observed for transmission of higher-order
constellations.

Index Terms—Multichannel, optical communications, phase
noise, rotation, signal processing

I. INTRODUCTION

One of the main limiting factors in fiber-optic systems
is phase noise stemming from laser imperfections and the
optical Kerr effect in fibers [1]. Laser phase noise is typically
compensated for using receiver-based digital signal processing
(DSP) methods such as the blind phase search algorithm
[2]. Pilot-aided algorithms are also becoming increasingly
utilized due to their robustness at low signal-to-noise ratios
(SNRs) and transparency to modulation formats [3]. Further-
more, specialized phase-noise mitigation schemes such as
self-homodyne detection have been demonstrated in space-
division multiplexed (SDM) and wavelength-division multi-
plexed (WDM) transmission [4], [5]. For the compensation
of nonlinear phase noise, studies on DSP-based solutions that
have proved beneficial include digital backpropagation [6], [7]
and Kalman equalization [8].

All practical methods for phase-noise compensation are
imperfect in the sense that they do not completely mitigate
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the laser and nonlinear phase noise. As a result, the residual
phase noise may still impair system performance. This impact
may be reduced in various ways [9], [10], in particular by
applying DSP on the transmitter side [11], [12].

Transmitter-side DSP has been extensively studied in wire-
less communications and has led to, e.g., space–time codes
[13] and channel-aware precoding schemes [14] for multiple-
input multiple-output (MIMO) systems. More recently in
the context of fiber-optic transmission, schemes involving
nonlinearity precompensation [6], [11], preequalization [15],
[16], and precoding [17] have been proposed. Space–time
coding and power-allocation schemes have also been used to
maximize power efficiency through waterfilling solutions [18],
and to mitigate polarization-dependent loss (PDL) [19]–[21]
and mode-dependent loss (MDL) [22], [23].

A potential drawback of some transmitter-based schemes
is that they often require the knowledge of instantaneous
channel-state information (CSI), which is fed back from the
receiver to the transmitter. In fiber-optic systems, the channel
tends to change faster than the round-trip delay, thus preclud-
ing the use of reliable instantaneous CSI at the transmitter
[23]. Methods that only use statistical or no CSI are therefore
of practical interest.

A class of methods that do not require CSI involves the rota-
tion of multidimensional signals. Rotations have been used in
single-antenna wireless communications to improve diversity
performance for transmission through a fading channel [24].
In MIMO transmission, rotation-based space–time codes have
been proposed [25]. CSI-independent rotation schemes have
also been considered in fiber-optic communications [26]. In
particular, rotations based on Hadamard matrices have been
used to mitigate PDL [19], [21], [27], MDL [28], and channel-
dependent loss due to imperfect filtering in WDM transmission
[29]. However, this concept has not been explored for fiber-
optic transmission impaired by laser phase noise.

Inspired by the presence of residual phase noise due to non-
ideal DSP, we pose the following questions: Do transmitter-
side multidimensional signal rotations change the impact of
residual phase noise on the transmission performance, and if
so, which rotations are effective? To address these questions,
we study the effect of transmitter-side signal rotations on the
performance of multichannel systems in the presence of phase
noise. We consider scenarios where the Kerr nonlinearity is
sufficiently weak so that the laser phase noise will be the
dominant source of the residual phase noise after compen-
sation. Moreover, as it is already well known that correlated
laser phase noise can be exploited to improve performance, we
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focus on the case where the laser phase noise is uncorrelated
across the channels.

A simple multichannel laser-phase-noise model that has
been experimentally validated for transmission through a
weakly-coupled, homogeneous, single-mode multicore fiber
(MCF) is considered. This system model is modified to further
assume the use of nonideal receiver-side carrier-phase estima-
tion (CPE), leaving residual phase noise. Based on the mod-
ified model, two receiver structures are derived that perform
joint-channel and per-channel symbol detection, thus offering
different complexity and performance. Transmission of rotated
constellations is considered, and this rotation is numerically
optimized for the derived receivers with respect to different
performance metrics for a number of model parameters.

The contributions of the paper comprise the following
results: 1) On one hand, signal rotations can improve per-
formance in the presence of moderate laser phase noise,
even when the phase-noise statistics are not exploited. On
the other hand, rotations are not beneficial in the case of
extreme amounts of laser phase noise; 2) Consider two-
channel transmission. Rotations based on Hadamard matrices
are near-optimal in terms of block error rate (BLER), bit
error rate (BER), and achievable information rate (AIR) for
moderate amounts of laser phase noise; 3) Assume transmis-
sion of Hadamard-rotated constellations over a large number
of complex channels. Derotating the received signal before
data detection causes the residual phase noise to manifest as
attenuation and additive noise. This can improve an achievable
information rate by up to 0.25 bit per complex symbol for
higher-order modulations.

Notation: Vectors are denoted by underlined letters x,
whereas matrices are expressed by uppercase sans-serif letters
X, and XN is used when the size of a square matrix needs to
be stated explicitly. Sets are indicated by calligraphic letters
X . Boldface letters denote random quantities. The real line
and complex plane are represented by R and C, the real
and imaginary parts of a complex number are denoted by <
and =, and j represents the imaginary unit. The probability
mass function (PMF) of a discrete random variable x at x is
written as Px(x), and the probability density function (PDF)
of a continuous random variable x at x is denoted by px(x).
The probability distribution of a mixed discrete–continuous
random variable is expressed in the same way as PDFs. The
expectation of a random variable is indicated by E[·].

II. SYSTEM MODEL

The considered system model is based on a simple multi-
channel laser-phase-noise model proposed in [30], which was
used to assess potential performance gains that come from
estimating laser phase noise jointly over multiple channels.
The model-based simulation results were found to be in
agreement with experimental results for transmission through a
weakly-coupled, single-mode, homogeneous MCF. The system
model in [30] entails uncoded dual-polarization transmission
over multiple channels in the presence of laser phase noise,
which is arbitrarily correlated among the channels. The data
symbols are modeled as uniform random variables that take
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Fig. 1. Empirical distribution and fitted Gaussian PDF of the residual phase
noise for transmission at 20 GBaud with a combined laser linewidth of 200
kHz at an SNR of 30 dB.

on values from a set X of complex constellation points,
and normalized such that the average symbol energy is Es

per channel. The inclusion of pilots within the transmitted
symbol block is also assumed, whose values and positions are
known to the transmitter and receiver. Moreover, the fiber Kerr
nonlinearity is neglected and the received signal is assumed
to have undergone ideal DSP such that all impairments except
for laser phase noise have been fully mitigated.

In this work, we use the same assumptions as the model
in [30] with an additional constraint: The laser phase noise
is assumed to be uncorrelated between channels. This is a
reasonable assumption when independent lasers are used for
each channel and in certain cases when lasers are shared
among channels1. Furthermore, the transmission of arbitrarily
rotated multidimensional constellations over multiple channels
(wavelength or space) is considered. The resulting complex
constellations that are transmitted in each channel can be
regarded as two-dimensional (2D) projections of the rotated
multidimensional constellation. For an arbitrary rotation, the
complex constellations will lack structure, which can com-
plicate or prevent the implementation of blind DSP methods.
Therefore, all receiver DSP blocks are assumed to be imple-
mented in a pilot-aided manner, operating independently of
the data modulation, as experimentally demonstrated in [3].

Nonideal pilot-aided CPE is assumed to have been per-
formed in the receiver, leaving residual phase noise in the
processed signal. In general, the residual phase noise is not
perfectly memoryless over time since nonideal algorithms are
unable to completely remove the memory from the laser phase
noise. Moreover, the residual phase noise is nonstationary
since the variance of each sample depends on the temporal
distance to its nearest pilot, albeit the mean of all samples
is zero. This is exemplified in Fig. 1, where the empirical
distribution is plotted for samples of the residual phase noise
that have the minimum and maximum variance. In addition,
the average distribution of the residual phase noise across the
whole time span of the transmitted frame is also plotted. The
curves are obtained for a typical set of system parameters

1In SDM MCF transmission, intercore skew causes the signals to reach
the receiver at different times, which decorrelates the phase noise across the
channels [31]. In WDM frequency-comb transmission, chromatic dispersion
has an analogous effect [32].
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Fig. 2. The estimated variance of the residual phase noise versus the combined
laser linewidth of the system.

when the well-known iterative CPE algorithm proposed by
Colavolpe et al. in [33, Sec. IV-B] is run for a single iteration
with 1% pilot rate2.

The difference in the variance of residual phase-noise sam-
ples is highly dependent on the SNR, the laser linewidth, the
baud rate, and the positions of pilot symbols. In particular,
the difference becomes negligible at lower SNRs, assuming
practical laser linewidths and baud rates. Hence, for simplicity,
the residual phase noise in each channel is assumed to be a
memoryless and stationary zero-mean process with variance
corresponding to the average distribution shown in Fig. 1. This
distribution can be approximated as a zero-mean Gaussian
PDF, whose variance σ2

p is estimated using the residual phase
noise across the whole transmitted frame. Assuming residual
phase noise to be either Tikhonov or Gaussian distributed is
an established approach in wireless communications [9].

The residual phase noise is assumed to be uncorrelated
across channels. This is a valid assumption when the laser
phase noise is uncorrelated across channels. However, as the
two polarizations of optical fields are generated by a single
laser, the residual phase noise will in general be highly
correlated among the polarizations of each channel. Hence, we
consider a scheme where a multidimensional signal rotation is
applied to the x-polarizations in all channels, and a separate
but identical rotation is applied to all y-polarizations. This
scheme enables us to assume the residual phase noise to be
uncorrelated in all complex dimensions in which the signal
rotation is performed.

Fig. 2 shows the estimated variance of the residual phase
noise as a function of the combined light-source and local os-
cillator laser linewidth for 20 GBaud transmission at different
SNRs. For SNRs larger than 10 dB, typical variance values are
in the range [10−4, 10−2] rad2. As a reference, an SNR of 10
dB yields a BER of roughly 6 · 10−2 for Gray-coded 16QAM
transmission over the complex additive white Gaussian noise
(AWGN) channel.

Given the above assumptions, the system model thus entails
the propagation of a multidimensional constellation through N

2In coded transmission, the algorithm also uses soft estimates of the data
symbols through iterations with the decoder. During the initial iteration,
however, it operates in pilot-aided mode where it does not make use of the
data symbols.

channels, in addition to fixed receiver DSP. This leaves residual
phase noise which is memoryless and stationary, as well as
uncorrelated across the channels. The signals are considered
to be impacted identically in all channels. Assuming one
complex sample per symbol, the resulting processed signal
corresponding to a transmitted vector of signals s̃ ∈ CN across
all channels is r = Θs̃+n, where Θ = diag([ejθ1 , . . . , ejθN ])
is a diagonal matrix. Denoting the vector transpose by (·)T ,
the residual phase noise is modelled as a Gaussian random
vector, θ = [θ1, . . . ,θN ]T , whose elements are assumed to
be jointly Gaussian distributed. Due to the assumption of
uncorrelated residual phase noise, θ contains N independent
and identically distributed (i.i.d.) zero-mean Gaussian random
variables with variance σ2

p. Finally, amplified spontaneous
emission is accounted for and modelled as complex AWGN
n = [n1, . . . ,nN ]T , comprising N i.i.d. circularly symmetric
complex Gaussian random variables with variance N0.

The transmitter optimization involves finding an effective
rotation that maps the data symbols s ∈ XN into transmitted
signals s̃ ∈ CN , where the multidimensional rotation is
performed on a real-component basis. Such a rotation does
not affect the performance over the AWGN channel, but as we
will show, it can be beneficial for channels with phase noise.
Let g([z1, . . . , zN ]T ) = [<{z1},={z1}, . . . ,<{zN},={zN}]T
and g−1([x1, . . . , x2N ]T ) = [x1 + jx2, . . . , x2N−1 + jx2N ]T

for z1, . . . , zN ∈ C and x1, . . . , x2N ∈ R. Then, s̃ = fR(s) =
g−1(Rg(s)), and the received and processed signal can be
described as

r = ΘfR(s) + n, (1)

for R ∈ O+, where O+ denotes the set of orthogonal matrices
with determinant +1, i.e., rotation matrices. Note that since
RTR = I, f−1R = fRT because fRT (fR(s)) = fRTR(s) = s.
Furthermore, that the components of s̃ are statistically depen-
dent for a general R, even though the components of s are
assumed to be independent of each other.

III. PROPOSED RECEIVERS

In this section, two receivers are considered for the model in
(1). The first receiver performs joint-channel symbol detection
using knowledge about the phase noise distribution, pθ(θ), and
has high performance for the considered system model. The
second receiver operates without the knowledge of pθ(θ), and
hence, this receiver performs per-channel detection and has
lower complexity compared to the first one, at the cost of
detection performance.

A. Joint-Channel Receiver Exploiting Phase-Noise Statistics

In order to derive a high-performance receiver that depends
on the knowledge of pθ(θ), where θ = [θ1, . . . , θN ]T , it is
suitable to use a strategy that minimizes the resulting BLER,
namely the maximum a posteriori (MAP) detector. Although
optimality is guaranteed only with respect to BLER, this
strategy is also effective in terms of other performance metrics.
It operates according to

ŝ = argmax
s∈XN

Ps̃|r(s̃ = fR(s)|r), (2)
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where XN is the N -ary Cartesian power of X , and Ps̃|r(s̃|r)
is the a posteriori PMF of s̃ at s̃ given r = r. Finding the
argument that maximizes this PMF leads to a MAP estimate
of s since fR is bijective. It is shown in Appendix A that this
detection strategy can be carried out approximately as

ŝ = argmax
s∈XN

N∑
i=1

[
|ηi| −

|s̃i|2

N0
− 1

2
loge |ηi|

]
, (3)

where
ηi ,

2ris̃
∗
i

N0
+

1

σ2
p

. (4)

This receiver exhibits an exponential increase in complexity
with the number of channels. This is owing to the joint-channel
detection of s, entailing a maximization over a set of |X |N
constellation points, where |X | is the number of constellation
points in each channel.

B. Per-Channel Receiver Neglecting Phase-Noise Statistics
A suboptimal detection strategy that does not exploit pθ(θ)

and scales linearly in complexity with the number of channels
can be formulated as follows. Assuming σ2

p = 0 yields θ0 =
· · · = θN = 0, which further leads to Θ = I, where I is the
identity matrix, and the received signal can thus be expressed
as r = fR(s) + n, i.e., the model reduces to transmission
of a rotated signal over a multidimensional complex AWGN
channel. Rotating the received signal using RT gives

r̃ = fRT (r) = s+ fRT (n), (5)

which does not change the statistics of n since the noise
power in all channels is assumed to be the same. Finally, since
the components of s are independent of each other, symbol
detection can be trivially performed on a per-channel basis as

ŝi = argmax
si∈X

Psi|r̃i(si|r̃i) = argmin
si∈X

|si − r̃i|. (6)

Hence, given the assumption of σ2
p = 0, the receiver structure

reduces to a derotation of the received signal and Euclidean-
distance minimization on a per-channel basis. A high-level
overview of the considered system model, transmitter opti-
mization, and proposed receivers is depicted in Fig. 3.

IV. ROTATION-OPTIMIZATION RESULTS

This section presents results for the optimization of sig-
nal rotations in four dimensions, corresponding to single-
polarization transmission of a complex signal through two
channels. Before describing the optimization procedure, we
provide a brief overview of Hadamard rotations, which are
found to be near-optimal in terms of BLER, BER, and AIR
for moderate amounts of residual phase noise.

A. Hadamard Rotations
Hadamard matrices can be constructed recursively and thus

exist for any order 2`, where ` is a nonnegative integer3. Based
on this, Hadamard rotations can also be constructed as

H1 = 1, H2 =
1√
2

[
1 1
−1 1

]
, H2` = H2 ⊗ H2`−1 , (7)

3Various Hadamard matrices whose orders are multiples of 4 can also be
constructed, but only orders 2` will be considered in this paper.
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Fig. 3. A visualization of the considered system model, as well as the
strategies for transmitter optimization and data detection.

where ⊗ is the Kronecker product and the factor 1/
√
2 in the

definition of H2 ensures that H2` is orthogonal for all `. Note
that the definition of H2 is unorthodox in the sense that the
columns are swapped with respect to the conventional Walsh–
Hadamard matrices.

Since Hadamard matrices consist of only ±1 elements,
they are appealing from an implementation standpoint. The
multiplication with Hadamard matrices of order 2` can be
carried out analogously to the fast Fourier transform (FFT),
using 2` log2 2

` = 2`` additions or subtractions [34, Ch. 6].
Hadamard rotations can be implemented using the same princi-
ple, and thus have similar complexity and system-architecture
requirements as FFT, which has found applications in, e.g.,
coherent optical orthogonal frequency-division multiplexed
(OFDM) transmission [35] and CD compensation [36]. An-
other characteristic is the potentially simple structure of the
transmitted 2D projections after the Hadamard rotation has
taken place. As an example, when the constellation points in X
comprise a subset of a scaled and translated square lattice [37,
Ch. 4], such as in standard QAM formats, the 2D projections
of the rotated signals are also subsets of a scaled and translated
square lattice. This puts less stringent resolution requirements
on analog-to-digital and digital-to-analog converters compared
with arbitrary rotations.

B. Optimization Procedure
The rotation matrix in (1) is numerically optimized with

respect to BLER for the joint-channel receiver, and with
respect to BER, SER, and AIR in the case of the per-channel
receiver, where the AIRs are computed according to [38,
Eq. (36)]. Note that N = 2 is considered and thus, SER and
BLER refer to errors in X and X 2, respectively. Analytical
closed-form solutions to these performance metrics are in
general difficult to find, and hence, Monte Carlo simulations
are used to estimate them. To ensure a reasonable accuracy
in the estimation, the performance evaluation of each rotation
is based on transmission of at least 106 symbols. Due to the
high time consumption required to evaluate the performance, a
surrogate optimization solver based on [39] and implemented
in the MATLAB global optimization toolbox is used.
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p for the per-channel receiver.

4D rotation matrices have six degrees of freedom, and hence
any such matrix can be parameterized as a product of six
Givens-rotation [40, Sec. 5.1] matrices, each with a specific
angle. Any order in which the Givens rotations are applied
can yield an arbitrary rotation R, given a suitable set of angles
{φ1, φ2, . . . , φ6}. A possible construction is

R = G34(φ1)G
12(φ2)G

24(φ3)G
23(φ4)G

14(φ5)G
13(φ6), (8)

where Gik(φ) denotes a Givens rotation of an angle φ in
dimensions i and k for 1 ≤ i < k ≤ 4. Note that
dimensions 1–2 and 3–4 correspond to rotations of a complex
point in the first and second channel, respectively. Since
G12(·) and G34(·) are the last rotations in the matrix product
forming R in (8), they simply apply phase shifts to the 2D
constellation projections that are transmitted in each channel.
It is found that they do not affect the transmission perfor-
mance for the model in (1), and hence it suffices to let
φ1 = φ2 = 0 in (8) such that G12(0) = G34(0) = I
and R = G24(φ3)G

23(φ)G14(φ5)G
13(φ6), requiring only four

angles to optimize.

C. Results

Fig. 4(a) shows BLER results for transmission of rotated
Gray-coded 64QAM at an SNR of 22.5 dB as a function of
the residual phase-noise variance σ2

p, using the joint-channel
receiver for detection. Fig. 4(b) shows the same results but
relative to the unrotated case in order to emphasize the
performance impact of the considered rotations. Note that the
absence of rotations corresponds to a signal that has not been
processed at the transmitter. As evident from Fig. 4(b), the
residual phase noise has a marginal impact on the transmission
for σ2

p ≤ 10−3 rad2, in which case the performance is invariant
under rotations. This is to be expected since signal rotations
have no effect on transmission limited only by AWGN [24].
As the residual phase noise grows stronger, rotations begin
to affect the system performance, and H4 sees the same
performance as the numerically-optimized rotations until σ2

p

exceeds 10−1 rad2. Since σ2
p ∈ [10−4, 10−2] rad2 corresponds

to typical amounts of residual phase noise, it can be concluded
that when the joint-channel receiver is used, Hadamard rota-
tions are near-optimal in terms of BLER for practical purposes.
Moreover, even though the results for σ2

p ≥ 10−2 do not
correspond to practical cases involving residual laser phase
noise, they do provide an insight into what occurs in extreme
scenarios. In particular, they indicate what may be expected
in the presence of nonlinear phase noise, which typically has
a higher impact on the transmission performance than laser
phase noise.

Figs. 4(c)–(h) show analogous results for the per-channel
receiver. The relative AIR is defined as the AIR of rotated-
signal transmission subtracted by the AIR of unrotated-signal
transmission. When σ2

p ≈ 10−4 rad2, rotations have negligible
effect on the performance as the AWGN is the main limitation.
For σ2

p ∈ [10−4, 10−2] rad2, H4 attains the same performance
as the numerically-optimized rotations in terms of BER and
AIR. However, for σ2

p > 10−2 rad2, signal rotations become
detrimental to the performance. To gain intuition for this fact,
consider transmission of rotated constellations and the use of
the per-channel receiver in Section III-B. After derotation of
r, the residual phase noise in each channel manifests as signal
attenuation and interference from other channels4. For certain
values of σ2

p, this becomes more harmful than pure residual
phase noise when the per-channel receiver is used.

Interestingly, Figs. 4(c)–(d) show that H4 does not yield op-
timal SER performance, even at moderate amounts of residual
phase noise. Instead, it is found that a rotation using

RSER =
1√
2


1 1 0 0
0 0 1 1
1 −1 0 0
0 0 −1 1

 (9)

is near-optimal until σ2
p exceeds 4 · 10−2 rad2, after which

rotations become detrimental. Although RSER outperforms H4

in terms of SER, the two rotations perform identically with
respect to BLER, BER, and AIR. This suggests that Gray

4This is detailed for Hadamard rotations in Appendix B, but similar results
can also be found for OFDM transmission in the presence of phase noise
[41].



6

10−4 10−3 10−2 10−1 100
10−2

10−1

100

Neglecting pθ(θ)
during detection

Exploiting pθ(θ)
during detection

σ2
p (rad2)

B
L

E
R

No rotation
H4 rotation

Fig. 5. BLER versus σ2
p, quantifying the contributions of rotations and pθ(θ)

to the detection performance.

2 4 8 16 32 64 128 256 512
7.87

7.92

7.97

8.02

No rotation

Hadamard rotation (asymptotic performance)

No phase noise

number of channels, N

A
IR

(b
/s

ym
bo

l)

Hadamard real-component rotation
Hadamard complex-signal rotation
Discrete Fourier transform
Random complex-signal rotation

Fig. 6. AIR for different rotations versus the number of channels for
transmission of 256QAM at an SNR of 34 dB with σ2

p = 10−3 rad2.

mapping is suboptimal for the considered system model, but
the investigation of suitable bit-to-symbol mappings is deemed
out of scope for this paper and is left for future work.

Fig. 5 shows BLER results for transmission of rotated
Gray-coded 64QAM at an SNR of 22.5 dB versus σ2

p. The
results quantify the performance gains that are achieved in
Figs. 4(a)–(b) through effective rotations and symbol detection
that utilizes the phase-noise statistics encapsulated in pθ(θ). In
particular, the results show that the use of pθ(θ) for detecting
unrotated constellations can be more beneficial than detecting
rotated constellations and neglecting pθ(θ). However, the
former strategy requires the receiver to have knowledge of
pθ(θ) when detection takes place. Moreover, these strategies
can also be expected to differ in terms of complexity, whose
analysis is left for future work.

The results presented so far indicate that Hadamard rotations
are near-optimal with respect to BLER, BER, and AIR for
practical values of σ2

p in Gray-mapped 64QAM transmission.
The performance improvements are greatest for the joint-
channel receiver with up to 35% decrease in BLER, whereas
for the per-channel receiver, performance improvements of up
to 6%, 7%, and 0.04 b/symbol are observed in SER, BER,
and AIR, respectively. The per-channel receiver is arguably
more practical due to the lower required complexity and the
fact that it does not require knowledge about pθ(θ). Due to
the straightforward construction in (7), the rest of this paper
studies the effects of Hadamard rotations of Gray-coded QAM
constellations as the signal dimensionality is increased when
the per-channel receiver is used.

V. HADAMARD-ROTATION PERFORMANCE

In this section, the transmission performance of Hadamard-
rotated signals using the per-channel receiver is assessed for
different numbers of channels N , SNRs, and QAM orders |X |.
It is shown in Appendix B that the performance of Hadamard
rotations on a complex-signal basis, which can be implemented
as HNs, is equal to that of Hadamard rotations on a real-
component basis, i.e., fH2N

(s). This is illustrated in Fig. 6,
where the AIR performance of signals that are Hadamard ro-
tated on a complex-signal and real-component basis is plotted
as a function of the number of channels. For comparison,
Fig. 6 also includes the performance of the discrete Fourier
transform as well as the average performance of an ensemble
of random rotations5, carried out on a complex-signal basis.
This illustrates the superiority of Hadamard rotations, but as
the number of channels grows large, the performance variation
between the different rotations becomes small. Furthermore,
Fig. 6 shows the performance for transmission of unrotated
signals in addition to the performance for transmission in the
absence of phase noise.

The asymptotic behavior of Hadamard rotations in the limit
of an infinite number of channels is given by the following
proposition.

Proposition 1. Consider (1) when N → ∞. Then, the
transmission of a Hadamard-rotated signal followed by a cor-
responding receiver-side derotation yields a signal expressed
in each channel as

r̃i = αsi + ñi, (10)

for i = 1, . . . , N , where α = e−σ
2
p/2 and ñi is a complex

Gaussian random variable with variance N0 +Es(1− e−σ
2
p).

If X is a standard QAM format, ñi is circularly symmetric.

Proof. See Appendix B. �

According to Proposition 1, the system model is effectively
transformed into an AWGN channel with deterministic signal
attenuation when the number of channels grows large. The
performance of (10) yields an asymptote that is marked in
Fig. 6. It can be seen that in order to benefit from Hadamard
rotations of QAM constellations, N = 16 suffices for practical
purposes. An interesting question pertains to whether the
asymptote resulting from Proposition 1 applies also to other
classes of orthogonal and unitary transforms when N → ∞,
but addressing this question is left for future work.

Fig. 7 depicts the empirical PDF of a received rotated-
64QAM constellation in each channel after derotation at an
SNR of 22.5 dB for σ2

p = 10−2 rad2 and different numbers
of channels, with 1-channel transmission corresponding to an
unrotated signal. As the number of channels increases, the
received signal gradually begins resembling the asymptotic
case in (10).

Fig. 8 shows the AIR of rotated-256QAM transmission
through 2 channels as well as the asymptotic performance as
the number of channels grows large, as a function of SNR with

5The random rotation matrices are obtained by generating random orthog-
onal matrices [42, p. 597] and retaining those with determinant +1.
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1 channel 2 channels 4 channels 16 channels

Fig. 7. The empirical PDF of the received signal in each channel after
transmission of Hadamard-rotated 64QAM and receiver-side derotation.
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Fig. 8. AIR versus SNR for transmission of Gray-mapped 256QAM with
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p = 10−3 rad2.
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Fig. 9. The relative AIR for transmission of different Hadamard-rotated QAM
constellations versus σ2

p when the number of channels and SNR grow large.

σ2
p = 10−3 rad2. As expected, the effect of signal rotations is

marginal at lower SNRs since the transmission performance is
dominated by AWGN, but as the SNR increases, the impact
of rotations becomes significant. At an SNR of 34 dB, 0.04
b/symbol and 0.08 b/symbol improvement in AIR is observed
for rotated-256QAM transmission through 2 channels and in
the asymptotic case, respectively.

It is clear from the results presented so far that the impact of
rotations increases with the number of channels and the SNR.
Thus, in order to determine the maximum impact of Hadamard
rotations on QAM transmission, Fig. 9 shows the AIR of
rotated-QAM transmission relative to the AIR of unrotated-
QAM transmission, and versus σ2

p in the asymptotic case
where the number of channels and SNR grow large. Overall,
the maximum increase in AIR is found to be approximately
0.33 b/symbol for QPSK and 0.25 b/symbol for higher-
order QAM constellations. The point at which the maximum
performance increase occurs depends on the QAM order.
Therefore, given the fact that practical values of σ2

p lie in the

range [10−4, 10−2] rad2, it can be deduced that rotating QAM
constellations is most beneficial for 64QAM and higher.

VI. CONCLUSION

This paper investigated the impact of transmitter-side multi-
dimensional signal rotations on multichannel fiber-optic trans-
mission in the presence of residual laser phase noise. The
considered system model was based on a previously proposed
multichannel phase-noise model that was experimentally veri-
fied for SDM transmission through a weakly-coupled MCF.
The model entails transmission of arbitrarily rotated QAM
constellations in the presence of i.i.d. Gaussian distributed
phase noise (see Figs. 1 and 2). Data detection was carried
out using the proposed joint-channel or per-channel receivers.

Through numerical optimization for two-channel transmis-
sion, Hadamard rotations were found to be near-optimal in
terms of BLER, BER, and AIR for practical amounts of
residual phase noise (see Fig. 4). In the case of per-channel
detection, it was shown that the performance of Hadamard ro-
tations approaches an asymptote as the number of dimensions
over which the rotations are performed grows large (see Figs. 6
and 7). The performance impact of rotations also depends on
the SNR (see Figs. 8 and 9).

While transmitter-based processing has already been shown
to mitigate impairments such as PDL and MDL, the results in
this work show that the tolerance of a multichannel system to
practical amounts of laser phase noise can also be improved
through joint-channel processing at the transmitter. In particu-
lar, these results apply in the case that the laser phase noise is
uncorrelated across the channels. The performance improve-
ment is achieved by transmitting rotated multidimensional
higher-order QAM constellations (64QAM and higher) at the
cost of complexity. In the case of Hadamard rotations, the
associated complexity is on the same order as the fast Fourier
transform. Hence, it is clear that Hadamard rotations are inter-
esting for higher-order modulations used for short-to-medium
transmission distances. Furthermore, the paper presents several
open questions paving the way to future studies on, e.g.,
effective bit labelings, the effectiveness of rotations for shaped
constellations, the performance difference between joint- and
per-channel receivers for different modulation formats, and the
benefits of rotations in the presence of nonlinearities.

APPENDIX A
DERIVATION OF JOINT-CHANNEL RECEIVER

Let
Tφ(κ) ,

1

2πI0(|κ|)
exp
(
<
{
κe−jφ

})
(11)

denote a Tikhonov PDF, where I0(·) is the modified Bessel
function of the first kind and zeroth order, κ ∈ C, and φ ∈
[−π, π),

Nx(µ, σ2) ,
1√
2πσ2

exp

(
− 1

2σ2
(x− µ)2

)
(12)

denote a real Gaussian PDF, where x, µ, σ2 ∈ R, and

CNz(µz, σ2) ,
1

πσ2
exp

(
− 1

σ2
|z − µz|2

)
(13)
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denote a complex Gaussian PDF, where z, µz ∈ C. The a
posteriori PMF of s̃ at s̃ in (2) can be approximated as

Ps̃|r(s̃|r) =
∫
RN

ps̃,θ|r(s̃, θ|r)dθ

∝
∫
RN

pr|s̃,θ(r|s̃, θ)pθ(θ)dθ (14)

=

N∏
i=1

∫ ∞
−∞

pri|s̃i,θi(ri|s̃i, θi)pθi(θi)dθi (15)

=

N∏
i=1

∫ ∞
−∞
CNri(s̃iejθi , N0)Nθi(0, σ2

p)dθi

≈
N∏
i=1

∫ π

−π
CNri(s̃iejθi , N0)Tθi

(
1

σ2
p

)
dθi (16)

∝
N∏
i=1

exp

(
−|s̃i|

2

N0

)∫ π

−π
exp
(
<{ηie−jθi}

)
dθi

∝
N∏
i=1

√
2π exp

(
−|s̃i|

2

N0

)
I0(|ηi|) (17)

≈
N∏
i=1

1√
|ηi|

exp

(
|ηi| −

|s̃i|2

N0

)
(18)

where ηi is defined in (4) and ∝ denotes proportionality with
respect to s̃. Furthermore, (14) comes from the Bayes’ rule as
well as the facts that s̃ and θ are independent and that s̃ is
uniformly distributed, (15) is obtained since the elements in
r and θ are mutually independent, (16) uses Nθi(0, σ2

p) ≈
Tθi(1/σ2

p) for small σ2
p, (17) comes due to the definitions

in (11) and (13), and (18) uses I0(x) ≈ ex/
√
2πx for large

x > 0. To circumvent the numerical instability of (18), (2)
can be rewritten as ŝ = argmaxs∈XN loge Ps̃|r(s̃ = fR(s)|r),
since the logarithm is a monotonically increasing function.
Substituting the logarithm of (18) in this expression gives (3).

APPENDIX B
HADAMARD-ROTATION ASYMPTOTIC ANALYSIS

As mentioned in Section IV, applying phase shifts to the
2D constellation projections does not affect the performance
results. Hence, Hadamard-rotation matrices can be modified
without performance loss such that the Hadamard rotation is
effectively applied on a complex-signal basis as opposed to
real-component basis. Assuming N to be a power of two, this
modification is performed as[

N∏
i=1

G(2i−1)(2i)
(π
4

)]
H2N = HN ⊗ I2, (19)

where the equality in (19) can be verified by direct calculation.
Thus, instead of carrying out fH2N

(s), the same performance
is achieved through fHN⊗I2(s), which can also be calculated
more efficiently as HNs.

Consider transmission of s̃ = fHN⊗I2(s) = HNs, in which
case (1) gives r = ΘHNs+ n. The derotation of r yields

r̃ = HTNr = HTNΘHNs+ HTNn, (20)

where (20) can in each channel be written as

r̃i =

N∑
n=1

N∑
l=1

snhl,ihl,ne
jθl +

N∑
k=1

hk,ink (21)

= si
1

N

N∑
l=1

ejθl +
∑
n 6=i

N∑
l=1

snhl,ihl,ne
jθl + n′i (22)

= αNsi +wi + n
′
i, (23)

for i = 1, . . . , N . Moreover, hi,j is the (i, j)th entry of HN ,
αN is the sample average of ejθ1 , . . . , ejθN , n′i has the same
distribution as ni, and wi is interchannel interference that is
regarded as additive noise by the per-channel receiver.

The law of large numbers gives α , limN→∞αN =
E[ejθ] where θ is a zero-mean Gaussian random variable
with variance σ2

p. Moreover, E[ejθ] is a special case of the
characteristic function of a real Gaussian random variable [43,
Sec. 4.7], and hence, α = e−σ

2
p/2. Furthermore, wi can be

rewritten as
∑
n6=i snti,n, where ti,n =

∑N
l=1 hl,ihl,ne

jθl .
Since the columns of Hadamard-rotation matrices are mutually
orthogonal, the set {h1,ih1,n, . . . , hN,ihN,n} has an equal
number of 1/N and −1/N elements for n 6= i. Thus, ti,n is a
sum of N/2 i.i.d. random variables with the same distribution
as (ejθ

+ − ejθ−
)/N , where θ+ and θ− are independent zero-

mean Gaussian random variables with variance σ2
p. Hence,

E[ti,n] =
N/2

N

(
E
[
ejθ

+
]
− E

[
ejθ

−])
= 0, (24)

and the variance and pseudo-variance [44, Sec. 7.8] of ti,n are

E
[
|ti,n|2

]
=
N/2

N2

(
E
[
|ejθ

+

|2
]
− E

[
ejθ

+
]
E
[
e−jθ

−]
−E
[
e−jθ

+
]
E
[
ejθ

−]
+ E

[
|ejθ

−
|2
])

=
1

N

(
1− e−σ

2
p

)
, (25)

E
[
t2n
]
=
N/2

N2

(
E
[
ej2θ

+
]
−2E

[
ejθ

+
]
E
[
eθ

−]
+E
[
ej2θ

−])
=

1

N

(
e−2σ

2
p − e−σ

2
p

)
. (26)

Finally, E[wi] = 0, and the variance of wi can thus be
expressed as

E
[
|wi|2

]
=
∑
n 6=i

E
[
|sn|2

]
E
[
|ti,n|2

]
=
N − 1

N
Es

(
1− e−σ

2
p

)
.

(27)
Therefore, due to the central limit theorem, wi becomes a
complex Gaussian random variable with variance Es(1−e−σ

2
p)

when N →∞. Furthermore, if E[s2n] = 0 for all n 6= i, which
is the case when standard QAM formats are transmitted in all
channels outside the ith channel, the pseudo-variance of wi
will be

E
[
w2
i

]
=
∑
n 6=i

E
[
s2n
]
E
[
t2i,n
]
= 0, (28)

i.e., wi will be a circularly symmetric complex Gaussian
variable, which leads to (10). On the other hand, if E[s2n] 6= 0
for some n, e.g., when a PAM format is transmitted in some
channel outside the ith channel, then E[w2

i ] 6= 0, which
implies that wi and r̃i will not be circularly symmetric.
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