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Quantifying the Uncertainty in Ground-Based
GNSS-Reflectometry Sea Level Measurements
David Purnell , Natalya Gomez , Ngai Ham Chan , Joakim Strandberg , David M. Holland ,

and Thomas Hobiger

Abstract—Global Navigation Satellite System reflectometry
(GNSS-R) tide gauges are a promising alternative to traditional tide
gauges. However, the precision of GNSS-R sea-level measurements
when compared to measurements from a colocated tide gauge
is highly variable, with no clear indication of what causes the
variability. Here, we present a modeling technique to estimate the
precision of GNSS-R sea-level measurements that relies on creat-
ing and analyzing synthetic signal-to-noise-ratio (SNR) data. The
modeled value obtained from the synthetic SNR data is compared to
observed root mean square error between GNSS-R measurements
and a colocated tide gauge at five sites and using two retrieval
methods: spectral analysis and inverse modeling. We find that the
inverse method is more precise than the spectral analysis method
by up to 60% for individual measurements but the two methods
perform similarly for daily and monthly means. We quantify the
contribution of dominant effects to the variations in precision and
find that noise is the dominant source of uncertainty for spectral
analysis whereas the effect of the dynamic sea surface is the dom-
inant source of uncertainty for the inverse method. Additionally,
we test the sensitivity of sea-level measurements to the choice of
elevation angle interval and find that the spectral analysis method
is more sensitive to the choice of elevation angle interval than the
inverse method due to the effect of noise, which is greater at larger
elevation angle intervals. Conversely, the effect of tropospheric
delay increases for lower elevation angle intervals but is generally
a minor contribution.

Index Terms—GNSS-reflectometry, sea level, tide gauge.
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I. INTRODUCTION

T IDE gauges provide records of coastal sea-level change that
extend back in some cases to the eighteenth century [1].

The longevity of these records highlights the abnormality in
the recent acceleration of global mean sea-level rise and thus
these records provide key evidence for human-induced climate
change [2], [3]. While the capability for monitoring global sea
level has greatly improved with the development of satellite
altimetry, tide gauges remain at the core of modern sea level
observations, both for providing continuous coastal sea level
records and for validating satellite altimetry missions [4]. De-
spite their advantages, tide gauge records suffer from limited
global coverage in remote regions and are prone to misinter-
pretation due to the effect of vertical land motion [2], [5]. To
monitor the effects of vertical land motion, the global sea level
observing system (GLOSS) implementation plan [6] requires
new tide gauges to be installed with a colocated Global Navi-
gation Satellite System (GNSS) station. However, recent work
has shown that a coastal GNSS station may also be used as a
tide gauge to directly monitor sea level, using a technique called
GNSS-reflectometry (GNSS-R) [7]. Compared to acoustic or
radar tide gauges, these instruments are similar in cost but more
practical to install and maintain in remote regions because they
can be installed several meters away from the coast and do not
need to be hanging directly over the sea surface. If GNSS-R
methods are improved, a stand-alone coastal GNSS station may
be sufficient to meet the GLOSS requirements, thus greatly
reducing installation and maintenance costs.

A GNSS-R sea level time series may consist of approximately
20–100 measurements per day at unevenly spaced time intervals
with a precision of 2–50 cm [7]–[11]. This temporal and spatial
resolution is sufficient to monitor storm surges [12] and resolve
tides [7]–[9] but it is probably not sufficient for monitoring
tsunamis. With tides resolved, it is possible to remove them
in order to form a time series of daily or monthly means that
may then be used to study seasonal or multiyear trends. In [7],
the authors compared GNSS-R sea-level measurements to those
from a standard tide gauge over a ten-year period and found
a root mean square error (RMSE) of 1–2 cm for daily and
monthly mean measurements. This was sufficient to estimate a
linear annual trend with sub-mm precision, which is the desired
resolution for studies of sea-level rise [6]. However, GLOSS
stations are required to provide hourly sea level measurements
with 1 cm accuracy—a feat that is yet to be achieved at any
GNSS station.
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On the path toward the integration of GNSS-R tide gauges into
the global sea-level monitoring network, two key issues remain.
First, literature to date is focused on the precision as opposed
to the accuracy of sea-level measurements because the vertical
datum, assumed to be the antenna phase center, is generally
unknown. A procedure to determine the location of the antenna
phase center must be developed such that sea surface height
above the reference ellipsoid can be monitored and compared
with satellite altimetry measurements. Second, it is challenging
to evaluate the precision of sea-level measurements at sites with
no colocated tide gauge and the causes for the highly variable
precision at different sites is unclear. In the present article, we
address the latter issue, by providing a technique to estimate the
precision at any site and using any retrieval method.

One method to retrieve sea-level measurements from a coastal
GNSS antenna is via spectral analysis of the signal-to-noise-ratio
(SNR) data for periods when the antenna is receiving reflected
signals from a satellite. A number of factors have been iden-
tified to influence the precision when using this approach. For
example, [8] and [9] showed that it is necessary to correct for
the movement of the sea surface during the time that the SNR
data are collected and found an improvement in the precision of
sea-level measurements in doing so. More recently, [13] and [14]
have shown that the effect of tropospheric delay may lead to bias
in sea level retrievals.

Inverse modeling of SNR data is a fundamentally different
approach to obtaining GNSS-R sea-level measurements. As
opposed to using an isolated period of SNR data from a particular
satellite to obtain a single measurement, this approach uses
SNR data from multiple satellites over a given time frame to
obtain a sea-level time series, thereby reducing the effect of
noisy measurements. In [10], the authors developed an inverse
method that produced a sea-level time series in the form of a
continuous b-spline curve and found an improvement in the
precision compared to spectral analysis. A similar approach was
taken in [11], who used global optimization based on interval
analysis to fit the SNR data and found an improvement in both the
precision and the computation time in their analysis compared to
spectral analysis. A rigorous forward model to produce synthetic
SNR data has been developed by [15] and used to retrieve snow
depth measurements via inverse modeling [16], [17], but this
approach has not yet been applied to sea-level measurements.

The forward modeling approach has also been applied to error
analysis of GNSS-R snow depth and soil moisture measurements
in [18] and [19]. However, they do not consider all sources
of uncertainty that apply to sea-level measurements, such as
the effect of a nonstationary reflecting surface. Least squares
adjustment techniques, such as used in [10] and [11] have built-in
error estimation, but these values are unreliable without compre-
hensive knowledge of the local environment and instruments that
would be needed to build error covariance matrices.

We build on previous work and provide a more versatile
error analysis technique that relies on forward modeling of
SNR data. Our technique is validated by using two different
retrieval methods at four sites with colocated tide gauges and
comparing our estimated precision with the observed precision
of the GNSS-R measurements relative to the tide gauge. A year
of data is analyzed for the two sites that are discussed in the

TABLE I
KEY PARAMETERS FOR THE TWO SITES USED

main text and a month of data is analyzed at three sites in
the supplementary information. For the main sites, precision is
evaluated for individual measurements as well as for calculated
daily and monthly means. We also use our technique to quantify
the different sources of uncertainty and a discussion of how they
lead to variations in the precision.

II. ERROR ANALYSIS

Fig. 1 describes the process of obtaining estimates of the
precision of sea-level measurements and quantifying the sources
of uncertainty. This process relies on creating synthetic SNR data
for a particular coastal GNSS site given the location, geometry
relative to the sea surface, instrumentation, and some character-
istics of the observed SNR data over a chosen time period. The
effects of the dynamic sea surface, tropospheric delay, random
noise, and surface roughness are then added to the synthetic SNR
data as sources of uncertainty, via the methodologies described
in Section C. The precision is estimated using the RMSE of the
sea level time series that is retrieved from the synthetic SNR
data compared to the sea level time series that is used as an
input to create the synthetic SNR data. We refer to this value
as the “modeled RMSE” henceforth. In order to validate our
results, the modeled RMSE is compared to the observed RMSE
between GNSS-R sea-level measurements and a colocated tide
gauge for the same time period. Note that this observed RMSE is
an approximation of the precision of the GNSS-R measurements
because it also contains error from the tide gauge, as discussed
in the following section.

A. Observed Data

Two main sites are chosen for analysis that have been used in
previous GNSS-R literature [7], [10]; they both have a colocated
tide gauge and differ in their local tidal range (see Table I).
Site SC02 in Friday Harbor, Washington, USA is a Trimble
TRM29659.00 choke ring antenna with a SCIT radome and
a Trimble 4700 receiver situated approximately 5.5 m above
mean sea level. Site GTGU in Onsala, Sweden consists of a
Leica AR 25 antenna and a Leica GRX1200 receiver situated
approximately 4 m above mean sea level. Both GNSS sites
record data with a frequency of 1-Hz, however, we decimate
this data to intervals of 15 s because the more frequent data
increases processing time and tests (not shown here) indicate that
this does not significantly impact the precision of the resulting
sea-level measurements. In Friday Harbor, there is an Aquatrak
acoustic tide gauge that records data every 6 min. According to
the instrument specifications the accuracy should be sub-cm but
studies have shown that it suffers from errors due to changes in
temperature in the sounding tube that may require corrections
up to 3 cm [21]. In Onsala, our results are compared to a sea
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Fig. 1. Flowchart showing the error analysis process. The two bottom panels show examples of detrended SNR data (Watt/Watt) plotted as a function of sin θ,
where θ is the elevation angle of a satellite relative to an antenna. The observed SNR data are collected at station SC02. The bottom right frame shows three stages
of the synthetic SNR data creation process; the black line is the initial output from [20], the red dotted line has been modulated to account for the dynamic sea
surface and the blue line has random noise added to it.

level record from a nearby Campbell CS476 radar gauge that
records data every minute. A comparison between the radar
gauge and colocated laser gauge at this site reports a standard
deviation of 4.3 mm over a one month period [22]. At both
sites, the tide gauges are positioned approximately 300 m away
from the GNSS antennas, therefore the GNSS-R and tide gauge
measurements are not expected to exactly match each other.

We perform our analysis using a year of data at each of the
main sites in order to account for seasonal variations that may
affect the GNSS-R measurements. For SC02, the period of study
is the whole of 2015 and for GTGU it is the period from July
2015 to the end of June 2016.

Details of additional sites BUR2, SPBY, and SCOA that are
analyzed for a shorter period of one month are given in the
supplementary information.

B. Sea Level Retrieval

For GNSS-R analysis, the key variable is the SNR (usually
recorded in dB-Hz) for a given GNSS satellite and signal of
interest. For simplicity, our analysis is limited to the use of the
GPS L1 C/A signal but we note that the precision and frequency
of sea-level measurements would likely improve with more
satellite constellations or when using different signals [10], [17].
In preparation for retrieving sea-level measurements, the SNR
data are arranged into time periods during which the elevation
angle, θ, and azimuth angle, α, of the satellite relative to the
antenna are within predefined limits. These time periods, known
as satellite arcs, correspond to when the antenna is receiving

reflected signals from the sea surface. The range of elevation
angles that are used for analysis is expected to be a dominant
control on the precision of sea-level measurements, hence, we
repeat the error analysis for two elevation angle intervals at site
SC02. The elevation and azimuth intervals given in Table I are
mostly taken from published literature [7], [8], [10].

For each of the following retrieval methods, the SNR data for
each satellite arc are first converted from units of dB–Hz to a
linear scale using

SNRlinear = 10SNRdB−Hz/20 (1)

where SNRlinear is in units of Watt/Watt assuming a 1 Hz band-
width. The SNR data are then detrended (henceforth denoted by
δSNR) by removing a second-order polynomial. The latter step
removes the influence of the antenna gain pattern and changing
antenna–satellite distance, both of which are not of interest for
sea-level measurements.

1) Spectral Analysis Method: The first retrieval method, dis-
cussed in detail in [7], relies on spectral analysis of SNR data. As
θ changes during a satellite arc, the direct and reflected signals
interfere periodically, which causes an oscillation in the SNR
data. If plotted as a function of sin θ, the frequency of these
oscillations is linearly related to the height of the antenna above
a static reflecting surface

f =
2hs

λ
(2)

where λ is the wavelength of the GNSS signal of interest, hs is
the static reflector height, and f is the frequency of the detrended
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Fig. 2. Three days of tide gauge and GNSS-R sea level data at site SC02 when
using the high elevation angle interval given in Table I.

SNR oscillations, in units of (sin θ)−1. An initial estimate of the
time series of h is then formed by taking the frequency of the
spectral peak from a Lomb–Scargle Periodogram (LSP) of the
detrended SNR data for each satellite arc and converting it to hs

using (2).
For a sea surface that is nonstationary during a satellite arc, [8]

showed that

f =
2

λ

[
hd +

∂hd

∂t

tan θ

∂θ/∂t

]
(3)

where hd is the dynamic reflecting surface height. This equation
is solved iteratively, first by assuming that hd takes the form of a
summation of 145 tidal constituents with known frequencies and
lunar nodal corrections but unknown phases and amplitudes. By
substituting this tidal form of h into (3), then rearranging and
substituting (2), it is found that

hs = htidal +
∂htidal

∂t

tan θ

∂θ/∂t
. (4)

The unknown tidal phases and amplitudes are subsequently
estimated by minimizing the residual between the left- and right-
hand side of (4), via a least-squares approach. The final time
series of hd is then obtained by subtracting the second term on
the right-hand side of (4) from the initial hs time series.

2) Inverse Method: In [10], the authors developed an inverse
method, whereby the detrended SNR data are modeled as a
function of the dynamic reflector height, hd, and several other
unknown parameters. A continuous-time series of hd is imposed
to take the form of a b-spline curve, the nodes of which are
estimated simultaneously along with some unknown model
parameters by minimizing the residual between the observed
and modeled δSNR, via a least-squares approach. This analysis
is very sensitive to the initial parameter choice and we found that
it is necessary to estimate b-spline nodes using the initial time
series of hs from (2) prior to the least-squares analysis. In order
to avoid instabilities, this process is performed over consecutive
three day periods and only the data from the middle day is used.

A comparison of tide gauge and GNSS-R sea-level time series
at site SC02 when using both retrieval methods is given in Fig. 2.

C. Synthetic SNR Data Creation

To create synthetic SNR data, the multipath simulator model
(henceforth mpsim) provided by [20] is used. This forward

model is based on the physics of electromagnetic wave propa-
gation, reflection off rough surfaces, and antenna response. The
model requires site-specific inputs such as the GNSS signal used,
antenna and radome model, elevation angle interval, reflector
height, and reflecting surface material to create synthetic SNR
data for a single satellite arc. A year-long time series of synthetic
SNR data are then created given the timings and statistics of
observed satellite arcs. The frequency and resolution (in dB–Hz)
of the model output is imposed to match those recorded at the
site of interest. As is described in the following sections, we
then process the model output to account for the effects of the
dynamic sea surface, tropospheric delay, and random noise.

1) Surface Roughness: Surface roughness is quantified as the
standard deviation of the surface from its mean position and is
an input for mpsim. This value is related to one of the unknown
parameters that is retrieved along with the sea-level time series
when using the inverse method and therefore we set the modeled
surface roughness by matching the mean value retrieved from
the observed data.

2) Dynamic Sea Surface: The mpsim model does not have
an option to account for movement of the sea surface during a
satellite arc. However, by increasing the spacing between the
elevation angle coordinates for some modeled SNR data, the
frequency of oscillations, and the corresponding antenna-sea
surface height difference is decreased. Conversely, the height
difference is increased by decreasing the spacing between the
elevation angle coordinates. Modeled SNR data for a static
sea surface is therefore modulated such that it corresponds to
a dynamic sea surface by applying this theory. The elevation
angle array corresponding to a dynamic sea surface, θd, is taken
directly from satellite orbit data but the elevation angle array for
a static sea surface, θs, is unknown and must be calculated in
order to initially produce the modeled SNR data.

The relationship between the frequency of SNR oscillations
and the height of a static or dynamic reflecting surface are given
by (2) and (3), respectively. Given that f is in units of (sin θ)−1,
the ratio of the static and dynamic frequencies is equivalent to
the inverse of the ratio of the change in sin θ at each time step

fd
fs

=
Δsin θs
Δsin θd

=
1

hs

[
hd +

∂hd

∂t

tan θd
∂θd/∂t

]
(5)

for a fixed hs and hd(t) at some time t. The θs array is obtained
by solving (5) for Δsin θs at each time step over a full satellite
arc. We note that this is only a first-order correction and a more
accurate solution may be obtained by editing the governing
equations in the mpsim model to allow for a changing reflector
height. Synthetic SNR data are produced for hs over the full
range of θs, such that the SNR data either corresponds to a static
sea surface if plotted using θs or a dynamic sea surface if plotted
using θd. An example of some modeled SNR data is given at the
bottom right of Fig. 1, where the black line corresponds to a static
sea surface and the red dotted line corresponds to a dynamic sea
surface.

3) Tropospheric Delay: The pressure, temperature, and hu-
midity of the lower atmosphere causes a delay in the arrival
of GNSS signals at an antenna compared to what would be
expected if they were traveling through a vacuum. The amount
of delay increases for low elevation angles because the signals
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take a longer path through the lower atmosphere. This leads
to an overestimation of the path difference between the direct
and reflected signals that changes during a satellite arc and in
turn leads to an underestimation of the reflector height. The
offset between the true and estimated reflector height can be
split into two components: a mean offset and a time-varying
offset that changes as a function of the true reflector height and
the state of the atmosphere. The mean offset is important when
considering the accuracy of GNSS-R sea-level measurements
and is not quantified herein.

In [13], the authors showed that the effect of tropospheric
delay causes an offset of the frequency of oscillations retrieved
via spectral analysis, giving rise to the following modification
of (3)

f =
2

λ

[
h+

∂h

∂t

tan θ

∂θ/∂t
+

1

2

∂τtd
∂ sin θ

]
(6)

where τtd is the additional difference between the direct and
reflected signals due to the effect of tropospheric delay (repre-
sented as a distance) and may be calculated at different values of
h and θ using the GTP2w model [23] and the Vienna mapping
function VMF1 [24]. Rather than using a constant frequency
offset, we convert τtd to an equivalent elevation angle offset,
which varies during a satellite arc, analogously to the dynamic
surface correction in the previous section. The elevation angle
offset, δθtd, is calculated using

2h sin θ + τtd = 2h sin(θ + δθtd) (7)

where θ refers to the geometric elevation angle from satellite
orbit data and θ = θd, following notation from the previous sec-
tion. Then θtd = θd + δθtd, is used instead of θd in (5). Synthetic
data are generated using θtd, but θd is used for retrieving sea
level from the synthetic data, in order to simulate the effect of
uncorrected tropospheric delay. We find that the improvement
of the precision of retrievals when applying this correction to
observed SNR data is approximately equal to the deterioration
in the precision of retrievals when incorporating this effect in
the synthetic SNR data, thus validating our approach.

4) Noise: We define noise here as any additional contribu-
tions to the SNR data other than the oscillating signal due to
reflections from the sea surface. This noise is likely caused by
reflections from other nearby surfaces, interference from other
microwave sources or instrument noise and causes the observed
SNR signal shown at the bottom of Fig. 1 to diverge from a
sinusoidal signal. For this study, rather than being concerned
with the cause of this noise, which may be physical in origin,
we aim to characterize and reproduce it such that the effect it
has on the precision of sea-level measurements can be quantified.
Initially, we tried using white noise but we found this method
to be insufficient for matching observed characteristics of the
SNR data. Instead our approach is to represent the noise as a
summation of sine waves with random amplitudes, frequencies,
and phase offsets, which must be scaled simultaneously with the
synthetic SNR data in such a way that, on average, it is equivalent
to the noise in the observations.

In order to constrain the power of the noise compared to the
clean oscillating signal, the metrics of interest are the power
of the clean signal, Pmax, as determined from an LSP, and the

Fig. 3. Mean values of the LSP for all observed and synthetic SNR arcs at site
SC02 high θ.

variance of the total signal, σ2. The noise and the clean signal
are scaled via a least-squares approach such that the residual
between the observed and synthetic values of Pmax and σ2 are
minimized. The two scaling factors to be determined, A and B,
are defined by

δSNRnoisy = A[δSNRclean]

+B[ΣN
i=1Siai sin(2πfi sin θ + φi)] (8)

where δSNRclean and δSNRnoisy are the synthetic signals before
and after noise has been added, and ai, fi, and φi are the
random amplitudes, frequencies, and phase offsets, respectively,
for N sine waves. The random frequencies are chosen up to a
maximum value of the mean Nyquist frequency, which is equal
to K/(2Δ sin θ), where K is the number of measurements in
the interval Δsin θ. The function Si = S(fi) is applied to scale
the random amplitudes such that the mean power of the noise in
the frequency domain matches observations. The function S(fi)
is unique for each site and is determined by fitting a curve to
the mean LSP over the frequency ranges that are not affected by
reflections from the sea surface. An example of the observed and
modeled mean LSP is given in Fig. 3 and further examples are
given for three sites in the supplementary information. The value
of N is somewhat arbitrary, but we found that setting N = 15
produces a mean LSP that most closely matches the observed
data and also produces SNR data that looks qualitatively similar
to the observed data (see Fig. 1). This process is sensitive to the
(random) values of ai, fi, and φi, hence each set of synthetic
SNR data that has noise added to it must be produced and then
analyzed many times until the modeled RMSE converges.

D. RMSE Calculations

In order to obtain the observed RMSE of individual mea-
surements, the sea-level time series obtained from the spectral
analysis or inverse method is compared to observations from
the colocated tide gauge. In the case of the inverse method, this
process is trivial because the output is a b-spline curve that may
be evaluated at every time that there is a tide gauge observation.
Conversely, as can be seen in Fig. 2, the output of from the
spectral analysis method is unevenly spaced in time, depending
on the timing of satellite arcs. In this case, the RMSE is ob-
tained by linearly interpolating the tide gauge measurements to
match the timing of the satellite arcs. In theory, the sea-level
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measurements obtained by GNSS-R analysis correspond to the
vertical distance from the antenna phase center to the sea surface.
Given that the exact position of the antenna phase center is
unknown, the mean value of each time series is removed prior to
calculating the RMSE. Removing the mean from the GNSS-R
time series also removes the mean offset of the reflector height
due to the effect of tropospheric delay and hence it is only the
time-varying component of the tropospheric delay offset that
affects the RMSE.

The modeled RMSE is obtained by the same process except
that the sea-level measurements are compared to the input sea-
level time series that is used to create the synthetic SNR data.
One of the key objectives of this article is to provide a method to
evaluate the precision of sea-level measurements at sites with no
colocated tide gauge. Hence, we compare the modeled RMSE
obtained when using the colocated tide gauge as an input to that
obtained when using modeled tides from [25]. If the modeled
RMSE is insensitive to the choice of input sea level data then
model tides may be used to estimate the precision at sites with no
colocated tide gauge. Tidal variations are not the only source of
sea-level change at these sites. In the case of site GTGU, where
the tidal variations are very small, we scaled up the tide model
output to match the range of observed sea levels from the tide
gauge during the same period. The observed sea-level variations
are largely driven by meteorological forcing at this site.

1) Daily and Monthly Means: In addition to comparing in-
dividual measurements, we also consider daily and monthly
means. These are obtained following the same process outlined
in [7]. First, tides with a period of diurnal or shorter are estimated
and removed from each time series. An hourly sea level time
series is then obtained by averaging in a 6 h moving window
and subsequently a low-pass filter with a passband frequency of
1/60 h−1 is applied. Daily and monthly means are then formed
from the filtered hourly data. This process is repeated for each
sea level time series individually before calculating the RMSE.

2) Quantifying the Sources of Uncertainty: The different
sources of uncertainty that are the focus of this article are not
independent, which makes it impossible to perfectly separate
them. However, it is possible to estimate the contribution of each
source of uncertainty to the total modeled RMSE by comparing
the modeled RMSE obtained with different combinations of the
four sources of uncertainty added to the synthetic SNR data. We
have found that the total modeled RMSE can be formed by a
linear addition of different sources of uncertainty when using
the following approach, thus suggesting that their correlations
tend to 1. The calculations used are

εnoise = RMSEnoise,dyn,td,sfr − RMSEdyn,td,sfr (9)

εdyn = RMSEnoise,dyn − εnoise (10)

εtd = RMSEnoise,dyn,td − RMSEnoise,dyn (11)

εsfr = RMSEnoise,dyn,td,sfr − RMSEnoise,dyn,td (12)

where ε refers to the value that is used to represent the contri-
bution of each effect to the total RMSE in Fig. 5. The RMSE
values in the above equations refer to the modeled RMSE that is
obtained when using tide gauge data as an input and including
the effects listed in the subscript. The subscripts “noise,” “dyn,”

“td,” and “sfr” refer to the effects of random noise, the dynamic
surface, tropospheric delay, and surface roughness, respectively.
We tried other approaches for quantifying the sources of uncer-
tainty and found that the key results when comparing sites and
retrieval methods are robust regardless of the way in which these
values are calculated.

Additional sources of uncertainty, such as the resolution of
SNR data, the azimuth angle range and the mean antenna-sea
surface height difference are constrained by the observed data
at each site, hence their contribution to the RMSE is consumed
by one or more other sources.

III. RESULTS

A. Observed RMSE

Fig. 4 shows the first direct comparison of the performance
of different GNSS-R techniques at different sites and elevation
angle intervals, for individual measurements and for daily and
monthly means. The spectral analysis results for SC02 high θ and
the RMSE of individual measurements using the inverse method
at GTGU are comparable to [7] and [10] but the majority of these
results are new.

For individual measurements, the inverse method consistently
performs better than spectral analysis, particularly for SC02 high
θ and GTGU, where there is a > 60% reduction in the RMSE
when using the inverse method. As discussed in Section IV,
this does not necessarily mean that the inverse method should
always be used over spectral analysis. Nevertheless, the spectral
analysis method is also more sensitive to the choice of elevation
angle interval, as evidenced by the 5 cm decrease in the RMSE
when comparing the lower to the higher elevation angle interval
at SC02. Conversely, there is a modest increase in the RMSE of
0.4 cm comparing the lower to higher elevation angle interval
when using the inverse method.

Compared to the large differences between the observed
RMSE of individual measurements, the observed RMSE of daily
and monthly means shown in Fig. 4(b) and (c) are more uniform
between different techniques, stations and elevation angle inter-
vals. Excluding the RMSE of daily means when using spectral
analysis at SC02 high θ, all of the observed daily means range
between 1.2− 1.5 cm. All of the observed results for monthly
means range between 0.6− 1 cm. For context, a precision of 1
cm for a 20-year time series corresponds to a maximum error of
1 mm/yr for a linear trend, which agrees with the results for the
linear trend calculated in [7] (they foundσ = 0.5mm/yr). These
results imply that the sources of uncertainty that cause variable
errors for individual measurements become less important when
taking daily or monthly means.

B. Comparison of Observed and Modeled RMSE

In Fig. 4(a), the values for the observed RMSE (in blue) and
modeled RMSE (in orange and yellow) agree to within 1 cm with
the exception of SC02 high θ when using the spectral analysis
method. Similar results are obtained for the three additional sites
discussed in the supplementary information. As mentioned in
Section II, some differences between the observed and mod-
eled RMSE are to be expected. The observed RMSE contains



PURNELL et al.: QUANTIFYING THE UNCERTAINTY IN GROUND-BASED GNSS-REFLECTOMETRY SEA LEVEL MEASUREMENTS 4425

Fig. 4. Comparison of observed and modeled RMSE of (a) individual measurements, (b) daily means, and (c). monthly means at the sites given in I. The difference
between the modeled results is the input sea level data that is used to generate the synthetic SNR data.

Fig. 5. Contribution of each source of uncertainty to the total modeled RMSE when using the spectral analysis method to retrieve sea level (top) and when using
the inverse method to retrieve sea level (bottom). The total length of each bar corresponds to the values given in the “Modeled: tide gauge” values in Fig. 4(a).
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instrument error from the tide gauges and possibly some bias
due to the difference in the area that is being sampled to make a
sea-level measurement between the tide gauge and the GNSS-R
measurement. On the other hand, the modeled RMSE contains
uncertainty due to the models used to create the synthetic SNR
data. In light of these differences and in particular given that
the tide gauge at SC02 is prone to errors [21], the results
presented in Fig. 4(a) validate our precision estimation technique
for individual measurements. Furthermore, the modeled RMSE
values are largely insensitive to the choice of using either a tide
gauge (orange bars) or model tides (yellow bars) as input sea
level data for the analysis, hence our technique may be applied
to estimate the precision of individual sea-level measurements
at sites with no colocated tide gauge. The correspondence of
the observed and modeled RMSE also implies that there are no
major sources of uncertainty missing from our analysis.

For daily means [see Fig. 4(b)], the modeled RMSE values
agree to within 1–6 mm of the observed values, with the largest
difference at SC02 high θ when using the inverse method, where
both modeled values are 40% less than observed. The modeling
technique becomes significantly less reliable for monthly means
[see Fig. 4(c)], where both modeled values underestimate the
observed RMSE by at least 50% at SC02 using both elevation
angle intervals and retrieval techniques. This underestimation
for modeled values produced using model tides (yellow bars)
is likely in part because the magnitude of the tidal signal is
unrealistically small once tides of diurnal periods or shorter have
been removed; observed sea-level records contain signal due to
meteorological forcing that may cause sea-level variations of up
to 10 s of cm per day. More work is needed to improve modelling
estimates of the precision of daily and monthly means.

C. Sources of Uncertainty

As shown in Fig. 5, the contributions of different sources
of uncertainty to the total modeled RMSE vary greatly between
retrieval methods and sites. The difference between the dominant
contributions is most striking when comparing the different
retrieval methods.

The effect of noise is the dominant contribution to the RMSE
at all sites when using the spectral analysis method, making up
65 − 80% of the RMSE, compared to a lesser contribution of
between 5 − 30% when using the inverse method. These results
highlight the fundamental differences in the retrieval methods:
the inverse method is less sensitive to the effect of noise because
sea-level measurements are restricted to fit a b-spline curve,
hence the influence of outliers or noisy satellite arcs is reduced
compared to the spectral analysis method. On the contrary, the
effect of the dynamic surface is the dominant contribution of
60 − 85% of the RMSE at all sites when using the inverse
method, compared to 10 − 25% when using the spectral analysis
method. This is in part because an observed sea level-time series
cannot be perfectly represented by a smooth b-spline curve,
thus leading to a large contribution to the RMSE due to the
dynamic sea surface for the inverse method. The output from
the spectral analysis method is not restricted to fit a curve, hence
it is theoretically possible to perfectly capture any time series.
Instead, the contribution of the dynamic surface to the RMSE

for the spectral analysis method is due to the assumptions made
in order to solve (3).

The differences in the modeled RMSE obtained for the two
elevation angle intervals at SC02 are due to a combination of
factors. For the spectral analysis method, the effect of noise
contributes 4 cm less to the RMSE for the lower elevation angle
interval compared to the higher elevation angle interval. This
is because the oscillations in the SNR data are dampened with
increasing elevation angle whilst the magnitude of the noise
remains constant. The effect of tropospheric delay is much
smaller in magnitude overall but it is larger for the low elevation
angle interval regardless of the retrieval method, as would be
expected from [13]. For lower elevation angles, the reflected
GNSS signal takes a longer path through the lower atmosphere
and the longer the path length the more that the signal is slowed
and bent and hence delayed in reaching the antenna. For the same
reason, the effect of tropospheric delay increases as the height
of the antenna above the sea surface increases. Therefore, the
tidal range is also important; at low tide the GNSS signals will
take a longer path through the atmosphere than during high tide.
At GTGU, the elevation angle interval is similar to SC02 low θ
but the tidal range is much smaller (see Table I) and hence the
contribution of tropospheric delay to the RMSE is reduced in
comparison to SC02 low θ.

The difference in the RMSE of individual measurements
at different sites when using the same technique and similar
elevation angle range (i.e., comparing GTGU and SC02 low
θ), can mostly be accounted for by differences in the dynamic
surface effect, which is larger at site SC02 due to larger tides (see
Table I). This result is in agreement with previous literature [9]
and we expect the dynamic surface effect to increase at sites
with a greater tidal range.

It is not clear why the contributions of surface roughness
and tropospheric delay to the modeled RMSE vary between
the spectral analysis and inverse method at the same sites.
However, their contribution is generally small, especially in the
case of surface roughness, which represents less than 15% of
the modeled RMSE for both the spectral analysis and inverse
method.

IV. CONCLUSION

We have developed a modeling technique to estimate the
precision of GNSS-R sea-level measurements at any site and
using any retrieval technique. The modeled RMSE for individual
measurements closely agrees with the observed RMSE at all
combinations of sites, elevation angle intervals, and retrieval
methods and to within 1 cm for 9 out of the 11 combinations
(including the results in the supplementary information). The
results are largely insensitive between using model tides or a tide
gauge as an input for creating synthetic SNR data. Therefore,
for sites with no colocated tide gauge, model tides could be used
as an input to create synthetic SNR data and hence estimate the
precision of individual sea-level measurements. If the tidal range
is small, such as at site GTGU, the model tides can be scaled
to match observed sea-level variations (i.e., from the observed
GNSS-R sea-level time series).
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We also used our precision estimation technique to provide
a quantitative analysis of the sources of uncertainty that lead to
variations in the precision of sea-level measurements and found
that noise is the dominant source of uncertainty for the spectral
analysis method and the dynamic surface is the dominant source
of uncertainty for the inverse method. The agreement between
observed and modeled results suggest that we have included
the dominant sources of uncertainty in our analysis. However,
the nature of our approach means that sources of uncertainty
that are likely to be important (e.g., the azimuth angle range,
the resolution of SNR measurements, the mean height of the
antenna above the sea surface) are not explicitly quantified and
further analysis would be required to understand their influence.
Our approach to produce noise based on the mean LSP of the
observed data may mean the effect of noise also represents
other physical processes (such as reflections from other nearby
surfaces, preferential reflections from wave troughs). Further-
more, the nonlinear combination of effects makes it difficult to
quantify their contributions to the RMSE and our results should
only be taken relative to each other as opposed to looking at
absolute values of each source of uncertainty. A more rigorous
quantification of the different sources of uncertainty could be
achieved by investigating the correlations between different
sources.

Our analysis suggests that the inverse method produces more
precise GNSS-R sea-level measurements than the spectral anal-
ysis method. However, it is important to note that the inverse
method may not be suitable for all sites (for example, if there is a
narrow azimuth angle range) and can be prone to instabilities due
to the initial choice of parameters that go into the least squares
estimation. When the parameters are not carefully chosen, the
sea level output may differ greatly from the physical signal,
with an observed RMSE of up to 1 m on a given day. While the
spectral analysis method is prone to the influence of outliers that
are difficult to detect, it is more stable and unlikely to produce
an extended period of data (i.e., an entire day) with such large
errors.

Our observed results show that the differences in the perfor-
mance of retrieval methods was much less pronounced for daily
and monthly means compared to individual measurements; the
observed RMSE for monthly means is 1 cm or less at all sites
using both retrieval techniques. Our modeling technique was less
reliable for daily and monthly means, particularly when using
model tides as an input to create the synthetic data. This is in
part because model tides are not sufficient for capturing daily or
monthly mean sea level signals. However, the modeled RMSE
values for monthly means also disagreed with the observed
values when using the tide gauge as an input. Hence more work
is required to understand the sources of uncertainty in daily and
monthly means and extended periods of a year or longer should
be analyzed at more sites to see if our results hold.

The elevation angle interval appears to be an important control
on the precision of sea-level measurements. If a large elevation
angle interval is available for reflections at a particular site,
choosing a low elevation angle interval will reduce the effect of
noise, which is the dominant source of uncertainty when using
the spectral analysis method. However, the effect of tropospheric
delay will increase for low elevation angle intervals, especially

at sites with a large tidal range. Both [13] and [14] have provided
methodologies to correct for the effect of tropospheric delay in
sea level retrievals; however, they rely on information about the
temperature, pressure, and humidity profiles of the lower atmo-
sphere, which are generally unknown and must be estimated.
Hence it is only possible to partially correct for the effects of
tropospheric delay, unless additional instrumentation, such as a
microwave radiometer profiler, is used to improve estimates of
the state of the atmosphere above the sea surface.

While we have demonstrated that our model captures the most
significant sources of uncertainty, future work could be done to
improve the model by improving the characterization of noise,
explicitly accounting for the effect of preferential reflections
from wave troughs [26], by improving the modeling of the
effect of tropospheric delay or by accounting for sea ice cover.
Our analysis of the different sources of uncertainty could be
improved by extending our analysis to sites with a large local
tidal range or sites that are situated further above mean sea
level (i.e., > 5 m), for which the effects of the dynamic surface
and tropospheric delay would likely be more dominant. The
mpsim model that forms the basis of our technique may be used
to create synthetic SNR data for various GPS and GLONASS
signals and hence our analysis may easily be extended to include
multiple signals, which would likely improve the precision of
sea-level measurements [10], [17]. This forward model is also
used for both soil moisture and snow depth measurements, hence
we expect the developed technique to be applicable to such
measurements as well.
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