
Modelling discomfort: How do drivers feel when cyclists cross their path?

Downloaded from: https://research.chalmers.se, 2024-03-13 10:29 UTC

Citation for the original published paper (version of record):
Åkerberg Boda, C., Dozza, M., Puente Guillen, P. et al (2020). Modelling discomfort: How do
drivers feel when cyclists cross their path?. Accident Analysis and Prevention, 146.
http://dx.doi.org/10.1016/j.aap.2020.105550

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)



Contents lists available at ScienceDirect 

Accident Analysis and Prevention 

journal homepage: www.elsevier.com/locate/aap 

Modelling discomfort: How do drivers feel when cyclists cross their path? 
Christian-Nils Bodaa,*, Marco Dozzaa, Pablo Puente Guillenb, Prateek Thalyaa,c, Leila Jaberd,  
Nils Lubbed 

a Chalmers University of Technology, Hörselgången 4, 417 56, Göteborg, Sweden 
b Safety Research and Technical Affairs, Toyota Motor Europe, Zaventem, Belgium 
c Veoneer Sweden AB, Wallentinsvägen 22, 447 37, Vårgårda, Sweden 
d Autoliv Research, Wallentinsvägen 22, 44783, Vårgårda, Sweden  

A R T I C L E  I N F O   

Keywords: 
Driver behavior model 
Driving simulator 
Test track 
Comfort 
Active safety systems 
Acceptability 

A B S T R A C T   

Many cyclist fatalities occur on roads when crossing a vehicle path. Active safety systems address these inter
actions. However, the driver behaviour models that these systems use may not be optimal in terms of driver 
acceptance. Incorporating explicit estimates of driver discomfort might improve acceptance. This study quan
tified the degree of discomfort experienced by drivers when cyclists crossed their travel path. Participants were 
instructed to drive through an intersection in a fixed-base simulator or on a test track, following the same 
experimental protocol. During the experiments, three variables were controlled: 1) the car speed (30, 50 km/h), 
2) the bicycle speed (10, 20 km/h), and 3) the bicycle-car encroachment sequence (bicycle clears the intersection 
first, potential 50 %-overlap crash, and car clears the intersection first). For each trial, a covariate, the car’s time- 
to-arrival at the intersection when the bicycle appears (TTAvis), was calculated. After each trial, the participants 
were asked to report their experienced discomfort on a 7-point Likert scale ranging from no discomfort (1) to 
maximum discomfort (7). The effect of the three controlled variables and the effect of TTAvis on drivers’ dis
comfort were estimated using cumulative link mixed models (CLMM). Across both experimental environments, 
the controlled variables were shown to significantly influence discomfort. TTAvis was shown to have a significant 
effect on discomfort as well; the closer to zero TTAvis was (i.e., the more critical the situation), the more likely 
the driver reported great discomfort. The prediction accuracies of the CLMM with all three controlled variables 
and the CLMM with TTAvis were similar, with an average accuracy between 40 and 50 % for the exact discomfort 
level and between 80 and 85 % allowing deviations by one step. Our model quantifies driver discomfort. Such 
model may be included in the decision-making algorithms of active safety systems to improve driver acceptance. 
In fact, by tuning system activation times depending on the expected level of discomfort that a driver would 
experience in such situation, a system is not likely to annoy a driver.   

1. Introduction 

For more than two decades, many countries have made great efforts 
to encourage their populations to switch from driving cars to public 
transportation or cycling (Martens, 2007; Pucher et al., 2011; Börjesson 
and Eliasson, 2012; Scheepers et al., 2014). Cycling is a healthy activity 
with benefits in terms of cost, travel time, and the environment. 
However, the activity is not without risk, as the accident statistics show 
(European Commission, 2017). In the European Union, the generally 
decreasing trend of driver fatalities (European Commission, 2017) is 
not matched by the trend of cyclist fatalities, which has levelled off in 
recent years (European Commission, 2017). Cyclist fatalities in vehicle- 
bicycle crashes at unsignalised intersections account for a significant 

part of all cyclist fatalities (Schepers et al., 2011, 2016). Additionally, in 
a systematic review, Prati et al. identified many studies pointing out 
that vehicle-bicycle crashes were more likely to happen at an un
signalised intersection (Prati et al., 2017). 

Improvements in road infrastructure together with new active safety 
systems—such as autonomous emergency braking systems (AEB) and 
forward-collision warning systems (FCW)—and automated driving 
systems could help to reduce the number of cyclist fatalities in the 
vehicle-bicycle intersection scenario. Nowadays, some active safety 
systems integrate functions to detect and avoid collisions with vulner
able road users such as pedestrians (Tsuchida et al., 2007; Hayashi 
et al., 2013) and cyclists (Ljung Aust et al., 2015). These systems are 
included in car safety performance assessment protocols. For example, 
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Euro NCAP (European new car assessment programme) assesses the 
safety performances of AEB —but not FCW— in bicycle-crossing sce
nario since 2018 (Euro NCAP, 2018). However, active safety systems 
designed to improve vulnerable road users’ safety are not able to avoid 
all crashes yet. The sensors’ capabilities have been improving con
tinuously over the last few years, improving the detection of vulnerable 
road users, but still lack a complete driver model which manages to 
avoid unappreciated activations and thereby annoying drivers without 
compromising effectiveness in avoiding collisions. Driver behaviour in 
interactions with cyclists at unsignalised intersections has been scarcely 
studied, and very few driver models that predict driver behaviour are 
available in the literature (Silvano et al., 2016). 

The benefits of active safety systems and automated driving systems 
strongly depend on driver acceptance (Adell et al., 2014). They should, 
therefore, be designed to improve driver acceptance while fulfilling 
their purpose of assisting the driver or controlling the vehicle. Adell 
et al. (2014) defined driver acceptance as “the degree to which an in
dividual incorporates the system in his/her driving”. Informed by the 
work of Ljung Aust and Engström (2010) and Summala (2007); Lubbe 
and Rosén (2014) suggested that active safety system activation is only 
relevant when drivers are no longer in their comfort zone—that is, they 
feel discomfort. This idea can be extended to automated driving systems 
as well: drivers may be more likely to accept an automated driving 
system if it stays within the drivers’ comfort zone. In this paper, the 
definition of discomfort is derived from Summala (2007) who theorized 
that discomfort can be assimilated to the concept of risk in the zero-risk 
theory; speculating that drivers control their vehicle to reduce their 
feeling of discomfort (Engström, 2011). Systems such as FCW based on 
measurable metrics (including drivers’ reaction time (Jamson et al., 
2008), time-to-contact (Dagan et al., 2004), or required deceleration for 
avoiding a crash (Kiefer, 2000)) do not explicitly consider how drivers 
perceive the criticality of an event that would require a system inter
vention. It is discussed in the literature that driver acceptance of safety 
systems would be improved if the systems would be able to partly base 
their interventions on the perceived criticality of the event (Brännström 
et al., 2013; Ljung Aust and Dombrovskis, 2013; Ljung Aust et al., 
2015). The sense of criticality of a driving event is part of driver dis
comfort (Summala, 2007). It is, therefore, hypothesized that the in
tegration of a discomfort estimation algorithm in the systems’ decision 
algorithm would increase driver acceptance by making sure that the 
system intervenes in situations in which a (fit-to-drive, attentive) driver 
would experience discomfort. As a result, it is important to better un
derstand how driver discomfort relates to external cues. A previous 
study of driver-cyclist interactions at unsignalised intersections showed 
that the brake-onset response was driven by a metric based on visual 
cues (Boda et al., 2018): the closer in time the vehicle was to the in
tersection when the bicycle appeared, the faster drivers braked. The 
car’s time-to-arrival to the intersection —a continuous metric—(TTA) 
was computed, and the value of TTA at the moment when the bicycle 
starts to be visible (TTAvis) was used in the analyses. The results of Boda 
et al. (2018) could be explained by Markkula et al. (2016)’s accumu
lation model, which states that the more salient a cue is, the faster the 
accumulation of cues, and hence the reaction (i.e. braking or steering), 
will be. The saliency (i.e. criticality) of a cue was suggested to be di
rectly related to the feeling of discomfort. Therefore, one of the hy
potheses of the present study is that the shorter TTAvis, the greater the 
driver’s discomfort. Due to the study design, the variable TTAvis was a 
covariate of the independent variables (i.e., car speed, bicycle speed, 
and bicycle-car encroachment sequence). 

The objectives were: 1) to quantify the effect of car speed, bicycle 
speed, and bicycle-car encroachment sequence on discomfort; 2) to 
quantify the effect of TTAvis on discomfort; 3) to propose a model which 
predicts the level of discomfort and can therefore inform the designs of 
active safety systems and automated driving systems, and improve Euro 
NCAP protocols. 

2. Methodology 

Both simulator and the test-track experiments were conducted fol
lowing the same protocol, to evaluate driver interaction with a cyclist in 
a crossing scenario. The former was carried out in a fixed-base simu
lator at SAFER, Gothenburg (Sweden) while the latter was carried out at 
Autoliv, in Vårgårda (Sweden). Information about the discomfort ex
perienced by the participants was collected with questionnaires. Before 
carrying out the experiments, an ethical approval application was sent 
to the ethical review board of Gothenburg (Etikprövningsnämnden, Dnr 
146-16). The ethical review board did not raise any ethical concerns 
about the study. 

2.1. Participants 

Ninety-one participants, who were older than 25 years and had a 
valid driver license, participated in the study: 47 in the simulator ex
periment and 44 in the test-track experiment. In the simulator experi
ment, the participants were recruited through advertising flyers in 
public places (i.e. supermarkets and parking lots) and through a mailing 
list. In the test-track experiment, the participants were recruited 
through an internal mailing list at Autoliv, Vårgårda. The data collected 
for nine participants in the simulator experiment, and one participant in 
the test-track experiment, were excluded from the analyses because 
these participants felt motion sick or failed to follow the instructions. 
The participants in the simulator experiment had an average age of 40.6 
years (standard deviation; SD = 13.1), and 37.0 % were female. 
Similarly, the average age of the participants in the test-track experi
ment was 41.9 years (SD = 10.8), 32.6 % of them were female. 
Participants in the simulator experiment drove an average yearly 
mileage of 11,500 km (median = 10,000 km, range = [300, 45,000] 
km), and participants in the test-track experiment drove an average 
yearly mileage of 18,000 km (median = 20,000 km, range = [1000, 
35,000] km). Before their participation, each volunteer had to sign a 
consent form which explained the reason of the study, the potential 
risks, and the participants rights; for instance, participants were in
formed that they could stop the experiment at any time without giving 
any justification. 

2.2. Study setup 

2.2.1. Scenario layout 
In both experiments, participants started to drive through an in

tersection from a distance of 180 m and interacted with a bicyclist 
entering the intersection from the right side (Fig. 1). A stationary car 
was placed 30 m away from the intersection in the opposite lane to 
simulate oncoming traffic. Participants were instructed to drive and 
behave as they would in normal traffic, and a speed limiter was used to 
ensure that the instructed speed was respected. 

2.2.2. Independent variables 
For each trial, the participants drove through the intersection with a 

velocity (Vcar) of either 30 or 50 km/h, depending on the trial. They 
reached the instructed speed before interacting with the bicycle, which 
had a set speed (Vbicycle) of 10 or 20 km/h. Three bicycle-car en
croachment sequences were used during the experiment: 1) the bicycle 
clears the intersection before the car, 2) the bicycle is in a 50 %-overlap 
with the car’s front bumper, and 3) the car clears the intersection before 
the bicycle. The continuous variable Latarr was used in the analyses to 
describe the bicycle-car encroachment sequence. Latarr corresponds to 
the projected lateral distance between the bicycle and the car when the 
car reaches the intersection (negative values when the bike is at the left 
side of the car, positive values when located at the right). 

2.2.3. Test environments 
The fixed-base simulator used in the simulator experiment 

C.-N. Boda, et al.   Accident Analysis and Prevention 146 (2020) 105550

2



comprised three screens covering about 150 degrees of the field of view, 
and a Logitech G27 steering wheel with pedals. The virtual environ
ment was modelled as closely as possible to the environment of the test- 
track experiment. The cyclist model was created with MakeHuman and 
animated together with the bicycle model with Blender 3D. The whole 
simulation was generated by OpenDS, an open-source driving simulator 
software. (Detailed information on the experiments’ setup can be found 
in Boda et al. (2018)). The data collected in both experiments included 
the car’s position and speed and the gas and brake pedals’ positions, as 
well as the position and speed of the bicycle. 

2.2.4. Experimental protocol 
The experiments consisted of 20 trials, 12 trials corresponding to a 

full factorial design with two levels for Vbicycle, two levels for Vcar, and 
three levels for bicycle-car encroachment sequence. For these 12 trials, 
four trials were added in which the bicycle braked before entering the 
intersection to minimize the participants’ expectancy that the cyclist 
would always cross the road. Four empty—no bicycle crossing—trials 
were also added to reduce expectancy. In the simulator experiment, a 
surprise trial was added as the 21 st trial: a bicyclist appeared at the last 
moment when the drivers drove back through the intersection at the 
end of the experiment. In the simulator and test-track experiments, all 
participants started with a test drive that lasted about 5 min and fin
ished with an empty trial. The order of all trials, apart from the empty 
trials (and the surprise trials in the simulator experiment), were ran
domized (Fig. 2). 

Before starting the experiment, participants were informed that they 
will drive multiple times through the intersection at different speeds 
and that a cyclist could cross their path. They were asked to drive and 

behave as they would normally do on real roads. 
After each trial, the participants reported their discomfort on a 7- 

point Likert scale from 1 (no discomfort) to 7 (maximum discomfort). 
This question was followed up by additional questions, to understand 1) 
whether drivers understood the discomfort scale and 2) what para
meters played a role in the scoring. The additional questions were used 
in the present study to filter out the data in which the participants may 
have misunderstood the discomfort scale, or may have experienced 
discomfort from a source other than the actual driving scenario (e.g., 
stress due to being observed, motion sickness, etc.). 

2.3. Data analyses 

The trials derived from the full factorial design (12 per participant) 
were analysed. The SIM and TT datasets include these trials for all 
participants in the simulator and test-track experiments, respectively. 
An additional dataset, called SIMST, included the same trials as the SIM 
dataset and the surprise trial for all participants (i.e. 21st trial in Fig. 2). 
In this section, the cumulative link mixed models (CLMM) are in
troduced, followed by the description of the analyses of 1) the effect of 
the controlled variables (speeds and bicycle-car encroachment se
quence) on discomfort, 2) the effect of TTAvis on discomfort, and 3) the 
prediction performances of the models. 

2.3.1. Cumulative link mixed models 
The two CLMMs described in this paper explored the effect of dif

ferent variables on discomfort: the first considered the three controlled 
variables, and the second considered TTAvis. They are described in more 
detail below. The fit of CLMMs was done with the R-package “ordinal” 

Fig. 1. Experiment layout: the stationary car is 
dark grey, the driven car is orange, and the 
bicycle robot is purple. Arrows show the di
rection of travel of the car driven by the parti
cipants and the bicycle robot (For interpretation 
of the references to colour in this figure legend, 
the reader is referred to the web version of this 
article). 

Fig. 2. Schematic representation of the order of 
trials in the experiments. 
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(Christensen, 2015). The CLMMs are an extension of the general linear 
mixed effect model, which analyses the effect of fixed and/or random 
effects on ordinal data, using logit as the link function (Agresti, 2013) 
(Eq. (1)). 

=logit X log X
X

[ ]
1 (1)  

If Yit is the observation t in cluster i of the ordinal response, the 
corresponding CLMM can be written as in Eq. (2). Let denote a vector 
of fixed effects, ui a vector of random effects for cluster i, and j a value, 
the cut-point, that represents the intercept dependent on the category j. 
Additionally, xit is a column vector of explanatory variables for the 
observation t in cluster i, and zit is a column vector of scaling para
meters of the random effects for the observation t in cluster i. J corre
sponds to the number of categories of the response variable (i.e., in the 
present study J = 7 corresponding to the seven levels of discomfort 
score). The variability of the random effects follows a normal dis
tribution N (0, ) centred on zero with variance Σ; CLMM estimates this 
variance for each random effect. 

= = …P Y j u x z u j Jlogit[ ( )] , 1, , 1it i j it
T

it
T

i (2)  

In this paper, the response (discomfort score) ranged from 1 to 7. 
The CLMMs were used to estimate the effect (i.e., β) of the variables of 
interest (i.e., xit) on the discomfort score. In the analysis presented in 
the next section, the random effect due to the subjects was estimated 
(i.e., ui) to account for the variability between participants. Since only 
one random effect was studied, the cluster i corresponds to the set of 
observations related to the participant i (i taking the value from 1 to the 
number total of participants included in the analysis). 

In the analysis, the odds ratios (OR), easily derivable from CLMMs, 
were used to interpret the results. The odds of observing lower scores 
can be calculated from the fixed effect’s estimate as in Eq. (3) (see 
(Christensen, 2015). If the estimated OR is bigger than one, it means 
that the (fixed) effect increases the odds of having a lower score. If the 
predictor associated with the fixed effect of interest is continuous, the 
OR will be expressed by one unit of this predictor. Note that to estimate 
the OR when passing from the value x1 to the value x2 of a continuous 
predictor, the OR should be computed as in Eq. (4). 

=OR exp( ) ( )i i (3)  

× = ×OR x x x x(( ) ) exp(( ) )i i2 1 1 2 (4)  

2.3.2. Effect of controlled variables on discomfort score 
For each experiment, the effects on discomfort score of the speeds 

(Vbicycle and Vcar) and the car-bicycle encroachment sequence (Latarr) 
were estimated. The estimates were devised by fitting a CLMM in
cluding one random effect on the cut-points/intercept; subject. This 
variable corresponds to each individual in the experiment. Including 
this random effect means the study can estimate the variability between 
subjects. The formula describing this CLMM is shown in Eq. (5). This 
model, denoted CLMM(Vbicycle, Vcar, Latarr), was fitted to the SIM, 
SIMST, and TT datasets. 

=

= …

P discomfort j u
V
V

Lat
t

j

logit[ ( )] subjec

, 1, , 6

it it j
bike
car
arr it

T

i

(5)  

In this expression, is a 3-element vector that includes an estimate 
of each fixed effect. 

2.3.3. Effect of TTAvis on discomfort score 
The effect of the visual-cue-based variable, TTAvis, on discomfort 

scores was analysed by fitting a CLMM, defined in Eq. (6). The random 
effect due to subject (the variability between participants) was included 
in the model. This model, denoted CLMM(TTAvis), was fitted to the 
datasets from SIM, SIMST, and TT. 

=
= …

P discomfort j u A subject
j

logit[ ( )] TT
, 1, ,6

it it j vis iit

(6)  

In this expression, is a 1-element vector that includes an estimate 
of the sole fixed effect (TTAvis). 

2.3.4. Estimation of prediction accuracy of the cumulative link mixed model 
The prediction accuracy of each CLMM was evaluated through 

cross-validation. This method is not straightforward for non-linear 
mixed effects models such as CLMM, compared to models with only 
fixed effects (Colby and Bair, 2013), so the following process was used 
to account for the random effect in each model. First, the sampling 
always included data from each of the participants. Let n be the number 
of trials per participant; the fit was made using k trials per participant, 
and the model was used to predict the remaining n-k trials. The Monte 
Carlo method was applied to study the variability of the prediction 
accuracy estimation. The k trials per participants used for fitting the 
models were randomly sampled without replacement; this was iterated 
200 times for each k. To study the effect of the number of trials used for 

Table 1 
Example of a confusion matrix; cij represents the number of occurrences of the pair (i,j) for 
predicted score (i) and observed score (j).   
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fitting the models, the value of k ranged from two to 11 for the SIM and 
TT datasets, and from two to 12 for the SIMST dataset. 

For each iteration for each k value, a confusion matrix (Table 1) was 
produced. Hence, for each k value, 200 confusion matrices were pro
duced. The number of correct predictions (i.e., when the predicted 
score is equal to the observed score) will be shown on the diagonal of 
the confusion matrix (i.e. cii, where i = [1, …, 7]). For a given iteration 
t, the overall accuracy (Acc) of the model can thus be defined as the 
ratio of the sum of the elements on the diagonal over the sum of all the 
elements in the matrix (Story and Congalton, 1986); see Eq. (7). The 
value for Acc was calculated for each confusion matrix for each k-value 
step. The average values of Acc for each k value, together with a one- 
standard-deviation corridor, were plotted for CLMM(TTAvis) for each 
dataset (i.e. SIM, SIMST, and TT). 

= =

= =

Acc t
c t

c t
( )

( )
( )

i ii

j i ij

1
7

1
7

1
7

(7)  

Finally, the confusion matrices for each dataset at the last k-value 
(i.e. k = 11 for SIM and TT, and k = 12 for SIMST) were reported to 
illustrate the performances of the models at each observed score. 

3. Results 

3.1. Effect of controlled variables on discomfort score 

The effect of speeds (i.e. Vbicycle and Vcar) and the bicycle-car en
croachment sequence (Latarr) on the discomfort score rating was 

estimated using the CLMM described in Eq. (5). The observed dis
comfort scores per variable in each experiment are displayed in Fig. 3: 
the boxplots show the distributions of Latarr for each level of discomfort. 
As the levels of Vbicycle or Latarr increased, the discomfort scores were 
likely to be higher. For higher car speed (Vcar), the discomfort scores 
were only slightly higher. Finally, when the variable Latarr was closer to 
zero and grew positive, the discomfort scores were higher. This may be 
explained by the fact that when Latarr was closer to zero there was 
greater potential for a collision (the car is more likely to crash into the 
bicycle); additionally, when Latarr was positive, there was potential for 
a different collision, since the car has already entered the intersection 
(i.e. the bicycle would collide with the car laterally). 

In this analysis, the random effects induced by the variability be
tween participants were included. Fig. 4 shows, for each experiment, 
the frequency of each observed discomfort score per participant. The 
variability between participants between the two experiments seems to 
be of similar magnitude. 

The results of CLMM(Vbicycle, Vcar, Latarr) for SIM and TT are re
ported in Table 2, and in Table 3 for SIMST. The first observation is that 
all the estimates for SIM, SIMST, and TT were statistically significant 
(p < 0.05). Additionally, the estimates of the fixed and random effects 
are of similar size across experiments. 

The OR results for the fixed-effects estimates suggest that the effects 
from Vbicycle and Latarr, but not Vcar, were substantial. The OR of having 
a higher discomfort score when increasing Vbicycle by 1 km/h was 1.23 
for SIM, 1.22 for SIMST, and 1.28 for TT. Similarly, the OR of having a 
higher discomfort score when increasing Latarr by 1 m was 1.36 for SIM, 
1.15 for SIMST, and 1.32 for TT. For Vcar, the odds ratio was 1.02 for 

Fig. 3. Distributions of discomfort scores for the controlled variables (Vbicycle, Vcar, and Latarr). Stacked histograms were used for the grouped variables Vbicycle and 
Vcar, and horizontal boxplots were used for the continuous variable Latarr. 
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SIM, 1.03 for SIMST, and 1.02 for TT when increasing Vcar by 1 km/h. 
Additionally, the variance due to the participant (shown by the 

random effect) supports what is seen in Fig. 4—that the variability 
between participants in each experiment, though large, was comparable 
between SIM and TT. However, the variability between participants for 
SIMST was smaller than for SIM or TT, which may be due to the fact 

that in the surprise trials the participants met their physical limits when 
reacting to a threat. 

3.2. Effect of TTAvis on discomfort score 

The effect of TTAvis, β(TTAvis), was estimated using CLMM(TTAvis) 
as described in Eq. (6), including the random effect due to the varia
bility between participants. The results of the CLMM fits are summar
ized in Table 4 for SIM and TT, and in Table 5 for SIMST. The order of 
magnitude of each estimate of the cut-points, fixed effects, and random 
effects is similar across the three fits. 

The estimates for β(TTAvis) are -0.8696, -0.9537, and -0.7376 for 
SIM, SIMST, and TT, respectively. When the variable TTAvis decreases 
by one unit, the OR of having a higher discomfort score is 2.1 for SIM, 
2.6 for SIMST, and 2.4 for TT. 

The estimated variability between participants for each dataset is 
about 4.8 for SIM, 4.2 for SIMST, and 4.0 for TT. These three estimates 
are similar, suggesting again that the variability between the partici
pants in the SIM and TT experiments are comparable. 

Fig. 5 represents the observed discomfort score per participant for 
each dataset on the left-hand side; the right-hand side graphically il
lustrates the three fitted CLMMs for SIM, SIMST, and TT (see Tables 4 
and 5). The graphs show the discomfort score versus a normally- 

Fig. 4. Discomfort scores per participant ordered by participants’ average score.  

Table 2 
Cumulative link mixed models for the simulator (excluding the surprise trial) and the test track.            

Simulator Test track 

Variables Estimate SD p-value Estimate SD p-value 

Cut-points θ1 2.586 0.625  2.329 0.596   
θ2 4.618 0.656  4.197 0.616   
θ3 6.326 0.687  5.840 0.639   
θ4 7.852 0.722  7.419 0.674   
θ5 9.074 0.764  9.097 0.730   
θ6 10.642 0.851  11.047 0.857  

Fixed effects β(Vbicycle) 0.204* 0.019  <  0.001 0.249* 0.023  <  0.001  
β(Vcar) 0.023* 0.010 0.0177 0.023* 0.010 0.0199  
β(Latarr) 0.303* 0.035  <  0.001 0.279* 0.023  <  0.001 

Random effects subject 4.645 2.155  4.405 2.099  

Note: For random effects, Estimate corresponds to the estimate of the random effect variance. The star (*) represents the fixed effects that were statistically significant 
(p < 0.05). SD stands for standard deviation.  

Table 3 
Cumulative link mixed model for the simulator (including the surprise trial).       

Variables Estimate SD p-value 

Cut-points θ1 2.795 0.581   
θ2 4.556 0.609   
θ3 5.994 0.635   
θ4 7.170 0.658   
θ5 8.202 0.686   
θ6 9.359 0.727  

Fixed effects β(Vbicycle) 0.197* 0.018  <  0.001  
β(Vcar) 0.029* 0.009 0.002  
β(Latarr) 0.138* 0.026  <  0.001 

Random effects subject 3.201 1.789  

Note: For the random effects, E(var.) is the estimate of the variance and E(std.) 
the estimate of its corresponding standard deviation. The star (*) represents the 
effects that were statistically significant (p < 0.05).  
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distributed participants effect (Y-axis) and TTAvis (X-axis). 
For the three fitted CLMMs, the lower the TTAvis, the more likely a 

high discomfort score; for the range of 3.5–7.0 s, the probabilities of 
getting discomfort scores of 1, 6, or 7 are similar. For the other scores, it 
is more likely that higher scores would be chosen in TT than in SIM or 
SIMST for a given value of TTAvis. The CLMM fit for SIMST, which 
(unlike SIM) includes the surprise trials, is in line with the fit for SIM. 

3.3. Estimation of prediction accuracy of the cumulative link model with 
mixed effects 

The prediction accuracy of the CLMMs in Eqs. (5) and (6) was 
compared. The estimates of the prediction accuracy for each model and 
for each dataset are plotted in Fig. 6. The graph shows that the pre
diction accuracies seem to be similar, independent of the model or the 
dataset. Additionally, as one can expect, the more trials used for the fit, 
the higher the overall accuracy. The highest estimates of the overall 
accuracy were just below 50 %. It should be noted that the two models 
were similar in terms of accuracy, although the model CLMM(Vbicycle, 
Vcar, Latarr) included three predictors while CLMM(TTAvis) had only 
one. Finally, it can also be noted that the presence of the surprise trials 
did not seem to improve the model accuracy; however, the results 
presented below highlight the advantages of including them. 

The confusion matrices obtained at the last point of the cross-vali
dation process are presented in Fig. 7; the six confusion matrices cor
respond to the right endpoint of the six average curves of Fig. 6. As 
indicated by Fig. 6, the correct predictions were not the most frequent; 
none of the diagonals are a perfect diagonal with the lightest colour, 
which would be the result if the overall accuracy were higher. The 
light-coloured cells are located higher above the diagonal as the ob
served score increases. That is, for a higher observed score the models 
are more likely to predict a lower discomfort score. Comparing the 
confusion matrices for the three datasets suggests that the models using 
TT follow the diagonal better than the others. For a given observed 

score, this means that the models from TT were more likely to predict a 
score just below the observed score by one increment. The models from 
SIM and SIMST seem more likely to give a score below or equal to 4. 
Nonetheless, it has to be noted that the surprise trials (i.e. comparing 
SIMST to SIM), improved the accuracy of CLMM(TTAvis) at higher ob
served discomfort scores (see Fig. 7). 

Finally, the overall accuracy for each confusion matrices (Fig. 7) 
when a difference of one unit between the observed and the predicted 
scores is considered as correct prediction were reported on Table 6. 

4. Discussions 

Two CLMMs were presented, one including three controlled vari
ables (Vbicycle, Vcar, and Latarr) and the other including only one variable 
(TTAvis). Remarkably, the models were comparable for the datasets 
SIM, SIMST, and TT: the CLMM fits were similar in terms of their fixed 
effect estimates as well as their random effect estimates. In addition, the 
variability between participants in rating discomfort (see Fig. 4) was 
similar for the three datasets, which suggests that the two participant 
populations behaved similarly across experiments. In other words, the 
use of a fixed-base simulator—an inexpensive setup compared to a test- 
track setup— may be suitable to analyse driver discomfort in similar 
situations. 

The model including the controlled variables showed that when the 
speeds increased, or when Latarr decreased towards zero, participants 
were likely to report higher discomfort scores. This observation was 
made independently of the experimental setup and is explained by 
higher speeds and Latarr close to zero implying a more critical situation. 
The second model, based only on TTAvis, showed that the more critical 
the situation was (i.e. lower values of TTAvis), the more likely drivers 
reported high discomfort (as hypothesised in the introduction). TTAvis 

and the three controlled variables Vbicycle, Vcar, and Latarr are related via 
a non-linear relationship; hence, the two studied CLMMs were expected 
to give similar results. 

These models were designed to predict individual discomfort scores; 
however, their overall accuracy is roughly between 40 % and 50 % 
when looking at the number of exact predictions. It was shown that 
when increasing the tolerance of the prediction (i.e. considering a 
predicted score that falls within a -1/+1 range of the observed score as 
correct), the overall accuracy was around 80 %. Therefore, most of the 
time, the models predict a discomfort score that is of the order of 
magnitude of the one experienced by drivers, enabling potential active 
safety systems and automated driving systems algorithms to estimate at 
what level drivers’ discomfort is. Noteworthy, the confusion matrices 
(Fig. 7) showed that the models were more accurate at lower scores 
than at higher scores, mostly because of the small number of trials with 
high scores compared to the ones with low scores. Furthermore, the 
results showed that CLMM(TTAvis) may be more appropriate than 
CLMM(Vbicycle, Vcar, Latarr) as a discomfort prediction algorithm in ac
tive safety systems or automated driving systems, because the former is 

Table 4 
Cumulative link mixed models for the simulator (excluding the surprise trial) and the test track.            

Simulator Test track 

Variables Estimate SD p-value Estimate SD p-value 

Cut-points θ1 −5.898 0.548  −5.848 0.521   
θ2 −3.813 0.494  −4.112 0.487   
θ3 −2.058 0.462  −2.572 0.465   
θ4 −0.547 0.452  −1.108 0.457   
θ5 0.646 0.469  0.442 0.472   
θ6 2.162 0.566  2.285 0.595  

Fixed effect β(TTAvis) −0.870* 0.071  <  0.001 −0.738* 0.062  <  0.001 
Random effects subject 4.755 2.181  4.006 2.002  

Note: For random effects, Estimate corresponds to the estimate of the random effect variance. The star (*) represents the fixed effects that were statistically significant 
(p < 0.05). SD stands for standard deviation.  

Table 5 
Cumulative link mixed model for the simulator (including the surprise trial).       

Variables Estimate SD p-value 

Cut-points θ1 −6.310 0.516   
θ2 −4.303 0.468   
θ3 −2.600 0.438   
θ4 −1.215 0.427   
θ5 −0.025 0.434   
θ6 1.284 0.475  

Fixed effects β(TTAvis) −0.954* 0.068  <  0.001 
Random effect subject 4.159 2.039  

Note: For the random effects, E(var.) is the estimate of the variance and E(std.) 
the estimate of its corresponding standard deviation. The star (*) represents the 
effects that were statistically significant (p < 0.05).  
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based on only one variable, necessitating fewer sensors. Finally, be
cause the models are driver-dependent, an active safety system or au
tomated driving system implementing it would have to be driver- 
adaptive and learn drivers’ feeling of discomfort over time. 

The results of CLMM(TTAvis) suggest that the discomfort in this 
scenario might be mainly driven by visual cues rather than deceleration 
cues. This is quite significant when it comes to automated driving 
systems, because it is likely that driver-passengers in a self-driving car 
will feel more discomfort than when driving themselves. Therefore, it is 
suggested that automated driving systems process visual information to 
avoid entering situations where drivers would feel discomfort. A 

previous paper (Boda et al., 2018) showed that drivers’ braking reac
tions were driven by the same visual cue-based metric used by the 
model (TTAvis). The relationship between feelings of discomfort and 
braking reaction has been suggested in the literature (Ljung Aust and 
Engström, 2010); if the discomfort is high it is quite likely that drivers 
will react by braking or steering, acting as fast as the situation requires 
it. Therefore, it is suggested that automated driving systems not brake 
later than drivers would normally brake themselves, and that they try to 
avoid situations where drivers would normally feel high discomfort. 
The latter suggestion has notable implications for driver acceptance. 

In addition to providing recommendations for automated driving 

Fig. 5. Left-hand side: scatter plots show the distribution of discomfort scores per participant versus TTAvis. Right-hand side: discomfort score with highest prob
ability according to the fitted cumulative link mixed models against TTAvis and the percentile of participants’ random effect. Top: SIM and SIMST, bottom: TT. 
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system acceptance, these results could also apply to improve the ac
ceptance of active safety systems such as FCW. The decision algorithms 
used to trigger warnings could benefit from a model such as CLMM 
(TTAvis) (Ljung Aust and Dombrovskis, 2013). Depending on the time- 

to-arrival and the driver, the collision warning could be advanced to 
avoid warning the driver too late (creating feelings of great discomfort, 
incompatible with the driver’s feeling of safety) or delayed to avoid a 
warning that is too early (creating feelings of annoyance at the system, 

Fig. 6. Estimates of prediction accuracy versus 
the number of trials per participant used for 
fitting the CLMMs, with controlled variables as 
predictors (left) and TTAvis as predictor (right). 
The estimates of the accuracy together with 
their respective one-standard-deviation (1-SD) 
corridor are plotted for each dataset (SIM, 
SIMST, and TT). 

Fig. 7. Confusion matrices for CLMM(Vbicycle, Vcar, Latarr) (top row) and CLMM(TTAvis) (bottom row) for each dataset (SIM, SIMST, and TT). The matrices are the 
result of the predictions made when fitting the models with 11 trials per participant for SIM and TT and 12 for SIMST. The trials used for the fit were randomly drawn 
from each of the 200 Monte Carlo iterations. A greyscale represents the frequency of occurrence for each pair (predicted score, observed score); the lighter the colour, 
the more frequent the pair’s occurrence. 
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because discomfort is still minimal). However, autonomous emergency 
braking systems that are activated when the situations become too 
critical would not benefit from delaying or advancing their inter
vention—because such systems are already designed to intervene only 
in critical situations, when the driver input is not sufficient to avoid a 
crash. 

The following paragraph demonstrates how the discomfort model 
can be applied to improve active safety systems decision-making algo
rithms and which impact it has on the design of active safety system 
assessment programs such as the Euro NCAP. The experimental pro
tocol in the present paper was derived from a scenario that has been 
added to the 2018 Euro NCAP evaluation protocol (Euro NCAP, 2018). 
In this scenario, only the performance of AEB is evaluated. The fol
lowing specifications are used in the scenario: a constant bicycle speed 
of 15 km/h (the bicycle appears from the near side), car speed eval
uated from 20 km/h to 60 km/h in 5 km/h increments, the bicycle and 
the car are controlled to achieve a 50 %-overlap collision if the car 
maintains its initial speed, and the bicycle starts to be visible approxi
mately 4 s before the car reaches the collision point (i.e. TTAvis = 4.0 
s). To achieve the maximum score, the AEB in the tested car should 
avoid collisions with the bicycle for car speeds up to 40 km/h, and the 
system should reduce the collision speed by 20 km/h when the car’s 
speed (before activation) is 40 km/h–60 km/h (Euro NCAP, 2018). 
Because the AEB are designed to intervene at the last moment, the use 
of the discomfort model presented in the present study is limited. 
However, for a FCW (activation times from TTA = 1.07 s for a car 
speed of 20 km/h to TTA = 1.97 s for 60 km/h, see Appendix A), the 
use of the discomfort model would be possible and relevant. Assuming 
that the warning issued by the FCW would make the driver perceives 
the cyclist, the value of 1.97 s TTA corresponds to a low-critical si
tuation in which around 50 % of drivers experienced a discomfort lower 
than 4 (Fig. 5). This means that most drivers in this situation would 
prefer a delayed warning (a shorter TTA). This finding refines the 
earlier recommendation for FCW activation at TTA between 1.8 s and 
2.6 s based on observed brake onset (Boda et al., 2018). With this re
finement, we believe using FCW in cyclist crossing situations is feasible 
and should therefore be considered by Euro NCAP. 

In these experiments, participants were asked to execute a single 
task: driving through an intersection. When the cyclist appeared, the 
participants immediately saw it. The models presented here assume 
drivers to be attentive. Future work should investigate the effect of 
cognitive load and glance behaviour on discomfort. Furthermore, the 
discomfort scores given by drivers were most likely generated by the 
criticality of the trials. The discomfort model does not consider any 
other type of discomfort—caused by, for example, unexpected decel
erations (car brakes faster than expected, or collides with an obstacle or 
another road user) or bad vehicle ergonomics. Also, the results suggest 
that discomfort is related to the moment when the bicycle appears (i.e. 
visual cues); they do not elucidate the extent to which discomfort may 
be induced by the predicted required deceleration, or by human in
stinct. Future investigations should compare the discomfort felt by ex
perienced drivers to that felt by completely inexperienced drivers, to 
determine what role experience plays in discomfort levels (analogous to 
the experiment carried out by Benderius (2014), comparing children 
with adults driving in a driving simulator). 

5. Conclusions 

Visual cues from a fixed-base simulator and a combination of visual 
and deceleration cues from a test track resulted in similar levels of 
discomfort in drivers approaching an intersection while a cyclist was 
crossing their path. This result supports the ecological validity of fixed- 
base simulators as a means to model driver discomfort for the design of 
active safety intervention. 

In both the test track and simulator experiments, participants’ dis
comfort seemed to depend on the time left to reach the intersection at 
the moment in which the cyclist appeared. Although a combination of 
bicyclist speed, car speed, and lateral distance may also be used to 
explain discomfort, it is more likely that the timing of the cyclist’s ap
pearance is indeed the most important factor for the feeling of dis
comfort. 

This study suggests that the activation threshold within active safety 
systems—including automated driving systems—should be adaptive 
and include perceived discomfort. In other words, a discomfort model 
should be included in the threat assessment and decision making of 
systems like FCW. The discomfort model would support the traditional 
kinematics models by adapting the timing of the safety system’s acti
vation to the level of discomfort that may be experienced by drivers 
under normal circumstances (e.g. when the driver is attentive). Thus, 
such a model would favour earlier interventions when acceptance may 
be higher (due to greater discomfort) and avoid earlier interventions 
when the situation is perceived as less critical and driver discomfort is 
expected to be lower. 

The results presented in this paper apply to a specific intersection 
scenario, in which a cyclist crosses the path of an attentive driver ap
proaching an intersection. Generalization to other scenarios (including, 
for example, other road users or impaired drivers) requires further 
work. 
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Appendix A 

For demonstration purposes, activation times of an AEB and a FCW 
were evaluated in the Euro NCAP CBNA-50 scenario. The implemented 
algorithms were modelled according to Section III-C in the paper by  
Brännström et al. (2010). Their model was designed to avoid imminent 
collisions, rather than merely reducing collision speed by 20 km/h for 
higher car speeds than 40 km/h (as the Euro NCAP rating requires). 
Some simplifications were made; only the avoidance manoeuvre by 
deceleration was implemented, with an infinite jerk and a maximum 
deceleration threshold of 1.0 g for AEB and 0.5 g for FCW. The AEB 
deceleration threshold was based on the limits of vehicle dynamics, 
while the FCW threshold was based on a deceleration level considered 
comfortable for drivers (Brännström et al., 2014). In the Euro NCAP 
scenario, the modelled AEB—activated at the last moment—would be 
triggered at around TTA = 0.28 s for a car speed of 20 km/h and at TTA 
= 0.84 s for 60 km/h. The modelled FCW would be activated at TTA = 
1.07 s for a car speed of 20 km/h and at TTA = 1.97 s for 60 km/h. 
These TTA values incorporate an average driver’s reaction time of 0.5 s 
in critical situations (Boda et al., 2018). 

Table 6 
Accuracies when a tolerance of -1/+1 score is included for CLMM(Vbicycle, Vcar, 
Latarr) and CLMM(TTAvis).       

SIM SIMST TT  

CLMM(Vbicycle, Vcar, Latarr) 85 % 79 % 85 % 
CLMM(TTAvis) 86 % 83 % 84 %    
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Appendix B. Supplementary data 

Supplementary material related to this article can be found, in the 
online version, at doi:https://doi.org/10.1016/j.aap.2020.105550. 
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