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ABSTRACT To build transcription regulatory networks, transcription factor binding
must be analyzed in cells grown under different conditions because their responses
and targets differ depending on environmental conditions. We performed whole-
genome analysis of the DNA binding of five Saccharomyces cerevisiae transcription
factors involved in lipid metabolism, Ino2, Ino4, Hap1, Oaf1, and Pip2, in response to
four different environmental conditions in chemostat cultures, which allowed us to
keep the specific growth rate constant. Chromatin immunoprecipitation with lambda
exonuclease digestion (ChIP-exo) enabled the detection of binding events at a high
resolution. We discovered a large number of unidentified targets and thus expanded
functions for each transcription factor (e.g., glutamate biosynthesis as a target of
Oaf1 and Pip2). Moreover, condition-dependent binding of transcription factors in
response to cell metabolic state (e.g., differential binding of Ino2 between fermenta-
tive and respiratory metabolic conditions) was clearly suggested. Combining the
new binding data with previously published data from transcription factor deletion
studies revealed the high complexity of the transcriptional regulatory network for
lipid metabolism in yeast, which involves the combinatorial and complementary reg-
ulation by multiple transcription factors. We anticipate that our work will provide in-
sights into transcription factor binding dynamics that will prove useful for the un-
derstanding of transcription regulatory networks.

IMPORTANCE Transcription factors play a crucial role in the regulation of gene ex-
pression and adaptation to different environments. To better understand the under-
lying roles of these adaptations, we performed experiments that give us high-
resolution binding of transcription factors to their targets. We investigated five
transcription factors involved in lipid metabolism in yeast, and we discovered multi-
ple novel targets and condition-specific responses that allow us to draw a better
regulatory map of the lipid metabolism.

KEYWORDS ChIP-exo, transcriptional regulatory network, environmental response,
lipid metabolic map, novel targets

Cellular functions are reprogrammed in response to environmental changes, and
transcription factors (TFs) play a key role in this regulation. The complexity of

transcriptional regulation in eukaryal cells and the lack of knowledge regarding the
structure of regulatory networks, however, limit understanding of how this type of
reprogramming occurs. Approximately 200 sequence-specific TFs have been charac-
terized or predicted in the model organism Saccharomyces cerevisiae (1). In transcrip-
tional regulatory systems of low connectivity (such as that in Escherichia coli [2–4]) or
in systems that have hierarchical structures, TF deletion studies have proved to be
useful, as the resulting phenotype corresponds well with the function of the deleted TF.
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However, in S. cerevisiae where a hierarchical structure of transcription factors does not
exist due to the complex regulation with internal loops where TFs are controlling each
other (5) and where genes are regulated by multiple TFs, deletion of individual TFs
followed by genome-wide transcription analysis has not allowed us to identify the full
function of TFs (6). To better resolve these combinatorial regulations and internal
regulatory loops, it is necessary to identify the binding sites of transcription factors at
a high resolution and their changes in response to environmental conditions. Here we
demonstrate that by using this approach, it is possible to reconstruct a transcriptional
regulatory network for lipid metabolism in yeast by mapping binding of five TFs that
are involved in regulation of lipid metabolism: Ino2, Ino4, Hap1, Oaf1, and Pip2.

To generate a genome-wide lipid metabolic transcriptional regulatory network, we
used chromatin immunoprecipitation with lambda exonuclease digestion (ChIP-exo)
(7), followed by high-throughput sequencing, to map binding of these five TFs. Earlier
studies on the genome-wide binding of these TFs were done mainly in rich media using
chromatin immunoprecipitation with microarray technology (ChIP-chip) (8), which does
not allow the precise binding sites to be mapped or evaluation of conditional binding
under different conditions. The use of different culture conditions to map differential
binding of TFs has been suggested (9), and recently, we showed that this allowed the
identification of new functions of the transcription factor Cst6 (10).

Ino2, Ino4, Hap1, Oaf1, and Pip2 all play important roles in the lipid metabolic
network of S. cerevisiae. Ino2 and Ino4 are paralogues that belong to the basic
helix-loop-helix (bHLH) family and form a heterodimer that is involved in the phos-
pholipid biosynthetic pathway (11). The YeTFaSCo database gives the consensus
DNA-binding motif for the two TFs as CACATGC (12), which is also called the UASINO

motif (13). Single deletions of either Ino2 or Ino4 yielded a decrease in phospholipid
biosynthesis relative to the wild type, whereas the two regulators also have some
different targets according to the transcriptome analysis (14). Hap1 is a Zn2Cys6 zinc
finger TF that responds to oxygen and heme levels. Heme acts as an activator for Hap1
and the expression of the Rox1 repressor, and together, they form a circuit that
fine-tunes the control of the oxygen-responsive pathways (15). The previously reported
consensus motif for Hap1 is CCGXTAXXXCCG (16). Oaf1 and Pip2 are also C6 zinc finger
TFs involved in �-oxidation and peroxisomal biogenesis, which can act as a het-
erodimer to bind oleate-responsive elements (OREs) (17), but they can also act inde-
pendently of each other (18). The previous reported consensus motif for the Oaf1-Pip2
heterodimer is CGGXXXTX(7–10)CCG (19).

In our study we used chemostat cultures to generate chromatin binding data
because this allows the analysis to be performed under well-controlled growth condi-
tions and operation under different environmental conditions at the same specific
growth rate. Four different limited conditions regarding different nutrition and oxygen
availabilities were used to cover a wide range of different environmental growth
conditions for S. cerevisiae.

RESULTS
Chemostat cultures and ChIP-exo mapping. Strains expressing each of the five

transcription factors (TFs) were constructed to have an in situ C-terminal tandem affinity
purification (TAP) tag to enable immunoprecipitation of the TF. Each strain was cultured
in chemostats with different limiting conditions in biological duplicates: nitrogen
(N-lim), glucose (Glu-lim), glucose and oxygen (Ox,Glu-lim), and ethanol (Et-lim). Sam-
ples from each chemostat experiment were used to cross-link and purify DNA-protein
complexes and digest nucleotides not covered by the cross-linked protein by the
ChIP-exo method. Following release from the DNA-protein complex, the DNA was
sequenced, and the reads were aligned to the reference genome assembly R64-2-1 of
S. cerevisiae S288C. The identified TF-binding events were assigned to the closest gene
and further analyzed for their biological impacts.

ChIP-exo identified high-resolution targets of the five TFs. The binding events
from the ChIP-exo experiments with each TF were analyzed with the peak-finding
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algorithm GEM (20). The identified events were then assigned a binding ratio, which
corresponds to the signal-to-noise ratio (S/N), where the duplication showed a good
correlation (see Fig. S1 in the supplemental material). ChIP-exo identified the binding
positions of the TFs on target promoters with high resolution, which can be visualized
for all five of the studied TFs (Fig. 1A). The reads from all events found were extracted
300 bp before and 300 bp after each event. The events were then aligned at the center
to create a heat map of binding profiles, as shown in Fig. 1B. From these results, it is
observed that the binding profiles of Ino2, Ino4, Oaf1, and Pip2 are narrow, whereas
Hap1 has a broader binding profile. The broader binding of Hap1 seems to be a result
of CCG/GCG-rich regions. Investigating the distribution of binding events on the
promoter regions showed that 60 to 80% of all binding occurs within the 600 bp
upstream of the ATG codon (Fig. S2). By investigating the promoter regions of identified
genes, we found that many promoters have multiple binding sites for one TF (Fig. 1C).
An example of such multiple binding is demonstrated in Fig. 1D, where Ino2 bound to
three sites in the promoter of CHO2. The binding sequences for Ino2 in the CHO2
promoter are not directional, and none of the identified binding sites have the exact
above-mentioned Ino2 consensus motif.

We further compared all the identified targets for each TF (listed in Tables S1 to S5
in Data Set S1 in the supplemental material) to those identified in a previous ChIP-chip
study where yeast was grown unlimited in rich media (9) (Fig. 1E). For Ino2 and Ino4,
we confirmed most of the previously reported targets but also found hundreds of new
targets. For Hap1, 143 targets overlapped with the targets of previous reports in the
literature, although we missed 72 targets that had previously been reported, possibly
due to the different culture conditions used or decreased significance of some peaks
after data treatment (Fig. S3). For Oaf1 and Pip2, only a few targets overlapped with the
previous ChIP-chip data. Oaf1 and Pip2 targets identified earlier by ChIP-chip are,
however, questionable, as they did not identify most of the �-oxidation genes that are
known Oaf1-Pip2-binding targets as evidenced by other studies (21) and our study
(Table S8 in Data Set S1). Of the 85 oleate-responsive elements (OREs) previously
predicted in putative promoter regions (18), 38 were identified to be bound targets of
Oaf1 or Pip2. Combining the binding sites detected by us and the 15 ones identified
previously (22), we expand the bound ORE targets for Oaf1 or Pip2 to 45.

Because all the studied TFs are involved in lipid metabolism, some overlap between
their targets was expected. Specifically, 35 genes were found to show binding of all five
TFs (Fig. 2A), including seven genes involved in lipid metabolism. The overlapping
targets for each condition are displayed in Fig. S4. Some of the shared targets are
displayed in Fig. 2B, which shows the binding of three TFs on the promoter of OLE1
encoding delta-9 fatty acid desaturase. The binding is highly concentrated in the same
region. Looking closer at this region reveals that two binding motifs of Hap1 sur-
rounded the binding sites of Oaf1 and Ino2, constituting a highly optimized region for
responses to different signals, including oxygen levels, fatty acids, and membrane
composition. This region overlaps with a previously reported region that has been
called the fatty acid-responsive element (FAR) (23). With our data, we can now show
which TF is responsible for the FAR. Figure 2B also displays the binding of three TFs on
the promoter of ERG11 encoding sterol 14-demethylase, where the binding sites are
dispersed throughout the promoter region.

New insights into the consensus binding motifs. We studied the motifs of
binding sequences for each TF under each condition using the GEM software and then
the MEME suite. The consensus motifs are displayed in Fig. 3A. For Ino2 and Ino4, the
consensus motif found was CACATGC, which is the previously reported consensus motif
in the YeTFaSCo database (12). The consensus motifs of Hap1 were found to be
variations of the previously reported consensus motif CCGXTAXXXCCG. For N-lim and
Et-lim, CCGXTATXTCC was found to be the consensus motif, and for Ox,Glu-lim and
Glu-lim, the consensus motif was CCGATA. For Oaf1, CGGXXXTAA was found as a
consensus motif under all conditions where the previously reported motif was CCGXXX-
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FIG 1 Identification of direct target genes of TFs by ChIP-exo. (A) Examples of TF-binding sites identified at high resolution. The distribution of 3=-trimmed
sequencing reads mapped to forward (�) and reverse (�) strands of gene promoters are shown. (B) Heat map showing the binding of TFs on all target
regions under the glucose-limited (Glu-lim) condition. Coverage values indicate the counts of reads around the center of binding sites. For each TF, the rows
representing binding events are sorted by S/N ratio and aligned to their centers. (C) Violin plots of each TF and their peak count for each promoter. Most
promoters have one or two binding sites per TF, but there can be even higher numbers. (D) Multiple binding sites of Ino2 on the promoter of CHO2 under
Et-lim condition. Three binding motifs of Ino2 are shown with sequence variations relative to the consensus motif (CACATGC) colored in red. rc, reverse
complement sequence. (E) Comparison of the target genes encoding proteins under four conditions identified in this study and those in the previous
ChIP-chip study with rich media (9). For the ChIP-chip data, genes with P value of �0.01 in the original data set are considered significant targets.
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TXA. For Pip2, the previously reported motif is the same as for Oaf1. Here it was found
that Pip2 has CCGXXXTA as a consensus motif under all conditions but with more
variation at the four to six positions.

We calculated the distribution of binding ratio (S/N) and the number of binding
events identified for each k-mer group in motif discovery. As seen in Fig. 3B (data for
Ino2 at Glu-lim), we could not identify a distinction between 7-mer groups in binding
ratio. There was, however, a preference toward two of the 7-mers, TCACATG and
CACATGC, which account for ~41% of all binding events found. For N-lim, Ox,Glu-lim,
and Et-lim, the two most common 7-mers account for 74%, 38%, and 57% of all binding

FIG 2 Combinatorial binding of TFs on target genes. (A) Venn diagram showing overlap of all the target
genes of the five TFs. (B) Binding of Ino2, Hap1, and Oaf1 on the promoters of OLE1 and ERG11 under
the Glu-lim condition. The distribution of 3=-trimmed sequencing reads mapped to forward (�) and
reverse (�) strands of gene promoters are shown. Yellow triangles indicate putative binding sites of the
corresponding TF according to the known consensus motif.
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events, respectively. Similar trends were observed for all the TFs and their consensus
motif under all conditions.

Condition-dependent binding. The different number of binding targets as well as
altered occupancy levels in response to environmental changes were clearly observed
for the five TFs (Tables S1 to S5 in Data Set S1). We investigated the overlap of gene
targets between the conditions for each TF (Fig. 4A). Some gene targets are common
for all conditions, which could be seen as a “core set” of gene targets. However, the
interesting part is the shift of targets between conditions and thus their response to
environmental changes. While constitutively binding to some targets (e.g., CHO2 for
Ino2 and EEB1 for Pip2), Ino2 and Pip2 bind to additional targets (e.g., PCT1 for Ino2 and
MDH2 for Pip2) only under respiratory metabolic conditions (Fig. 4B), resulting in higher
number of targets under the latter conditions. This connection between metabolic
states and TF binding indicates that the TFs have different biological functions by
altering their targets in response to specific environmental or physiological signals.

One explanation for the differential binding could be different expression levels of
the TFs under different conditions. However, the transcription level of each TF does not
correlate with the number of targets identified for each condition (Fig. S5). This
indicates that the range of targets is highly controlled by several factors such as
posttranslational modifications of TFs and also chromatin structure (such as nucleo-
some occupancy) having an influence on the availability of targets for the TFs. The
binding of Ino2 or Ino4 (Ino2/4) on a hexose transporter gene-enriched region provides

FIG 3 Consensus binding motifs of TFs. (A) Sequence logos of consensus motifs under different conditions. The
motifs were identified using the MEME algorithm. Consensus motifs of the highest score for each TF in the
YeTFaSCo database are shown for comparison. (B) Binding sequences of Ino2 under the Glu-lim condition. Blue
circles show the numbers of binding events containing the indicated specific 7-mer sequence. Box plots show the
binding levels of the events containing the sequence. For binding events containing multiple 7-mer sequences
(e.g., TCACATGC containing both TCACATG and CACATGC), only the 7-mer with the most significant enrichment
was counted.
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some clues for the latter hypothesis. As shown in Fig. 4C, the promoters of hexose
transporter genes HXT3, HXT6, and HXT7 are occupied differently under N-lim and
Glu-lim conditions by Ino4 (similar findings for Ino2 [data not shown]). We overlaid
nucleosome distribution data adapted from reference 24, and even though the culture
conditions are not completely the same in the two studies, the data integration makes
sense from the aspect of glucose supply, and the results are striking. During growth at
2% glucose (glucose fermentation), the chromatin structure at the precise site of Ino2/4
binding is open at the HXT3 site, whereas for HXT6 and HXT7, the chromatin at the
corresponding sites is closed. The opposite behavior can be observed during growth at
0.05% glucose (glucose respiration). This difference in chromatin structure is consistent

FIG 4 Growth condition-dependent binding of TFs. (A) Venn diagram of the TF targets and their overlap
between conditions. Several genes for each TF are independent of the condition; however, many more
genes are condition specific. (B) Differential binding of Ino2 and Pip2 on the promoter regions of specific
target genes under different conditions. Binding ratios with log2 value below 1 are filtered out in data
processing and are not shown. (C) Hexose transporter gene-rich region bound by Ino4 and nucleosomes
under different conditions. For each group of conditions, the distributions of 3=-trimmed ChIP-exo reads
of Ino4 (top plot) and sequencing reads of nucleosome-occupying regions (nucleosome-seq) (bottom
plot [data from reference 24]) are shown. For nucleosome-seq data, cells were cultivated in synthetic
complete medium containing 2% or 0.05% glucose, and DNA regions covered by sequencing reads
indicate nucleosome-occupying regions. Sequence variations of binding sites relative to the consensus
motif of Ino4 (CACATGC) are colored in red. rc, reverse complement sequence.
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with the different binding of Ino2/4 to this region between fermentative and respira-
tory metabolic conditions.

TF coordination of metabolic processes. To investigate the different biological
processes and functions potentially regulated by the TFs, we used genome-wide gene
ontology (GO) sets. For each TF, we ran a gene set analysis using the Piano R package
(25). For input, we used the log2(S/N) values and allowed GO terms that had P values
of �0.01 to be selected as significant reporter terms (Fig. S6). While lipid metabolic
process was confirmed as a significant target of all five TFs that we studied, many new
functions were identified. For Ino2/4, we found that these TFs also bind genes in cell
wall biogenesis and amino acid biosynthesis. The latter function was suggested in our
previous study of INO2- or INO4-dependent genes through transcriptome analysis (14).
Malate metabolism and glutamate biosynthesis, which are tightly connected to fatty
acid utilization (26, 27), were identified as significant target processes of Oaf1 and Pip2.

Condition-dependent functions of the TFs were clearly revealed by the reporter GO
term analysis of target genes. In line with the differential binding described above, Ino2
showed expanded binding under the respiratory metabolic conditions relative to the
two fermentative metabolic conditions (Fig. S6). In addition to phospholipid biosyn-
thesis as a constant target under all four conditions, Ino2 is associated with various
processes, including cell wall biogenesis, methionine biosynthesis, and stress response
under the respiratory metabolic conditions. Compared to Oaf1, the function of Pip2
targets is more affected by the culture conditions, with the highest number of reporter
GO terms obtained under the Et-lim condition.

The differential functions of TFs in regulating specific metabolic processes were
further studied by investigating their targets with binding ratios higher than log2(S/N)
of �1. Figure 5 summarizes the significant target processes related to lipid metabolism

FIG 5 Coordination of lipid metabolism-related processes by TFs. The biological processes reported to have
statistical significance (P value � 0.01) in gene set analysis of target genes with binding ratio log2(S/N) of �1 are
shown. For a TF(s) significantly associated with a certain process, the number of bound genes is shown. A minus
symbol indicates that the process is not significantly reported for the TF under the corresponding condition.
Abbreviations of growth conditions: N, N-lim; E, Et-lim; OG, Ox,Glu-lim; G, Glu-lim.
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obtained for each TF under each condition, where each individual binding target can
be found in Table S9 in Data Set S1. Ino2 and Ino4 bind genes encoding proteins
involved in glycolysis and gluconeogenesis, pathways providing acetyl coenzyme A
(AcCoA) for both fatty acid and sterol syntheses and glycerol-3-phosphate (G3P) for
phospholipid synthesis, as well as their well-known binding to genes encoding proteins
involved in phospholipid synthesis. Hap1 binds sterol synthesis genes which utilize
AcCoA, with Oaf1 also being involved under respiratory metabolic conditions. Ino2,
Ino4, Hap1, Oaf1, and Pip2 all bind to fatty acid synthesis genes, providing substrates
for phospholipid synthesis, indicating the tight regulation of this process in response to
various upstream signals. To recycle fatty acids, Oaf1 and Pip2 bind �-oxidation genes
producing peroxisomal AcCoA as well as coordinated malate and glutamate metabo-
lism. Hap1 also has the highest number of binding targets among the five TFs within
respiration.

Linking TF binding to transcriptional output and cellular lipid composition. The
physical binding of a TF to a gene’s promoter does not necessarily mean that it
regulates the transcription level, due to the dose- and condition-dependent feature of
transcriptional regulation (28). Thus, integration of the direct target set of a TF identi-
fied by ChIP-exo with the targets transcriptionally affected by that TF is beneficial to
understanding its biological function (29). We previously determined transcriptome
changes in mutants lacking INO2 or INO4 relative to the wild type for similar growth
conditions as applied here (14). When revisiting these data, we found the transcription
of some targets strongly occupied by Ino2, e.g., INO1, FAS1, and OPI3, to be markedly
impaired by the deletion of INO2 (Fig. 6A). However, other strong targets, e.g., ACC1, are
only slightly affected in the deletion mutant, suggesting dominant regulatory roles of
other TFs on these promoters. The transcription of PHO84, which is another target of
Ino2, showed a surprising increase in the INO2 deletion mutant. This “repressing” effect
is in agreement with the results of a previous study of an INO2 overexpression mutant
(30), which could be explained by a unique feature of the Ino2 binding sequence on the
PHO84 promoter determined here to be GCACGTGG, �415 to �408 bp relative to the
start codon. This sequence has a mismatch of one nucleotide from the Ino2 consensus
motif, but it exactly matches the consensus binding motif of another TF, Pho4 (12),
which might trigger competition between the TFs.

By integrating the ChIP-exo and transcriptome data of TF deletion studies, we were
able to distinguish direct and indirect targets of Ino2 within Ino2-dependent genes
(Fig. 6B). For the lipid metabolic genes described above, we found most phospholipid
synthetic genes to be direct targets of Ino2 (Fig. S7). The binding strengths are
generally higher under the Glu-lim condition than under the N-lim condition, which
may explain the stronger regulatory effects of Ino2 on targets under the Glu-lim
condition (14).

As we could see few TF-bound genes that have been strongly affected by the
deletion of a TF when using a strict cutoff of |log2(FC)| of �1 (FC stands for fold change)
to define differentially expressed genes, we performed a t test to examine whether the
bound genes for each TF had an altered expression or not. We used a two-sided t test
(is there a difference between the bound genes and the nonbound genes in expression
profiles), one-sided up t test (are the bound genes upregulated compared to the
nonbound genes), and one-sided down t test (are the bound genes downregulated
compared to the nonbound genes). We integrated TF deletion data for Ino2 and Ino4
from reference 14, Oaf1 and Pip2 from reference 21, and Hap1 from reference 31 (these
studies used cultivation conditions similar to those used in this study). When a
two-sided t test was used, some TFs showed significance. However, when splitting the
TF deletion data into upregulated or downregulated genes in one-sided t tests, we
found that for all TFs, the general trend was significant for downregulated genes and
some showed significance for upregulated genes as well. The only exception was Hap1
under anaerobic conditions which was significant only for upregulated genes. This is
consistent with the previous finding that Hap1 acts as a transcriptional repressor under
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anaerobic conditions (31). The resulting t test table can be seen in Fig. 6D, and the
individual plots of FC and log2(S/N) can be seen in Fig. S8.

Ino2 and Ino4 are known to directly activate the transcription of several genes
encoding components involved in central carbon metabolism, such as the enolase

FIG 6 Data integration for elucidating the regulatory effect of TFs on their targets. (A) Effect of INO2
deletion on the expression of Ino2-binding targets in Glu-lim chemostat culture. The binding ratio (S/N)
of Ino2 determined by ChIP-exo (x axis) and the fold change (FC) in the level of expression in the ino2Δ
deletion mutant relative to the level of expression in the reference strain determined by transcriptome
analysis (y axis) are shown for each gene. Genes with a |log2(FC)| of �1 are highlighted. (B) Distinguishing
direct targets from indirect targets within Ino2-dependent genes in Glu-lim chemostat culture. The
Ino2-repressed and -activated targets indicate genes showing significant up- and downregulation
(adjusted P value of �0.05), respectively, in the ino2Δ mutant strain relative to the reference strain. (C)
P values from the t test of the five TFs under different conditions showed that in a one-sided t test, all
TFs had significant (P � 0.01) down- or upregulation of genes that were bound compared to nonbound
genes. Test results with a P value of �0.01 are shown on a gray background. References for the
transcriptome data: Ino2 and Ino4 (14), Oaf1 and Pip2 (21), and Hap1 (31). (D) Identification of genes
encoding components involved in central carbon metabolism as direct targets of Ino2. The binding ratio
(S/N) of Ino2 and the fold change in the level of expression in the ino2Δ mutant strain relative to the level
of expression in the reference strain in N-lim and Glu-lim chemostat cultures are shown. Abbreviations:
Fructose-1,6-P2, Fructose-1,6-bisphosphate; GA3P, glyceraldehyde 3-phosphate; DHAP, dihydroxyac-
etone phosphate; PEP, phosphoenolpyruvate; AcCoA, acetyl-CoA.
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gene ENO1 (32) and the AcCoA synthetase gene ACS2 (33). Through data integration,
we found more genes in central carbon metabolism as regulated targets of Ino2,
including TDH1, PDC6, and three aldehyde dehydrogenase genes (Fig. 6C). Aldehyde
dehydrogenases are responsible for converting acetaldehyde to acetate, which is on
the primary pathway for AcCoA synthesis in S. cerevisiae (34). The coregulation of
AcCoA and fatty acid biosynthetic genes highlights the importance of coordinating
AcCoA supply with lipid biosynthesis (35).

To validate functional outcomes of our TF-binding data, we also constructed an
OAF1 deletion strain. Our data show that Oaf1 has a hierarchical role over some
transcription factors, especially as it binds to the promoters of both Pip2 and Adr1
which also regulate fatty acid utilization. Another target of Oaf1 and Pip2 is ELO1 which
encodes the first elongase in fatty acid synthesis. If Oaf1 is controlling expression of
ELO1, one would expect a decrease in long- and very-long-chain fatty acids, as ELO1
elongates C14 to C16 species to C18 species (36). Fatty acids were extracted from the
oaf1Δ strain, and we found that the strain does indeed have higher levels of shorter
chains of fatty acids and low levels of longer-chain fatty acids (Fig. S8), which indicates
that Oaf1 has a regulatory role over ELO1.

DISCUSSION

Knowledge of the structure and function of the transcriptional regulatory network
is important for understanding and engineering cellular processes (1, 37). Although
considerable data have been accumulated on the regulatory interactions between TFs
and their targets in S. cerevisiae (38), reconstruction of the transcriptional regulatory
network is still challenging owing to the complexity of the network and the limitation
of experimental techniques. Identifying direct binding sites is critical for elucidating the
hierarchical structure of the regulatory network of TFs because doing so can distinguish
direct and indirect targets. Here, we mapped the genome-wide binding targets of five
TFs in S. cerevisiae using ChIP-exo, with a focus on the regulation of lipid metabolism.
By using chemostat cultures, it was possible to examine the relationship between
environmental conditions and TF behavior at a constant specific growth rate. As shown
in Fig. 1, the advanced resolution of ChIP-exo compared with early ChIP methods
enabled us to experimentally determine the distribution of multiple cis-acting elements
across the genome. The result provides an in vivo picture of promoter structure, which
could be the basis for precise engineering of promoters in response to specific
conditions (39).

Previous studies of the five TFs investigated here mainly focused on their responses
to specific environmental signals, such as inositol concentration, which affects the
functions of Ino2 and Ino4 (40), and the presence of exogenous oleate, which activates
Oaf1 (41). Under industrial cultivation conditions, S. cerevisiae is often exposed to
changes in the species and concentration of carbon sources as well as dissolved oxygen
levels. This motivated us to use four cultivation conditions representing these industrial
growth conditions to compare the binding characteristics of the TFs. The results
suggest that the binding of these TFs to the genome can be affected by factors other
than their well-known specific signals. For example, the intracellular levels of phospha-
tidic acid, which acts as a central signal in the regulation of Ino2 and Ino4 activity (42),
are similar between N-lim and Glu-lim conditions when high concentrations of inositol
are present in the culture we used (43). However, the binding target set and regulatory
effect of Ino2 are still quite different for the various conditions (see Fig. S7 in the
supplemental material). Similar results were observed for Hap1, whose binding targets
are different across the three aerobically growing conditions, although they have
similar dissolved oxygen levels. We further found that the effect of metabolic status on
TF binding could possibly be attributed to changes in chromatin accessibility resulting
from the condition-dependent binding of other TFs, which can recruit chromatin
remodelers (44). Exploring the causal relationship between chromatin remodeling and
the binding of TFs would provide new understanding about the complex process of
transcriptional regulation in eukaryotes.
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The surprisingly high number of binding targets, together with the significant
overlap of targets between the TFs, raises the question of whether all binding is
functional. Through the integration of binding data and TF-dependent gene expression
data, the contribution of TF binding to the corresponding gene’s transcription level was
assessed. There is poor overlap between the binding targets and differentially ex-
pressed genes as classically defined, but by allowing all genes and all targets to be
integrated in the analysis, we could find statistical significance for changes in expres-
sion. The data showed that the affected overall binding targets of the deleted TF were
in fact downregulated and in one case upregulated. However, at the gene level, we
could not see which targets would be most affected by said deletion or if they would
be down- or upregulated. Looking at some individual TFs, we can see that for Ino2,
there are more than 800 targets in our ChIP-exo data but only 20 genes were
substantially affected in the deletion strain; it is therefore difficult to evaluate the
regulation directly. Because Ino2 does efficiently regulate the expression of some
targets (e.g., INO1 under Glu-lim condition [Fig. 6A]), we believe the nonfunctional or
less functional binding events observed under the same condition are due to not only
the low transcriptional activation ability of Ino2 and Ino4 in the presence of exogenous
inositol (45) but also the complex internal transcriptional regulatory loop and coregu-
lation of genes by multiple TFs. The cumulative regulation mechanism has been
supported by a previous study on ENO1 expression, where a single gene deletion of the
bound TFs each led to decreased but not abolished gene expression from the ENO1
promoter (32). This is due to the fact that the remaining transcription factors can adapt
to the deletion of one TF. Therefore, deletion of a TF may not result in the identification
of true functional targets but rather the state of how well the cell is adapting. If,
however, the TF is the sole activator/repressor of a gene or in a hierarchical position
toward other TFs that are regulating the said gene, then the expression level of the
gene might have a correlation with the function of the TF. These results highlight the
importance of systematically mapping the binding sites of all TFs in the reconstruction
of a genome-scale transcriptional regulatory network.

The emerging computer-assisted tools for pattern recognition using neural net-
works and deep learning algorithms may allow for better motif discovery (46–48)
and help reveal the interplay of TFs on promoters. As we are starting to see highly
dynamic and complex regulatory networks in eukaryal cells, such deep learning
techniques could lead to the discovery and understanding of regulatory and condition-
responsive elements rather than the hierarchical individual TF regulation and thus
identify holistic transcriptional regulatory networks that are at the core of molecular
biology.

MATERIALS AND METHODS
Strains. The TF-tagging strains were constructed by transforming the uracil auxotrophic strain

CEN.PK 113-5D of Saccharomyces cerevisiae (49) with a tagging cassette containing the tandem affinity
purification (TAP) tag CBP-ProtA coding sequence and Kluyveromyces lactis URA3 marker gene flanked by
45-bp sequences for homologous recombination at the TF gene locus (50). This integration allows the tag
to be fused in-frame to the C-terminal end of each TF connected by a six-glycine linker. Transformants
were screened on synthetic complete medium lacking uracil (SC_Ura; Formedium), and the correct
integrations were identified by PCR. The function of the TAP tag was confirmed by ChIP followed by
quantitative PCR (ChIP-qPCR) of known target promoters. All primers for cassette construction, PCR
identification, and ChIP-qPCR are listed in Table S6 in Data Set S1 in the supplemental material.
Transcriptome sequencing (RNA-seq) was performed on strain CEN.PK 113-5D complemented by URA3
as well as a HAP1-TAP-tagged strain in all four chemostat conditions, where no significant changes could
be identified between the two strains (unpublished data).

Media and cultivations. Single colonies from fresh agar plates were inoculated into 50 ml yeast
extract-peptone-dextrose (YPD) medium in shaking flasks and grown for 12 to 24 h. Cells were harvested
by centrifugation and resuspended in sterile water to obtain inoculum. Chemostat cultivation in liquid
medium with a working volume of 500 ml was carried out using 1.2-liter DASGIP fermentors
operated at 30°C with a dilution rate of 0.1 h�1. The pH was maintained at pH 5.0 using 2 M KOH.
Minimal medium containing vitamin (1,000� stock solution [all amounts shown for 1 liter]; 0.05 g biotin,
0.2 g 4-aminobenzoic acid, 1 g nicotinic acid, 1 g calcium pantothenate, 1 g pyridoxine-HCl, 1 g
thiamine-HCl, and 25 g myo-inositol) and trace metal (1,000� stock solution [all amounts shown for 1
liter]: 15.0 g EDTA-Na2, 4.5 g ZnSO4·7H2O, 0.84 g MnCl2·2H2O, 0.3 g CoCl2·6H2O, 0.3 g CuSO4·5H2O, 0.4 g
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Na2MoO4·2H2O, 4.5 g CaCl2·2H2O, 3 g FeSO4·7H2O, 1 g H3BO3, and 0.1 g KI) (51) as well as the following
compounds (all amounts shown for 1 liter) were used for feeding: (i) for nitrogen-limited media, 1 g
(NH4)2SO4, 5.3 g K2SO4, 3 g KH2PO4, 0.5 g MgSO4·7H2O, 60 g glucose; (ii) for glucose-limited media, 5 g
(NH4)2SO4, 3 g KH2PO4, 0.5 g MgSO4·7H2O, and 7.5 g glucose; (iii) for oxygen- and glucose-limited media,
5 g (NH4)2SO4, 3 g KH2PO4, 0.5 g MgSO4·7H2O, 7.5 g glucose, 420 mg Tween 80, and 10 mg ergosterol;
(iv) for ethanol-limited media, 5 g (NH4)2SO4, 3 g KH2PO4, 0.5 g MgSO4·7H2O, and 5 g ethanol.

Antifoam 204 at 0.05 ml liter�1 (aerobic cultures) or 0.2 ml liter�1 (Ox,Glu-lim culture) was added to
the feeding media. For aerobic cultures, airflow of 30 liters h�1 and stirring speed of 600 rpm (Glu- and
N-lim cultures) or 800 rpm (Et-lim culture) were used to keep the dissolved oxygen above 30% of air
saturation. For Ox,Glu-lim culture, the fermentor was sparged with 30 liters h�1 of nitrogen gas with a
stirring speed of 300 rpm. The oxygen and carbon dioxide in the off-gas were measured using the
DASGIP GA4 exhaust analyzer after being cooled by a condenser operated at 4°C.

ChIP-exo. Cells cultivated in chemostats were sampled for ChIP-exo analysis after steady state
was achieved (optical density at 600 nm [OD600], dissolved oxygen, and off-gas profiles became
constant) for 48 to 60 h. Formaldehyde at a final concentration of 1% (wt/vol) and distilled water
were added to the cultures to cross-link protein-DNA complexes at an OD600 of 1.0 and a total
volume of 100 ml. Cross-linking was performed for 12 min at room temperature with shaking
followed by quenching, washing, and freezing as previously described (10). ChIP-exo was performed
according to a previously reported method (52) with modifications (10, 29). The first adapters
contain unique 6-bp index sequences. The final DNA samples were pooled in equimolar amounts
and sequenced on the NextSeq 500 system (2 � 75 bp, mid-output mode; Illumina). The ChIP-exo
experiments were performed in biological duplicate. All adapters and primers used in the ChIP-exo
are listed in Table S7 in Data Set S1.

ChIP-exo data analysis was performed as previously described (10). Briefly, sequencing reads were
mapped to reference genome assembly R64-2-1 of S. cerevisiae S288C with Bowtie2 (53), and the
generated SAM files were converted to sorted BAM files via the removal of low-quality reads. The BAM
files were trimmed 70 bases from the 3= end using trimBam (http://genome.sph.umich.edu/wiki/BamUtil:
_trimBam) to increase the resolution. The Integrative Genomics Viewer (IGV) browser (54) was used to
visualize the alignment of reads to the genome. The program GEM (20) was used to identify peaks and
compare biological duplicates. The noise level was calculated from averaged noise throughout each
replicate. Binding events with log2(S/N) ratios of �1 are considered to be reliable, where earlier studies
on Chip-exo data have used a log2(S/N) of �1.5 (29), although with the preprocessing of data, some
positive events can be lost (Fig. S3). Identification of target genes was done with the closest function of
BEDTools (55). Gene targets with a distance of more than 1,200 bp from the binding event center were
sorted out. The MEME algorithm (56) was used to identify the consensus motifs for all TFs under all
conditions. Forty-base-pair sequences were used as input, and the output motifs should have a length
between 6 and 15 bp.

To generate the target gene-based ChIP-exo data tables and heat map of binding profiles, we used
MatLab (57). The heat map binding profiles were created by extracting the counts of reads 300 bp up-
and downstream of the identified binding site. The counts were log10 transformed, and the data were
then transformed into a heat map profile. All heat map profiles were aligned to center binding.

Accession number(s). The ChIP-exo data have been deposited in the Gene Expression Omnibus
database under accession number GSE88941.

Data availability. Data are also available for viewing at the UCSC Genome Browser.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/

mSystems.00215-17.
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FIG S3, TIF file, 0.5 MB.
FIG S4, TIF file, 1.3 MB.
FIG S5, TIF file, 1.1 MB.
FIG S6, TIF file, 2.8 MB.
FIG S7, TIF file, 2.9 MB.
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