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Phase-field modeling of stress-induced precipitation and kinetics in engineering metals 

CLAUDIO NIGRO 

Department of Industrial and Materials Science 

CHALMERS UNIVERSITY OF TECHNOLOGY 

 

Abstract 

The formation of brittle compounds in metals operating in corrosive environments can be a 

tremendous source of embrittlement for industrial structures and such phenomenon is 

commonly enhanced in presence of stresses. To study this type of microstructural change 

modeling is preferred to experiment to reduce costs and prevent undesirable environmental 

impacts. This thesis aims at developing an engineering approach to model stress-induced 

precipitation, especially near stress concentrators, e.g. crack tips, for multi-phase and 

polycrystalline metals, with numerical efficiency. 

In this thesis, four phase-field models are developed and applied on stress-induced hydride 

precipitation in zirconium and titanium alloys. The energy of the system is minimized through 

the time-dependent Ginzburg-Landau equation, which provides insights to the kinetics of the 

phenomenon. In these models, the driving force for precipitation is the coupling between the 

applied stress and the phase transformation-induced dilatation of the system. Models 1-3 

implicitly incorporate near crack-tip stress fields by using linear elastic fracture mechanics so 

that only the phase-field equation is solved numerically with the finite volume method, 

reducing the computational costs. Phase transformation is investigated for intragranular, 

intergranular and interphase cracks in single- and two-phase materials by considering isotropy 

and some degrees of anisotropy, grain/phase boundary energy, different transition orders and 

solid solubility limit. Model 4 allows representing anisotropy connected to lattice mismatch 

and the orientation of the precipitates influenced by the applied stress. The model is employed 

through the finite element program Abaqus, where the fully coupled thermo-mechanical 

solving method is applied to the coupled mechanical/phase-field problem. Hydride growth is 

observed to follow the near-crack tip hydrostatic stress contours and can reach a steady state 

for specific conditions. The relation between hydride formation kinetics and material 

properties, and stress relaxation are well-reflected in the results. 

With the presented approaches, precipitation kinetics including different kinds of defects, 

multi-phase microstructures, phase/grain boundaries, order transitions and loading modes can 

be successfully captured with low computational costs. They could therefore contribute to the 

numerical efficiency of multi-scale environment-assisted embrittlement prediction schemes 

within commercial software serving engineering projects. 

Keywords: phase transformation, phase-field theory, corrosion, hydrogen embrittlement, 

hydride, linear elastic fracture mechanics, finite volume method, finite element method 
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1 Introduction 

Hydrogen, the most abundant and lightest chemical element in the universe, has become a 

major concern for the material industry. Numerous works have shown that it is responsible for 

degrading the mechanical properties of metals in hydrogen-rich environments, possibly 

leading to premature fracture [1]. 

Hydrogen embrittlement (HE) is generally characterized by the deterioration of the 

mechanical properties of a material in presence of hydrogen. The phenomenon is well-known 

in aerospace and nuclear industries. In rocket engines, developed for Ariane 6 such as Vinci 

and Vulcain 2, hydrogen is thought to be utilized as fuel and cooler and, therefore, interacts 

with some engine components. The mechanical properties of nickel-based superalloys, 

traditionally used in high-temperature areas such as the combustion chamber [2] and the 

nozzle, have been observed to be derogated in presence of hydrogen [3, 4]. Brittle 

compounds, titanium hydrides, are likely to form in colder engine parts made of titanium 

alloys when in contact with hydrogen and can embrittle the structure. In nuclear reactor 

pressure vessels, atomic hydrogen (H) penetrates zirconium-based cladding and pressure 

tubes, where brittle zirconium hydrides potentially form [5, 6]. Hydride formation is one stage 

of the complex mechanism of delayed hydride cracking (DHC) [7, 8], which is one of the 

most notorious mechanisms of HE in nuclear industry. Hydride precipitation, strongly 

influenced by the presence of stress [9], can be enhanced by the presence of material defects 

acting as stress concentrators [10]. Knowledge of hydride formation kinetics is fundamental in 

order to predict the lifetime of a metallic structure subjected to hydride-based failure 

processes, such as DHC in a hydrogen-rich environment. Modeling is found to be an 

economically beneficial route to study the growth of hydride phase regions in a metallic 

structure operating in a hydrogen-rich environment and under applied load. Second-phase 

formation has been modeled over the years through the use of different approaches such as the 

sharp-interface and phase-field methods (PFM). The latter is found to be more practical to 

model complex microstructures with numerical efficiency and can include stress effect on 

precipitation [11, 12, 13]. 

This thesis is included in a project, which aims at building an engineering tool to model 

stress-induced precipitation and kinetics, and to design the product to be numerical efficient 

and easily implementable in commercial software. Within this framework, the objective of the 

work is to develop a numerical approach for modeling of precipitation, especially in the 

vicinity of stress concentrators, such as crack tips, and at grain and phase boundaries. 

In the present thesis, different approaches based on phase-field theory (PFT) are developed. 

Linear elastic fracture mechanics (LEFM) is adopted in three of the four presented models in 

order to account for the stress field near an opening sharp crack. With these models, many 

aspects such as the solid solubility limit, the transition temperature, the interfacial energy, the 

applied stress, the energy of phase and grain boundaries, the transition order and some forms 

of anisotropy are incorporated in the considered problems, which are solved by using the 

finite volume method (FVM). These approaches are also flexible in terms of applications and 

formulated optimally such that the considered microstructural evolutions are captured with 
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numerical efficiency. The latter is partly due to the fact that only the equation related to phase 

transformation needs to be solved numerically while mechanical equilibrium is calculated 

analytically. The fourth approach is still a pilot model and is written to account for stress-

induced second-phase formation, where the anisotropic dilatation of the material caused by 

phase transformation in relation with the orientation of the second-phase regions is addressed. 

With this model, the applied stress and defects are represented explicitly by choosing 

appropriate meshes and boundary conditions. The coupled mechanical and phase field-related 

equations are solved simultaneously by using the finite element method (FEM) associated to a 

fully coupled approach similar to that employed to solve thermo-mechanical problems. The 

application of the numerical methodology to the presented problems has been made possible 

thanks to the capacities and customizable subroutines of the commercial software Abaqus 

[14]. 

In this work, all mathematical approaches are applied to model stress-induced hydride 

formation. Crack-induced hydride formation is regarded with models 1-3 while hydride 

precipitation in a hydrogenated defect-free medium and near a notch tip is considered with 

model 4. Nevertheless, all presented models could also be employed to study environment-

assisted degradation mechanisms, other than HE, involving the precipitation of brittle phases 

in materials operating in corrosive environment, e.g. rust or carbide formation in steel. 

In this PhD thesis, the physical aspects and mathematical tools as the basis of this work are 

presented before the different models introduced above are described. Thereafter, the results 

obtained in the papers are reported and thoughts about futures developments are discussed. 

Parts of this document are taken and/or rephrased from the author’s licentiate thesis [15].  
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2 Environment-assisted degradation 

2.1 Introduction to corrosion in metals 

In operation, most metallic structures are observed to interact with their environments. Such 

interactions can affect the appearance of the metals and their physical properties, e.g. their 

mechanical properties. Corrosion is one deteriorative process, which is characterized by a 

destructive, unintentional and electrochemical attack of metals usually starting at their 

surface. There are several forms of corrosion such as uniform attack, galvanic corrosion, 

crevice corrosion, pitting, erosion-corrosion, selective leaching, intergranular corrosion, stress 

corrosion and HE [16].  

Through intergranular corrosion, some stainless-steel structures experience failure along their 

grain boundaries. In the latter region, chromium, usually added to increase corrosion 

resistance, reacts with carbon to form chromium carbide. The regions adjacent to the grain 

boundary result depleted of chromium and, consequently, become more vulnerable to 

corrosion. The grain and phase boundaries are usually preferential site for precipitation 

because the nucleation energy barrier is lower and diffusion is quicker therein [17].  

Some materials, which usually do not experience any form of corrosion in corrosive 

environments, can display reaction of corrosion when subjected to tensile stress or residual 

stresses. Cracks can nucleate in these areas, propagate and possibly lead to structure failure. 

This form of corrosion is named stress corrosion and the phenomenon is commonly referred 

to as stress corrosion cracking. In steels, rust, a brittle phase with lower fracture toughness 

than the rest of the material, can appear in material regions where stress is located and, 

subsequently, fracture. For instance, iron oxide can be seen to precipitate in welds and pipe 

bends, where residual stresses reside. Stress corrosion cracking results in brittle fracture 

regardless of the degree of ductility of the affected metal and may occur for stresses 

significantly below the fracture toughness [16]. 

2.2 Hydrogen embrittlement 

2.2.1 Forms of hydrogen damage 

The presence hydrogen in metals, such as steels, aluminum (Al), titanium (Ti), zirconium 

(Zr), nickel (Ni) and their respective alloys, can alter the properties of the material. As for 

stress corrosion, failures can arise from residual and/or applied tensile stresses combined with 

hydrogen-metal interactions in hydrogen-rich environments. Such interactions are commonly 

found to cause loss of ductility and reduction of load-carrying capacity in a metal. The term 

hydrogen embrittlement is used to refer to such deteriorations of materials. Stress corrosion 

and HE are similar in that normally ductile materials undergo brittle fracture when subjected 

to stress and corrosive environment. One difference between the two phenomena is that stress 

corrosion usually occurs in material regions, where anodic reactions take place, while 

hydrogen environment embrittlement can be initiated or enhanced by cathodic reactions, e.g. 

in the presence of a cathodic protection. Hydrogen environment embrittlement characterizes 

situations where materials undergo plastic deformation, while in contact with hydrogen-rich 
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gases or corrosion reactions. Molecular hydrogen experiences adsorption at the metal free 

surface, which weakens the H-H bond and favors its dissociation into atomic hydrogen within 

the metal lattice [18, 19]. Several other types of hydrogen damage mechanisms are known as 

hydrogen attack, blistering, and hydride formation [1], hydrogen enhanced localized plasticity 

(HELP) and hydrogen-induced decohesion (HID). Hydrogen attack usually affects steels at 

high temperature. The inner hydrogen reacts with carbon to form methane within the material. 

Possible damaging consequences are crack formation and decarburization. Blistering is the 

result of plastic deformation induced by the pressure of molecular hydrogen that is formed 

near internal defects. The gas formation occurs due to the diffusion of atomic hydrogen to 

these regions. Once formed, blisters are often observed to be fractured. The HELP mechanism 

is characterized by an enhancement of the mobility of dislocations by interaction with 

hydrogen [20]. In other cases, the presence of hydrogen can induce a reduction in the bonding 

energy between atoms, which consequently increases the risk of decohesion [21]. This 

mechanism is the so-called HID. 

2.2.2 Hydride formation in titanium- and zirconium-based metals 

During service and in presence of hydrogen, the formation of brittle and non-metallic 

compounds, the so-called hydrides, can be responsible for material embrittlement [5, 7, 22]. A 

number of materials such as zirconium, titanium, hafnium, vanadium and niobium are 

considered as hydride forming metals as they have a low solubility of hydrogen, and, 

therefore, can form different types of hydride phases depending on e.g. hydrogen 

concentration and temperature history [8]. This section is focused on briefly describing 

hydridation and its effect on mechanical properties in Zr- and Ti-based metals. 

Pure titanium and zirconium microstructures have two different possible crystal structures: α, 

a hexagonal close-packed (HCP) microstructure at low temperature, and β, a body-centered 

cubic (BCC) microstructure at elevated temperatures. For pure Ti and Zr, the transition 

between these phases occurs through an allotropic transformation at 882°C and 862°C 

respectively. The dissolution of alloying elements can be done to stabilize different phases by 

modifying the α-β transition temperature or to cause solid solution strengthening. While a 

number of interstitial elements such as nitrogen, carbon, and oxygen act as α-stabilizers, the 

addition of hydrogen to the solid solution induces the stabilization of the β-phase by lowering 

the transus temperature. This can also be seen when considering the Zr-H and the Ti-H phase 

diagrams in Figure 1. The solid solution phase  has a low solubility of hydrogen while the 

high-temperature allotrope -Zr has a high solid solubility limit. In fact, for Ti, phase α 

possesses a maximum solubility of hydrogen equal to 4.7 at.% and for phase β it is equal to 

42.5 at.% at 298°C. This can be imputed to the affinity of hydrogen for tetrahedral 

interstitials, which are twelve in the BCC phase and four in the HCP one [23]. For a given 

concentration of hydrogen and range of temperature, the phase diagrams exhibit regions of 

existence and stability (or metastability) of hydride phases [24, 25]. For both metals, two 

stable hydride phases are identified to be the face-centered cubic (FCC) -phase and the face-

centered tetragonal (FCT) -phase. The -phase is considered metastable and has an FCT 

structure [26, 27]. Additionally, for the Zr-H system, a crystal structure denoted  has been 

observed and may be a possible precursor to the formation of - and -phases [28]. The Ti-
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hydride χ, which forms at 41-47 at.% hydrogen at temperatures around -200 °C is rarely 

observed [23]. 

 

 

(a) (b) 

Figure 1: Phase diagram for (a) the Zr-H system, (reproduced and modified with permission 

from [29]), and (b) the Ti-H system (sketch based on [25]). 

The hydride precipitates generally appear as needles or platelets in the -phase, and the 

formation can occur either in grains or grain/phase boundaries in polycrystals [5, 8, 30, 31]. A 

preferred hydride orientation may exist and is affected by the crystal structure and texture 

emanating from the manufacturing process and the possible presence of applied and residual 

stresses [7, 9]. Under a sufficiently high applied load, the hydride platelets usually form 

perpendicular to the applied stress [6].  

Some hydrides such as - and -hydrides in Zr- and Ti-based alloys exhibit a volume change 

when they form [26, 27]. For instance, the global swelling of the unconstrained - and -r 

hydrides, which results from anisotropic dilatational misfits, has been theoretically estimated 

to be between 10% and 20% with respect to untransformed zirconium [32]. The deformations 

induced by phase transformation can also be referred to as eigenstrains, stress-free strains or 

phase-transformation strains. The hydrides are more brittle than the -phase, and the fracture 

toughness of a hydride can be orders of magnitude lower than the solid solution. For example, 

the fracture toughness 𝐾𝐼𝐶 of pure -Ti at room temperature is around 60 MPa ∙ m1 2⁄  [33] 

while for titanium-based δ-hydride the value of 𝐾𝐼𝐶 can be found between 0.72 and 2.2 MPa ∙

m1 2⁄  [34, 35]. The Zr-2.5Nb alloy’s fracture toughness was measured to be around 70 MPa ∙

m1 2⁄  with quasi-zero hydrogen content, while that of the δ-hydride (ZrHx, x =1.5−1.64) is 

found to be approximately 1 MPa ∙ m1 2⁄  at room temperature [36, 37]. In addition, as the 

hydrogen content increases, the overall fracture toughness of hydrided metals may decrease. 

For instance, the fracture toughness of the Zr-2.5Nb alloy with a hydrogen-zirconium 

atomic ratio of 0.4, is mostly found between 5 and 15 MPa ∙ m1 2⁄  [36]. 
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2.2.3 Stress-induced hydride formation and delayed hydride cracking 

In structures operating under applied stress, hydridation has been observed to be facilitated. 

Of great concern is that these brittle compounds are often observed to form in high stress 

concentration regions, such as in the vicinity of notches, cracks and dislocations, where the 

material solubility limit is exceeded [38, 39, 40, 41, 42, 43]. Under stress and deformation of 

the metal, and owing to their low fracture toughness, hydride platelets can be fractured along 

their length, e.g. in Ti [42, 44], in Zr: [41, 45], in Hf [46]; in V: [38, 47]; and in Nb: [48], or 

across their thickness, e.g. in Ti: [49] and in Zr: [22, 50]. A well-known associated fracture 

mechanism example is the so-called delayed hydride cracking (DHC). It is a form of localized 

hydride embrittlement under applied stress that is characterized by a combination of 

processes, which involve hydrogen diffusion, hydride precipitation including subsequent 

material expansion – the phase transformation induces a swelling of the reacting zone – and 

crack growth [8]. Driven by the stress gradients, hydrogen migrates in the vicinity of defects, 

e.g. residual stresses or crack tips, leading to supersaturation. Brittle hydrides form once the 

solid solubility limit is exceeded and usually develop orthogonally to the tensile stress until a 

critical size is reached. Then, cleavage takes place in the localized hydrided region and the 

crack propagation stops at the hydride/solid solution interface. Crack propagation progresses 

stepwisely by repeating this process [5]. The adjective “delayed” reflects the fact that it takes 

time for hydrogen to diffuse towards the crack tip and react with the matrix to form a hydride 

[27]. For instance, DHC was observed to operate in Zr-2.5Nb alloy pressure tubes in nuclear 

industry [51]. 

2.2.4 Effect of phase/grain boundaries on hydride formation 

As seen earlier while describing intergranular corrosion, phase and grain boundaries are 

preferential precipitation regions. In the context of HE, hydrogen diffuses more easily and the 

nucleation energy barrier is lower therein than within the crystals. Precipitation at phase/grain 

boundaries has been observed for instance in zirconium and titanium alloys [5, 31, 52, 53, 54, 

55]. 

2.2.5 Hydridation of a bi-phase metal: the Ti-6Al-4V 

Titanium alloys are frequently use in aerospace industry because of their good thermo-

mechanical properties and their low weight. For one of them, the Ti-6Al-4V, also named 

Ti64, both the α- and β-phases are found stable at room temperature. For this particular alloy, 

aluminum (Al) is an α-stabilizer and vanadium (V) is a β-stabilizer. The microstructure of 

Ti64 can vary significantly depending on the thermo-mechanical treatment. More extensive 

information about the relationship between the microstructure of Ti64 and its thermo-

mechanical treatment can be found, for instance, in [23, 56]. A typical microstructure of Ti64 

is presented in Figure 2. This microstructure contains globular α and lamellar (α+β) regions. 

In this example, the (α+β) regions are also referred to as α colonies. In this thesis, the 

interfaces between the different phases in Ti64 are termed in the following manner: grain 

boundaries denote the interface that separate two α-grains whereas phase boundaries separate 

α-phase regions from β-phase ones. 
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Figure 2: Optical micrograph of a Ti-6Al-4V microstructure from a sample prepared as 

described in [57]. 

The solubility of hydrogen and the diffusion rate in (α+β)-Ti alloys are different from one 

phase to another. Phase α has a much lower solubility of hydrogen than phase β and hydrogen 

diffuses faster in the phase β than in phase α. For example, at room temperature the hydrogen 

diffusion rate is 1.45 ∙ 10−16 m2/s in the α-phase and  5.45 ∙ 10−12 m2/s in the β-phase. 

Because of the differences in diffusion rate and terminal solubility between phase α and β, a 

high diffusion rate in the phase interfaces, and the fact that the phase/grain boundaries are 

preferential nucleation sites, hydride formation is facilitated at α/β and α/α interfaces 

compared to the rest of the material [27, 31, 54]. Hence, these locations, naturally more 

susceptible to fracture than the rest of the material under stress, result even more weakened in 

presence of hydrogen. For these reasons, hydrogen-induced cracking is expected to mostly 

occur in phase α and along the grain/phase boundaries. In fact, this observed in Ti64 in [58]. 

Some recent observations also indicate the possible presence of hydrides other than δ or γ at 

the phase boundaries [54].  
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3 Linear elastic fracture mechanics 

In operation, mechanical components and structures can undergo damages, which commonly 

take the form of micro-cavities and cracks. Failure mechanisms involved in fracture have 

been studied extensively and a number of models have been formulated throughout the 20th 

century [59, 60, 61, 62, 63, 64]. In 1957, a theory, the so-called linear elastic fracture 

mechanics (LEFM), providing a two-dimensional description of the stresses and 

displacements ahead of a crack was developed [65]. The high stresses residing at and around a 

crack-tip can generate plastic deformations and other nonlinear effects in many metals. Linear 

elastic fracture mechanics is formulated for “small scale yielding”, i.e. for cases for which the 

size of the nonlinearity zone around the crack-tip does not exceed a fraction of a characteristic 

dimension such as the crack length. 

3.1 Crack in homogeneous materials 

In a homogeneous material, the analytical expressions for the stress and displacement field 

components provided by LEFM include a multiplying factor, known as the stress intensity 

factor, which depends on the external stress, the crack length and the geometry of the 

considered structure, and is related to the energy release rate. The stress intensity factor can be 

different depending on the considered mode of fracture. There are three basic modes of 

fracture, which are depicted in Figure 3. Mode I designates the tensile opening mode, which is 

characterized by the symmetric separation of the crack walls with respect to the plane formed 

by the crack axis and crack front. Mode II, also called the in-plane sliding mode, is described 

by a shear stress parallel to the crack plane and perpendicular to the crack front. In mode III, 

also known as the tearing or anti-plane shear mode, the shear stress acts in the crack plane and 

parallel to the crack front. In real problems, cracks are usually found to open in mixed modes. 

 

Figure 3: Illustration of the three fracture modes. 

The expression of the stress field components in the vicinity of the crack-tip lying in a 

homogeneous linear elastic medium for a specific mode of fracture can be written as in [66] 

as  
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𝜎𝑖𝑗 =
𝐾

√2𝜋𝑟
𝑓𝑖𝑗(𝜃) + ∑ 𝐵𝑚𝑟

𝑚
2 𝑔𝑖𝑗

(𝑚)
(𝜃)

∞

𝑚=0

, (1) 

where 𝐾 is the stress intensity factor for the considered mode, 𝑓𝑖𝑗 is an angular function, 𝐵𝑚  

and the dimensionless function 𝑔𝑖𝑗
(𝑚)

  respectively designate the stress-dependent coefficient 

and a trigonometric function for the 𝑚𝑡ℎ term. The quantities 𝑟 and 𝜃 are the polar 

coordinates, for which the origin is placed at the crack tip as illustrated in Figure 4. The 

indices 𝑖 and 𝑗 are taken in {𝑥, 𝑦} to obtain the expression of the stress field components in a 

Cartesian base, whereas if a polar base is considered, then 𝑖, 𝑗 ∈  {𝑟, 𝜃}. A representation of 

the stresses in these two different bases is given in Figure 4. At a sufficiently small distance 

from the crack tip, the high-order terms of the right hand side of Eq. (1) are negligible with 

respect to the first one. In this condition, the stress can be assumed to vary as 1/√𝑟. In case of 

an infinite plane containing a 2𝑎0 long crack opening in mode I, 𝐾 = 𝜎𝑦𝑦
∞  √𝜋 𝑎0, where 𝜎𝑦𝑦

∞  is 

a tensile stress applied remotely and perpendicular to the crack surfaces. 

 

Figure 4: Illustration of the two-dimensional stress in different coordinate systems and bases 

in the vicinity of a crack tip. 

For a linear elastic medium, Hooke’s law provides a linear relation between the strain tensor 

𝜀𝑖𝑗 and the stress tensor as 

𝜀𝑖𝑗 = 𝑠𝑖𝑗𝑘𝑙 𝜎𝑘𝑙 or 𝜎𝑖𝑗 = 𝑐𝑖𝑗𝑘𝑙 𝜀𝑘𝑙  (2) 

where 𝑠𝑖𝑗𝑘𝑙 and 𝑐𝑖𝑗𝑘𝑙 are the compliance tensor and the stiffness tensor respectively. By 

considering small deformation, the strain tensor is connected to the displacement field 𝑢𝑖 

through the expression 

𝜀𝑖𝑗 =
1

2
(

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
). (3) 

The out-of-plane stress and strain are affected by the considered plane-state condition. The 

plane stress state is suitable to represent mechanical problems occurring at the surface (or near 

surface) of thick bodies or in thin media as the stress components relative to the out-of-plane 

direction is zero. In contrast, the plane strain state is suited to represent mechanical problems 

taking place within the volume of a thick body as the strain components relative to the out-of-
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plane direction are zero. In summary, in plane stress 𝜎𝑧𝑧 = 0 and 𝜀𝑧𝑧 = −𝜈(𝜎𝑥𝑥 + 𝜎𝑦𝑦)/𝐸 

and in plane strain, 𝜎𝑧𝑧 = 𝜈(𝜎𝑥𝑥 + 𝜎𝑦𝑦) and 𝜀33 = 0, where 𝜈 and 𝐸 are the Poisson’s ratio 

and the Young’s modulus. 

Considering fracture in mode I, the angular functions of Eq. (1) for an isotropic and linear 

elastic body in a Cartesian base are expressed as [66], 

𝑓𝑥𝑥(𝜃) = cos
𝜃

2
[1 − sin

𝜃

2
sin

3𝜃

2
], (4) 

𝑓𝑦𝑦(𝜃) = cos
𝜃

2
[1 + sin

𝜃

2
sin

3𝜃

2
], (5) 

𝑓𝑥𝑦(𝜃) = sin
𝜃

2
cos

𝜃

2
cos

3𝜃

2
 . (6) 

The associated displacement field for such body is given as 

𝑢𝑥 =
𝐾𝐼 (1 + 𝜈)

𝐸
√

𝑟

2𝜋
cos

𝜃

2
[𝜅0 − 1 + sin2

𝜃

2
], (7) 

𝑢𝑦 =
𝐾𝐼 (1 + 𝜈)

𝐸
√

𝑟

2𝜋
sin

𝜃

2
[𝜅0 + 1 − cos2

𝜃

2
], (8) 

where 𝜅 = 3 − 4 𝜈 in plane strain and 𝜅 = (3 − 𝜈)/(1 − 𝜈).  

A description of the anisotropic linear-elastic stress field in proximity of a crack tip has been 

developed by Paris and Sih [67]. According to their theory, for anisotropic and homogeneous 

bodies undergoing a fracture in mode I, 𝜎𝑖𝑗 can be expressed through the use of Eq. (1) with  

𝑓𝑥𝑥(𝜃) = Re {
𝜇1𝜇2

𝜇1 − 𝜇2
(

𝜇2

√cos 𝜃 + 𝜇2 sin 𝜃
−

𝜇1

√cos 𝜃 + 𝜇1 sin 𝜃
)} , (9) 

𝑓𝑦𝑦(𝜃) = Re {
1

𝜇1 − 𝜇2
(

𝜇1

√cos 𝜃 + 𝜇2 sin 𝜃
−

𝜇2

√cos 𝜃 + 𝜇1 sin 𝜃
)} , (10) 

𝑓𝑥𝑦(𝜃) = Re {
𝜇1𝜇2

𝜇1 − 𝜇2
(

1

√cos 𝜃 + 𝜇1 sin 𝜃
−

1

√cos 𝜃 + 𝜇2 sin 𝜃
)}, (11) 

where Re is the real part of a complex number, and 𝜇1 and 𝜇2 are the conjugate pairs of roots 

of 

 𝑆11 𝜇4 − 2𝑆16 𝜇3 + (2𝑆12 + 𝑆66) 𝜇2 − 2𝑆26𝜇 + 𝑆22 = 0. (12) 

When 𝜇1 = 𝜇2 , the stress field relations boils down to the isotropic ones. The 

coefficients  𝑆𝑖𝑗   are the in-plane compliance components in a given crystal plane, such that 
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[

𝜀𝑥𝑥

𝜀𝑦𝑦

2𝜀𝑥𝑦

] = [

𝑆11 𝑆12 𝑆16

𝑆12 𝑆22 𝑆26

𝑆61 𝑆62 𝑆66

] [

𝜎𝑥𝑥

𝜎𝑦𝑦

𝜎𝑥𝑦

], (13) 

and are combinations of the three-dimensional compliance components 𝑠𝑖𝑗𝑘𝑙. The 

displacements in the vicinity of the crack tip can subsequently be deduced by using Eqs.(9)-

(13). 

3.2 Interface cracks 

An interface between two solids of dissimilar material is commonly a low-toughness fracture 

path in various materials. A number of investigations about the crack-tip fields in bi-material 

interface crack problems, as that illustrated in Figure 5, have been carried out in the previous 

century [68, 69, 70, 71, 72, 73, 74, 75, 76]. An outcome of these studies is the formulation of 

analytical expression for a two-dimensional near crack-tip stress field as [76], 

𝜎𝑖𝑗 =
1

√2𝜋𝑟
 [Re(𝐾∗ 𝑟𝐽𝜔) 𝛴𝑖𝑗

I + Im(𝐾∗ 𝑟𝐽𝜔) 𝛴𝑖𝑗
II ] , (14) 

where 𝑖, 𝑗 ∈  {𝑥, 𝑦}, 𝐽 is the complex number, i.e. 𝐽 = √−1, and the tensors components  𝛴𝑖𝑗
𝐼  

and  𝛴𝑖𝑗
𝐼𝐼 are the angular functions, whose expressions can be found in polar coordinates in [76] 

and in Cartesian coordinates in [77]. The oscillatory parameter 𝜔 is defined as  

𝜔 =
1

2 𝜋
ln [

1 − 𝛽0

1 + 𝛽0
]  , (15) 

where 𝛽0 is a Dundurs parameter and is expressed as [78], 

𝛽0 =
𝜇1(𝜅2 − 1) − 𝜇2(𝜅1 − 1)

𝜇1(𝜅2 + 1) + 𝜇2(𝜅1 + 1)
 , (16) 

where 𝜇𝑖 (𝑖 = 1,2) is the shear modulus in the material 𝑖, assumed elastic and isotropic, as 

depicted in Figure 5, and 𝜅𝑖 = 3 − 4 𝜈𝑖 in plane strain and 𝜅𝑖 = (3 − 𝜈𝑖)/(1 − 𝜈𝑖) in plane 

stress. The parameter 𝜈𝑖 is the Poisson’s ratio in the material 𝑖. The parameter 𝐾∗ is named 

complex interface stress intensity factor as can be seen as a substitute to the mode-I and 

mode-II stress intensity factors in case of a crack lying in a homogeneous material [79]. 

At the right hand tip of an isolated crack of length 2𝑎0 lying along the interface between two 

semi-infinite planes subjected to remote stresses 𝜎𝑦𝑦
∞  and 𝜎𝑥𝑦

∞  as displayed in Figure 5, the 

complex stress intensity factor can be written as [76], 

𝐾∗ = (𝜎𝑦𝑦
∞ + 𝐽𝜎𝑥𝑦

∞ )(1 + 2 𝐽 𝜔)√𝜋 𝑎0 (2 𝑎0)−𝐽𝜔 . (17) 

The term 𝐾∗ 𝑟𝐽𝜔 in Eq. (14) oscillates with 𝑟 for 𝑟 → 0. This results in possible zones of 

contact or interpenetration for sufficiently small 𝑟. This oscillatory problem has been studied 

over the years and a review on the topic is provided in [80]. Rice et al. (1990) gives an 
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estimation of the distance  𝑟con over which interpenetration or zone of contact takes place [76]. 

For 𝜔 > 0, 𝑟con, is expressed through the relation 

𝑟con ≅ 2 𝐿 𝑒− 
𝜓∗+

𝜋
2

𝜔  , 
(18) 

where 𝐿 is a reference length and 𝜓∗ is the phase angle of 𝐾∗ 𝑟𝐽𝜔. For 𝜔 < 0, the parameter 

𝜔 must be change into −𝜔 and 𝜓∗ into −𝜓∗. 

 

Figure 5: Geometry of an interface crack. 

Rice et al. (1990) states that the formulation using complex interface stress intensity factor 

can be considered valid if the range of 𝑟 considered in an analysis is small compared to a 

reference length, such as the crack length, and sufficiently large compared to the near crack-

tip contact zone. For many combinations of materials, 𝑟con can be subatomic, e.g. it can be 

smaller than an atomic spacing for a few millimeter-long crack.  



 

13 

 

4 Introduction to phase-field theory 

Material processing, including solidification, solid-state precipitation and thermo-mechanical 

processes, is the origin of the development of material microstructures. The latter generally 

consists of assemblies of grains or domains, which vary in chemical composition, orientation 

and structure. Characteristics of the microstructure such as shape, size and distribution of 

grains, impurities, precipitates, pores and other defects have a strong impact on the physical 

properties (e.g. thermal and electrical conductivity) and the mechanical performance of 

materials. Therefore, the study of mechanisms causing microstructural changes appears 

necessary to predict the modifications of material properties and, thus, take action to avoid 

associated malfunctioning components or failure of structures. 

Conventionally, the physical and thermodynamic mechanisms acting in an evolving 

microstructure such as heat diffusion and impurity transportation are modeled through the use 

of time-dependent partial differential equations and associated boundary conditions. This is, 

for instance, the case in sharp-interface approaches, where the interfaces between the different 

microstructure areas are represented by a discontinuity, as shown in Figure 6a, and their 

positions need to be explicitly followed with time. However, some phenomena are not 

suitable for sharp-interface modeling when they are combined with other effects [81]. In 

addition, complex morphologies of grains are hard to represent mathematically by the sharp-

interface approaches when the interfaces interact with each other during phase transformation, 

e.g. interface merging and pinch-off within coalescence and splitting of precipitates. 

Moreover, such modeling is found to be more computationally demanding than diffuse-

interface approaches. Therefore, sharp-interface models are often more appropriate for one-

dimensional problems or simple microstructural topologies [11, 82]. 

  

(a) (b) 

Figure 6: Illustration of (a) a sharp interface and (b) a smooth interface. 

An alternate way to describe the microstructure evolution is to use phase-field methods 

(PFM), which also employ kinetics equation. This type of modeling provides a continuous 

and relatively smooth description of the interfaces, as illustrated in Figure 6b. The 

microstructure is represented by variables, also called phase-field variables, which are 

continuous through the interfaces and are functions of time and space. Thus, unlike sharp 

interface models, the position of the interface is implicit and determined by the variation of 
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the variable value. Moreover, no boundary conditions are necessary inside the whole system 

except at the system boundary. Initial conditions are, however, still required. Consequently, 

PFT allows not only the description of the evolution of simple but also complex 

microstructural topologies unlike sharp-interface problems. For instance, the dendritic 

solidification with its complex features was successfully modeled through the use of PFM 

[83, 84]. 

Lately, phase-field modeling has found numerous applications in magnetism and material 

science processes such as solidification, solid-state phase transformation, coarsening and 

grain growth, crack propagation, dislocation dynamics, electro-migration, solid-state sintering 

and processes related to thin films and fluids. A number of these achievements, and 

comprehensive descriptions and reviews of phase field modeling can be found in [11, 82, 85, 

86, 87, 88, 89]. More recent publications show that PFM is a current research field when it 

comes to modeling phenomena which involve some of the mechanisms listed in this 

paragraph [90, 91, 92, 93, 94, 95, 96, 97, 98, 99]. 

4.1 The phase-field variables 

In PFT, a microstructural system is described through the use of single or multiple phase-field 

variables. Depending on the type of quantity it is connected to, a phase-field variable can be 

conserved or non-conserved. Conserved variables customary refer to local composition 

quantities, e.g. the concentration or the mass of chemical species. They can also be associated 

with density and molar volume [87]. According to Moelans et al. (2008), the non-conserved 

phase-field variable category contains two groups of variables  𝜙: the phase-fields and the 

order parameters [82]. Both groups are utilized to distinguish two concurrently prevailing 

phases. The phase-fields are phenomenological parameters indicating the presence of a phase 

at a specific position and the order parameters designate the degree of symmetry of phases, 

potentially giving information about the crystallography of a crystal or precipitate and its 

orientation. However, this distinction is often not made. Thus, conserved and non-conserved 

phase-field variables can often be found to be respectively termed conserved and non-

conserved order parameters [11, 87, 100]. When both conserved and non-conserved variables 

are employed, they are usually found coupled in the bulk free energy of the system, especially 

for diffusional transformations. 

In the theory suggested by Landau, the Landau theory, a bi-phase system may be defined by 

the presence of an ordered phase and a disordered phase depending on their degree of 

symmetry. The coexisting phases are associated with specific values of the non-conserved 

order parameter 𝜙, e.g., traditionally, 𝜙 = 0 for the disordered phase and 𝜙 ≠ 0 for the 

ordered phase [101]. Depending on the formulation, the phase variable can be arbitrarily 

defined with different values accounting for the different phases of a system. For example, an 

unstable disordered phase can be designated by 𝜙 = 0 while a stable disordered one is 

defined by 𝜙 = −1 or +1 [82]. In [102], 𝜙 = −1 accounts for an empty space and 𝜙 = +1 

denotes a filled space. A one-dimensional example of the variation of a phase-field variable 

through an diffuse interface is illustrated in Figure 6b. Therein, phases α and β are associated 
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with 𝜙 = −1 and 𝜙 = 1 respectively, while the interface is described by the intermediate 

values of the phase-field variable. 

The conserved phase-field quantity is usually a scalar, but the non-conserved variable can be 

employed as a vector. When used as a scalar, it can be considered a spatial average of its 

vector form [11]. It is common to use the components of the non-conserved order parameter 

vector to represent the crystallography and orientation of the phases [103, 104]. Nevertheless, 

several non-conserved phase-field components can also be used to account for the transitions 

between the phases in a multi-phase system. 

4.2 Minimization of the free energy of a system 

4.2.1 The total free energy 

In nature, systems strive to find equilibrium by minimizing their energy. In phase-field theory, 

the evolution of a microstructure, e.g. a phase transformation, is governed by kinetic 

equations based on the minimization of the total free energy F. The total free energy of the 

system can be expressed as the sum of characteristic free energies, which are functions of 

time, space, pressure, temperature and the phase-field variables. The total energy commonly 

boils down to  

F= ∭ ψ 𝑑𝑉 = F
𝑏𝑢𝑙𝑘

+F
𝑔𝑟𝑎𝑑

+F
𝑒𝑙

+ ⋯ , (19) 

where F
𝑏𝑢𝑙𝑘

= ∭ ψ𝑏𝑢𝑙𝑘𝑑𝑉 is the bulk or chemical free energy and 𝑉 is the volume of the 

system. The bulk free energy density ψ𝑏𝑢𝑙𝑘 typically takes the form of a double well, which in 

the Landau theory is called Landau potential or Landau free energy density. The gradient free 

energy F
𝑔𝑟𝑎𝑑

 is related to the interfacial energy and accounts for the presence of interfaces 

through Laplacian terms. The bulk free energy and gradient free energy can be regrouped in a 

single term, the structural free energy F
𝑠𝑡𝑟

 [105]. The elastic-strain free energy F
𝑒𝑙

 represents 

the energy stored by a system subjected to stresses or undergoing elastic deformation. The 

energy associated with a microstructural swelling or dilatation due to phase transformation 

can be reflected in the elastic-strain energy term as in [82] or in an extra energy term, e.g. the 

interaction energy in [106]. Finally, other free energy terms can be added to the expression, 

such as free energies related to electrostatics and magnetism. Generally, in phase-field 

modeling, F is employed to characterize the thermodynamic properties of a system and it is 

not systematically specified as Gibbs or Helmholtz free energy [82]. 

4.2.2 The bulk free energy density 

Originally, the Landau theory was developed to describe phase transformations at a critical 

temperature 𝑇𝑐 through the use of a thermodynamic potential, the Landau potential. The latter 

can be written in terms of pressure 𝑃, temperature 𝑇 and an order parameter 𝜙 (or a 

combination of several order parameters reflecting the symmetry relations between the 

phases). It was suggested by Landau that it can be formulated as a polynomial expansion in 

power of 𝜙 as [101], 
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ψ𝑏𝑢𝑙𝑘(𝑃, 𝑇, 𝜙) = ψ𝑏𝑢𝑙𝑘(𝑃, 𝑇, 𝜙 = 0) + ∑
𝐷𝑛(𝑃, 𝑇)

𝑛

𝑁

𝑛=1

𝜙𝑛 , (20) 

where 𝐷𝑛 denotes the nth coefficient of the phase-field variable or order parameter and can be 

a function of pressure and temperature. In this paper, the pressure 𝑃 is assumed constant in all 

descriptions. For the case of Landau’s theory, it is assumed that 𝐷2 = 𝑎0(𝑇 − 𝑇𝑐) where 𝑎0 is 

a phenomenological positive constant, 𝑇 is the material temperature and 𝑇𝑐 is the phase 

transition temperature. The Landau free energy can be chosen to be symmetric, for instance, 

in case of a simple bi-phase system characterized by a symmetric phase diagram, but can also 

be non-symmetric, for example, in case of a gas-liquid transition or system with a phase 

diagram including a critical point [11]. 

When using a fourth-order Landau potential with  𝐷1 = 𝐷3 = 0, 𝐵2 ≠ 0 and 𝐷4 > 0, the 

stability of the solid solution, the disordered phase, is traditionally defined by the zero root of 

the derivative of the system’s total free energy density, while its non-zeros roots characterize 

the stability of the second phase, the ordered phase. By solely considering the bulk free 

energy in the total free energy of the system, the prevailing phase is that for which the order 

parameter values minimize the Landau potential. Thus, in material regions, where the total 

free energy of the system is similar to that depicted in Figure 7a, the solid solution is stable 

while the second phase is unstable since there is only one minimum, i.e. for 𝜙 = 0. Figure 7b 

describes a situation where the second phase is stable and is expected to develop while the 

matrix phase, unstable, should disappear, i.e. for 𝜙 ≠ 0. With Landau’s formulation, Figure 

7a illustrates the appearance of the Landau potential for 𝑇 > 𝑇𝑐, i.e. 𝐷2 > 0. The situation 

displayed in Figure 7b corresponds to an undercooling of a pure solid solution as  𝑇 < 𝑇𝑐, i.e. 

𝐷2 < 0. Thus, the variation of the material temperature can modify the profile of the Landau 

potential. 

 

(a)                                                 (b) 

Figure 7 : Example of a Landau potential profile with (a)  𝑇 > 𝑇𝑐 and (b)  𝑇 < 𝑇𝑐 . 

For constant material temperature, the second phase precipitation can be triggered by energy 

contribution other than F
𝑠𝑡𝑟

. In [107], the stress induced by a dislocation, which has an active 

role in the microstructure evolution, is taken into account by including the elastic-strain free 
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energy into the total free energy of the system. The gradient of stress in the proximity of the 

dislocation induces an increase of the transition temperature such that the total free energy 

density profile changes with distance from the flaw. Thus, second-phase formation can occur 

in the vicinity of the dislocation, where 𝑇 < 𝑇𝑐. Away from the defect, 𝑇 > 𝑇𝑐 and, therefore, 

the solid solution remains stable. The shift of the transition temperature causes a modification 

of the total free energy density profile as that illustrated in Figure 8a for a symmetric sixth-

order Landau potential. 

 

            (a)                          (b) 

Figure 8 : Total free energy of a system omitting the gradient term and including a 

symmetric 6th order Landau potential to capture. (a) second-order transitions (𝐷4 > 0), and 

(b) first-order transitions(𝐷4 < 0). 

In other phase-field formulations, the bulk free energy density can be written as in Eq. (20), 

where the coefficients 𝐷𝑛 are constant. A typical example of a fourth-order Landau 

polynomial with 𝐷4 > 0 is  

ψ𝑏𝑢𝑙𝑘 = 𝑝 (−
1

2
𝜙2 +

1

4
𝜙4) ,  (21) 

where 𝑝/4 is the height of the double well or nucleation energy barrier, which needs to be 

overcome to allow phase transformation [82], and 𝜙 is a scalar phase-field variable. With this 

example, 𝜙 = −1 and 𝜙 = 1, the minima of the function, can be chosen to represent the 

existence and stability of two distinct material phases, e.g. the metallic solid solution and a 

second phase. In absence of F
𝑔𝑟𝑎𝑑

, the total free energy density of a system defined in this 

manner has a double-well shape, as illustrated in Figure 9a-b. In the situation depicted by the 

Figure 9a, the total free energy density of the system is symmetric, i.e. the minima have the 

same values, and, therefore, both phases can coexist in the microstructure. Figure 9b presents 
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a situation, where the global minimum is obtained for 𝜙 = 1 and indicating the prevalence of 

the second phase over the solid solution. The domination of the matrix phase and the second 

phase over one another can also be caused by the addition of non-symmetric energy terms in 

the total free energy functional. For example, in [102], the elastic-strain energy includes first 

and third order terms, which modify the double-well shape by breaking its symmetry. 

 

(a) 

 

(b) 

Figure 9 : Example of the total free energy density of a system, (a) where the solid solution 

and the precipitate can coexist, and (b) where the second-phase prevails over the matrix 

phase. The gradient free energy density term is neglected.  

4.2.3 First- and second-order transitions 

First-order transitions are characterized by a discontinuous derivative of the system free 

energy with respect to a thermodynamic variable and a release of latent energy and nucleation 

of a metastable state of the matter is its starting point. In addition, some materials, which 

undergo such type of transformation, can display a coexistence of multiple phases for many 

thermodynamic conditions and compositions. Transformation examples such as liquid 

solidification and vapor condensation are part of the first-order transition category. When 

analyzing the total free energy density of a system with respect to the phase field variables or 

order parameters, metastability is indicated by local minima, while stability is represented by 

global minima. For second-order transitions, the system free energy first derivative is 

continuous with no release of latent heat with the second derivative of the system free energy 

of the system being discontinuous. In this case, the transformation is triggered by the presence 

of thermal fluctuations. This category includes phenomena such as phase separation of binary 

solutions, spinodal decomposition in metal alloys or spontaneous ferromagnetic 

magnetization of iron below the Curie temperature [11]. 

Depending on the formulations, the use of a fourth-order Landau expansion can allow to 

capture either first- or second-order transformation [108]. Double-well potentials expressed as 

in Eq. (20) with 𝐷4 > 0 and Eq. (21), are suitable to modeled first-order transition when non-

symmetric terms are added, see Figure 9. It is also possible to utilize a symmetric fourth-order 

polynomial defined as in the Landau theory to capture first-order transition by taking 𝐷4 < 0. 

But, in this case the use of the formulation is limited since the Landau potential is unbounded. 
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The addition of higher order terms is necessary to overcome this limitation. Second-order 

phase transformations are commonly accounted for by using a symmetric fourth-order Landau 

potential, as defined in Landau theory with 𝐷4 > 0, see Figure 7. Both order transitions can 

be modeled by using a higher-order Landau potential as in [107], where a symmetric sixth-

order polynomial is employed, with 𝐷1 = 0, 𝐷3 = 0 and 𝐷5 = 0 considering Eq. (20). A 

system free energy density, which includes such a sixth-order free energy density, is presented 

in Figure 8a and Figure 8b. In this case,  𝐷6 > 0, which ensures the stability of the system, 

𝜙 = 0 designates the disordered phase and 𝜙 ≠ 0 represents the ordered phase. First-order 

transformations are regarded when 𝐷4 < 0 while second-order transitions are considered for 

𝐷4 > 0. In Figure 8a and Figure 8b, the lower the curves the larger the material transition 

temperature or the lower the material temperature. With this formulation, both phases may 

coexist when the minima of the system’s total free energy have the same value. For example, 

this can occur for 𝐷4 < 0, as displayed by the red curve in Figure 8b. 

4.2.4 Multi-phase and multi-order-phase systems 

In order to account for the energy of a multi-phase system, the bulk free energy density can be 

constructed with more phase-field variables or components than in the formulations presented 

above. Thus, various aspects and quantities such as the concentration of solute, the existence 

of phases, their crystallography and orientation can be represented [82]. For example, the 

evolution of a multi-phase microstructure can depend on the variation of the concentration of 

𝑁 components (𝑐1, 𝑐2, … , 𝑐𝑁) and on the degree of symmetry of the different phases 

represented by 𝑃 non-conserved order parameters (𝜂1, 𝜂2, … , 𝜂𝑃). As the amount of 

considered phases-field variables increases, the number of kinetics equation to be solved and 

their complexity increases. Thus, more computational resources are required to capture the 

evolution of multi-phase systems. 

4.2.5 The kinetic equations 

The evolution of the microstructure is steered by kinetic equations, as mentioned in section 

4.2.1. The Cahn-Hilliard (CH) equation is employed to govern the evolution of conserved 

phase-field variables [109] while the time-dependent Ginzburg-Landau (TDGL) equation, 

also known as Allen-Cahn equation [110], is commonly utilized to model the evolution of 

non-conserved phase-field variables. In this framework, the time derivative of a phase-field 

component is connected to the functional derivative of the total free energy of the system with 

respect to the same phase-field component and a positive kinetic coefficient. The latter is 

usually referred to as the diffusion coefficient in case of the CH equation and mobility 

coefficient for the TDGL equation. Through this formulation, the kinetic equations minimize 

the total free energy of the system at all times, and consequently, allow modeling the dynamic 

evolution of the microstructure towards a state of equilibrium [111]. When multi-component 

phase-field variables are employed and thermal fluctuations are neglected, the TDGL and the 

CH equations can be respectively written with tensor notations as 

𝜕𝜂𝑖

𝜕𝑡
= − 𝑀𝑖𝑗

δF
𝛿𝜂𝑗

 , (22) 
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and 

𝜕𝜓𝑖

𝜕𝑡
=∇ ∙ (𝐿𝑖𝑗∇

δF
𝛿𝜓𝑗

) , (23) 

where the parameters 𝐿𝑖𝑗 and 𝑀𝑖𝑗 respectively denote the matrices of diffusion and mobility 

coefficients. When considering quasi-static transformation, the system is in equilibrium. This 

state is modeled by setting the functional derivative of the system’s total free energy with 

respect to the phase-field variables to zero. 

Phase-field theory, as introduced in the current section, is used to build the models presented 

in the next sections of the thesis. Three of them are applied to crack-induced precipitation by 

using LEFM, introduced in section 3. 
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5 Phase-field models to predict stress-induced 
precipitation kinetics 

Over the years, models have been developed to study, predict and simulate second-phase 

nucleation and formation in materials [104, 106, 112, 113, 114, 115, 116, 117, 118]. Some of 

them are based on PFT and have found applications in hydride formation modeling in a 

context of HE. Phase-field methods continue being used increasingly for phase precipitation 

modeling. 

Models based on a symmetric fourth-order Landau-type potential cannot always suitably 

represent first- and second-order phase transitions. In contrast, microstructure changes 

involving these two types of phase transformation can be conveniently modeled through the 

use of higher-order polynomials. A symmetric sixth-order Landau potential-based model was 

presented in [105, 107] and found suitable to study crack- and dislocation-induced second-

phase formation. Such models can be used to cost-effectively study precipitation kinetics by 

taking into account multiple transitions orders without changing the overall formulation. As 

seen in sections 2.2.4 and 2.2.5, second/third-phase formation can be triggered and enhanced 

at the grain/phase boundary and in presence of stress concentrators such as opening cracks in 

a number of materials. The combination of these aspects on precipitation kinetics might be 

difficult to observe in laboratory. Modeling is a practical and cheap route to study the 

phenomenon. However, the addition of multiple aspects affecting the microstructure into a 

formulation can increase its complexity and, consequently, the computational resources 

required to solve considered situations as highlighted in [104]. Optimization of such 

formulation, e.g. by the reduction of the number of equations to be solved, can be beneficial 

in industrial engineering project in terms of time and costs. Additionally, the coupled 

mechanical and the phase-field aspects of the microstructural evolution are often treated 

separately and with different computer programs. By using fully coupled methods 

convergence can be obtained robustly and both aspects can be considered simultaneously 

[119]. The possibility to use a single mechanical commercial program to account for 

interdependent multi-physical aspects affecting second-phase formation can be more 

interesting within industrial engineering considering cost and time efficiency. 

In this thesis, for its practicality to model complex microstructures, PFT is chosen to model 

stress-induced precipitation kinetics. Different approaches are presented to account for the 

different aspects related to the system configuration and complexity. All models account for 

stress-induced precipitation driven by the coupling of the phase transformation-induced 

swelling of the system and the stress. Model 1 is based on Massih and Bjerken’s work [105, 

107], in which a scalar structural order parameter is employed. This model is used to study 

defect-induced second-phase precipitation within a crystal for different sets of sixth-order 

Landau potential coefficients. The near-crack stress is implicitly incorporated in the 

mathematical formulation through the use of LEFM relations for isotropic and anisotropic 

materials. The second and third models have been developed in order to capture stress-

induced second- and third-phase precipitation at grain/phase boundaries, by employing a two-

component non-conserved phase-field variables and for a uniform and constant concentration 

of solute. This choice has been made in order to account for phase transformation in 
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polycrystalline and multi-phase microstructures, e.g. hydride formation occurring 

preferentially along grain and phase boundaries in a Ti64 microstructure. These models are 

suited to predict intragranular, intergranular and interphase crack-induced precipitation as 

LEFM applied to interface cracks is employed and a parameter is introduced to account for 

the energy of the grain/phase boundary. Anisotropy in terms of elastic constants and dilatation 

of the system during phase transformation can also be considered with models 2 and 3. With 

models 1-3, only the phase-field equation needs to be solved numerically as the mechanical 

equilibrium is taken into account analytically. This allows modelling of second or third-phase 

precipitation kinetics with numerical efficiency. Model 4 is formulated to model second-phase 

formation induced by stress by considering a fourth-order double-well and a non-conserved 

phase-field scalar. With this formulation, the orientation of the forming hydrides 

perpendicular to the applied stress as mentioned in section 2.2.2 is captured. The numerical 

approach associated with this model is based on FEM and a fully coupled method by using 

the commercial program Abaqus. In this thesis, only diffusionless transformations are 

considered in an early stage of second/third phase formation as diffusional phase changes 

induced by stress are assumed to be slower for a given concentration of solute. Thus, the 

phase transformation aspect is accounted for by solely employing the TDGL equation with all 

models while mechanical equilibrium is represented either analytically or numerically. 

Furthermore, the same elastic constants are considered for the precipitate and the matrix phase 

the second-phase forms from for all models for simplicity. 

This section gives a description of the models and numerical strategies used in this thesis. 

5.1 Model 1: Sixth order Landau potential for crack-induced 

second-phase formation modeling 

In model 1, 2 and 3, the spatial position of a particle can equally be referred to through a 

Cartesian or a polar coordinate system. Thus, the position vector 𝑥𝑖 is either defined by 

(𝑥1, 𝑥2, 𝑥3) or (𝑟, 𝜃, 𝑧). In model 1, second-phase precipitation near the tip of a crack opening 

in mode I in a crystal is considered. The origin is chosen to be located at the crack tip as 

presented in Figure 10. 

 

Figure 10: Geometry of the system. 

In model 1, employed in papers A and B, a non-conserved order-parameter scalar  𝜂 is chosen 

to describe the evolution of the microstructure such that 𝜂 = 0 designates the matrix or the 

solid solution and 𝜂 ≠ 0 represents for the second phase. 

The total free energy density of the system with a volume 𝑉 is derived from Eq. (19) and 

becomes 
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F = ∭ [
𝑔

2
(∇𝜂)2 + 𝜓𝑏𝑢𝑙𝑘(𝜂) +

1

2
𝜎𝑖𝑗𝜀𝑖𝑗

𝑒𝑙 − 𝜉 𝜂2𝜀𝑙𝑙]

𝑉

𝑑𝑉, (24) 

where the sum of the first two terms on the right hand side is equal to the structural free 

energy F
𝑠𝑡𝑟

, the third term is the elastic-strain energy and the last term represents the 

interaction energy F
𝑖𝑛𝑡

. The positive coefficient 𝑔 is related to the interfacial energy and the 

interface thickness. The dilatation of the system caused by lattice misfit during phase 

transformation is represented by F
𝑖𝑛𝑡

 and includes a positive constant  𝜉, called striction 

factor, which is related to the lattice constant [120, 121]. The tensor quantities  𝜎𝑖𝑗, 𝜀𝑖𝑗 and 𝑢𝑖 

respectively accounts for the stress tensor, the strain tensor and the displacement field. The 

sixth-order Landau potential 𝜓 is expressed as 

𝜓𝑏𝑢𝑙𝑘(𝜂) =
1

2
𝛼0𝜂2 +

1

4
𝛽0𝜂4 +

1

6
𝛾𝜂6, (25) 

Where the phenomenological parameters 𝛼0, 𝛽0 and 𝛾 are constants related to temperature 

and the stability of the system is ensured by imposing 𝛾 > 0, as mentioned in section 4.2.3. It 

is assumed that the system is at mechanical equilibrium at all times, which yields: 

𝜕𝜎𝑖𝑗

𝜕𝑥𝑗
=

𝜕

𝜕𝑥𝑗
(

𝛿F 

𝛿𝜀𝑖𝑗
) = 𝑄𝑖 , (26) 

where 𝑄𝑗 represents the crack-induced force field. Proceeding as in [122] for an isotropic 

body and by using Eq. (3), Eq. (26) can be rewritten as 

𝑀
𝜕𝑢𝑖

𝜕𝑥𝑗𝜕𝑥𝑗
+ (𝛬 − 𝑀)

𝜕2𝑢𝑙

𝜕𝑥𝑖𝜕𝑥𝑙
− 𝜉 

𝜕(𝜂2)

𝜕𝑥𝑖
=  𝑀𝛺𝑖(𝑥𝑖) , (27) 

where 𝑢𝑖  is the displacement field, 𝛺𝑖 accounts for the variation in strain field induced by the 

opening crack tip, and  𝑀 and 𝛬 denote the shear and the P-wave moduli respectively. 

Equation (27) is analytically solved for an isotropic body in order to determine 𝜖𝑙𝑙 = 𝜕𝑢𝑙 𝜕𝑥𝑙⁄  

as function of the order parameter and eliminate the elastic field from Eq. (24) as explained in 

[106]. Therefore, the total energy of the system for constant pressure can be given as a 

function of the order parameter solely. It can be expressed as 

F(𝜂, 𝑇) = F(0, 𝑇)+ ∭ [
𝑔

2
∇2𝜂 +

1

2
𝛼𝜂2 +

1

4
𝛽𝜂4 +

1

6
𝛾𝜂6]

𝑉

𝑑𝑉, (28) 

where F(0, 𝑇) is an energy that depends on temperature and stress, while 𝛼 and 𝛽 are the 

Landau potential coefficient of the quadratic and the quartic terms of 𝜂, which depend on the 

crack displacement field. Thus, in plane strain conditions and through the use of LEFM, 

𝛼 ≡ |𝛼0| (sgn (𝛼0) − √
𝑟0

𝑟
𝑓(𝜃, 𝜁)) , (29) 
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where sgn is the sign function and 𝑓(𝜃) =
1

2𝑆11
[𝐴1 𝑓11(𝜃) + 𝐴2 𝑓22(𝜃) + 𝐴3 𝑓12(𝜃)] with 

𝐴1 = 𝑆11 + 𝑆12 , 𝐴2 = 𝑆12 + 𝑆22  and 𝐴3 = 𝑆16 + 𝑆26 . The trigonometric functions 𝑓𝑖𝑗 are 

given in Eqs.(4)-(6) for an isotropic system, and in Eqs. (9)-(11) for anisotropic media. The 

quantities 𝑆𝑖𝑗 are the planar compliance components calculated for a determined crystal plane. 

For isotropic bodies where 𝐸 and 𝜈 account for the Young’s modulus and Poisson’s ratio 

respectively,  𝐴1 = 𝐴2 = (1 + 𝜈)(1 − 2𝜈) 𝐸⁄ ,  or 1 [2(𝛬 − 𝑀)⁄ ],  while  𝐴3 = 0  and, 

 𝑆11 = (1 + 𝜈)(1 − 𝜈) 𝐸⁄  or 𝛬 [4𝑀(𝛬 − 𝑀)]⁄ . The length parameter 𝑟0 is expressed as  

𝑟0 =
8

𝜋
(

𝜉 𝐾I𝑆11 

|𝛼0|
)

2

, (30) 

where 𝐾I is the stress intensity factor for the mode-I crack. Hence, 𝛼 is not only temperature 

dependent, but also space and load dependent. Its temperature dependence can be explicitly 

formulated as  

𝛼 = 𝑎 (𝑇 − 𝑇𝑐(𝑟, 𝜃)) , (31) 

where 𝑇𝑐(𝑟, 𝜃, 𝜁) = 𝑇𝑐0
+

4 𝜉 𝐾I 𝑆11

𝑎

𝑓(𝜃)

√2𝜋𝑟
 is the phase transition temperature modified by the 

influence of the crack-induced stress field and 𝑇 is the material temperature, which is 

assumed constant. The constant 𝑇𝑐0
 denotes the phase transition temperature in a defect-free 

crystal, which is included in the quadratic term of the Landau potential as 𝛼0 = 𝑎[𝑇 − 𝑇𝑐0
]. 

Under defect-free conditions, 𝑇 > 𝑇𝑐0
 corresponds to the prevalence of the solid solution and 

for 𝑇 < 𝑇𝑐0
 the second phase becomes stable whereas the solid solution becomes unstable. In 

presence of a crack, these stability conditions are readjusted by substituting 𝑇𝑐0
 by 

max(𝑇𝑐0
, 𝑇𝑐). Thus, the effect of the space-dependent crack-induced stress field on the solid 

solubility limit becomes the driving force for the microstructural evolution. 

The coefficient of the quartic term of the total free energy, 𝛽, is dependent of the elastic 

constants of the material and, for isotropic bodies, is expressed as  

𝛽 = 𝛽0 −
2𝜉2

𝛬
 . (32) 

When the crack is inclined with an angle 𝜁 relative to crystallographic planes, as illustrated in 

Figure 11 for an HCP crystal structure, a change of base for the stress tensor is necessary. 

Hence, the trigonometric function 𝑓 is not only dependent of the second polar coordinate 𝜃 

but also of the crack inclination 𝜁 through  𝐴1, 𝐴2 and 𝐴3 as 

𝐴1(𝜁) = 𝑆11cos2 𝜁 + 𝑆12 + 𝑆22sin
2 𝜁 +

1

2
(𝑆16 + 𝑆26) sin 2𝜁, (33) 
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𝐴2(𝜁) = 𝑆11sin
2 𝜁 + 𝑆12 + 𝑆22cos2 𝜁 −

1

2
(𝑆16 + 𝑆26) sin 2𝜁, (34) 

𝐴3(𝜁) = (𝑆11 − 𝑆22) sin 2𝜁 + (𝑆16 + 𝑆26) cos 2𝜁. (35) 

 

 

(a) (b) (c) 

Figure 11: a) Basal and prismatic planes in an HCP crystal. b) Crack plane (in red) 

orthogonal to the basal planes (in blue) with an inclination angle 𝜁 relative to {11̅00}  
planes c) Crack plane (in red) orthogonal to prismatic planes of the {11̅00} family (in blue). 

The TDGL equation, presented in Eq. (22), needs to be solved in order to determine the 

evolution of the structural order parameter and, therefore, predict the possible microstructural 

changes induced by the presence of a crack in the system. To simplify the numerical 

treatment, dimensionless coefficients are introduced as,  𝜂 = √
|𝛼0|

|𝛽|
Φ,  𝑟 = √

𝑔

|𝛼0|
𝜌,   

𝑥𝑖 = √
𝑔

|𝛼0|
𝑥𝑖̃, 𝑟0 = √

𝑔

|𝛼0|
𝜌0, 𝑡 =

1

|𝛼0|𝑀11
𝜏 in Eq. (28) so that Eq. (22) becomes 

𝜕Φ

𝜕𝜏
= ∇̃2Φ − (𝐴 Φ + sgn (𝛽) Φ3 + 𝜅 Φ5) , (36) 

where 𝐴 = sgn (𝛼0) − √
𝜌0

𝜌
𝑓(𝜃, 𝜁) and ∇̃ is the dimensionless gradient operator. 

5.2 Models 2 and 3: Stress-induced precipitation at grain/phase 

boundaries 

Models 2 and 3, employed in papers C and D respectively, are formulated such that they 

account for stress-induced precipitation in polycrystalline and multi-phase systems 

respectively. Particular attention is paid for configurations where the stress is induced by 

defects, such as intergranular, interphase and intragranular cracks. The systems represented 

with model 2 are composed of grains of the same phase but with different orientations. Model 
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3 is an improved version of model 2, which can represent different phases in the matrix. For 

these approaches, phase transformation is considered for a given concentration of solute 𝐶. 

Thus, these models are based on the phase-field method and use a two-component non-

conserved phase-field variable (𝜂1, 𝜂2) to represent the microstructure. The formulation of the 

bulk free energy density is such that these components are allowed to vary from −1 to 1, 

where (−1, −1) designates the stability of the solid solution in phase 1, (−1, 1) represents 

that of the solid solution in phase 2 and  (1, 𝜂2) denotes the stability of the precipitate. The 

intermediate values of the phase-field variable represent the interfaces between the different 

grains and phases. In model 3, phase 1, phase 2 and the phase of the precipitate are referred to 

as phases α, β and δ respectively. For model 2, the β-phase region designates a second α-

phase region but with a different orientation. 

The bulk free energy densities used for these models are illustrated in Figure 12 and have 

been formulated as 

𝜓𝑏𝑢𝑙𝑘(𝜂𝑖) =  𝑃0 (  𝑓a 𝑓b +  𝑓c 𝑓d ) , (37) 

with 

f
a

= (η
1

2 − 1)
2

, (38) 

f
b

= 1 for model 2, (39) 

f
b

= −
1

3
 𝑝 𝜂2

3 + 𝑝 𝜂2 + 𝑞  for model 3, (40) 

f
c

= (η
2

2 − 1)
2

, (41) 

 𝑓d =
𝑠

4
[𝜂1(𝜂1 + 2)(𝜂1

2 + 2𝜂1 − 6) − 7] for model 2, (42) 

 𝑓d = 𝑎αβ − 𝑠 ℎmδ for model 3, (43) 

where ℎmδ =
1

4
(- η

1
 3 + 3 η

1
 + 2) is an interpolation function, which satisfies the relations 

ℎmδ(-1) = 0 and ℎmδ(1) = 1, 𝑝 = 3 (𝑎βδ − 𝑎αδ)/4 and 𝑞 =  (𝑎αδ + 𝑎βδ)/2. The 

phenomenological parameter P0 is the height of the double well formed by this function and 

the coefficient 𝑎αδ, 𝑎βδ and 𝑎αβ are the respective energy barrier coefficients of the α/δ, the 

β/δ, and the α/β transitions. The phenomenological parameter 𝑠 has been introduced in these 

models to account for the energy level of the grain/phase boundary by controlling the 

nucleation (or activation) energy barrier for the matrix/precipitate transition at the grain/phase 

boundary. Thus, a reduction of the activation energy barrier within the interface between the 

matrix phases is modeled by an increase of the value of  𝑠. The variation of  𝑠 allows 

modeling different types of grain/phase boundaries, i.e. different level of interface 

incoherency can be represented. 
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(a) (b) 

Figure 12: Landau potential normalized with respect to 𝑃0 for (a) model 2 and (b) model 3 

with 𝑠 > 0. 

The gradient free energy is expressed as F
𝑔𝑟𝑎𝑑

=
1

2
∫{𝑔mδ(∇𝜂1)2 + 𝑔αβ(∇𝜂2)2} 𝑑𝑉, where 

the phenomenological parameters 𝑔mδ and 𝑔αβ are positive constants related to the interfacial 

energies relative to the interface matrix/hydride and the interface between the matrix regions, 

grain or crystals respectively [11]. The function 𝑔mδ is a third-degree polynomial in 𝜂2, which 

interpolates 𝑔αδ and 𝑔βδ over the interface between the matrix phases. With model 2, 𝑔βδ =

𝑔αδ since the same phase is considered for the two matrix-phase regions. 

The parameters 𝑃0, 𝑔mδ, 𝑔αβ, 𝑎αδ, 𝑎βδ and 𝑎αβ are connected to the specific interfacial energy 

𝛾𝑖𝑗 and the width 𝑤𝑖𝑗 of the different interfaces. Proceeding as in [123], the latter quantities 

can be estimated for a 1d-system at equilibrium, where no elastic-strain energy contribution is 

considered, as  

𝑤𝑖𝑗 = 𝛼0√
𝑔𝑖𝑗

2 𝑎𝑖𝑗𝑃0
, (44) 

and  

𝛾𝑖𝑗 =
4

3
√2 𝑎𝑖𝑗 𝑔𝑖𝑗  𝑃0, (45) 

where 𝑖 ∈ {𝛼, 𝛽}, 𝑗 ∈ {𝛿, 𝛽} and 𝑖 ≠ 𝑗. In order to use these relations with model 2, the 

coefficient 𝑎αδ, 𝑎βδ and 𝑎αβ must be set so that 𝑎αδ = 𝑎βδ = 𝑎α𝛽 = 1. 

As introduced in section 4.2.1, the total energy of the system with a volume 𝑉 is the sum of 

the bulk free energy, the gradient energy and the elastic-strain energy F
𝑒𝑙

. The latter energy 

term is formulated as in [85, 124], 
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F
𝑒𝑙

= ∫ 𝜓𝑒𝑙𝑑𝑉 = ∫ [
1

2
𝜎𝑖𝑗  𝜀𝑖𝑗

𝑒𝑙 − 𝜎𝑖𝑗
𝐴 𝜀𝑖𝑗] 𝑑𝑉 , (46) 

where 𝜎𝑖𝑗, σij
A, 𝜀𝑖𝑗

𝑒𝑙 and 𝜀𝑖𝑗 denote the internal stress, the applied stress, the elastic strain and the 

homogeneous strain tensors respectively. The swelling of the system during phase 

transformation is taken into account in the total strain 𝜀𝑖𝑗
𝑡𝑜𝑡, expressed as  

𝜀𝑖𝑗
𝑡𝑜𝑡 = 𝜀𝑖𝑗

𝑒𝑙 + 𝜀𝑖𝑗
𝑠  𝑄 ℎmδ , (47) 

where 𝜀𝑖𝑗
𝑒𝑙 and 𝜀𝑖𝑗

𝑠  denote the elastic-strain and the stress-free strain tensors, respectively, and 

ℎmδ(η1) =
1

4
(−𝜂1

3 + 3 𝜂1 + 2) is an interpolation function, which satisfies the relations 

ℎmδ(-1) = 0 and ℎmδ(1) = 1. The total strain is made dependent on η
1
 solely through the term 

𝜀𝑖𝑗
𝑠  𝑄 ℎmδ as 𝜀𝑖𝑗

𝑒𝑙 is assumed independent of η
1
. The parameter 𝑄 is coupled to the eigenstrains 

to account for the difference in solubility of solute in the phases of the solid solution during 

precipitation: 𝑄 = 1 in model 2 and 𝑄 = 𝐶/𝐶𝑠 in model 3, where 𝐶𝑠 designate the solid 

solubility limit of solute in absence of applied stress. While 𝐶 is constant and uniform in the 

whole system, 𝐶𝑠 is interpolated over the interface between the different matrix phases 

through a similar function as 𝑔mδ. Linear elastic properties are assumed for all phases such 

that the stress tensor is related to the elastic strain tensor through the use of Hooke’s law. In 

paper C and D, all phases are presumed isotropic for simplicity. Nevertheless, models 2 and 3 

can also incorporate anisotropic elastic constants. In model 2, the elastic constants of the 

phase regions are assumed to remain unchanged through the grain boundary. In model 3, 

since the elastic constants can be different from one matrix phase to the other, they are 

interpolated over the interface that separates them from each other. In paper C, the stress-free 

strains are considered isotropic. In this case, they can be written εij
s  = ε0 𝛿𝑖𝑗, where ε0 is a 

positive constant. Both isotropic and anisotropic transformation-strains are considered in 

paper D. If the deformation of the system induced by phase transformation is different from 

one matrix phase to the other, then the eigentrains are interpolated over the interface between 

the matrix phases. 

In Eq. (46), the applied stress 𝜎𝑖𝑗
𝐴 has to be replaced by the analytical expression of the stress 

field prevailing in the system. In presence of a crack, the stress residing in the proximity of 

the crack-tip is modeled through the use of LEFM. In paper C, model 2 employs the 

expression given in Eq. (1) by neglecting the high order terms and considering the 

trigonometric functions in Eqs. (4)-(6). This is enough to model the stress in the vicinity of 

cracks lying in grains or along grain boundaries. In order to account for the stresses induced 

by cracks, including interface cracks, in multi-phase systems, the use of Eq. (14) is made in 

paper D with model 3. In order to keep continuity of the system, the stress field is interpolated 

over the interface between the different matrix phases. In absence of applied stress, the 

elastic-strain free energy is equal to the first term of the right-hand side of Eq. (46). When a 

stress is applied to the system, the second term of Eq. (46) is non-zero and gives rise to the 

driving force for precipitation by inducing a shift in the solid solubility limit in the solid 

solution phases. The applied stress field can be substituted by the expression given in (1) 

through the use of Eqs. (9)-(11) to represent the near crack-tip stress field in an anisotropic 
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media as with model 1 when modeling crack-induced precipitation in an HCP crystal. 

Inclination of a crack in an anisotropic crystal structure can also be taken into account in the 

same manner as with model 1. Other types of defect-induced stresses can be included in the 

models, e.g. the expressions for an edge dislocation-induced stress field in [122] can be used 

for appropriate studies. 

In both models, the possible movement of the transition front between the matrix phases is 

assumed to be much slower than the precipitation of a second or third phase. Consequently, 

the evolution of the phases, within the time scale of precipitation, can be obtained by solely 

numerically solving the TDGL equation for 𝜂1 as in Eq. (22), which, in models 2 and 3, can 

also be written 

𝜕η1

𝜕𝜏
= 𝑔mδ∇2𝜂1 − (

𝜕𝜓𝑏𝑢𝑙𝑘

𝜕𝜂1
+

𝜕𝜓𝑒𝑙

𝜕𝜂1
) , (48) 

where 𝜏 =  𝑀11 𝑡, in which 𝑀11 is the mobility coefficient and 𝑡 is the time. 

5.3 Model 4: Stress-induced second-phase formation modelling 

applied to commercial software  

The fourth model accounts for stress-induced second-phase formation and is part of a 

numerical methodology, where mechanical equilibrium and phase-field equations are coupled 

and solved concurrently. A non-conserved phase-field scalar 𝜑 is selected to describe the 

evolution of the phases. It is defined so that 𝜑 = −1 characterizes the prevalence of the solid 

solution, and 𝜑 = 1 corresponds to the second-phase dominance. 

Here, the total energy of the system with a volume 𝑉 is the sum of the bulk free energy, which 

includes the same fourth-order Landau potential as that given in Eq. (21), the gradient free 

energy   F
𝑔𝑟𝑎𝑑

= ∫
𝑔

2
(∇𝜑)2 𝑑𝑉  and the elastic-strain energy F

𝑒𝑙
 as introduced in section 

4.2.1. The misfit of the second phase with the parent phase induces a deformation of the 

material and is taken into account through the stress-free strain 𝜀𝑖𝑗
𝑠  in the total strain 𝜀𝑖𝑗

𝑡𝑜𝑡 

similarly to model 2 and 3 as  

𝜀𝑖𝑗
𝑡𝑜𝑡 = 𝜀𝑖𝑗

𝑒𝑙 + 𝜀𝑖𝑗
𝑠 ℎ(𝜑), (49) 

where ℎ(𝜑) =
1

4
(−𝜑3 + 3𝜑 + 2). In the solid solution, ℎ(−1) = 0, and in the hydride phase 

 ℎ(1) = 1. The energy release in form of material dilatation during phase transformation is 

embedded in the elastic-strain free energy. Thus, the functional derivative of the latter with 

respect to the phase field variable can be formulated as 

𝛿F
𝑒𝑙
 

𝛿𝜑
= −

3

4
𝜀𝑖𝑗

𝑡𝑜𝑡  𝐶𝑖𝑗𝑘𝑙 𝜀𝑘𝑙
𝑠  (1 − 𝜑2). (50) 

The stress-free strain can be either isotropic or anisotropic and the components,  𝜀11
𝑠 ′ and 𝜀22

𝑠 ′, 

written in the coordinate system of the crystal structure, i.e. for which the tensor is diagonal, 
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are set in the directions of the principal stress 𝜎11
 ′  and 𝜎22

 ′ . The swelling and stress tensors, 𝜀𝑖𝑗
𝑠  

and 𝜎𝑖𝑗, written in the global coordinate system, are related to 𝜀𝑖𝑗
𝑠 ′ and 𝜎𝑖𝑗

 ′  respectively through 

𝜀𝑝𝑞
𝑠 ′ = 𝑄𝑖𝑝

𝑠 𝑄𝑗𝑞
𝑠 𝜀𝑖𝑗

𝑠  and 𝜎𝑖𝑗
 ′ = 𝑄𝑖𝑝

𝑠 𝑄𝑗𝑞
𝑠 𝜎𝑖𝑗, where 𝑄𝑖𝑝

𝑠  and 𝑄𝑖𝑝
𝑠  are basis rotation matrices. The 

components of 𝜀𝑖𝑗
𝑠 ′ are directly provided from the literature, e.g. [32] for Zr-hydrides, and, 𝜎11

 ′  

and 𝜎22
 ′  are the eigenvalues of 𝜎𝑖𝑗. 

The problem is driven by the minimization of the energy as the mechanical equilibrium is 

satisfied at all times. The governing equations are, therefore, the second law of Newton for 

static equilibrium and the TDGL equation, Eq. (22). By differentiating the different energy 

terms with respect to 𝜑, the latter becomes 

1

𝑀11

𝜕φ

𝜕𝑡
= − [(−

3

4
𝜀𝑖𝑗

𝑡𝑜𝑡  𝐶𝑖𝑗𝑘𝑙 𝜀𝑘𝑙
𝑠 − 𝑝𝜑) (1 − 𝜑2) − 𝑔∇2𝜑], (51) 

where 𝑀11is the mobility coefficient. 

5.4 Summary and comparison of the main features of the models 

when applied to crack-induced precipitation 

The main characteristics and capabilities of the phase-field models for stress-induced 

precipitation as they are presented in the appended papers are given in Table 1. 

Table 1: Characteristics and potentialities of the models. 

Paper name Paper A Paper B Paper C Paper D Paper E 

Model # 1 1 2 3 4 

Transition order first or second first first first first 

Phase-field 

Components 
1 1 2 2 1 

Landau-type 

potential order 
sixth sixth eighth seventh fourth 

Elastic property isotropic 
anisotropic 

(HCP) 
isotropic* isotropic* 

isotropic/  

anisotropic 

Stress-free strain  isotropic isotropic isotropic 
isotropic/ 

anisotropic 

isotropic/  

anisotropic 

Number of matrix 

phases 
1 1 1 2 1 

Inclusion of stress implicit implicit implicit implicit explicit 

Crack type intragranular** intragranular** 
intra/inter-  

granular 

intra/  

intergranular 

 or 

interphase 

−*** 

Phase /Grain 

boundary energy 

control 

no no yes yes no 
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*In paper C and D, isotropic elastic constants are employed. Nevertheless, anisotropic elastic constants can also 

be used. If a near crack-tip stress field is considered in an anisotropic media, LEFM through the use of Eqs. (1) 

and (9)-(11) can be utilized as in paper B with model 1. 

** Model 1 could represent intergranular cracks since the LEFM expressions to be used are the same a crack 

between two grains of same phase as for an intragranular crack. However, the results might be less realistic with 

model 1 than with model 2 or 3 since the effect of the grain boundary energy is not captured with model 1. 

*** Model 4 is not employed to represent crack-induced precipitation in paper E. Nonetheless, it can be applied 

on configurations including stress concentrators. 

5.5 Numerical solution strategies and boundary conditions 

5.5.1 Model 1, 2 and 3 

The simulations of the stress-induced precipitation based on model 1, 2 and 3 are performed 

through the use of the software FiPy [125]. With this Python-based module, the TDGL 

equation is solved based on a standard FVM over a grid composed of equally sized square 

elements. The chosen solver employs a LU-factorization solving algorithm. In paper A-D, the 

applied stress/strain is that of a near crack tip, modeled by Eqs. (1) and (14) depending on the 

crack configuration.  

In the simulations, the element size and time step 𝛥𝜏 are chosen to be small enough to ensure 

the stability of the solutions [11]. For instance, with model 2 and 3, 𝛥𝜏 <  𝑙2 /(4 𝑔mδ), where 

𝑙 is the element size. During the selection of the element sizes and time steps, convergence 

studies have also been performed to ensure that the relative error is small, e.g. minor to 4% in 

paper D. 

At the boundary, the condition 𝐧 ∙ ∇𝜂1  =  0, where 𝐧 is a unit vector perpendicular to the 

domain limits, is satisfied suggesting symmetry of the phase-field variable value across the 

boundary. The domain is considered large enough so that it prevents edge effects on the 

results. 

Initially, no precipitate is present in the system in paper A, B and C. Instead, a random 

distribution of the phase-field variable is made on the computational domain in order to 

numerically initiate the microstructural change. Physically, this distribution can be interpreted 

by a thermal fluctuating noise, which can, for instance, trigger phase transformation in 

metastable systems. In fact, without any initialization the microstructure remains unchanged 

since the motion of the interfaces is driven by the gradient of the phase-field variable. In paper 

A, B and D, the range of initial values for the phase-field variable is taken small enough not to 

affect the results of precipitation kinetics. In paper C, this range is chosen to account for the 

initial thermal noise but also the presence of solute. In paper D, an initial nucleus is 

considered centered on the crack tip. 

As mentioned earlier, the TDGL equation only is solved for models 1-3. It is solved for 𝜂1 

only with model 2 and 3 such that phase transformation between the matrix phases is 

disregarded. Phase transformation is modeled in predefined configurations of the solid-

solution phases. In paper C and D, these phases are represented, as in Figure 5, by distributing 

the values of the second phase-field component over the mesh through the relation  
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𝜂2(𝑦) = tanh(𝑦 √2 𝑎αβ 𝑃0 / 𝑔𝛼𝛽). In particular, this function ensures a smooth transition 

between the two half parts of the computing domain. For the cases including an interface 

crack, the parameter 𝑠, present in Eq. (37) is set to 0 behind the crack tip because of the 

material discontinuity. This is done by using the relation  

𝑠 = 𝑠0 {tanh  [(𝑥 − 𝑥0) 𝑙𝑠𝑢𝑏⁄ ] + 1} 2⁄ , where 𝑠0 is such that 𝑠 = 𝑠0 for  𝑥 > 0, for 𝑥0 being 

the abscissa of the crack tip and 𝑙𝑠𝑢𝑏 is set as a sub-atomic length. 

5.5.2 Model 4 

For model 4, FEM associated to a fully coupled solving method is employed to solve the 

strongly coupled mechanical-phase field problem. The choice of using a fully coupled method 

is made as this type of approach is usually more robust than a segregated approach in terms of 

convergence, especially when the coupled aspects are strongly coupled [119]. The model is 

integrated into the software Abaqus [14] by using user subroutines, where the fully coupled 

thermo-mechanical problem is modified and adapted for phase-field modeling. Although the 

equations relative to mechanical equilibrium are solved numerically, this numerical method 

offers more flexibility, e.g. in terms of the application of boundary conditions and anisotropy. 

Equation (51) undergoes a backward-difference scheme and the solution of the non-linear 

system is obtained through the use of Newton-Raphson’s method, which includes a non-

symmetric Jacobian matrix, as 

[
𝐾𝑢𝑢 𝐾𝑢𝜑

𝐾𝜑𝑢 𝐾𝜑𝜑
] [

∇𝑢

∇𝜑
] = [

𝑅𝑢

𝑅𝜑
] , (52) 

where ∇𝑢 and ∇𝜑 are the correction for incremental displacement and order parameter, 𝐾𝑖𝑗 

are the stiffness sub-matrices of the Jacobian matrix and 𝑅𝑖 are the residual vectors for the 

mechanical and the phase-field aspects of the system.  

The numerical approach is applied to a defect-free medium and a notched body with isotropic 

elastic properties corresponding to zirconium. The quadratic element size is chosen such that 

the interfaces are well-represented, and an adaptive time increment is employed. The initial 

seedings is a random distribution of the phase field parameter value. A displacement rate is 

applied on two opposite ends of the medium, while the other edges are mechanically free. A 

zero-gradient of the order parameter is also applied on the boundary of both bodies.   
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6 Summary of the appended papers 

The attached papers describe models 1-4 as well as their associated numerical procedures. 

Simulations were performed for specific situations with all models and the results are 

presented in this section. 

6.1 Paper A 

In the first paper, model 1 is applied to isotropic bodies at a temperature T. A parametric study 

is achieved and illustrates different situations of second-phase formation within a near crack-

tip stress field. The influence of the system total free energy coefficients, presented in  

Eq. (28), on the solution of Eq. (36), and the modification, or shift, of the phase transition 

temperature by the crack-induced stress gradient are thoroughly discussed. 

6.1.1 The analytical steady-state solution 

First, Eq. (36) is analytically examined for a steady state and for the condition that the 

variation of the order parameter in one point does not affect its neighbors, i.e. 𝜕Φ 𝜕𝜏⁄ = 0 and 

∇̃2Φ = 0. One result of this investigation is the phase diagram, illustrated in Figure 13, which 

exhibits the dimensionless distance from the crack tip versus 𝜅 sgn (𝛽) for 𝛼0 > 0 or 𝑇 > 𝑇𝑐0
, 

i.e. for cases where no phase transformation is expected if the system is free from defects. 

 

Figure 13: Phase diagram at steady state for  𝛼0 > 0 and excluding the gradient free energy 

term. The notations I and II denote respectively the solid solution and the second phase. The 

superscript (*) indicates a metastable state of the considered phase.  

This phase diagram is useful to approximately predict the steady-state microstructure in 

presence of a sharp crack when 𝑇 > 𝑇𝑐0
. Depending on the value of 𝜅, the distance from the 

crack tip and the sign of 𝛽 , the second phase may form. Approaching the crack-tip, the 

modified phase transition temperature 𝑇𝑐  is increased, inducing a decrease of  𝛼. Thus, this 

type of quench of the solid solution in the vicinity of the crack tip potentially allows phase 
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transformation. In addition, the analytical solution predicts first-order transformations for 

𝜅 sgn (𝛽) < 0 and second-order transitions for 𝜅 sgn (𝛽) > 0.  

For the case of negative  𝛽, when 𝜅 > 1/4, four regions are expected to be seen depending on 

the distance from the crack tip: II, I*+II, I+II* and I. For 𝜅 < 1/4, the analytical solution of 

Eq. (36) predicts that the furthest region from the crack tip can contain metastable second 

phase and stable solid solution. For 𝜅 < 3/16, the solid solution is never expected to be stable 

regardless of the distance from the crack. In case of positive 𝛽, two different regions are likely 

to co-exist depending on the distance from the crack tip. A stable second phase (II) should 

spontaneously form in the areas close to the crack tip for a length ratio 𝜌 [𝜌0 cos2 𝜃

2
]⁄ < 1 and 

this region is expected to be surrounded by stable solid solution (I). This inequality represents 

the transition line between region II and I*+II for negative  𝛽. According to the model 

predictions, for 𝑇 < 𝑇𝑐0
 or 𝛼0 < 0, the whole considered body is expected to transform into a 

stable second phase. 

6.1.2 Numerical results 

The full solution of Eq. (36) applied to the situations analytically investigated in the previous 

section at steady states is numerically examined and presented in this section. 

In all studied cases, the order parameter growth pattern is similar: a relatively sharp peak 

emerges in the first elements near the crack tip before it reaches a maximum 𝛷𝑚𝑎𝑥. At this 

point, lower values of the order parameter spread around the crack tip as a result of the 

driving force emanating from the space-dependent phase transition temperature 𝑇𝑐. In other 

words, the second phase nucleates in the crack-tip closest region and the phase transformation 

expands with space as long as the condition 𝑇 <  𝑇𝑐 is satisfied. This pattern is sequentially 

illustrated in Figure 14. 

Depending on the value of 𝜅, and the sign of 𝛼0 and 𝛽 some characteristic data are collected: 

(i) the peak value of the order parameter, (ii) the time 𝜏𝑚𝑝 to reach it, (iii) the steady-state 

distance between the crack tip to the limit of the second-phase precipitate 𝑤𝑠𝑠 𝜌0⁄  for  ỹ/𝜌0 =

0 and  x̃/𝜌0 > 0, and (iv) the needed time 𝜏𝑠𝑠 to reach the steady state when it exists. The 

value of the characteristic parameters for the different studied cases are presented in Table 1 

of Paper A. Globally for 𝛼0 > 0, the results tend to show that 𝛷𝑚𝑎𝑥 and 𝑤𝑠𝑠 𝜌0⁄  decrease with 

increasing 𝜅. Although 𝜏𝑠𝑠 is relatively similar for the cases with positive 𝛽,  it decreases for 

increasing 𝜅 for 𝛽 < 0 and 𝜅 > 1/4. For 0 > 𝜅 sgn (𝛽) ≥ −3/16, a steady state was never 

reached but, based on the phase diagram in Figure 13, the whole system is expected to turn 

into stable second phase with possible retained metastable solid solution. In the case where 

𝜅 sgn (𝛽) = −1/4, the system was still slowly evolving during the calculation of the second 

phase expansion and it was found that a very large computing time is necessary to reach the 

steady state predicted by the analytical solution. The analysis of the data collected for 𝛼0 < 0 

shows that the evolution of the system is much faster than when 𝑇 > 𝑇𝑐0
. The picked-up 

characteristic times for 𝑇 < 𝑇𝑐0
 are approximately half as large as those for 𝑇 > 𝑇𝑐0

. Hence, 

as expected, the transformation is quicker for a quenched system. Even though the whole 
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material is expected to transform into second phase in defect-free conditions when 𝑇 < 𝑇𝑐0
, 

the crack-induced stress enhances the transformation and accelerates it. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 14: Evolution of the order parameter in a 2d space, which contains a crack, for (a)𝜏 =
5,(b) 𝜏 = 10, (c) 𝜏 = 100 and (d) in one dimension for 𝑦̃ 𝜌0⁄ = 0. The evolution is indicated 

by an arrow. 

6.1.3 Further remarks 

A comparison of the analytical steady-state and the numerical solutions is depicted in Figure 

15. It is shown that, except at the interface between phases, the analytical and numerical 

steady-state solutions are similar. The local analytical solution for steady state presented in 

section 6.1.1 is therefore a good approximation for this model. However, the interface 

thickness and the kinetics of the microstructural changes can only be represented numerically 

by including the Laplacian and temporal terms in Eq. (36). 

In addition, in Paper A, it is demonstrated that the material properties affect the results as well 

as the load. For instance, when 𝐾𝐼 increases so does 𝜌0. Consequently, the presence of a crack 

induces phase transformation on a larger area as it propagates or the external load increases.  
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At this stage, the metastable phases predicted by the analytical formulation are not revealed in 

the numerical results. When calibrated, this model could allow estimating the kinetics of 

hydride precipitation in crack-tip vicinity and contribute to the prediction of hydride-related 

failure risk. This can be done with numerical efficiency as only one equation is solved 

numerically. 

 

(a) 

 

(b) 

Figure 15: Comparison between steady-state solutions obtained analytically and numerically 

for (a) 𝑇 > 𝑇𝑐0
 and  𝜅 sgn (𝛽) = −1, and (b) 𝑇 < 𝑇𝑐0

 and  𝜅 sgn (𝛽) = 1. 

6.2 Paper B 

In the second paper, model 1 is applied to two anisotropic HCP metals, which can form 

hydrides: Zr and Ti. The considered systems are single crystals, which are initially cracked, at 

a temperature 𝑇 and for a given constant concentration of hydrogen. The precipitation kinetics 

of the second phase is investigated in basal and prismatic planes. In addition, the effect of the 

crystallographic crack orientation on second-phase formation is examined. The used material 

data is summarized in Table 1 of Paper B. Equation (36) is solved for 𝛼0 > 0, i.e. 𝑇 > 𝑇𝑐0
, 

𝛽 < 0, and 𝜅 = 1. 

The different morphologies for Ti are illustrated for different planes and crack orientations 𝜁 

in Figure 16. The general observation is that a second-phase precipitate form in a confined 

region around the crack tip. Regardless of the considered material, the second-phase 

formation follows the pattern described in section 6.1.2 and is depicted in Figure 16 for Ti. 

The behavior of both materials is isotropic in the basal plane. Thus, the steady-state 

appearances of the second phase in Zr and Ti are the similar in the basal plane regardless of 

the crack orientation. In the prismatic planes, the change of crack orientation can induce 

asymmetric and/or elongated morphologies in the 𝑦̃ direction. A more detailed description is 

given in the paper. In the basal planes, the second-phase shape obtained with Zr appears to be 

larger than that in Ti. In the prismatic plates, the opposite result is observed. Thus, the model 
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is able to capture the fact that the geometric configuration of the crack and the constitutive 

properties of the material affect size and shape of a forming hydride. 

 

Figure 16: Evolution of 𝛷(𝑥̃, 𝑦̃) in a-c) the prismatic planes of Ti for 𝜁 = 0, 𝜋/4 and 𝜋/2, 

and d) the basal plane. Each line represents 0.1 𝛷𝑚𝑝 for each case for 𝜏 in [0,50] every 

twenty ∆𝜏. 

The characteristic parameters of the transformation kinetics are summarized in Table 2 of 

Paper B. The investigation of the collected data allows showing the following results. First, 

the system reaches a steady state earlier in the basal plane than in the prismatic plane, which 

may come from the fact that the precipitate is smaller in the basal plane at steady state. 

Moreover, the time required to reach an overall steady state is found independent of the crack 

inclination in the respective crystallographic planes. Finally, the steady-state vertical length of 

the second phase as presented in Figure 16 is reached earlier than its steady-state horizontal 

counterpart. 

In order to represent hydride formation more realistically, in particular on larger time scale, 

for which hydrogen atoms are observed to migrate following the stress gradients, it is 

necessary to include the diffusional character of the phase transformation. To this end, a 

composition phase-field variable can be added to the problem and coupled to the structural 

order parameter. The latter can also be formulated as a multi-component field in order to 

possibly represent the different orientations and crystal structures of the forming hydrides 

[82]. The work done in this paper mainly shows the possibility to incorporate LEFM into 

model 1 in order to account for anisotropic elasticity within the study of second-phase 

formation kinetics in anisotropic materials. 

6.3 Paper C 

Model 2 is presented and described in Paper C, where it is also employed to account for 

crack-induced hydride precipitation at a grain boundary in a Ti64 microstructure. The 

considered system is composed of two grains of α phase with different orientations and 

separated from each other by a smooth interface as described in section 5.5.1. In this study, 

precipitation is chosen to be driven by a near crack-tip stress field for cases with intragranular 

and intergranular cracks opening in mode I. The intragranular cracks are set perpendicular to 

the grain boundary. In this situation, the crack-tip/grain boundary distance is varied. In 
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addition, the impact of grain boundary energy on second-phase formation kinetics is 

examined by varying the value of 𝑠 for both types of cracks. 

As depicted in Figure 17a-c, hydride precipitation is found to occur in two different confined 

regions for an intragranular crack: (i) immediately ahead of the crack tip and, (ii) in the 

interface between the two crystals of the same phase. For an interface crack, a second-phase 

region is observed to form from the crack tip with a rapid expansion along the grain boundary. 

Two hydride sub-regions can be distinguished in the precipitate as illustrated in Figure 17f: 

one immediately ahead of the crack-tip and one further in the grain boundary. In both crack 

configurations and at the beginning of the simulations, a phase separation is noticed after a 

few steps as presented in Figure 17a-b. Examples of microstructures with an intragranular and 

an intergranular crack at the end of the simulations are illustrated in Figure 17c and Figure 17f 

respectively. In terms of precipitation kinetics, two distinct stages arise from the results: a 

quick nucleation followed by a slower growth. For large distances, 𝑑, between intragranular 

crack-tip and grain boundary, second-phase formation is observed to only occur in the near 

crack-tip region. At a given time of simulation, the hydride region formed in the grain 

boundary results larger with a decrease of 𝑑. In contrast, hydride formation kinetics in the 

near crack-tip area is found to be independent of 𝑑. For small 𝑑, the near-crack tip and the 

grain boundary hydride regions are observed to coalesce within the time of simulation, as 

depicted in Figure 17e. 

 

Figure 17: (a)-(c) Evolution of crack-induced hydride formation near a grain boundary; (d) 

Coalescence of hydride phase regions along the grain boundary; (e) Coalescence between the 

near-crack hydride region and that in the grain boundary; (f) Interface crack-induced hydride 

formation. Figures (c)-(f) display the microstructure at the end of the simulations.  

The change in nucleation energy barrier has a similar effect as the variation of 𝑑. No 

coalescence has been observed between the two second-phase regions when  𝑠 is varied, i.e. 

the hydride region along the grain boundary remains confined in the interface thickness while 

the near crack-tip hydride region remains unchanged as expected. By decreasing 𝑑 or the 

nucleation energy barrier in the interface between the matrix phases, shorter nucleation 

starting time are observed in the grain boundary. For specific 𝑑 and 𝑠, several distinct hydride 
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regions are predicted to possibly appear in the grain boundary before they coalesce as they 

grow, see Figure 17d. 

In case of an interface crack, the decrease of the nucleation energy barrier in the grain 

boundary results in the elongation of the hydride region along the α/α interface. In particular, 

it is noticed that the total volume fraction of precipitate increases more quickly for an 

intergranular crack configuration than for a considered intragranular crack one in the first 

stage of phase transformation for a given nucleation energy barrier. However, this quantity 

results larger for intragranular cracks lying at small distances from the α/α interface than for 

intergranular cracks. 

By simply representing the stress field with its analytical expression and the energy of a grain 

boundary by varying a single parameter, this methodology can contribute to the prediction of 

stress-induced phase transformation kinetics in polycrystalline microstructures, with a 

relatively low computational cost. 

6.4 Paper D 

As displayed in Table 1, model 2 as employed in paper C does not account for anisotropic 

transformation-strains, which are related to the phase transformation-induced dilatation of the 

system and the orientation of the precipitate. In addition, model 2 is limited to a single matrix 

phase, while many materials possess multi-phase microstructures. As mentioned in section 

5.2, these aspects can be treated with model 3. The latter is presented and described in paper 

D. The objective of the paper is to demonstrate the potential of the methodology by modeling 

precipitation in proximity of stress concentrators. The main aspects that are taken into account 

in the approach are the effects of external stresses, the phase transformation-induced 

expansion of the system, the solid solubility limit in stress-free conditions, the interfacial 

energy related to the transition between the matrix and the precipitate phases, and the reduced 

nucleation energy barrier within the grain/phase boundaries on the multi-phase microstructure 

evolution with a numerically efficient approach. To demonstrate the capabilities of the model 

on a concrete example, model 3 is applied to interface crack-induced hydride precipitation at 

grain and phase boundaries in a typical Ti64 microstructure that contain α- and β-phase 

regions, see Figure 2. The hydride phase assumed to precipitate is δ-hydride even though it 

may be different according to experimental observations [54]. Different sets of parameters are 

investigated such as the energy of the phase/grain boundary and the applied stress are varied 

to study their effect on the kinetics of the microstructural changes.  

6.4.1 Analysis of the model 

The TDGL equation, i.e. here Eq. (48), is analytically examined in order to predict the 

stability and metastability of the different considered phases, depending on the applied stress, 

the phase-transformation strains, the stress-free solid solubility limit of solute, and the energy 

of the grain/phase interface. To this end, the equation is simplified by neglecting the 

Laplacian term. By doing so, singularities, discontinuities and sharp transitions/interfaces 

arise. The time-derivative term is then set to zero in order to identify the roots of the sum 
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𝜕𝜓𝑏𝑢𝑙𝑘 𝜕𝜂1⁄ + 𝜕𝜓𝑒𝑙 𝜕𝜂1⁄ . For these values of 𝜂1, the total free energy density of the system 

possesses minima, which corresponds to the stability or metastability of the different phases. 

 

Figure 18: Phase diagrams obtained at equilibrium and by omitting the gradient free energy 

term. Along the stability line, the continuous one, all phases are stable. The dashed lines 

represent transition lines, beyond which a metastable phase becomes unstable. The 

appearance of the bulk free energy density is drawn in each region of the phase diagram. 

This analysis results in the creation of phase diagrams, which are illustrated in Figure 18. 

Each phase diagram is different depending on the considered area of the material, i.e.  

𝜂2 = ±1 indicates a position away from the α/α or α/β interfaces, and 𝜂2 = ±0.5 and 𝜂2 = 0 

designates different locations within the grain or phase boundary between the matrix phases. 

Four distinct regions are found. The phase diagrams indicate that the precipitate phase is 

stable in regions I and II while metastable in region III and unstable in region IV. The solid-

solution phases are expected to be stable in regions III and IV but metastable in region II and 

unstable in region I. In two upper regions of the phase diagrams, an increase of the sum 𝜎𝑖𝑗
𝐴 𝜀𝑖𝑗

𝑠  

or a decrease of the stress-free solid solubility limit is expected to promote phase 

transformation. Figure 18 also reflects that precipitation should be favored in the interface 

between the matrix phases, where the nucleation energy barrier is lower than in the bulk, 

i.e.𝑠 > 0. The quantities considered in the phase diagrams are understood to cause a shift in 

the solid solubility limit of the system, promoting or hindering phase transformation, as seen 

in papers A and B. It is also noted that the increase of elastic-strain energy in the grain /phase 

boundary makes the slope of the total free energy density of the system steeper around the 
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minima. This implies a quicker phase transformation in case of a global minimum for 𝜂1 = 1. 

Thus, for a given concentration of solute, a positive applied stress, an energetic phase/grain 

boundary or their combination should enhance hydride precipitation, which is in line with the 

observations made in the literature [42, 54]. 

6.4.2 Numerical results 

The material system considered for the application of model 3 consists of two-phase regions, 

separated by a smooth interface along which a crack is lying. For simplicity, elastic isotropy 

is assumed for all phases. For the simulations, the physical quantities chosen as input 

parameters are considered to be realistic as they are based on observations and calculations 

made in the literature, and reasonable assumptions as described in the paper. The constant 

concentration of hydrogen is set below the stress-free solid solubility limit of the α- and β-

phases. The kinetics of hydride precipitation is examined for the following configurations: an 

opening crack lying in an α-phase crystal, along an α/α grain boundary and along an α/β 

interface. In the paper, both isotropic and anisotropic stress-free strain components are 

regarded. These configurations are modeled by using LEFM applied to interface cracks, i.e. 

the applied stress term is replaced by the analytical expression of a near-interface crack stress 

field given by Eq. (14). In the studied situations, the remote stress is applied in the plane of 

the crack and perpendicular to the defect direction only. 

 

 

(a) (b) 

Figure 19: (a) Isostress contour for the hydrostatic stress around a crack lying within an α 

phase region. (b) Distribution of 𝜂1, i.e. appearance of the microstructure, at (a) 𝜏 =  0 ∆𝜏, 

(b) 𝜏 =  500 ∆𝜏, (c) 𝑡 =  1000 ∆𝜏, and (d) 𝑡 =  8000 ∆𝜏 = 𝜏𝑓𝑖𝑛𝑎𝑙 for 𝑠0 = 0.0  at an α/α 

interface. The solid solution appears in dark blue and the δ-phase in red. The interface crack 

position is indicated by a white line. 

The information provided by the results indicates that the hydride formation occurs from the 

nucleus preliminary placed at the crack tip and mainly following the isostress lines around it 

as seen in Figure 19a-b. This is coherent with the fact that precipitation is driven by stress. 

Figure 19b illustrates the evolution of the microstructure for an opening crack lying in a 

crystal of phase α. The difference between the isostress lines and the contour geometries is to 
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be attributed to presence of the interfacial energy relative to the α/δ and β/δ transitions 

through the gradient free energy term, which tends to reduce the areas covered by interfaces. 

These differences are visible behind the crack front for all studied situations for which a 

precipitation takes place, and in proximity of the grain/phase boundary for 𝑠0 > 0.0, see 

Figure 20a-b. 

 

(a) 

 

(b) 

Figure 20: End-of-simulation position of the α/δ and the β/δ interfaces for (a) 𝑠0 = 0.0 and 

(b) 𝑠0 = 2.0, for interface cracks lying within an α-phase crystal, along an α/α grain 

boundary and a typical α/β interface considering isotropic (in blue and red) and anisotropic 

(in yellow) stress-free strains. The positions of the crack and the grain/phase boundary are 

indicated by a black thick line and a blue dashed line respectively. 

For all cases with an actual hydride formation, it is found that the δ-phase region growth 

occurs quickly at the beginning and decelerates as time goes. This has also been observed in 
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the paper C. Since stress and hydride growth kinetics are directly related, this can be 

explained by the fact that the near-crack tip stress is a function that decreases as 1 √𝑟⁄ . An 

increase in applied load is observed to increase the δ-phase formation rate. Additionally, in 

phase and grain boundaries, where the nucleation energy barrier is lower, hydride formation is 

enhanced. This results in an elongation of the precipitate along these interfaces as observed in 

Figure 20b.  

The difference in material parameters in either side of an α/β interface is reflected through a 

slower hydride growth in phase β than in phase α as presented in Figure 20a-b. By 

considering a typical interface between an HCP and a BCC crystal structure, the effect of the 

anisotropic stress-free strain has not been revealed to be significant on precipitate growth 

kinetics in the time of simulations as noticed in the same figures. For relatively large energy 

of the interface, coalescence of several δ-phase regions has been observed. This phenomenon 

is in line with the coalescence events experimentally observed in [42] and [54].  

The results obtained for the example studied in paper D demonstrate the capability of the 

methodology to capture the influence of material properties on the precipitation kinetics at a 

microstructural level for single or multi-phase system with numerical efficiency. In addition, 

the flexibility of model D allows modeling the microstructural evolution of systems 

containing different kinds of defects, multi-phase microstructures, morphologies of grain and 

phase boundaries, and loading modes. It is believed that the outlined methodology can 

contribute to the state of the art of numerical efficient multi-scale crack propagation 

prediction schemes. 

6.5 Paper E 

In paper E, the pilot model 4 is applied through the numerical procedure described in section 

5.5.2 to solve Eq. (51). The precipitation of γ-hydride in an isotropic hydrogenated Zr alloy is 

used as an example to show the applicability of the model. As the dilatation of the material is 

highly anisotropic during formation of γ-hydride out of α-phase [32], this case of study is 

considered a good one to assess the model. 

6.5.1 Second-phase formation in a defect-free medium 

First, the approach is applied to a defect-free medium. An example of the microstructure 

change captured by the simulations is illustrated in Figure 21. Initially, a differentiation of the 

phases is observed to occur as seen in Figure 21a-b. During this stage, material regions with 

𝜑 → −1 and others with 𝜑 → 1 emerge from the initial random distribution of 𝜑. Thereafter, 

the separation of phases takes place and elongated shaped hydrides (𝜑 = +1) are found to 

coexist in the matrix (𝜑 = −1), see Figure 21c. Later, the microstructural evolution tends to 

promote the growth of large hydrides at the expense of small precipitates, which ultimately 

disappear, see Figure 21c-d. An average preferential direction of hydride formation is noticed 

perpendicular to the applied load as described in section 2.2.2. The increase of the interfacial 

energy is observed to induce a decrease of the volume fraction of hydride. The applied 

displacement rate is found to influence the number of precipitates and the hydride growth rate. 
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The elastic-strain energy of the medium exhibits a plateau during phase transformation. More 

details about this parametric dependence of the hydride formation are given in Paper E. 

The analysis of the results shows that the employed approach is able to capture the effect of 

interfacial energy, anisotropic eigenstrains and displacement rate on second phase formation 

kinetics. In addition, the influence of stress on the orientation of the formed precipitates is 

represented. Finally, stress relaxation is reflected in the results by absorption of the elastic-

strain energy during phase transformation. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 21: Distribution of the order parameter over the considered domain as time increases. 

Dark blue accounts for the presence of solid solution (𝜑 = −1) and red corresponds to the 

presence of second phase (𝜑 = +1). Intermediate colors indicate the position of the smooth 

interfaces between the phases. 
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6.5.2 Further works and remarks  

Preliminary results for a notched body can be seen in Figure 22. Once again, the 

microstructural evolution starts with phase differentiation out of the initial random 

distribution as illustrated in Figure 22a-b. Thereafter, hydrides form around the notch tip, see 

Figure 22c. The number of hydrides is shown to gradually vary with the stress gradient 

around the notch tip. Thus, a larger density of hydride phase is found localized directly 

underneath the flaw tip than further around. The distribution of the hydrides is reminiscent of 

the non-uniform hydrostatic stress ahead of a notch tip as in the micrograph presented in 

[114]. 

 

(a) 

 

(b) 

 

(c) 

 

Figure 22: Distribution of the order parameter over the considered notched domain as time 

increases. 
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7 Discussion and future works 

In the present section, we identify characteristics of the different models and the associated 

numerical methodologies as advantages or limitations. Some of them can be seen in Table 1. 

7.1 Assets 

Unlike the other models presented in this thesis, model 1 is capable to represent two transition 

orders, which is usually not done with other approaches. In particular, models 2-4 are 

formulated to account solely for first order transitions. Additionally, by formulation, it is 

possible to explicitly control the material temperature and the transition temperature with 

model 1. 

With models 2-3 the bulk free energy is expressed such that systems composed of several 

grains of the same phase type with different orientations, and different phase regions can be 

modeled. Moreover, the energy of grain/phase boundary can be control by a single parameter 

and, through the parameters 𝑔𝑖𝑗 and 𝑎ij 𝑃0, the specific interfacial energies of the different 

considered transitions and realistic interface width can be accounted for. Unlike model 1, the 

anisotropic eigenstrains can be taken into account without having to numerically solve the 

equations describing mechanical equilibrium. Furthermore, the formulation of models 2-3 is 

such that the number of phenomenological coefficients is reduced compared to model 1. 

Therefore, less input data is necessary to calibrate these models. 

The main advantage with models 1-3 is that mechanical equilibrium does not have to be 

solved numerically as the applied stress is incorporated analytically. In this manner, only the 

TDGL equation needs to be solved to model the microstructural changes. Thus, difficulties 

connected to the explicit modeling of stress field induced by singularities, such as crack tips 

and dislocations, can be avoided.  

Model 4 has the capability to capture the orientation of the second phase region relative to 

anisotropic swelling due to lattice mismatch and the direction of the applied load, as observed 

in the literature for hydride precipitates [6]. 

The numerical methodology associated with the implementation of model 4 is the main 

advantage of the approach as more microstructural configurations than those presented in this 

thesis can be modeled with it. For instance, the flexibility of the boundary conditions is such 

that complex applied mechanical loads, which cannot be formulated analytically, can be 

considered. In particular, displacements with different rates can be applied to the boundary in 

lieu of a single stress. Moreover, the use of a fully coupled approach to solve the phase-field 

and mechanical equilibrium equations is an advantage over a segregated approach in terms of 

convergence in case of strongly-coupled problems [119]. 
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7.2 Discussions 

With models 1 and 4, only two phases can be considered, i.e. the solid-solution and the 

precipitate, because only a single component phase-field variable is used. However, more 

phases can be represented with models 2 and 3 as a two-component variable is employed. 

In the framework presented for models 2 and 3, second/third-phase formation can be solved 

exclusively with the TDGL equation for special cases such as those for which the analytical 

expression for the external stress field is known. In other cases, the mechanical equations 

need to be solved numerically reducing the numerical efficiency of the methodology. The 

numerical solving of coupled equations can be achieved for all models, for example, by using 

the numerical methodology developed for model 4 as mentioned in the previous section. 

In multi-phase or polycrystalline systems, the energy of the grain/phase boundaries varies 

with the misorientation angles, which indicates the level of coherency of the interfaces, cf. 

Chapter 3 in [126]. In [127], the energy of a grain boundary was included as a function of the 

misorientation angle in an additional energy term and the results displayed significant 

differences in terms of second-phase precipitation as the misorientation angle was varied. 

With models 2 and 3, the energy of the grain/phase boundary is controlled by the single 

parameter 𝑠, which is incorporated in the bulk free energy. In order to account for the energy 

of the grain/phase boundaries more realistically, it can be, therefore, beneficial to make 𝑠 

dependent of the misorientation angles. 

With model 3, the difference in stress-free solid solubility limit from one matrix phase to 

another is chosen to be reflected in the interaction free energy term. This parameter could be 

incorporated in the bulk free energy instead such that the elastic-strain free energy remains 

purely mechanical. 

For all models, the elastic constants are considered the same for the solid solution and the 

precipitate, although the difference between the phases are taken into account via their 

respective eigenstrains, solid solubility limit and specific interfacial energy with models 2-3. 

In this manner, the local deformation arising from heterogeneities are disregarded [82, 85]. 

The elastic inhomogeneities are mainly due to a difference in stiffness tensor for the 

precipitate and the matrix phases. In order to represent the precipitates individually it is 

necessary to consider different elastic constants for the different phases, e.g. via the 

Khashaturyan’s (KHS) and the Voigt-Taylor (VTS) schemes [12, 13], and the equations 

satisfying mechanical equilibrium need to be solved numerically. Thus, parts of the numerical 

efficiency of the methods would be lost. Nevertheless, the results given by models 1-3 are 

considered to be fairly good approximations if it is assumed that the modeled second/third-

phase regions correspond instead to regions of high density or cluster of second/third-phase 

compounds. This is supported by comparing the obtained results and the micrograph 

presented in [114] where a distribution of hydrides are concentrated around the notch of a Zr-

2.5Nb cantilever. 

In this thesis, the size of the domain, its discretization of the computational domain and time 

stepping are chosen such that the solutions of the TDGL equation converges and that the 
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motion of the interfaces is captured. However, because of limitation in terms of computational 

resources, the size of the domain might not always be large enough to capture the whole 

precipitation. In fact, since the interface thickness is taken to be approximately of the same 

order of magnitude as for a physical one (~10−9 - 10−8m) while precipitation can occur on 

different length scales, the computational domain needs to be of several orders of magnitude 

larger than the interface thickness. This is a limitation vis-à-vis the computational resources. 

Some solutions to this difficulty have been provided in the literature for several PFT 

problems. In solidification, Karma and coworkers have developed an approach, the thin 

interface limit, which is based on the fact that the interface width should disappear from the 

problem if it is negligible compared to other length scales [128]. This approach has been 

found to allow a drastic increase of timescale in the simulations [11]. Other solutions to 

reduce computational resources, applicable to grain growth, precipitate growth and 

coarsening, have been given in [129]. The idea is to increase the diffuse interface thickness 

without affecting the kinetics of the microstructural changes. These numerical methods 

combined with adaptive mesh refinement (AMR) techniques can allow for reasonable times 

of simulation when applied on larger computational domains. Additionally, the adaptive 

domain size technique presented in [130] has been shown to be efficient in reducing times of 

simulation when modeling dendritic growth. This methodology could also contribute to the 

reduction of the computational costs for modeling second/third-phase formation. 

In the context of model calibration, the fitting of the different phenomenological coefficients 

and interpolation functions employed in all models requires a number of experiments, the use 

of computational thermodynamics and/or atomistic calculations. Phase-field modeling to a 

more detailed level can also provide useful data to this purpose, e.g. [90, 117]. 

7.3 Future works 

Model 3 is the most advanced model of the thesis considering the number of features that it 

can account for, the fact that most parameters are physical and measurable, and the low 

computational cost to represent microstructural changes. In order to enhance computational 

efficiency, improvements are to be made on model 3. 

Integrating model 3 in the numerical methodology that is employed with model 4 with 

Abaqus user subroutines would extend its number of applications and is also thought as an 

important step in the development of the approach. This would allow engineers to take into 

account phase transformation while performing mechanical analysis of structures operating in 

corrosive environments by using a single industrial program. 

The variation of phase/grain boundary energy with respect to misorientation is known to be 

significant and, therefore, should be included in the model. Thus, the scalar parameter used to 

control the nucleation energy barrier in the interfaces needs to be expressed in terms of 

misorientation angle, cf. Chapter 5 in [126], or as an orientational order parameter [11]. This 

is thought as a natural next step of improvement for the model considering the representation 

of a realistic microstructure. 
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As seen in the previous section, in order to predict microstructural evolution on larger scales 

than those considered in this work, it is necessary to find ways to reduce the computational 

cost. The methods provided by Shen et al. (2004) in [129] are relevant for the presented 

models, especially when the interface width becomes negligible compared to the precipitate 

size. AMR techniques are found to be suitable numerical tools to represent larger systems as 

they allow reducing the number of elements away from the interfaces and refine the mesh in 

the transition front. For instance, this meshing methodology has been successfully employed 

in [104] with the software Multiphysics Object Oriented Simulation Environment (MOOSE), 

associated to Libmesh, whose algorithm is described in [131, 132]. AMR is therefore 

considered for the development of the approach. 

The metals considered in this thesis can display some degrees of plasticity, which can affect 

phase transformation. It is therefore relevant to include plastic deformation into the models. In 

some phase-field models, plasticity is taken into account by employing additional order 

parameters [133, 134]. Plastic deformation can also be modeled, by adding the stress field of 

dislocations in the formulation of model 3, e.g. in the same manner as in [107]. 

Considering crack propagation, mechanisms such as DHC, it would be beneficial to introduce 

a conserved phase-field variable to account for diffusion of solute and to model crack 

propagation, for instance, an additional phase-field variable could be used to represent the 

crack as in [93]. The crack propagation criterion could also take into account the reduction of 

the fracture toughness averaged on the region of high density of second/third phase. However, 

adding phase-field parameters also signifies that more equations, including the Cahn-Hilliard 

one, need to be solved to account for the microstructural changes.  
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8 Conclusion 

In this work, four different phase-field approaches with increased complexity have been 

developed and employed to study the stress-induced precipitation kinetics in metals with low 

computational costs. A special focus is given to defect-induced precipitate forming.  

The models are based on an energy minimization scheme through the use of the time-

dependent Ginzburg-Landau equation and are formulated such that second- or third-phase 

formation is driven by the coupling between the phase transformation-induced strain and the 

stress. 

The numerical methodologies considered in this thesis are based on FVM and FEM. The 

software programs FiPy and Abaqus are chosen to run the simulations. The applied stress is 

introduced in the models either by using an analytical expression or explicitly by applying 

appropriate boundary conditions. For the latter procedure, the mechanical equilibrium and 

phase-field equations are coupled by using the thermo-mechanical fully coupled solving 

scheme available in Abaqus but modified through user subroutines. 

During the development of the models, meaningful aspects have been studied and have been 

implemented progressively. The main achievements lie essentially on the modification of the 

bulk free energy density and the elastic-strain free energy in order to consider: 

-  The stress field induced by intragranular and interface cracks through the use of LEFM 

for single and two-phase materials with isotropic and anisotropic elastic constants; 

- A microstructure containing one or two matrix phases by using a bulk free energy based 

on a two-component phase-field variable; 

- The grain/phase boundary energy through the variation of the nucleation energy barrier 

with a single parameter, which is integrated in the bulk free energy functional; 

- The difference in solid solubility limit between the different matrix phases in a bi-

material by coupling it to the stress-free strain; 

- The stress dependency of the orientation of the precipitates through the rotation of the 

anisotropic local stress-free strain basis into the basis of the principal stress. 

The approaches have been successfully employed to model stress-induced hydride 

precipitation within Zr and Ti-based materials. Thus, the development of the models 

presented in the thesis has shown the possibility to account for many relevant and important 

aspects involved in second or third-phase precipitation occurring in single- or multi-phase 

microstructures with numerical efficiency. The presented models could contribute to the cost 

and time efficiency of multi-scale environment-assisted embrittlement prediction schemes 

within commercial software serving engineering projects.  
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