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Abstract

This article introduces the Twitter Parliamentarian Database (TPD), a multi-source and

manually validated database of parliamentarians on Twitter. The TPD includes parliamen-

tarians from all European Free Trade Association countries where over 45% of parliamen-

tarians are on Twitter as well as a selection of English-speaking countries. The database is

designed to move beyond the one-off nature of most Twitter-based research and in the

direction of systematic and rigorous comparative and transnational analysis. The TPD incor-

porates, in addition to data collected through Twitter’s streaming API and governmental

websites, data from the Manifesto Project Database; the Electoral System Design Data-

base; the ParlGov database; and the Chapel Hill Expert Survey. By compiling these different

data sources it becomes possible to compare different countries, political parties, political

party families, and different kinds of democracies. To illustrate the opportunities for compar-

ative and transnational analysis that the TPD opens up, we ask: What are the differences

between countries in parliamentarian Twitter interactions? How do political parties differ in

their use of hashtags and what is their common ground? What is the structure of interaction

between parliamentarians in the transnational debate? Alongside some interesting similari-

ties, we find striking cross-party and particularly cross-national differences in how parlia-

mentarians engage in politics on the social media platform.

1 Introduction

While many authors have argued that social media data have the potential to revolutionize

social science research [1, 2], scholars are just beginning to discover how they can use this new

source of data to carefully design social research [3]. To make substantive and rigorous contri-

butions to current debates in the social sciences, further steps need to be taken in terms of

developing standards for data collection, preparation and analysis [3, 4]. This is particularly

true for Twitter. Since this platform has afforded researchers comparatively broad access, a

huge number of studies have drawn on Twitter’s data to study a wide range of social processes.

While the excitement about the affordances of Twitter is understandable, few studies have
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begun to address the formidable challenge of systematically collecting valid and representative

data [4–6].

We contribute to this endeavor by presenting a database of parliamentarians on Twitter.

The Twitter Parliamentarian Database (TPD) contains all the tweets of members of 27 parlia-

ments (26 national parliaments and the European parliament). The database has been pains-

takingly and systematically validated to address issues of reliability and validity characteristic

of much of the existing research on Twitter politician communication. To address issues of

data availability, the TPD incorporates, in addition to data collected through Twitter’s stream-

ing API and governmental websites, data from the Manifesto Project Database on the parlia-

mentarians’ political parties [7]; the Electoral System Design Database on the countries’

electoral and legislative systems [8]; the Chapel Hill Expert Survey on party positions on spe-

cific issues [9]; and the ParlGov database on political parties, elections and cabinets [10].

In this paper, we carry out a tentative analysis using the data in order to demonstrate the

potential of the database. While the TPD allows for a wide range of analyses, we focus our

demonstration on comparative and transnational research, as the database fills a considerable

research gap in these fields resulting from the lack of large-scale data sources. To illustrate the

capacity of the database to answer questions pertaining to this research, we carry out three

illustrative and exploratory studies. (1) We look at parliamentarian’s Twitter use across

nations, with a focus on coalitions and divisions through who retweets whom, asking: What
are the differences between countries in parliamentarian Twitter interactions? (2) We look at

differences between how different parties label political issues, asking: how do political parties
differ in their use of hashtags and what is their common ground? (3) We study the structure of

mentions between parliamentarians internationally, asking: what is the structure of interaction
between parliamentarians in the transnational debate? We do not here aim for definitive

answers, but rather use the analyses to illustrate the affordances of the database in relation to

research questions that were previously difficult to address. Through including a variety of

analyses we demonstrate the different functionalities and areas of research that the TPD is able

to touch upon, especially analyses of communication patterns between and within a large

number of countries, as well as the content of the communication. While the affordances of

Twitter are the same across all the countries, we find cross-party and particularly cross-

national differences in how parliamentarians engage in politics on the social media platform.

2 Limitations and possibilities of research on Twitter politics

2.1 Limitations

Twitter is not only the social media of choice for politicians, but also the social media data

source non plus ultra for social scientific research [11]. There has been a veritable explosion of

research on Twitter in general and Twitter politics in particular (e.g. [12–17]). The Web of

Knowledge database contained 10,653 articles with “Twitter” as a key word (as per 31st Octo-

ber 2019), with 4,112 papers produced between January 1, 2018—October 31, 2019. The com-

bination of key words “Twitter” and “politics” finds 640 articles, with 279 published in 2018-

2019—roughly one article about Twitter and politics every 3 days. Despite this large and grow-

ing body of research, there remain a number of fundamental issues with carrying out research

on Twitter data, in particular in terms of delineation, sampling, and validation.

It has long been established that the delineation of the population are poorly addressed in

many studies examining politics on Twitter [6, 18]. Researchers often assume that the relevant

population consists of Twitter users who index their tweets with specific hashtags. However,

there are some serious issues to consider. One is that Twitter users participating in debates do

not necessarily use hashtags associated with a particular issue and Twitter users who do use
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those hashtags do not always participate in the discussion, raising difficult questions of how to

decide whether a message is relevant or merely “noise” [19]. Moreover, we know that Twitter

users with different political positions tend to use different hashtags [20]. While careful cura-

tion of hashtags can attenuate these problems, it cannot solve them; when tweets and users are

selected through hashtags, the delineation of the population remains arbitrary to a (generally

unknown) extent. When the population is arbitrarily defined, all subsequent analyses can pro-

vide evocative results at best. There are however notable attempts at tackling this issue, for

instance, Bruns et al. [21] have mapped follower/followee relations to get a more relevant sam-

ple of the Australian Twittersphere.

A second issue is associated with the common use of Twitter’s free Streaming API for sam-
pling tweets containing keywords. While research into the Twitter Streaming API is relatively

sparse and may not be up-to-date due to constant API changes, the research that has been car-

ried out has had troubling implications for the standard approaches to gathering Twitter data,

in particular the use of search word or hashtag queries. For instance, when the free streaming

API was compared with paid access to the Firehose API (which reportedly gathers 100% of all

tweets), the sample became less representative as the number of parameters requested

increased [22–24]. The issue here is not just that samples of selected keywords are not repre-

sentative but that we do not know how samples are drawn and what their biases are. Other

methods of sampling have been attempted by researchers through focusing on a core group of

individuals, wherein all tweets can be gathered [16]. However, no attempts to standardize sam-

pling at the scale of the TPD have yet been made.

A third problem with the way that Twitter data is used in research is linked to the lack of

contextual or background information. Twitter data tend to be difficult to connect to other

data sources, meaning that little is known on the identities and political leanings of the users.

Consequently, validation is difficult. However, contextual information is essential if we want

to compare between or within different political groups. In response to this issue, researchers

often attempt to infer political viewpoints from behaviors such as a follower or friend network,

and hashtag use [25–28]. For instance, if people use, or are listed as, #tcot (i.e., top conserva-

tives on Twitter), it is assumed that they are conservatives. In this case, such a strategy may

result in many false positives, but will also only identify a small subset of conservative users.

Also, the political viewpoints garnered through these methods may not be representative of

the wide variety of political attitudes that exist, where someone may share conservative beliefs

in some points, but not in others [29, 30]. The issue of misidentifying users’ political leanings

is aggravated by the presence of sock puppets, trolls, and bots (e.g. [19]). Moreover, inferring

political views from behavior brings researchers into a legal and ethical grey zone since Twitter

regulations forbid the algorithmic identification of users’ political viewpoints. In response to

these challenges, researchers have developed more sophisticated methods (e.g. [30–33]) to

identify political viewpoints, including linking Twitter data with survey data [30, 34]. In sum,

there have been some interesting ways that researchers have tried to circumvent the methodo-

logical and technical challenges posed in classifying political viewpoints. We offer a different

solution by sampling parliamentarians, wherein party affiliations are known, as well as draw

upon existing databases for supplementary information.

2.2 Possibilities

If we want to exploit the opportunities for comparative and transnational research into politics

that Twitter offers, the issues of delineation, sampling and validation have to be resolved. One

way forward, which is the method employed by the database at hand, is to not define popula-

tions according to the content of their tweets but to construct a panel of Twitter users whose
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tweets are collected over time (e.g. [35, 36]). This approach has been taken in a number of

studies that have focused on accounts of the United States’ Congress, for which reasonably reli-

able lists are available on Twitter (see, e.g. [37–39]). Some researchers have begun to study

Twitter parliamentarians outside of the United States but often consider only one or at most

two countries (e.g. [16, 40, 41]), often in the specific context of election campaigns [12, 42–45].

Thus, while there is considerable research focusing on Twitter use by parliamentarians, to our

knowledge, there is no research that includes a large number of countries or that connects to

existing databases on parties and parliaments. Hence, the database provides new opportunities

for comparative research between multiple countries by making data available that has been

gathered over several years from a clearly delineated population.

Focusing on parliamentarians limits the scope of research, but the advantage is that the

TPD attempts to resolve several important issues regarding the delineation of the population

and sampling in a way that is straightforward, transparent, and verifiable. An additional

advantage is that parliamentarians are public figures, which significantly reduces ethical issues

regarding privacy protection and increases possibilities to match data obtained from Twitter

with data from other sources. In an effort to capitalize on these advantages, the database pre-

sented in this article extends earlier work by: including a much greater number of countries;

complementing Twitter data with data drawn from other sources; and developing elaborate

procedures to maintain data accuracy. The TPD data enable a broad range of Twitter research

(e.g. [12, 46–50]). While previous research focused on a limited number of cases or had to rely

on convenience samples (e.g. [25, 31, 49]), the TPD allows for studying these topics at scale

and in comparative and transnational perspective. As such, we present a variety of analyses to

demonstrate the different functionalities of the TPD.

Several research domains can reached by the TPD through linking it to other databases,

such as; the Electoral System Design Database (ESDD), the Manifesto Project, the Chapel

Hill Expert Survey (CHES) and ParlGov—meaning that the TPD can extend existing com-

parative work to Twitter, to examine differences in for example the ways parliamentarians

express themselves and engage with one another, within nations, within parties as well as

transnationally. To illustrate the TPD’s potential, we focus on three domains of comparative

research as a demonstration of how the database could begin to answer questions in these

areas.

We use several methodologies to illustrate the TPD’s potential for cross-national and com-

parative research. First, we can use the TPD to investigate national differences in the way par-

liamentarians use Twitter. Political science literature has a long-standing tradition of

comparing political culture and political debate among various nations [51–55], showing

important differences across countries and different types of electoral and political systems.

We use this literature as a way both of showing how the structure of national retweet networks

can shed new light on Lijphart’s classic ideas [51] on the relationship between democracy

types and national political communication. Second, the TPD allows for comparison of hash-

tag use between different parties. Twitter provides textual data that captures the way parlia-

mentarians express themselves and frame political issues. Hence, the TPD constitutes a

powerful tool for studying subsets of political party discourse. Despite the apparent potential,

there has been limited research on content of parliamentarians’ tweets, and none that are on a

large international scale [56]. Therefore, the TPD offers the opportunity to contribute to com-

parative work on discursive conflicts [57, 58] that so far had to rely on newspaper data that

cover only a very small portion of political claims [59]. A third domain in which the TPD can

be used is transnational communication. Since social media are often regarded as conduits for

breaking geographic boundaries [60], there is a need for systematic analysis of communication

flows between countries. Since the TPD not only records interactions within but also between
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countries, it allows for the examination of the prevalence, nature, sources, and topics of inter-

national communication networks on Twitter.

2.3 Limitations

The limitations of exclusively following parliamentarians on Twitter should be acknowledged.

First, as mentioned, the focus on parliamentarians limits the scope of the research, since parlia-

mentarian tweets only constitute a subset of political discussions on Twitter. This limits useful-

ness in relation to, for instance, campaigning research, as the TPD only gathers data on

parliamentarians who are already in office. It should also be noted that in some cases, parlia-

mentarians may choose not to individually interact with constituents but rather present them-

selves through the party account. Further, the timeliness of updating the database following

elections is largely dependent on the updating of official government websites, which may not

occur in some countries until coalitions are formed. In rare cases, this may be several months.

While the TPD has a limited scope outside of incumbent parliamentarian communication, it

may serve as a starting point for questions about other political debates, by using various tech-

niques to expand from parliamentarian users to other parts of Twitter.

3 Data collection and database design

In selecting countries, we aim to contribute to the large and growing body of comparative and

transnational analysis. We included all member states and candidate member states of the

European Free Trade Association (EFTA) where over 45% of parliamentarians are on Twitter

[61]. In addition, we included a number majority English speaking countries because they

allow for the application of English text analysis tools and have different political systems than

most EU and EFTA countries, thus contributing to variation in the dataset. The countries

included are Austria, Belgium, France, Denmark, Spain, Finland, Germany, Greece, Italy,

Malta, Poland, Netherlands, United Kingdom, Ireland, Sweden, New Zealand, Turkey, United

States, Canada, Australia, Iceland, Norway, Switzerland, Luxembourg, Latvia and Slovenia. In

addition, the database includes the European Parliament. A full list of the countries and the

proportion of their parliamentarians that use Twitter can be found in the S1 Table.

To identify the parliamentarians in the TPD, we consulted official government websites

and retrieved all the identities of incumbent members. From these websites, we also collected

the parliamentarians’ party affiliations and when available, data on regions and constituencies.

When the official government websites did not provide the party information for parliamen-

tarians (as was the case for Germany, France, Finland and Spain), we used Google searches to

establish party affiliation. For those websites where English was not available, it was double

checked with translation programs that the list we obtained from these websites is the most

current and up-to-date list of incumbent members. Identifying parliamentarians on Twitter is

occasionally challenging due to e.g. common names and parody accounts, so we followed a

protocol to identify and verify Twitter accounts, which involved comparing pictures with

those on the government website, examining the number of followers, scrutinizing the lists of

followers, and reading the content of the tweets. If the tweets were not in English, they were

translated through Google Translate.

Due to the data protection regulation, we only include parliamentarians that are in public

service during the time of data collection. Hence, persons who are not currently in parliament

but are campaigning to be elected are excluded, as are those who served in one legislative

period but were not re-elected in the next. If an account was set to private, it was not included.

Inactive accounts, defined as accounts that have not made public tweets after 2014, were also

excluded. For the year of 2018, the Twitter Parliamentarian Database captured 6,281,684
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tweets from 6,437 parliamentarians active on Twitter out of a possible 8,098, meaning that

79.6% of parliamentarians had an active Twitter account.

The tweets of the parliamentarians are collected using Twitter’s streaming API, including

their mentions, retweets, and hashtags. As mentioned with regards to prior research, the

streaming API can encounter certain limitations due to its rate limit, which, when used to fol-

low a certain query (e.g. a popular hashtag that may be used 1,000s of times per second), may

be reached much faster than following a certain user, who may only tweet a couple of times

per day. Hence, following certain user (in this case, a parliamentarian) results in the streaming

API gathering almost all tweets of that user as the amount of tweets per minute rarely exceeds

the rate limit imposed by the API.

The database is updated following elections. Therefore there may be several electoral peri-

ods for some countries, if they had an election during the time of data collection. For example,

if persons A and B are elected in 2015, and there is an election in 2018, where person B is

reelected but person A is not, there will be data for person B across both periods, but only for

person A until the election in 2018. Data collection for a parliamentarian starts from after they

are elected, hence their tweet ids before the election date are not included. The Twitter

accounts of members of new parliaments are checked for several months following elections,

since we discovered that it takes time for new parliamentarians to find their footing on Twitter,

and that some parliamentarians may later create new accounts for their parliamentary service,

separate from their personal or campaign accounts. The database includes data from as early

as May 2017 for some countries, and has been continually updated since, capturing many

interesting political events such as the span of Donald Trump’s presidency, the Catalonia refer-

endum, the Brexit debate. The user ids from the database can be used to retrieve older tweets

from parliamentarians across the electoral periods where members were collected, or be used

to gather further data. Hence, any researcher can use the Twitter ids currently provided in the

TPD as a starting point for their own research to update a country of interest following an

election.

We conducted cross-validation to confirm the coverage and validity of the collected users

and tweets. For user accounts, only limited validation could be carried out, due to the limited

availability of databases against which to cross validate. We however compared the TPD ids

for members of the US congress against the 115th U.S. Congress Tweet Ids dataset [62], finding

that 93% of the ids in the member list matched. The ids that did not match in either data set

were found to be missing accounts that have since been deleted. This could be due to changing

accounts during time in office, which can happen as some parliamentarians have campaigning

accounts. Moreover, the method of gathering accounts for the 115th U.S. Congress Tweet Ids

dataset was different to the TPD, where the former mostly retrieved Twitter accounts from the

congress website, which may not differentiate between campaigning and service accounts,

rather than manual research which was used for the TPD. To validate the coverage of tweets,

we used a random sample of 50 current parliamentarians in the TPD, and retrieved tweets

from their timelines occuring between March 1, 2020 and May 1, 2020, using Twitter’s REST

API. We confirmed that 98% of the tweet ids that were retrieved from the timelines were

found in the database. The 2% that were not found are thought to be due to server downtime.

Moreover, the database can be connected to the ESDD, the Manifesto Project, CHES and

Parlgov, which enables research questions beyond countries, parliamentarians and their par-

ties. The Manifesto Project, CHES and ParlGov can be used with the TPD in various ways. For

instance, the ESDD can be used in combination with Twitter data to determine relationships

between electoral systems and online politician communication, where additional variables

like electoral size, number of tiers and legislative system are also available [8]. The manifesto

project provides “parties’ policy positions derived from a content analysis of parties’ electoral
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manifestos.” [7] ParlGov contains information on parties, elections and cabinets for 37 coun-

tries, including all EU and most OECD democracies [10]. The CHES use expert surveys to

“estimate party positioning on European integration, ideology and policy issues for national

parties in a variety of European countries.” [9] Thus, these databases can be used to link differ-

ences in online elite political behavior and interaction to variables like party family, political

position or offline discourse. In the supplementary information of this article is the Database

codebook which gives an in-depth explanation about the variables included, in which tables

they can be found, and the relationships between the tables in the database. These relationships

can also be seen in Fig 1. The latest data can be downloaded from the TPD website: twitterpoli-

ticians.org.

4 Analyses to demonstrate the Twitter parliamentarian database as

a research tool

To illustrate the TPD’s capacity for comparative research, we use guiding questions to focus

our demonstrations, limiting the time frame to the period from 1 January 2018 to 31 Decem-

ber 2018 for congruence.

4.1 Comparing countries: How do politicians use Twitter?

We begin by looking at the similarities and differences between countries in terms of Twitter

use: What are the differences between countries in parliamentarian Twitter interactions? While

Twitter offers the same functionalities to parliamentarians everywhere, how those functionali-

ties are used varies significantly between countries. These differences may point to differences

in political cooperation across countries. Firstly, the percentage of parliamentarians that

actively use Twitter differs. Some countries may have an extremely high active Twitter base

(99%, United States) where most parliamentarians tweet almost daily, whereas in other coun-

tries, the parliamentarians may have Twitter accounts, but they rarely tweet. However, on aver-

age 80% of parliamentarians per country are active on Twitter. The frequency of Twitter use

varies across countries. On average, parliamentarians tweet 2.8 times per day, although there is

some deviation; parliamentarians in Iceland tweet less than once per day, whereas parliamen-

tarians in Turkey tweet 6 times per day (min = 0.7;max = 6.6;σ = 1.4).

Retweeting and mentioning exclusively between national parliamentarians make up an

average of only 21% of total politician Twitter activity (min = 7%, max = 36%), with Poland

having the highest proportion of Twitter activity between their parliamentarians, and Iceland

with the lowest. Further, as we see in Fig 2, while mentions to other parliamentarians tend to

be used much more than retweeting, there are stark differences between countries: Icelandic

parliamentarians very rarely retweet, while Greek, Turkish and Canadian parliamentarians

have more retweets than mentions. Conversely, we see the opposite pattern when looking at

retweets and mentions to non-parliamentarians, as parliamentarians retweet more than men-

tion when communicating with those outside of parliament.

The data on retweets and mentions can however be employed in much more powerful

ways, providing new data to questions that have long been central to political science. For

instance, a large literature in political science focuses on international comparison of politician

cooperation, and the relation to aspects of the countries’ democratic systems. This literature

follows not least from Lijphart’s [51] suggestion that consensus democracies, usually employ-

ing proportional representation systems, leads to “kinder, gentler” political cultures than

majoritarian systems (see also e.g. [63–65]). The authors postulate that the structures of power

distribution represented by the democratic system of a country (e.g. majoritarian or consen-

sus) may encourage attitude polarization (and in turn elite conflict), or instead, foster
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cooperation between politically dissimilar parties [51, 52, 66, 67]. With this reasoning, it is

thought that proportional systems lead to increased cooperation [51]. Conversely, other schol-

ars argue that due to lower barriers of entry for smaller, single-issue parties, political fragmen-

tation is instead increased in proportional systems [66–69].

Academic work on the coalitions and divisions within parliamentarian communication

networks has been limited by lack of suitable empirical data. The TPD can thus provide a use-

ful data source for studying the coalitions and divisions among parliamentarians. By viewing

retweets as endorsements (c.f. [70, 71]), the patterns of retweeting can be revealing of the polit-

ical alliances within a country. Retweets can be treated as edges in a network, wherein the

structure can reveal coalitions and divisions amongst parliamentarians. Such networks can be

analysed in different ways, capturing different aspects of the structure of endorsements within

a country. For this demonstration, we focus on the networks with 30 or more parliamentari-

ans, and filter the networks by their giant component. We here aim only for a tentative explo-

ration, leaving an in-depth and rigorous analysis for future research.

A simple but powerful way of operationalizing the level of cohesion within a country is to

compare the fraction of retweets made to members of external parties. Countries whose parlia-

mentarians frequently use retweets to endorse members of other parties can be assumed to

have more amicable between-party relations compared to countries whose parties mostly

Fig 1. Entity relationships in the TPD. Fig 1 shows a simplified version of the entity relationships between tables in the

database, the foreign keys, and their data types. (Note that not all data columns are included in the diagram for the sake of

brevity).

https://doi.org/10.1371/journal.pone.0237073.g001
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retweet internally. S2 Table documents the electoral system, and the average fraction of exter-

nal retweets per country. It shows that there are clear differences between countries in terms of

the fraction of external retweets. Although these patterns need further exploration, we see that

majoritarian (M) systems tend to have a lower fraction of external retweets compared to coun-

tries with mixed and proportional representation (PR) systems. PR systems on the other hand,

show wide variation in the average fraction of external retweets. Countries with a high fraction

of external RTs all employ PR systems.

However, this quantitative approach has certain limitations, as it fails to capture, for

instance, divisions involving multiple parties in coalitions or situations in which a fraction of a

party is strongly divided from other parties. As there are many forms that divisions can take in

these networks, we turn to a more qualitative approach to network analysis: Visual Network

Analysis [72]. This highly flexible approach allows us to categorize the endorsement networks

Fig 2. Ratio of retweets & mentions. Retweets and mentions per country as a percentage of total tweets for all

countries in the database.

https://doi.org/10.1371/journal.pone.0237073.g002
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according to their structure, identifying various forms of divisions and alliances within a

country.

To look beyond descriptive metrics for examining the differences in parliamentarian twitter

interactions, for this preliminary demonstration we focus on the networks with 30 or more

nodes and filter the networks by their giant component. We plot the networks using the For-

ceAtlas2 visualization algorithm, which uses a number of properties to structure the networks

in such a way that highly connected nodes tend to be closer to each other, and less connected

nodes further away from each other [73]. In Fig 3, the nodes are colored according to their

party.

Using this qualitative method identify four distinct types of political network structures (see

Fig 3). Type 1 networks show a highly divided structure: there are clear divisions between clus-

ters and very few cross-cutting ties. Type 2 networks show two large clusters that have dense

connections amongst themselves and fewer external ties. Type 3 networks show a large,

densely connected structure with one or two outlying parties, which are weakly connected to

the others. A clear example of this is the Netherlands, where the outsider is radical-right party

PVV and Germany, where the outsider is the radical-right AfD, which entered parliament in

the 2017 election. Lastly, Type 4 structures exhibit one large cluster of dense connections. All

the individual retweet networks and their classifications can be found in S1 Fig.

We can furthermore use additional measures to compare the categories of networks identi-

fied using VNA, to demonstrate that the networks are not only visually distinct. S2 Table also

reports the modularity, number of clusters, and average clustering coefficient per country to

provide measures of clustering within the networks. To confirm the stability of the modularity

measure, we used the leidenalg python library to measure each network 1,000 times. We report

the average modularity from these runs, as well as the most frequent number of clusters per

run. Cluster assignment was based on the most frequent cluster assigned per node across the

1,000 runs. The results indicate that type 1 networks tend to have higher modularity, as well as

a greater number of clusters than other networks. Type 3 networks tend to have fewer clusters

Fig 3. Parliamentarian retweet network archetypes. Shows the 4 distinct types of retweet networks. Each node

represents an individual parliamentarian. The networks are plotted with the ForceAtlas2 visualization algorithm which

plots highly connected nodes close to one another, and less connected nodes further away. The nodes are colored by

party.

https://doi.org/10.1371/journal.pone.0237073.g003
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than the other network types. Type 1 and 2 networks tend to have higher clustering coefficients

whereas type 4 networks have lower clustering coefficients. This would indicate that type 1 net-

works tend be more divided than types 3 and 4. The fraction of external retweets also shows

that parties in type 1 and 2 networks retweet other parties much less than those in types 3 and

4. Additionally we see that most type 3 networks tend have negative kurtosis of their degree

distributions, which implies that members in the network retweet each other to a similar

degree, rather than rallying around a few leaders. Finally, we see that type 1 networks tend to

have lower normalized eigencentrality scores, implying that nodes are less well-connected

within the network.

We also look at the relationship between cluster and party membership through χ2 and Cra-

mer’s V measures, wherein Cramer’s V show the strength of that relationship, thereby indicat-

ing how ‘neatly’ the networks cluster based on party: fragemented networks are expected to

have a stronger relationship between party-cluster membership, whereas a weak relationship

would indicate more overall cohesion in the network. For brevity, we only report the Cramer’s

V value in S2 Table, as all χ2 results indicated a significant relationship between party and clus-

ter membership (p< 0.00). We see that type 1 networks have much stronger relationships

between party and cluster membership than type 4 networks. Therefore, it is clear that type 4

networks generally retweet across party lines.

All in all, visual analysis and basic network measures can be combined to interpret the types

of network structures that emerge from the data. The measures provided are by no means

exhaustive and may differ depending on the research question. Using the information from

the ESDD [8], we can explore differences in parliamentarian endorsement not only between

countries, but between democratic systems. We see that Type 1 networks show a divided net-

work with little endorsement between parties. Type 2 networks appear bipolar, with two large

contending groups, and are the most common category for Majoritarian systems. Lastly, types

3 and 4 are more consensual, due to many cross-cutting endorsements beyond party lines, and

are largely comprised of PR systems. These results are tentative and not exhaustive. However,

they do illustrate that the database offers opportunities to compare coalitions and divisions

between different countries and political systems. While our purpose here is to illustrate the

potential of the dataset for studying cross-national differences through exploratory analysis, it

also includes data that allows for more formal and quantitative measurement, and points to

several fruitful directions for future research.

4.2 Comparing language between parties: Examining Hashtags

Textual data from Twitter provides an avenue into seeing how parliamentarians navigate dif-

ferent issues and engage in discursive conflict. Despite this potential, there has been limited

research on content of parliamentarians’ tweets, and none that has focused on international

comparison [56]. The TPD offers the opportunity to contribute to comparative work on dis-

cursive conflicts [57, 58] that so far had to rely on newspaper data that typically do not provide

a comprehensive coverage of political claims [59] and is time-consuming to collect and process

[74]. Since the TPD furthermore links to the Manifesto Project, Chapel Hill, and ParlGov data-

bases, it has the information necessary for connecting such textual analysis to a large body of

work that compares different political parties and party families [7, 75–77]. In this section, we

explore the possibilities for using the TPD to take a comparative approach to the study of polit-

ical discourse, focusing on the differences in the use of hashtags between political parties.

The use of labels in political discourse reveal the different ways that opposing political par-

ties discuss the same issues. This is apparent through brief exposure to political debate: while

one party may speak of “tax reform,” the other focuses on “tax relief.” Using different labels for
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the same issue indicates how central labelling is to politics [78]. The way an issue is labelled

influences how we view that issue, what issues we see in the first place and enable us to make

sense of what we are reading. Using certain labels over others may lead to exacerbating politi-

cal divides: when every group identifies and labels its own issues in its own way, it makes con-

versations across partisan lines more difficult [79].

Analyzing labels used on Twitter is made easier by Twitter providing affordances for explic-

itly labeling tweets, in the form of hashtags. While hashtags serve many purposes, broadly

speaking they can be used to index conversations [80], convey a particular point of view [48],

or for issue positioning and labelling [25, 26, 48, 81]. Importantly, hashtags aid in building

public perceptions of an issue by ensuring maximum visibility, and allow anyone to jump into

the conversation [82]. In order to demonstrate the database as a tool for comparing issue label-

ling between parties, we therefore we look at hashtags, using the guiding question: how do
political parties differ in their use of hashtags and what is their common ground?

To take a first step toward a comparison of how different parties label issues, we develop a

simple computational method that captures which hashtags are partisan and which are shared.

To study this, we look at the two largest parties in all countries, in terms of the number of

active users on Twitter (note that these are not necessarily the parties that have the most seats

in parliament). We count each hashtag used by these parliamentarians and then normalize

according to the total number of hashtags used by the party. If a hashtag is used by both par-

ties, the overlapping part of the use is seen as the intersection between the parties. As in a

Venn diagram, the intersection of the sets are the common hashtags, and the non-intersecting

parts are hashtags characteristic of the party. The relative size of the intersection thereby gives

a measure of the similarity in hashtag use between the two parties, which corresponds to the

Jaccard similarity measure [83]. Since dynamics of discursive conflicts are likely different in

multiparty systems, we here focus on the majoritarian systems categorized by the ESDD: the

UK, USA, Canada and Australia. The results are shown in Fig 4. While the set-based method

used here is intuitive and therefore useful for exploratory analysis, a common statistical way of

comparing corpora for the most overrepresented words is Log-Likelihood [84]. This analysis

can be found in S3 Table, and largely matches the results in Fig 4.

A first striking takeaway from this Fig 4 is that the common ground hashtags represent only

a small fraction, where the intersection is 15.7% (in the United Kingdom) or less. Most of the

hashtags that are equally represented in each party (proportional to the number of total hash-

tags used by that party), are usually smaller, less commonly used tags. This indicates that hash-

tags are largely partisan. Hence, to understand what these fractions mean, we need to look

closer at the way hashtags are employed by politicians.

A first thing to note is that the most common intersecting hashtags for Canada and Austra-

lia are “cdnpoli” and “auspol” respectively, although they are not used with the same relative

frequency by each party. These are general country-level hashtags for marking the nation

which the discussion concerns, and are broadly employed for political debate also outside of

professional politicians (these hashtags have been broadly studied, e.g. [24, 85, 86]). The UK

and the US do not seem to have any corresponding hashtags, which may be due to the US and

UK being large enough to be the norm on the platforms, while Canadian parliamentarians

need to demarcate that they are speaking of Canadian politics.

We focus here on the US for a deeper look into the ways parties make use of hashtags, and

the relation to how political issues are labelled. Looking at Fig 4, we see that politicians from

both parties address many of the same issues, while using very different labels. The 2018 tax

reform is a major talking-point on both sides, but while Republicans refer to it using “taxre-

form” or “taxcutsandjobsact,” Democrats instead use “goptaxscam”. Interestingly, there is no

common ground hashtag to denote the bill. A similar state of affairs can be identified in
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relation to the 2018 government shutdown, which both parties attempt to attribute to the

other party: Democrats refer to it as the “trumpshutdown,” while Republican use “schumer-

shutdown”. An interesting point of note is that Democrats use the hashtag “trump,” while this

is not among the major hashtags for Republicans. Republicans focus on “Venezuela,” as an

example of the putative dangers of left-wing politics, while Democrats speak of “climate-

change,” an issue that is not featured among top republican talking-points.

The most important intersecting hashtags found in Fig 4 include tags which describe arenas

of contention rather than specific topics of disagreement, for instance, “scotus,” referring to

the Supreme Court, in which highly a contested process of electing new judges played out dur-

ing 2018. Another example of this is “farmbill”, referring to the primary agricultural and food

policy bill of the US government, which is renewed every 5 years and deals with affairs under

the purview of US Department of Agriculture. While there may be disagreements about its

contents, the common use hashtag suggests that representatives from both parties at least

agree they are discussing the same issue.

Other important intersecting hashtags point to common ground values, to which both par-

ties are happy to profess their support. These include “veterans,” “neverforget,” and “stem”.

Similar common ground is found in national emergencies, such as the hurricane striking

Puerto Rico. However, even here the language differs somewhat between the parties: Republi-

cans are more likely to refer to the event as “hurricaneirma”, while Democrats speak of its

impact on “PuertoRico”. DACA (Deferred Action for Childhood Arrivals)—an Obama-era

executive action, now turned Trump-vetoed bill with broad bipartisan support among voters

Fig 4. Hashtag use amongst the 2 largest parties. This figure shows partisan and common hashtags in Australia, the

United States, Canada, and the United Kingdom. The middle panel shows the common ground while the side panels

show the distinctive hashtags for two largest parties. The size of the middle panel is proportional to the size of the

common ground relative to the parties. In the word clouds, the size of words is proportional to the frequency of use as a

fraction of total hashtag use.

https://doi.org/10.1371/journal.pone.0237073.g004
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—is an important hashtag in the intersection, but is driven in particular by Democratic politi-

cians, who also employ the related hashtags “dreamact”, “dreamers”, “protectdreamers”. There

is, perhaps somewhat tellingly, broad bipartisan use of the hashtag “mepolitics,” denoting a

criticism of the country’s polarized political discourse.

As we have demonstrated, we see that politicians use hashtags to express partisan claims.

While there is some common ground (for instance when it comes to the importance of caring

for veterans), politicians generally use hashtags in outspokenly partisan ways: they use specific

hashtags to push different kinds of issues on the agenda or to express a partisan take on the

same issue. This case has served to illustrate the range of possible research opened by the TPD

in examining language and discourse of politicians on Twitter.

4.3 Transnational communication: What is the structure of the

transnational mention network?

The TPD not only allows for cross-national comparative research but also for research on

international and transnational politics, by enabling analysis of how parliamentarians of differ-

ent countries communicate with one another [87–89]. Through facilitating communication

and mobilization of opinion across borders [90], social media platforms open up for the possi-

bility of a cross-national dialogue. The TPD allows us to examine systematically and compre-

hensively whether parliamentarians are employing the affordances of the platform to engage

in transnational debate. To demonstrate, we look at all mentions between politicians in the

European Free Trade Association (EFTA). When a parliamentarian uses the Twitter mention

functionality, it refers to another Twitter user and notifies the user that they have been tweeted

about. Mentions in this case are tweets in which another parliamentarian’s Twitter account is

signalled with the ‘@’ symbol. This does not include direct retweets, but it does include

retweets where additional text has been added. Mentions were chosen over retweets as they are

more indicative of a dialogue or debate (rather than an endorsement), as well as to provide

illustration of analysis of Twitter’s affordances beyond retweets in the TPD. Luxembourg and

Slovenia were excluded from the analysis due to their low number of international mentions.

Moreover, since we are interested in communication between national parliamentarians, we

do not include the European Parliament in this analysis (see [91–93] for studies on the Euro-

pean Parliament). As illustrative questions, we ask; what is the structure of interaction between
parliamentarians in the transnational debate?

We begin by examining the network of mentions between individual parliamentarians, fil-

tered by its giant component (see Fig 5). In most countries (with the exception of Ireland and

Spain), less than 55% of parliamentarians have mentioned a parliamentarian from another

EFTA country. S4 Table contains the proportion of parliamentarians that made external

retweets per country. The extent to which the international network is split along national

lines is striking: the parliamentarians are organized in clusters that almost perfectly cut along

national lines, with only a small number of parliamentarians being located outside their

respective national cluster. Moreover, when there are connections between national clusters,

they tend to occur between neighboring countries, with nations like Ireland and UK situated

next to one other in the network.

To arrive to a more precise measure for quantifying the level of external communication

between countries, we look at the fraction of external tweets, network diameter, average path

length and modularity. The modularity indicates the strength of the division of the network.

The network diameter measures the longest distance between any two nodes in the network,

whereas average path length counts the average graph distance between all pairs of nodes.

These measures help to understand the structural connectivity amongst individual national
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parliamentarians on a European level. Aggregating on country level, we examine centrality

with PageRank. The network diameter is 18 and the average path length is 5.8, indicating that

there is quite some distance between distant nodes in this network. The network has a modu-

larity of 0.678, suggesting that the network is relatively divisible into separate clusters. All these

numbers suggest that parliamentarians communicate mostly with their compatriots, resulting

in a very sparse and highly divided international communication network.

Although international communication accounts for a low proportion of the total commu-

nication (1.9% of all mentions are directed to a parliamentarian in a different country), in

absolute terms it is still substantial cross-national traffic (16,955 total mentions). Looking

closer at these mentions gives insight in patterns of communication across EFTA countries.

We examine the fraction of external mentions per country, to determine the proportion of

mentions that are dedicated to international debate [94]. When looking at fractions of external

mentions, we see in Fig 6 that some countries participate minimally in international debate,

through a low fraction of incoming and outgoing international mentions. Moreover, we see

that the majority of all international mentions are directed towards a small number of

Fig 5. International mention network. This network shows all mentions between parliamentarians in the database.

The network is made in Gephi, using the ForceAtlas2 algorithm. Node colors are set according to country.

https://doi.org/10.1371/journal.pone.0237073.g005
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countries, namely the United Kingdom and Germany, and to a lesser extent, France. Addition-

ally, we see that there is a large imbalance in outgoing and incoming mentions for some

smaller parliaments such as Austria and Iceland. Small countries appear relatively outward fac-

ing, as there are simply fewer parliamentarians to mention within these small countries, and

more external parliamentarians, resulting in a higher fraction of external mentions. Moreover,

it is noted that smaller countries tend to be more globalized than larger countries [95].

To further examine the extent of the transnational debate, Figs 7 and 8 show that the inter-

national debate is uneven, being dominated by Germany and United Kingdom. To check if

countries contribute equally to the international debate, we used an independent samples

Kruskall-Wallis test. We compared the relationship between normalised cross-border tweets

and country. The results indicate that some countries have significantly more external ties

than others (p = 0.000). This implies that some countries participate more than others in the

transnational debate. For a more precise estimate of the relative importance of different coun-

tries, we calculate PageRank centrality on the adjacency matrix of the aggregated connections

between countries. The results are shown in Fig 9. The figure shows that while France has a

large and active parliament, they are relatively peripheral in the international debate compared

to Sweden, Denmark and the Netherlands—all whom are significantly smaller in parliamen-

tary size but higher in centrality. The sheer volume of mentions emitted by UK parliamentari-

ans—gives it a central place in the transnational debate as shown by its PageRank. Germany,

by contrast, has significantly fewer external mentions but are are just as central in terms of

PageRank and relatively more connected, which is also shown by their fraction of incoming

external mentions. Thus, Germany also occupies a central position in European debates.

In summary, the results of our demonstration suggest that debates among national parlia-

mentarians remain, by and large, contained within national boundaries. The TPD not only

makes it possible to study the degree of transnational communication, but also to examine the

Fig 6. Incoming and outgoing mentions. Shows the normalized fraction of outgoing and incoming mentions. The

fraction of incoming mentions shows which countries are more central to the debate whereas the outgoing mentions

shows how much mention activity per country is directed to international debate.

https://doi.org/10.1371/journal.pone.0237073.g006
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Fig 7. Incoming and outgoing mentions. Shows the fraction of outgoing and incoming mentions per country. It

includes only international mentions, thereby showing the importance of each country in the international debate.

https://doi.org/10.1371/journal.pone.0237073.g007

Fig 8. Absolute and normalized adjacency matrices. Shows absolute (left) and normalized (right) adjacency matrix for

the mention network. (Note that the color scheme is logarithmic).

https://doi.org/10.1371/journal.pone.0237073.g008
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position of countries, parties, or individual parliamentarians within that debate and the role of

different issues. While our exploratory analysis has shown which countries are more central to

transnational debates within Europe, the TPD makes it possible to study transnational politics

on Twitter at a grater scale and in more detail than data sources have previously allowed for.

5 Conclusion

This paper presents a database that responds to the methodological issues regarding delinea-

tion, sampling and validation methods commonly used in Twitter research, using a variety of

data sources along side manually validated Twitter information. The opportunities of this data-

base for comparative and transnational research were illustrated through three tentative stud-

ies, looking at 1) national differences between parliamentarians’ Twitter use, 2) differences

between political parties’ hashtag use and 3) the structure of transnational debates.

Through our exploratory analyses, we discover similarities in the ways which politicians use

Twitter across countries. Overall when communicating with other politicians, they prefer to

use mentions rather than retweets. There are also many differences: some countries have a

very active, thriving Twitter culture in which all functionalities are used, others refrain from

mentioning and retweeting, and yet others may not use the platform much at all. Apart from

documenting differences in how Twitter is used, the database can also provide an empirical

foundation for research into long-standing questions in political science. To illustrate the data-

base as a tool for studying these questions, we used the structure of retweet networks as a

proxy for coalitions and divisions in parliamentarian Twitter networks. Using Visual Network

Analysis, we could distinguish four different kinds of retweet networks: bipolar, fringe party

and cohesive. These structures show whether or not there is a lot of endorsement across

party lines, or if the political culture seems more strictly partisan. Indeed, when looking at clus-

tering measures, we see that networks that appear more divided have a higher clustering coeffi-

cient. We find that majoritarian systems have less external retweets and higher clustering

Fig 9. PageRank centrality per country. To investigate which countries are most central in the international debate in

Europe, this figure shows the PageRank centrality of the aggregated network.

https://doi.org/10.1371/journal.pone.0237073.g009
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coefficients, and most commonly resulted in bipolar structures. On the other hand, propor-

tional systems are the only systems that resulted in cohesive networks. This suggests that there

is a correspondence between the nature of political system and patterns of political communi-

cation but further investigation is necessary to arrive at robust conclusions.

Comparisons between parties are made through using hashtags as a conduit for issue label-

ling. We compare countries with majoritarian systems, as they have two large opposing parties

that comprise the bulk of the politicians’ Twitter activity. We find that there are very few hash-

tags that are shared between the opposing parties, and, in line with existing literature [26, 96,

97], hashtags are used by politicians for issue positioning. The TPD is able to be used when

looking at the content of parliamentarian tweets to determine which party used which hashtag,

which can help provide a clear identification of partisan and shared tags within a country. This

identification can then highlight issues of importance between different parties. Thus, hashtags

are an interesting future avenue to study how parties label and discuss issues.

The TPD does not only allow comparisons of countries and parties but also the study of

transnational communication. By way of illustration, we studied cross-European parliamen-

tarian communication. We found that cross-national mentions constitute only a tiny portion

of the total politician Twitter use, which confirmed by the fraction of external mentions per

country. Therefore there is very little international interaction amongst national parliamentar-

ians. Additionally, through PageRank measures we can see that Germany and the United

Kingdom take central positions in these debates. Hence, we have demonstrated that the TPD

is able to explore the degree in which cross-European communication exists for parliamentari-

ans on Twitter, along with the position of the countries, parties or individual parliamentarians

across a number of different issues with more detail than previous studies.

This paper has therefore demonstrated that the TPD is a powerful database for carrying out

research on parliamentarians’ use of Twitter, in particular for cross-country comparative and

transnational research, which has thus far struggled with data availability. All in all, our data-

base addresses some of the current methodological issues with Twitter research and provides a

starting point for studying communication, contention and cooperation not only within coun-

tries, but also comparatively across borders. As far as we are aware, the TPD is the most com-

prehensive database of parliamentarians on Twitter that exists, and it is able to provide a

framework for more standardized comparative methodology in politician Twitter research.
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S1 Fig. Retweet networks per country, 2018. Shows the individual country retweet networks
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quently than chance amongst one party.

(PDF)
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