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For cells to replicate, a sufficient supply of biosynthetic precursors
is needed, necessitating the concerted action of metabolism and
protein synthesis during progressive phases of cell division. A global
understanding of which biosynthetic processes are involved and how
they are temporally regulated during replication is, however, cur-
rently lacking. Here, quantitative multiomics analysis is used to
generate a holistic view of the eukaryal cell cycle, using the budding
yeast Saccharomyces cerevisiae. Protein synthesis and central carbon
pathways such as glycolysis and amino acid metabolism are shown to
synchronize their respective abundance profiles with division, with
pathway-specific changes in metabolite abundance also being
reflected by a relative increase in mitochondrial volume, as shown
by quantitative fluorescence microscopy. These results show bio-
synthetic precursor production to be temporally regulated to
meet phase-specific demands of eukaryal cell division.

multiomics | cell cycle | Saccharomyces cerevisiae | absolute quantitation |
metabolism

The eukaryal cell division cycle is an essential process in most
complex living organisms. It is defined by unidirectional steps

in growth, DNA synthesis, and mitosis, with the involvement of
essential cell division cycle genes (CDC) in multiple checkpoints
during replication, underscoring the importance for fidelity in
this process (1). Indeed, when the demands of division are unmet
or components malfunction, this can lead to cell death and/or
uncontrolled proliferation. One primary checkpoint is whether
or not metabolic reserves exist in adequate supply before repli-
cation is committed to. This phenomenon of gating by metabo-
lite availability implies that the metabolic status of the cell is of
critical importance for cells to complete division. For example,
before DNA synthesis can occur, a sufficient supply of nucleotide
precursors and redox cofactors needs to be generated to allow
genetic material to be copied and at the same time protected
from oxidation by reactive oxygen species. Similarly, energy-rich
storage carbohydrates such as trehalose have shown to be im-
portant to stockpile before replication can occur to fuel cell
biosynthesis, with mutants in related metabolic genes affecting
the completion time of cell division (2). This would suggest that
timely provision of biosynthetic precursors is of fundamental
importance for cell cycle progression. A global understanding of
what biosynthetic processes are involved as well as how they act
in synchrony with division is, however, currently lacking.
Emerging technologies such as RNA sequencing (RNA Seq)

and mass spectrometry-based proteomics have begun to enable
the characterization of cell systems at the absolute quantitative
level, providing insight into resource allocation and copy number
abundances of messenger RNA (mRNA) and proteins of interest
(3). Furthermore, phosphoproteomics and metabolomics offer
the opportunity to identify cell components that may regulate
processes that would otherwise be challenging to trace from gene

expression alone. Here, we perform quantitative multiomic anal-
ysis on the eukaryal cell cycle model organism, budding yeast
(Saccharomyces cerevisiae), to create a global and quantitative
perspective on how metabolism synchronizes with cell division,
including what processes are involved, when they are active, and
by how much.
Systems biology studies of the eukaryal model organisms, bud-

ding and fission yeast, during their cell cycle has previously affor-
ded insight into the relationship between the transcriptome and
proteome (4, 5), and the proteome and phosphoproteome (6, 7),
adding to related work that has focused on individual omic studies
of the metabolome (2) and the transcriptome (8, 9). Recent rela-
tive quantification of the proteome, transcriptome, and metab-
olome of budding yeast (10) has also added to this growing body of
work for understanding cell division in eukaryal organisms. Here
we performed absolute quantitative measurements of the tran-
scriptome and proteome, alongside semiquantitative analysis of the
phosphoproteome and metabolome, to identify and clarify key
changes during cell division, shedding light on how different pro-
cesses may be regulated from a multiomic perspective.

Significance

The cell cycle is a biological process requiring the interaction of
multiple components to produce a new cell. How these pro-
cesses synchronize with cell cycle progression, however, is
currently unknown. This work performs a quantitative mul-
tiomic analysis of the eukaryal cell division cycle, to map which
processes change at each level of regulation (transcriptome,
proteome, phosphoproteome, and metabolome). This study pro-
vides a comprehensive resource for identifying possible targets for
therapeutic intervention when cell cycle dysregulation occurs.
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First, we compared changes at each omic layer, and found the
most widespread changes to be at the transcriptomic level. Changes
in protein abundance occurred predominantly via transcriptional
regulation, with dynamic protein phosphorylation occurring
mainly for proteins related to cell cycle regulation. On analysis of
phase-specific processes, we find that protein synthesis predomi-
nantly occurs in G1, while the majority of metabolic pathways
were active after cells committed to division in S and G2/M.
Complementary analysis of the mitochondria, the energy pow-
erhouse of the cell, also showed that this organelle’s volume
increases disproportionately to total cell volume after the cell
cycle was committed to, suggesting a relative up-regulation of
metabolite and energy generation for sustaining cell biosynthesis.
An untargeted analysis of metabolite abundance showed that
cells modulate precursor abundance according to their role in
metabolism, with amino acid abundance peaking in G1, nucle-
otides increasing in S phase alongside redox cofactors and lipids,
and central carbon metabolism products peaking at the end of
the cell cycle in G2/M. By identifying what biosynthetic processes
synchronize with the cell cycle, these results could have impor-
tant therapeutic implications for the development of metabolic
targets in anticancer strategies.

Results
A Quantitative Multiomic Perspective of the Eukaryal Cell Cycle. In
this work, a quantitative multiomic analysis of the yeast cell cycle
was generated, incorporating information from the transcriptome,
proteome, phosphoproteome, and metabolome. Prototrophic
yeast cells were synchronized in batch culture by addition of alpha
(α) factor (Fig. 1A), producing close to 100% homogeneous cell
populations for each cell cycle stage, allowing sample collection for
up to three cell cycles (Fig. 1B). Although the cell cycle is divided
into four separate cell cycle phases, in our study, G2 and mitosis (M)
were coupled together, as these are inherently difficult to discrimi-
nate using fluorescence microscopy, resulting in samples being
identified as either unbudded (G1), in the early stage of division with
bud emergence (S phase), or at the final stage of the cell cycle prior
to cytokinesis (G2/M) (Fig. 1C). At each time point, replicates were
collected and submitted to transcriptome, proteome, phosphopro-
teome, and metabolome analysis. Biological triplicates and, for the
first cycle, technical duplicates were collected, allowing an un-
precedented level of coverage from one culture condition. Multiple
replicates also enabled almost 100% coverage of the genome to be
acquired for the transcriptome, alongside almost 70% of the
expressed proteome, over 1,000 protein phosphorylation sites, and
almost 300 metabolites for each time point.
RNA Seq/nCounter and stable isotope labeling with amino

acids in cell culture/iBAQ tandem mass spectrometry (MS/MS)
methods, respectively, were used to generate absolute quantita-
tive mRNA and protein abundances (expressed in copy number
per picogram of cell dry weight) for each sample. The abundance
of most mRNA in the cell (>99%) varied between two orders of
magnitude, while their translated protein demonstrated consid-
erable amplification in abundance, spanning approximately six
orders of magnitude, correlating positively with mRNA abun-
dance (r2 = 0.61; SI Appendix, Fig. S1A), adding to the emerging
consensus that protein levels are largely determined by transcript
abundance (3). Most gene products were amplified during
translation by ∼200-fold (SI Appendix, Fig. S1B), with proteins
related to translational and metabolic processes being the most
amplified, while proteins involved in transport, posttranslational
modifications, and the cell cycle were the least amplified (SI
Appendix, Fig. S1C). This process-dependent difference in am-
plification may explain why the proteome is disproportionately
composed, by abundance, of proteins with a translational and
metabolic function (SI Appendix, Fig. S1D).
To identify components that were periodic in abundance

across the different omic levels, we used linear modeling based

on differential expression analysis (limma) (Fig. 1 D and E). This
approach was selected due to its ability to incorporate additional
information about time points, such as sample heterogeneity,
and to mitigate possible confounders, such as pheromone treat-
ment. For example, in the linear model, we fit different coeffi-
cients for the pheromone effect and the effect of cells being in G1
phase of the cell cycle. We assume that only the samples in the
first time point are affected by the pheromone, while the other G1
samples (in the second and third cycle) are not. Therefore, the G1
phase and the pheromone effect are not confounded, and it is
possible to distinguish between them.

Fig. 1. A quantitative multiomic perspective of the eukaryal cell cycle. (A)
Experimental workflow of yeast synchronization with alpha (α)-factor mating
pheromone. Samples were taken for up to three cell cycles in batch culture and
submitted for absolute quantitative transcriptomics, proteomics, and semi-
absolute quantitative phosphoproteomics and metabolomics. (B) Population
composition for each sample following synchronization with α-factor. (C) Cells
in G1: unbudded, S: budded (without DNA in daughter cell), and G2/M: mitotic
cell cycle stages, identified using fluorescence microscopy and the DNA stain,
4′,6-diamidino-2-phenylindole. (Scale bar: 5 μm.) (D and E) Top-ranked periodic
genes for the (D) transcriptome and (E) proteome identified by limma mod-
eling. All biological replicates are plotted for each time point, with population
composition for each sample represented in each point as a pie chart. Span for
fitting each local regression, as part of the loess smoother (locally estimated
scatterplot smoothing), is 0.6. CI for regression line is 95%. pg CDW, picogram
of cell dry weight. (F) Fraction of each omic level identified by limma modeling
to be periodic during the eukaryal cell cycle.
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When compared to other methods such as Fourier transform
(11) or rank-based methods (12), this approach performed fa-
vorably on the benchmark set of 113 genes known to have pe-
riodic expression (13), despite using relatively few time points,
with 87% being detected in our dataset (98/113) (SI Appendix,
Fig. S2). Phase-specific up-regulation of genes was also cross-
compared between our data and results from previously curated
data, where we found many genes up-regulated to have previously
been identified as periodically peaking in the same phase, con-
firming the accuracy of our model (SI Appendix, Fig. S2). Across
all omic levels and their abundance ranges (Dataset S1), at least
20% of components were identified as periodic (Dataset S2), with
most changes observed at the transcriptomic level (Fig. 1F and SI
Appendix, Fig. S3). Additionally, when comparing the largest dif-
ferences in abundance between samples for individual mRNA and
proteins, the majority (>94%) of both background (nonperiodic)
and oscillating components increased within a twofold abundance
from the least to the highest abundant value measured (SI Ap-
pendix, Fig. S4).
The acquisition of multiomic data also allowed the tracking of

periodic genes from mRNA abundance to protein phosphoryla-
tion state (SI Appendix, Fig. S5). Here, it was clear the overlap
between genes was not complete (SI Appendix, Fig. S5A). This
may be, in part, due to the phosphoproteome coverage, which only
included 382 proteins (14%) of the measured proteome (n =
2,684). Despite the difference in coverage, several genes were still
found to have periodic abundance at all levels, including the
protein of unknown functionMTC1 that is synthetically lethal with
cdc13-1 mutants, suggesting it may play a key role during division
(SI Appendix, Fig. S5B).
Not all periodic transcripts gave rise to an associated periodic

protein (SI Appendix, Fig. S5C). This result cannot be explained
entirely by the lower coverage for the proteomic MS, as more
than half (60%, n = 1,033/1,727) of proteins, which had periodic
mRNA, were detected, such as SEC14, BCY1, and MSF1. Sim-
ilarly, some proteins with changing abundance had nonperiodic
mRNA, such as TRP5, LSM7, and CAR1 (SI Appendix, Fig.
S5C). In a recent study by Kelliher et al. (14), for some cell cycle-
related genes, protein abundance also did not reflect periodic
mRNA behavior. This included SWI6, which here is also found
to have significantly periodic mRNA (P ≤ 0.001) and, as pre-
viously found, could not be identified as periodic at the protein
level (P = 0.297), nor were any periodic changes found for its
protein phosphorylation state either. A lack of correlation be-
tween mRNA and protein could be attributed to mRNA locali-
zation and its effect on protein translation, which was found to
be true for mammalian cells and tissues where some newly syn-
thesized mRNA are retained in the nucleus to buffer against
stochastic mRNA synthesis (3, 15, 16). Protein levels that don’t
synchronize with mRNA abundance, aside from the possible
influence of posttranslational modifications, may also be affected
by translation machinery that buffers against changes in mRNA
abundance via varying protein translation or protein degradation
rates, through differences in ribosome distribution on mRNA (3).
One feature we discovered that coincides with periodic

mRNA is that genes with periodic expression have different
intergene distances (SI Appendix, Fig. S5D). Using a method
previously described in Kristell et al. (17), the distance between
all possible gene pairs was tested. Here, we find that genes
identified as periodic and peaking in S phase locate closer to
each other on the genome than expected by chance (SI Appendix,
Fig. S5D). This suggests cells may regulate gene expression by
spatially arranging genes to organize them into similar euchromatic
or heterochromatic states, enabling them to undergo similarly
timed transcriptional activation or repression.
We next used our list of periodic mRNA and protein to

identify how many of these genes either had an essential function
or were conserved in human genes or both. First, using the list of

genome-wide essential genes, compiled by Liu et al. (18) (n =
1,074, Dataset S3), our results show almost half of genes with an
essential function to also be periodic during the cell cycle, with
40% and 47% of the measured essential transcriptome (411/1,027)
and proteome (308/659), respectively, being periodic, equating to
24% and 31% of all periodic mRNA and protein. Of the 175 yeast
genes which could be replaced by human orthologs in the study by
Kachroo et al. (19) (Dataset S4), 46% (80/175) and 45% (64/142)
were periodic at the mRNA and protein levels, respectively. We
next extracted genes from both the essential and conserved lists to
see how many were periodic at both the mRNA and protein levels
and which overlapped, to determine which proteins that were
transcriptionally regulated were both conserved in humans and
had an essential function. Remarkably, >90% (n = 32) of the 35
conserved genes that were periodic at both the mRNA and pro-
tein levels in human orthologs were also found to be essential. Of
these 32 genes, the main processes were found to relate to protein
synthesis (ribosomal RNA [rRNA] processing, and large and small
ribosome subunit biogenesis) as well as metabolism with ∼30%
(n = 10) having a metabolic function (CDC48, CDC21, KRS1,
PCM1, OST1, UGP1, ERG12, KRE33, GLN4, DPM1).

The Periodic Multiome Reflects the Demand of Protein Synthesis
during Division. After our initial analysis of periodic genes, we
next analyzed which biological processes were enriched at each
omic level (Fig. 2 and SI Appendix, Fig. S6). Periodic protein
phosphorylation affected organelle and cytoskeleton organiza-
tion as well as several processes related to the cell cycle (mitosis,
cytokinesis, and cell cycle regulation; Fig. 2A). The periodic pro-
teome, however, showed enrichments for processes mainly related
to biosynthetic processes, principally translation (rRNA process-
ing and small and large ribosome subunit biogenesis) alongside
several metabolic processes related to amino acid and nucleobase
metabolism (Fig. 2B). Protein synthesis-related processes were
also enriched in the periodic transcriptome (SI Appendix, Fig. S6)
alongside processes principally related to the cell cycle (mitosis,
cell cycle regulation, DNA replication, and chromosome segre-
gation), with the absence of an enrichment for these processes at
the periodic proteome possibly being due to their lower relative
detection by MS (SI Appendix, Fig. S6).
Of the 79 proteins found to be periodic in their phosphory-

lation state during the cell cycle (across 134 sites), we analyzed
how this correlated with their protein abundance (SI Appendix,
Fig. S7). Here, most proteins that had multiple sites phosphor-
ylated tended to correlate either only negatively or only posi-
tively, with only three proteins having both types of correlation
between protein and phosphorylation abundance (SSD1, PAH1,
and YLR257W). As almost half of all proteins negatively corre-
lated in abundance with their protein phosphorylation state (46%,
36/79), this indicated a possible role of phosphorylation in deg-
radation (SI Appendix, Fig. S7). Protein phosphorylation, as well
as altering activity and localization of a protein, often serves as
a marker to trigger ubiquitination, leading to eventual protein
degradation (20). We therefore mined data from a previous study
by Swaney et al. (21) that isolated ubiquitinated protein that had
also been phosphorylated. Of the proteins that positively corre-
lated in abundance with their phosphorylation state, 17% were
previously identified as having cooccurring ubiquitination and
phosphorylation (8/46), whereas, for proteins that negatively cor-
related with their phosphorylation abundance, 31% were known
to have cooccurring ubiquitination (11/36). These results suggest
that one function of phosphorylation in the cell cycle may include
marking periodic protein for degradation.
We next explored the differences in protein abundance be-

tween protein groups that have periodic mRNA and those that
do not (Fig. 2C). Of the total periodic proteome, 44% had pe-
riodic mRNA (434/991). However, when the total abundance of
these protein groups was considered, this group of transcriptionally

Campbell et al. PNAS | April 7, 2020 | vol. 117 | no. 14 | 7577
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regulated proteins comprised >60% of the total periodic pro-
teome. This would suggest that the majority of cell cycle-affected
proteins, by abundance, are transcriptionally regulated. Using re-
cently published protein half-life data (22), transcriptionally reg-
ulated periodic protein was also found to have a significantly (P ≤
0.001) higher number of shorter-living proteins relative to the
other protein groups analyzed (Fig. 2D). These results suggest that
proteins that cycle in abundance are mostly involved in translation
and metabolism, transcriptionally regulated, and shorter living.
On analysis of the timing of expression for transcriptionally

regulated protein, we find most protein either to have peak ex-
pression at the same time as the mRNA it was translated from
(for example, both having peak expression in G1) or to be within
one phase of separation (Fig. 2E). Recently, Riba et al. (23)
found that the rate of protein translation can be impacted by
amino acid composition of synthesized proteins as much as co-
don and transfer RNA adaptation. In particular, they show that
negatively charged proteins are translated faster than positively
charged protein. To investigate whether or not the amino acid
composition of our protein groups may explain the difference in
timing for peak expression between periodic mRNA and its re-
spective protein, we analyzed the percentage of both negative
and positive amino acids in these three protein groups that had
either the same phase for peak expression of mRNA and protein,
a one-phase shift, or a two-phase shift (Fig. 2F). Using all S.
cerevisiae protein sequences in UniProt as a control group, we
find that proteins that are expressed in the same phase as their
mRNA have a significantly higher proportion of negative amino
acids, glutamic acid, and aspartic acid, and a significantly lower
proportion of these amino acids in proteins with peak expression
two phases after their mRNA’s phase for peak abundance.
Moreover, we find that this protein group, with a two-phase delay
between peak mRNA and peak protein expression, contains a
significantly higher proportion of positive amino acids arginine
and lysine (Fig. 2F). Overall, these results suggest protein abun-
dance during the cell cycle may be broadly regulated by the pro-
teins’ transcript abundance, while their expression timing is fine-
tuned by additional properties of the proteins themselves, in
particular, their amino acid composition.

Biosynthetic Processes Act in Synchrony with Cell Cycle Phases. We
next analyzed how periodic proteins peaked in abundance in
different phases of the cell cycle, to determine when processes
synchronized with cell cycle progression (Fig. 3A). Here, we
found that, for biosynthetic processes related to protein synthe-
sis, including energy generation via adenosine 5′-triphosphate
(ATP) synthase, translation, and ribosome subunit biogenesis,
there was a peak in activity in G1, the growth phase of the cell
cycle (Fig. 3A). Absolute quantitation of these complexes
revealed ribosome subunit and ATP synthase subunit proteins to
both increase by ∼8% in abundance in this phase (SI Appendix, Fig.
S8). S-phase proteins which peaked in activity included the repli-
cation fork protection complex, which is involved in coordinating
leading- and lagging-strand DNA synthesis and in replication
checkpoint signaling, while the majority of metabolic processes had
peak activity at the end of the cell cycle in G2/M (Fig. 3A). For
several metabolic processes, activity was spread across more than
one phase, such as amino acid biosynthesis and TOR-related
proteins which had peak expression mainly in S and G2/M
(amino acids), and G1 and G2/M (TOR). The relatively low ac-
tivity in S phase for TOR would suggest that this kinase regulates
growth and metabolism, instead, during G1 when there is peak
protein synthesis and during G2/M when there is peak protein
activity in central carbon metabolism, respectively.
To cross-verify whether metabolic activity was synchronizing

with a particular phase of the cell cycle, we performed an inde-
pendent analysis on the mitochondria, the major metabolic and
energetic hub in the cell (24). This investigation was also driven

Fig. 2. The periodic multiome reflects the demand of protein synthesis during di-
vision. (A and B) Biological process GO terms ranked by enrichment in the periodic (A)
phosphoproteome and (B) proteome relative to the entire genome (all GO termswere
mapped via SaccharomycesGenomeDatabaseGO Slim TermMapper function [https://
www.yeastgenome.org/goSlimMapper]). (C) Median abundance of proteins with or
without periodic abundance, and, for periodic protein, thosewhich also have or donot
have periodic mRNA abundance. P values: *** ≤ 0.001; ** ≤ 0.01; n.s., not significant.
pg CDW, picogram of cell dry weight. (D) Densities for the distribution of turnover
values for protein groups in C, using half-life values fromMartin-Perez and Villén (22),
with density estimate scaled to a maximum of 1. P value: *** ≤ 0.001. (E) Percentage
of periodic protein which has periodic mRNA binned according to the number of
phase shifts between its expression peak and that of its mRNA. (F) Percentage of
negative (Glu and Asp) and positive (Arg and Lys) amino acids in each protein for
protein groups in E based on protein sequences taken from UniProt (https://www.
uniprot.org). Percentage abundance is also shown in gray for all S.
cerevisiae protein sequences available in UniProt (n = 6,721). Median percentage
of amino acid abundances (Glu, Asp, Arg, or Lys) across all proteins is also high-
lighted by a horizontal dashed line. P values: *** ≤ 0.001; ** ≤ 0.01; * ≤ 0.05.
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by our GO term enrichment results for periodic protein, which
showed mitochondrial organization to be affected by the cell cycle
(Fig. 2B). Using a genomically integrated fluorescent marker
which localizes to the mitochondria, MitoLoc, and absolute
quantitative fluorescence microscopy (Fig. 3B), we found that
mitochondrial volume, relative to the whole cell, significantly in-
creased (P < 0.01) as cells committed to the cell cycle (Fig. 3C).
This relative increase in mitochondrial volume between budded
and nonbudded cells, by ∼12%, suggests cells indeed are elevating
their metabolic activity to sustain cell biosynthesis.
We next analyzed whether or not this increase in metabolic

activity could also be seen at the metabolite level. To achieve
this, we grouped the metabolites we had measured (n = 267) into
cell cycle phase groups depending on which phase had the
highest abundance of each metabolite (for example, if the
maximum abundance of a metabolite occurred in G1, this phase
would increase the number of metabolites it had in its group by
one). This revealed that a higher proportion of metabolites peak
in expression after cells committed to dividing in S and G2/M
phases (Fig. 3D), reflecting what we had observed for protein
activity (Fig. 3A) and mitochondrial dynamics (Fig. 3C). On in-
spection of how metabolites peaked in each cell cycle phase, this
was shown to depend on what superpathway they belonged to
(Fig. 3E). Nucleotides peaked in their synthesis in G1 and S
phase, while lipids increased in S and G2/M, mirroring results for
cofactors and vitamins. For carbohydrates and amino acids, their
biosynthesis increased in G1 and G2/M with a relative drop in S

phase (Fig. 3E). This strongly suggests that different metabolic
precursors are generated by the cell, depending on the type of
biosynthesis that is in demand during each respective phase of the
cell cycle.

Biosynthetic Precursors Are Synthesized on Demand during Cell
Division. To understand further how metabolism responds to
the biosynthetic demands of cell division, we used our metabolite
data to dissect which specific pathways peaked in abundance in
the different cell cycle phases (Fig. 4). On analysis of metabolites
belonging to amino acid (Fig. 4A), nucleotide (Fig. 4B), energy
(Fig. 4C), cofactor (Fig. 4D), and lipid metabolism (Fig. 4E), it
was clear that some pathways demonstrated different trends to
others within the same superpathway. For example, within the
superpathway of amino acid metabolism, biosynthetic precursors
of phenylalanine metabolism increased in G1, while methionine
and cysteine precursors increased in S and G2/M (Fig. 4A). For
nucleotides, adenine containing purine metabolites increased in
S phase, while inosine-containing pyrimidine metabolites were
mostly generated in G1 (Fig. 4B). For cofactors and vitamins,
vitamin B6 metabolites were mostly abundant in G1 and S phase,
while redox cofactors involved in nicotinate and nicotinamide
metabolism had peak abundances in S phase and G2/M (Fig.
4D). The latter result supports the theory that DNA is highly
sensitive to redox changes during replication in S phase, sub-
sequently necessitating a relative increase in the supply of redox
cofactors. Finally, for lipid metabolism, most pathways were shown

Fig. 3. Biosynthetic processes act in synchrony with cell cycle phases. (A) Examples of biological processes with periodic protein that synchronize in peak
abundance based on cell cycle phase. (B) Fluorescent-labeled mitochondrial network, using MitoLoc mitochondrial marker. (Scale bar: 5 μm.) (C) Mito-
chondrial volume relative to whole cell volume during each cell cycle phase. P values: *** ≤ 0.001; ** ≤ 0.01. (D) Number of metabolites with peak average
abundance in each cell cycle phase (averages are based on replicates in G1, n = 12; S phase, n = 9; G2/M, n = 9). (E) Same as D with metabolites binned by
superpathway. Annotation by Metabolon, Inc. was used as a reference for superpathway classification.
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to peak in S phase, including long-chain fatty acids, and precursors
of lysophospholipid, phosphatidylinositols, phospholipid, and
sphingolipid metabolism. However, for some pathways, this
was true, instead, for G2/M, including metabolites related to
diacylglycerol, phosphatidylcholine, and phosphatidylethanolamine
metabolism (Fig. 4E). Taken together, these results suggest me-
tabolite precursor supply is highly subject to different phase re-
quirements of the cell cycle.
Using both proteomic and metabolomic insight, we next

sought to see how these two omic levels synchronized in activity
during the cell cycle to see whether any general trends could be
observed (Fig. 5). By mapping enzyme abundance onto central
carbon metabolic pathways, it was clear they demonstrated dif-
ferences in activity depending on the cell cycle phase. For ex-
ample, while glycolysis showed peak enzyme abundance for the
majority of periodic proteins in G2/M (Fig. 5A), branched chain
amino acid metabolism showed that proteins synchronize their
peak abundance in S phase (Fig. 5B). Not all metabolites
reflected enzyme abundance changes with, for example, the
storage carbohydrate trehalose peaking in G1, whilst associated
pathway enzymes mostly showed an increase in S and G2/M (Fig.
5A). Similarly, we found that, for the synthesis of valine, its
biosynthetic enzyme, BAT1, increased in S phase, with its sub-
strate glutamate concomitantly decreasing, implying its con-
sumption for fueling valine synthesis; however, nonintuitively,
this amino acid was found to increase instead during G1,
reflecting that additional enzyme activity may be affecting this
amino acid’s abundance. Indeed, G1 phase appears to be the
predominant phase for most amino acids to peak in abundance
(Fig. 5C). This would suggest that the increase in protein synthesis
activity, shown by the periodic proteome GO enrichment for

translation-related processes (Fig. 2B), is met by an increase in
amino acid supply during this growth phase.

Discussion
In this study, a data-driven and quantitative multiomic approach
was used to characterize the budding yeast cell cycle. Absolute
quantitative omic analysis of mRNA and protein abundance has
previously been performed by Marguerat et al. (4) for another
eukaryal cell cycle model organism, fission yeast (Schizo-
saccharomyces pombe). Considering their data, several insights
can be gained with respect to genes identified as periodic over
the cell cycle as well as the overall abundance landscape for
mRNA and protein in both of these eukaryotes. In the study by
Marguerat et al., for example, they highlight several genes
(H2Aα, H2Aβ, H2B, H3.1, H3.2, H3.4, H4.1, H4.2, H4.3, H2A.Z,
mik1, mde6, and mei2) that they find to contain a switch-like
pattern in transcription, proposing these genes to be confined
to a specific cell cycle phase, as well as suggesting they may have
deleterious effects if expressed at the wrong time (4). On analysis
of the S. cerevisiae orthologs for these genes, we find their
mRNA abundance to also be periodic (SI Appendix, Fig. S9).
Eight of the histone gene orthologs (HTA2, HTB1, HTB2,
HHT1, HHT2, HHF1, HHF2, and HTZ1) have significant (P <
0.05) mRNA expression in S phase, with SWE1, the ortholog of
S. pombe’s mik1, and an inhibitor of mitosis, shown to have peak
expression in G1 (SI Appendix, Fig. S9). Therefore, despite these
two yeast models having an evolutionary distance of ∼350 million
years, conservation in periodic behavior for these related genes is
still shown to exist (25).
Our quantitative measurements also confirm that protein abun-

dance greatly exceeds mRNA in number and dynamic range. On

Fig. 4. Biosynthetic precursors are synthesized on demand during cell division. Frequency of metabolites across five main superpathways: (A) amino acid metabolism, (B)
nucleotide metabolism, (C) carbohydrate and energy metabolism, (D) cofactor and vitamin metabolism, and (E) lipid metabolism. Metabolites were binned according to
which cell cycle phase they have peak abundance in, and which submetabolic pathway they belong to. Abundance values were calculated by averaging replicate
abundance in each cell cycle phase (G1, n= 12; S phase, n= 9; G2/M, n= 9), with the cell cycle phase that contained themaximumabundance value for a givenmetabolite
increasing in metabolite frequency in each bar plot. Annotation by Metabolon, Inc. was used as a reference for superpathway and subpathway classification.
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Fig. 5. Synchronization of central carbon enzyme and metabolite abundance with cell cycle phases. (A) Glycolysis, TCA, and the pentose phosphate pathway
with periodic enzyme abundance represented by colored connections between metabolites according to cell cycle phase they demonstrate peak abundance
in (G1, gray; S, orange; G2/M, blue). Examples of periodic metabolites with neighboring periodic enzymes are also shown in subpanels. Points reflect indi-
vidual replicates, with line representing a loess curve fitted to replicate abundance values for each time point, with span for fitting each local regression = 0.6.
CI for regression line is 95%. (B) As in A but for the branched chain amino acid biosynthetic pathway. (C) Amino acid abundance grouped according to the cell
cycle phase where each amino acid demonstrates peak abundance. a.u., arbitrary units; pg CDW, picogram of cell dry weight.
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average, we find the total proteome to be >2,500 times more
abundant than mRNA, a similar estimate as found for fission yeast
(∼1,850 times) (4). Moreover, this amplification step is shown to
be determined by protein function, with proteins involved in
translation and metabolism being disproportionately amplified,
leading to them representing the majority of the proteome.
Correlations between mRNA and protein copy number in this

work additionally add to the growing consensus that protein levels
are, to a large extent, reflected by their mRNA abundance (3, 4,
26, 27). In our analysis of cell cycle-related changes in mRNA and
protein abundance, the similarities between the periodic proteome
and periodic transcriptome also highlight that most protein
changes in abundance are transcriptionally regulated. Moreover,
we find properties of the protein themselves to impact their
abundance changes over time. Amino acid composition of peri-
odic proteins, in particular, amino acid charge, is shown to have a
possible role in regulating the timing of peak protein expression,
with proteins that have relatively more positive amino acids being
translated slower than those which are relatively more negative.
For proteins which demonstrate an absence of periodic ac-

tivity, this does not necessarily imply these are not active during
the cell cycle. Our phosphoproteomic data, indeed, show that
several processes, including those directly involved in the cell cy-
cle, as well as other processes, such as cytoskeleton and organelle
organization, change in their protein phosphorylation state in
synchrony with cell division, changes which were less clear at the
transcriptome or proteome. Using both proteomic and phospho-
proteomic datasets together, it was also possible to identify a
possible role of phosphorylation in degradation, when proteins
and their phosphorylation states are anticorrelated. Additional
posttranslational data would no doubt shed further light on how
different processes are regulated in this way.
Proteomic data also unveiled an increase in protein synthesis

activity before cell division, in G1, which could be supported by
the increase in amino acids that was observed in the same phase.
Litsios et al. (28), using microfluidics and time-lapse microscopy
in single cells of S. cerevisiae, found that cells similarly demon-
strate a pulse in protein production rate during G1. We also find
that central carbon metabolism, as shown by an increase in protein
abundance, increased after cell division was committed to, most
notably with glycolytic pathway enzymes increasing in relative
abundance in G2/M. Both metabolite abundance data and mor-
phological changes in the mitochondria similarly highlight that
metabolic activity increases as cells begin to replicate. In particu-
lar, phase-dependent differences in biosynthetic precursors, seen
both at the enzyme level and, less intuitively, at the metabolite
level, highlight a complex coordination between metabolism and
the cell cycle (2, 7).
Recent work by Blank et al. (10), using an alternative ap-

proach of elutriation to study the yeast cell cycle, also found no-
table dynamic changes in metabolism through changes in enzyme

abundance. Despite different experimental approaches used,
several findings are shown to be reflected in both our studies. For
example, Blank et al. find that ergosterol enzymes peak during
mitosis, with our results similarly finding that several ERG genes
peak in G2/M, with mRNA and protein increasing in this phase
for ERG27, ERG12, and ERG7. We see that ergosterol itself
peaks in S phase, again demonstrating a nonintuitive association
between enzyme and metabolite abundance. Similar to their study,
we also find that thiamine diphosphate-dependent enzymes peak
in G2/M (in our case, TKL1 alongside KGD1), both reflecting a
general peak in activity for glycolysis and the tricarboxylic acid
cycle (TCA) after cell cycle commitment, that is demonstrated at
both the enzyme and metabolite levels for these pathways.
Finally, using our list of genes identified as being periodic in

their expression products, we show that almost half of human
orthologs in yeast are periodic, and that almost all of the genes in
this subset had an essential function. One-third of these genes
contained a metabolic function, suggesting these could be targeted
for modulating cell cycle progression, with relevance for human
diseases such as cancer.

Materials and Methods
All details on materials and methods associated with omics sample collection,
measurement, and analysis can be found in SI Appendix, SI Materials and
Methods. This includes cell culture synchronization conditions, transcriptomic,
proteomic and metabolomic workflows, the limma modeling method, omics
visualization information, intergene distance analysis, and mitochondrial vol-
ume quantification by fluorescence microscopy.

Data and Materials Availability. Correspondence and requests for materials
should be addressed to nielsenj@chalmers.se. All omic information may be
viewed interactively at https://www.sysbio.se/tools/cellcycle/ with instructions
for use available in SI Appendix, SI Materials and Methods. RNA-seq data have
been deposited in the ArrayExpress database (29) at EMBL-EBI (https://
www.ebi.ac.uk/arrayexpress/) under accession number E-MTAB-8565. The
mass spectrometry proteomics and phosphoproteomics data have been deposited
to the ProteomeXchange Consortium via the PRIDE (30) partner repository
(https://www.ebi.ac.uk/pride/archive/) with the dataset identifier PXD016519.
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