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Selective assembly is an assembly technique for producing
high-quality assemblies from relatively lower quality mat-
ing parts. Developing the application of this technique to
sheet metal assemblies in the automotive industry can im-
prove the geometrical quality and reduce production costs
significantly. Nevertheless, the required calculation time is
the main obstacle against this development. To apply a selec-
tive assembly technique, an optimization problem of finding
the optimal combination of mating parts should be solved.
This problem is an MINLP optimization problem for selective
assembly of sheet metals. This paper demonstrates that the
phenotype-genotype mapping commonly used in most con-
ventional selective assembly studies enlarges the search do-
main of the optimization. Thereafter, a new approach that
makes the mapping one-to-one is proposed and applied to
three selective assembly sample cases from the literature.
Moreover, it is indicated that meta-heuristic methods are su-
perior to MILP and MINLP methods in solving this problem,
particularly for assemblies of more than two components and
relatively large batch sizes. The results evidence that us-
ing the new method improves the convergence rate of meta-
heuristics in solving the problem by reducing the number of
cost function evaluations to 45% for sheet metal assemblies.
This means reducing up-till 26 hours of the optimization time
for the presented sample cases.

1 Introduction
Selective assembly can improve the geometrical qual-

ity of assembled products without tightening production tol-
erances of mating parts. Although implementing this tech-
nique started in the 1950th [1], it is gaining more attention
in new production systems such as cyber factories and dig-
ital twins used in real-time to optimize production quality.
For instance, implementing a new digital twin in production
phase is proposed by Söderberg et al. [2] that utilizes a se-
lective assembly technique. Another example is the utiliza-
tion of a selective assembly technique in cyber factories by
Colledani et al. [3]. Utilizing a digital twin in production of
assemblies, can considerably reduce the cost of production
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and improve the geometrical quality of the assemblies [4, 5].
Figure 1 represents a schematic illustration of using selective
assembly in a digital twin based assembly line for sheet metal
assemblies. The produced parts for the assembly process are
scanned firstly. Then, a model of each part including its ge-
ometrical deviations is generated as its digital twin. These
models are used to simulate the assembly process to predict
the geometrical deviations of the assemblies after releasing
the fixture clamps and spring back. Therefore, an optimiza-
tion algorithm can be utilized along the simulation tools to
find the optimal combination of parts so that the geometri-
cal quality of the assemblies is maximum. This combination
of parts is used to fabricate the physical assemblies. After-
ward, by scanning the physical assemblies, the obtained ge-
ometrical quality from the physical assemblies can be com-
pared with the predicted geometrical quality by the digital
twins and using reinforcement learning techniques errors of
the simulations can be improved [6].

Sheet metal assemblies are the dominant type of assem-
blies in the automotive industry. There are different methods
of reducing the geometrical variations in these assemblies,
including adding slip-planes in joints to reduce the effects of
geometrical variations in components [7, 8]. However, for
spot-welded sheet metals, selective assembly technique is a
promising alternative.

To apply selective assembly technique to spot-welded
sheet metal assemblies, non-rigid variation simulations are
required [9]. These simulations utilize finite element meth-
ods to predict the geometrical deviations of assemblies given
information about part deviations, weld properties and other
effective factors during the assembly process. The simula-
tions contain non-linear finite element analysis and they are
quite time-consuming for common types assemblies in the
automotive industry. There have been some improvements
to reduce the computation costs of these simulations [10,11].
Nevertheless, utilizing them along an optimization algorithm
to find the optimal combination of parts for performing se-
lective assembly requires thousands of simulations to find the
optimal combination of parts for each batch. Utilizing se-
lective assembly technique in a digital twin based assembly
line requires real-time control of assemblies. Hence, time or
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computation cost is the main obstacle against using selective
assembly techniques in a digital twin setup in the automotive
industry [9].

Evolutionary optimization algorithms such as Genetic
Algorithm (GA) and Particle Swarm Optimization (PSO) are
common tools in solving selective assembly problems. There
is one mapping method to transfer the phenotype (selective
assembly optimization parameters) to genotype (GA individ-
ual solutions) that has been used commonly in all studies that
have utilized evolutionary optimization algorithms to solve
selective assembly problems. This study demonstrates that
meta-heuristic methods are superior in solving these prob-
lems and the utilized mapping in these algorithms can be
improved to increase considerably the performance of op-
timization and accordingly the optimization time. Therefore,
an introduction to selective assembly technique and studies
that have focused on it is given in Section 1.1. Then, the ex-
isting gap in these studies and the scope of this paper in filing
that gap is presented in Section 1.2.

1.1 Selective assembly
The primary method of executing selective assembly

that is still common in production of engines and bearings
is the following procedure. In this paper, the word ”com-
ponents” refers to the elements of an assembly and ”parts”
refers to produced parts for mass production of that element.
Firstly, the dimensions of all produced parts will be mea-
sured because the dimensions vary between the allowed tol-
erance limits. Secondly, these parts will be divided into sev-
eral groups (e.g. six groups) based on their measured dimen-
sions. Figure 2 demonstrates this grouping when the mea-
sured dimensions are normally distributed.

The third step is to assemble the first group of Compo-
nent A with the last group of Component B, the second group
of A with next to the last group of B and so on. But, as shown
in Figure 2, the number of parts in the matching groups may
not be equal. For instance, the number of parts in the first
group of Component A is not equal to the number of parts
in the final group of Component B. Therefore, some parts
would be useless. The early studies in selective assembly are
mostly focused on overcoming this problem [1, 12–16].

A selective assembly problem can be categorized as an
assignment problem. Coullard et al. [17] provided a linear
time algorithm to solve maximum cardinality problems for
assembly of bearings. Iwata et al. [18] developed algorithms
for selective assembly of two different types of components.
Considering selective assembly as an assignment problem,
the workers and tasks can be defined as parts of the first and
the second components, respectively. The cost of the work-
ers should be defined as the deviation of the KPC in each
assembly. Hence, the problem can be solved using Hungar-
ian or Auction algorithms [19]. For assemblies of more than
two components, a multidimensional Assignment problem
should be solved. Tan and Wu [20] have presented a gen-
eral formulation for direct selective assembly and fixed bin
selective assembly and solved them using branch and bound
methods.

By emerging evolutionary optimization algorithms,
some studies utilized these algorithms to find the opti-
mal combination of groups in selective assembly problems.
When components are more than two or when sheet metal as-
semblies are involved, an optimization algorithm is required
to find the optimal combination of groups or parts. For ex-
ample, an assembly of three components with n parts of
each component will produce n assemblies. The optimiza-
tion problem is then to find the optimal combination of Ai,
B j and Ck, i, j,k ∈ {1,2, . . . ,n} so that the total variation of
assemblies becomes minimal.

Kannan et al. [21] proposed a coding system from phe-
notype to genotype to solve the selective assembly problem
using GA. In this method, a combination of groups (pheno-
type) is mapped to a chromosome (genotype, an individual
solution in GA). The chromosome is thereafter divided into
substrings, with each substring representing one component
in the assembly. Since all components have the same num-
ber of groups, the length of substrings is equal to the number
of groups. Therefore, a substring includes a sequence of in-
tegers in which each number represents a group number of
that component. Consider, for instance, an assembly that in-
cludes three components and produced parts of those compo-
nents are divided into six groups. As a result, a random com-
bination of groups emerges as follows: (A6B1C5), (A2B3C6),
(A1B4C1), (A3B5C2), (A4B2C4), and (A5B6C3). This phe-
notype will be mapped to the following genotype: 621345
134526 561243. The first six integers of this genotype repre-
sent the group numbers of the first component, the second six
integers show the group numbers of the second component,
and the final six integers represent the group numbers of the
third component. The same type of coding is used for utiliz-
ing PSO to solve the selective assembly problem [22, 23].

Different methods for solving the selective assembly
problem using evolutionary algorithms, including GA and
PSO, have been developed. Kannan et al. [24] developed a
three-stage optimization to minimize the surplus parts in se-
lective assembly. Aderiani et al. [25] presented a multistage
optimization process for components with any type of distri-
bution in their dimension so that the surplus parts are zero
and the variation is also minimal. All these studies utilized
the same phenotype-genotype mapping that was developed
by Kannan et al. [21].

1.2 Scope of paper
The phenotype-genotype mapping that has been devel-

oped by Kannan et al. [21] is used in other studies to the best
of our knowledge [9, 22–31]. This paper demonstrates that
this method of mapping is not one-to-one and consequently
it increases the convergence time of the optimization. The
time for finding the best combination of groups or parts is a
critical parameter for utilizing selective assembly technique
for sheet metal assemblies in smart assembly lines and cy-
ber factories [9]. This is because in selective assembly of
sheet metals each function evaluation requires running vari-
ation simulations of assemblies, and there is not usually a
long time available between scanning the incoming parts un-



Fig. 1: An schematic diagram of a digital twin based smart assembly line of sheet metals that utilizes selective assembly
technique to improve the geometrical quality of assemblies.

Fig. 2: Grouping of measured dimension of parts.

til the start of the assembly process. Accordingly, addressing
this problem and solving it is essential for utilizing selective
assembly technique in a digital twin based assembly line of
sheet metals in the automotive industry.

This study presents a new method of mapping that is
a one-to-one translation of phenotype to genotype and vice
versa. Furthermore, the effects of using the previous and
new mapping method on the performance of the optimization
algorithm in solving selective assembly of three sample cases
from the literature are investigated.

Section 2 reveals that the existing mapping is not one-
to-one and suggests a new mapping approach to solve this
problem. In Section3, three different sample cases of selec-
tive assembly problems from the literature are introduced to
assess the performance of both mapping methods. The re-
sults of applying the conventional and modified mapping on
the sample cases are presented and discussed in Section 4.
Finally, the conclusion will be drawn from the results and
discussions in the final section.

2 Method
Selective assembly is an optimization problem. The ob-

jective is usually to minimize variation of the geometrical de-
viations among all assemblies. For non-rigid assemblies, the
mean value of the geometrical deviations can also be consid-
ered as the second objective [9]. In some studies, the cost of
production is also considered as an objective [32]. Regard-
less of the objective, the problem is always to find the op-
timal combination of groups or individual parts. Therefore,
selective assembly is a combinatorial optimization problem.

Metaheuristic optimization algorithms, including GA
and PSO, have been previously used to solve the selective
assembly problem. But there is a problem in mapping the
phenotype to genotype. Considering an assembly of k com-
ponents with N parts, the number of all combinations that
can be used to create those assemblies is (N!)(k−1). For in-
stance, consider an assembly that consists of two compo-
nents, A and B (k = 2), where ten assemblies are going to
be produced. For the first part of component A, there are ten
options with which component B can be assembled. For the
second component, there are nine options and so on. There-
fore, all possible combinations to make those ten assemblies
are 9! combinations. This paper refers to the method of map-
ping presented by Kannan et al. [21] as conventional method.
The size of the produced genotype from this method of map-
ping will be (N!)(k). Hence, the conventional method maps
a design domain with the size of (N!)(k−1) to a domain with
the size of (N!)(k). A consequence of this type of mapping
is that, during the optimizations, some answers can be pro-
duced that are different in genotype, but identical in phe-



notype. As an example consider an assembly that consists
of two components and five parts (k = 2, N = 5). To gen-
erate a genotype solution using the conventional mapping
method, two substrings will be created that can each take
a sequence of 1 to 5, thereby producing 14400 possible solu-
tions. However, from these solutions, 14280 solutions result
in the repetitive combination of parts. For instance, the fol-
lowing solutions are two different answers in the genotype:

Solution 1:
5 3 4 1 2 2 5 1 4 3

Solution 2:
3 1 2 4 5 5 4 3 1 2

However, both solutions represent the following combi-
nation of parts: (A5B2),(A3B5),(A4B1),(A1B4) and (A2B3).
In this example, there are 23 additional solutions in geno-
types that represent exactly this combination of parts in phe-
notype.

Making the genotype domain larger than the phenotype
domain, as the conventional method does, may have both ad-
vantages and disadvantages. The advantage is that it may
make the optimization process more exploratory [33]. As
a result, the optimization algorithm has a higher chance of
not being stopped in local optima and finding the global op-
timum. On the other hand, it may cause disruption in the
optimization process [33]. Consequently, the convergence
rate will decrease. Therefore, to discover whether this type
of mapping would improve or worsen performance of GA,
the results of the optimization that are obtained using this
mapping should be compared with a one-to-one mapping
method.

The new mapping presented in this paper is one-to-one.
To keep the genotype size, the same as phenotype size, the
number of substrings should be one less than the number of
components. Therefore, the integers of the first substring
represent the part number of the second component, and the
second substring represents the third component and so on.
The key point of this mapping is that for the first component,
a fixed sequence of integers will always be considered in
translation. The new mapping procedure is explained using
the previous example. The combination of: (A1B4), (A2B3),
(A3B5), (A4B1) and (A5B2) will be mapped to the following
chromosome in the genotype:

4 3 5 1 2

The first integer in this chromosome represents the part
number of component B that will be assembled with part
number one of component A. In other words, it demonstrates
that the first part from component A should be assembled
with part number four of component B. The second integer
shows part number three from component B should be as-
sembled with part number two of component A and so on.
This combination corresponds to only one solution in the
genotype. Therefore, the size of the genotype and phenotype
is exactly equal now. This mapping will be addressed as new
method and its performance will be compared to the conven-
tional mapping in and Section 4. Figure 3 demonstrates a
sample example of phenotype and different representations

of it in the conventional and new methods of mapping.

3 Sample cases
To compare the effect of the proposed method with the

conventional method of mapping, both methods of mapping
are applied to different selective assembly problems and the
results are evaluated. There are two common types of se-
lective assembly problems [9]; linear assemblies and sheet
metal assemblies. To make the conclusions of this study ro-
bust, different sample cases from both groups of assemblies
are considered. Linear assemblies are assemblies that geo-
metrical dimensions of the product after assembly is sum-
mation or subtraction of dimensions of their mating parts.
Sheet metal assemblies, one the other hand, are assemblies
where the relation between geometrical quality of assembly
and the mating parts before assembly is not linear. Thus,
compliant variation simulations are required to predict their
final dimensions. As a result, these two types of problems
have different types of objective functions.

The sample case that is considered for linear assemblies
is the utilized sample by Kannan et al. [21] which is also
used by Ponnambalam et al. [34]. The second and third sam-
ple cases are two industrial sheet metal assemblies that are
utilized by Aderiani et al. [9]. These three sample cases are
presented in this section.

3.1 Linear assembly
The first sample selective assembly problem is a linear

assembly of three components that is utilized by Kannan et
al. [21] and Ponnambalam et al. [34] and is demonstrated in
Figure 4. Consider an assembly of three components A, B
and C. The final dimension of the assembly which is repre-
sented by L4 is the sum of dimension L1 from component A,
dimension L2 from component B and L3 from component C.
This is presented in Equation 1.

L4 = L1 +L2 +L3 (1)

The produced parts of A, B and C; however, would not have
the exact dimensions that are designed as L1, L2 and L3, and
they will vary in the range of the defined tolerances. There-
fore, the real dimension of the produced assemblies can be
obtained from Equation 2.

L4 = L1 +∆1 +L2 +∆2 +L3 +∆3 (2)

Where ∆1, ∆2 and ∆3 are deviations of each dimension
from its nominal value. This relation is shown in Figure 4.

Dimensions of the produced parts for all three compo-
nents are 10.000+0.012

−0.000. Therefore, dimensions of the assem-
blies when random assembly is employed are 30.000+0.036

−0.000.
The problem is to reduce the variation of this dimension
among assemblies. It is supposed that 1000 parts are pro-
duced for each component and the produced parts of each



Fig. 3: A sample representation of phenotype in genotype by conventional and new methods of mapping.

Fig. 4: First sample case, Linear assembly of three compo-
nents.

component are measured and divided into six groups. Since
the range of part dimensions is 12µm the range of dimensions
of parts in each group will be 2µm. Figure 5 visualizes this
grouping for each component.

The optimization problem for this sample case is to find
the best combination of groups so that the difference between
the maximum and minimum length of L4 is minimal. This
problem has been only solved using GA in the literature.
This paper presents the mathematical formulation of this
problem as a Mixed Integer Linear Programming (MILP).
The results of solving this problem using branch and bound
methods and GA with both new and conventional mapping
will be presented in this problem. The mathematical formu-
lation of this problem is presented by Equation 3.

Fig. 5: Dimensional distribution of different components of
the first sample case.

minw− z (3)

Subject to:

w≥ (i+ j+ k)2xi jk

z≤ (i+ j+ k−3)2xi jk
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In this formulation, w and z represent L4 of the assem-
blies with the maximum and minimum lengths, respectively.
The group numbers of components A, B and C are indicated
by i, j and k, respectively, and xi jk is the optimization vari-
able than can be zero and one. The maximum length of
the parts of each group can be calculated by multiplying the
group number and the tolerance range of the groups. The
minimum length can also be determined for multiplying the
tolerance range and the group number minus one. The group
range of 2µm is multiplied to the group numbers to obtain the
tolerance limits of the groups.

To solve this problem using GA, several crossover op-
erations have been introduced for this type of optimization.
Random Keys crossover [35] is chosen for application in this
paper. After selecting two parents for crossover operation,
these parents will be encoded by random numbers. After
that, the crossover will be conducted on random numbers and
two children will be generated. Finally, the children are de-
coded to integers. The detailed procedure is illustrated by
Bean et al. [35].

A mutation is an operation with which to avoid the algo-
rithm to converge in local minima. If a gene is selected for
mutation, to perform the mutation, its location will be sub-
stituted by the following gene. Consider a chromosome such
as 256143 134526 561243, if only the second gene were se-
lected for mutation, the chromosome after mutation would
be 265143 134526 561243. The mutated integers are shown
in bold. The cross over and mutation rates are considered to
be 0.8 and 0.05, respectively [21].

3.2 Sheet metal assemblies
To compare the effect of the proposed method with the

conventional method on the selective assembly of sheet met-
als, the second and third sample cases are selected from this
type of assembly. By changing the combination of the mat-
ing parts the mean values of deviations of different points
will be changed, in addition to their variation, in sheet metal
assemblies [9]. Therefore, the selective assembly of sheet
metals is a multi-objective optimization problem. The first

objective is the Root Mean Square (RMS) of variation of de-
viations (RMSv) and the second objective is the RMS of the
mean value of deviations (RMSm). Depending on the assem-
bly, RMSv and RMSm can be determined for only KPC, for
all nodes, or for a weighted sum of KPCs and other nodes. In
the sample cases presented all nodes are considered for this
aim.

The selective assembly problem for sheet metals is
solved in [9] using Mixed Integer Non-linear Programming
(MINLP) methods. Equation 4 presents the formulation of
this problem for an assembly of two components.

min(
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Subject to:

N

∑
j

xi j = 1; i = 1,2,3 . . .N

N

∑
i

xi j = 1; j = 1,2,3 . . .N

xi j ∈ {0,1}

In this formulation, di jk is the magnitude of the deviation
in kth KPC of the assembly that is generated from ith part of
the first component and jth part of the second component.
The batch size is indicated by N, and n is the number of
KPCs. The optimization variable is also represented by xi j in
which can take zero and one. Accordingly, if xi j is obtained
as one, the part number i from the first component of the
assembly will be assembled with the part number j of the
second component. By solving the optimization problem, the
matching parts from each component that result in minimal
RMSv and RMSm of the entire batch can be obtained.

Nevertheless, since this problem is a combinatorial opti-
mization problem, it is not practical to solve it using MINLP
methods for large batch sizes. Accordingly, meta-heuristic
methods including Non-dominated Sorting Genetic Algo-
rithms (NSGA II) are superior in solving it [36]. This study
utilizes both MINLP methods and an NSGA II to compare
the results. However, other alternatives including PSO can
also be investigated. The reason for utilizing NSGA II in this



Fig. 6: Procedure of function evaluation for finding the op-
timal combination of parts in the second and third sample
cases.

Fig. 7: The second sample case, sheet metal assembly of two
components.

study is that it has been utilized relatively in more studies
and there are more tools available to use it compared with
other meta-heuristic algorithms. Nevertheless, the presented
method of transferring phenotype to genotype in this paper is
not limited to GA and can be used for other meta-heuristics
including PSO.

In sheet metal assemblies, the relations between assem-
bly dimensions with dimensions of mating parts are not lin-
ear. Thus, compliant variation simulations by Computer
Aided Tolerancing (CAT) tools are required to predict their
final dimensions. This study utilizes the RD&T program 1 to
reach this goal. Therefore, in each function evaluation, this
program calculates, the fitness of the combination for the op-
timization algorithm. Figure 6 visualizes this procedure.

Figures 7 and 8 present the model generated from the
second and third sample cases, respectively, in the RD&T
program. The arrows in these figures represent the locators
of the fixture used to weld the parts together and the white
spheres represent the spot welds.

This paper considers a batch of 25 assemblies from the
second and third sample cases for comparison of the two
mapping methods. Accordingly, 25 parts are produced for
every component of each sample case. The cross over and
mutation rates are considered 0.6 and 0.05, respectively. Se-
lection of individuals for cross over is also performed us-
ing deterministic tournament selection method [37]. The
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Fig. 8: The third sample case, sheet metal assembly of three
components.

crossover operation is also conducted using Random Key
method.

4 Results and discussions
The sample cases presented in Section 3 are solved by

both the conventional and new method of mapping and the
results are presented for comparison in this section. The goal
of this study is to improve the convergence rate of optimiza-
tion and accordingly reduce the time of calculations for the
digital twin. The main bottleneck in performing the opti-
mization, particularly in sheet metal assemblies, is the vari-
ation simulation that is required in each objective function
evaluation. Therefore, the number of function evaluations
that are conducted by the optimization algorithm to find a
specific minimum is considered as the criterion of evaluat-
ing the convergence rate of the optimization to compare both
methods of mapping.

The results are also obtained by utilizing MINLP meth-
ods and compared with the obtained results from NSGA.
To utilize MINLP methods for sheet metal assemblies, for
each selective assembly problem, the matrix of di jk for all
i, j and k should be calculated using variation simulations
before solving the problem. Accordingly, the number of
function evaluations (variation simulations of assemblies) for
each problem is fixed and equals to i× j×k. After determin-
ing the matrix of di jk , the optimization problem is formu-
lated and solved using GAMS program. DICOPT, CPLEX
and CONOPT solvers are employed in this tool together for
obtaining the optimal solution of the problem.

The performance of GA can vary in each run due to the
random factors affecting it. Nevertheless, the trends when
the same settings are used in different trials can be employed
to evaluate the performance. Hence, each problem is solved
100 times by each mapping method and the mean number of
function evaluations is considered to make the conclusions
more robust. An important factor in GA that may affect the
results is population size. Thus, the performance of each



Fig. 9: Mean number of function evaluations for different
population sizes in Sample case 1.

coding for each sample case is assessed for four different
population sizes, 50, 100, 250 and 500.

4.1 Sample case 1
The objective of optimization in this sample case is to

minimize the range of L4 in the resulting assemblies. This
range is 36 µm when the mating parts are assembled ran-
domly to each other. The minimal range that can be obtained
by utilizing selective assembly is 8 µm [21]. GA is used
100 times for each population size using both methods of
mapping to find the combination of groups that results in the
variation of 8 µm and the number of function evaluations are
recorded in each optimization. Figure 9 presents the num-
ber of objective function evaluations for different population
sizes in an average for 100 replications for both conventional
and the new method of mapping.

The results evidence that utilizing the new method of
mapping improves the convergence speed up to almost 50%
for this sample case. Moreover, the improvement is greater
for smaller population sizes relative to larger population
sizes.

This problem is also solved by the MILP solver of MAT-
LAB using branch and bound method. The global optimum
of 8µ is also found in this method. However, the number of
nodes to be explored during branch and bound to find this op-
timal (function evaluations) is 20667. Comparing this num-
ber with the number of function evaluations in GA which is
less than 1300, evidences superiority of meta-heuristics, par-
ticularly GA in solving these problems. The elapsed times to
find the optimal solutions for the GA and the MILP method
are 0.09 and 2.68 seconds, respectively.

4.2 Sample cases 2 and 3
The geometrical quality of the sheet metal assemblies

when mating parts are picked randomly is obtained by simu-
lating the assembly process for these assemblies using 10000
random combinations of parts. Thereafter, a goal is set for

Fig. 10: Mean number of function evaluations for different
population sizes in sample case 2.

improvement of each criterion to be achieved by conducting
selective assembly. Table 1 lists the value of each geometri-
cal quality criterion when the random assembly is employed
and the considered goals to be achieved by the selective as-
sembly.

Table 1: RMSv and RMSm for random assembly and the de-
fined goals to be achieved by selective assembly.

Random Assembly Goal

RMSv RMSm RMSv RMSm

Sample case 2 0.75 0.26 0.35 0.20

Sample case 3 1.7 0.4 0.80 0.22

Figure 10 visualizes the mean number of function eval-
uations in 100 replications of the optimization procedure for
each population size in Sample case 2. Based on the re-
sults, the mean number of function evaluations when the new
method of mapping is utilized is considerably lower com-
pared to the conventional method. The same results are pre-
sented in Figure 11 for Sample case 3. The reduction in this
sample case is lower compared with Sample case 2.

The results evidence an improvement in the number of
function evaluations using the new method of mapping. Fig-
ure 12 demonstrates the achieved improvements for all sam-
ple cases in different population sizes. Based on the results,
the achieved improvement is larger for smaller sample sizes.

As presented by Equation 4 selective assembly of sheet
metals is an MINLP problem. To evaluate the results of GA
with other methods, sample cases 2 and 3 are also solved
using MINLP methods. For each sample case, the matrix of
di jk for all i, j and k is calculated by RD&T, firstly. Then,
the optimization problem is formulated and solved using the
GAMS program. DICOPT, CPLEX, and CONOPT solvers
are employed in this tool together for obtaining the optimal



Fig. 11: Mean number of function evaluations for different
population sizes in sample case 3.

solution to the problem.
The size of di jk for Sample case 2 is 252 × 5579 =

3486875 and 252 = 625 of variation simulation are required
to determine this matrix. The number of required varia-
tion simulations to calculate di jkl for the third sample case
is 253 = 15625 and its size is 253× 4708 = 73562500. To
obtain the two objectives for this problems ε− constraint
method is utilized. Accordingly, RMSv is considered as a
constraint and RMSm is determined. The obtained RMSm for
the presented goals of RMSv in Table 1 are 0.195 and 0.22,
respectively.

Each function evaluation in Sample case 2 and 3 takes
30 and 46 seconds, respectively, using a Core i7 CPU and 16
MB of RAM in a PC. Accordingly, utilizing the new method
of mapping can save up to 16 and 26 hours in the optimiza-
tion procedure for the second and third sample cases, respec-
tively. The approximate elapsed time to solve the second
sample case using MINLP methods, including variation sim-
ulations, is 6 hours. This time is approximately 15 hours
using GA with the new coding. These times for Sample
case 3 are 190 and 44 for MINLP and GA with the new cod-
ing, respectively. Accordingly, by increasing the number of
components or the batch size, the number of variables in the
MINLP method increases exponentially and meta-heuristic
methods including GA are superior in solving the problem.
Utilizing MINLP methods for assemblies of more than two
components and a batch size of 50 is almost impractical.

4.3 Future research
Applying selective assembly on designs with slip planes

is a potential subject for future studies. The focus of this
study has been on GA. Therefore, the difference in the per-
formance of other evolutionary algorithms based on the same
concept of mapping can be assessed in future studies. In
addition, the performance of these two different mapping
method for assemblies with more than three components can
also be studied in future researches. Furthermore, utilizing
other techniques to improve the speed of optimization in-
cluding utilizing surrogate modeling can be studied in future
studies.

Fig. 12: Percentages of improvements attained by using the
new method of mapping for different sample cases.

5 Conclusion
This study addresses a principle problem in using selec-

tive assembly technique in a digital twin based assembly line
of sheet metal assemblies in the automotive industry. This
problem is the calculation cost of the optimization process
and consequently the time of finding the optimal combina-
tion of parts. It is revealed that the existing method of map-
ping from phenotype to genotype in solving the selective as-
sembly problem using an evolutionary algorithm is not an
injective or one-to-one function. A new method of mapping
is presented to make the mapping one-to-one. Thereafter,
the performance of both types of mappings for three sample
cases is evaluated. The mean number of objective function
evaluations in 100 replications to find a specific goal is con-
sidered as the criterion to evaluate the performance of each
method of mapping. Moreover, the problem is solved using
MINLP methods for evaluation of the results.

The results indicate that meta-heuristic methods includ-
ing GA are superior in solving the selective assembly prob-
lem compared with MILP and MINLP methods particularly
for assemblies with more than two components and batch
sizes of more than roughly 50.

The results evidence that using the new method of map-
ping improves the convergence rate significantly for all sam-
ple cases. This improvement is greater in smaller popula-
tions sizes where it is 49%, 48% and 25% in the first, second
and third sample cases, respectively. This means reducing
16 and 26 hours of the calculation time for the second and
third sample cases, respectively. Moreover, between Sample
case 2 and 3, sheet metal assemblies, Sample case 2 has rela-
tively greater improvements. Therefore, it can be concluded
that the achieved improvements by utilizing the new method
are greater for sheet metal assemblies with a lower number
of components compared with sheet metal assemblies with a
larger number of components. This is because the number of
different solutions in the genotype that are correspondent to
one solution in the phenotype, when the conventional method
is utilized, is greater for assemblies with a lower number of



components compared to assemblies with a larger number of
components.
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R., 2018. “Efficient Compliant Variation Simulation of
Spot-Welded Assemblies”. Journal of Computing and
Information Science in Engineering, 19(1), 11. 011007.
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