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predicting permeability 
via statistical learning 
on higher‑order microstructural 
information
Magnus Röding1,2*, Zheng Ma3 & Salvatore torquato4

Quantitative structure–property relationships are crucial for the understanding and prediction of 
the physical properties of complex materials. For fluid flow in porous materials, characterizing the 
geometry of the pore microstructure facilitates prediction of permeability, a key property that has 
been extensively studied in material science, geophysics and chemical engineering. In this work, 
we study the predictability of different structural descriptors via both linear regressions and neural 
networks. A large data set of 30,000 virtual, porous microstructures of different types, including both 
granular and continuous solid phases, is created for this end. We compute permeabilities of these 
structures using the lattice Boltzmann method, and characterize the pore space geometry using one-
point correlation functions (porosity, specific surface), two-point surface-surface, surface-void, and 
void-void correlation functions, as well as the geodesic tortuosity as an implicit descriptor. Then, we 
study the prediction of the permeability using different combinations of these descriptors. We obtain 
significant improvements of performance when compared to a Kozeny-Carman regression with only 
lowest-order descriptors (porosity and specific surface). We find that combining all three two-point 
correlation functions and tortuosity provides the best prediction of permeability, with the void-void 
correlation function being the most informative individual descriptor. Moreover, the combination 
of porosity, specific surface, and geodesic tortuosity provides very good predictive performance. 
This shows that higher-order correlation functions are extremely useful for forming a general model 
for predicting physical properties of complex materials. Additionally, our results suggest that 
artificial neural networks are superior to the more conventional regression methods for establishing 
quantitative structure–property relationships. We make the data and code used publicly available to 
facilitate further development of permeability prediction methods.

The study of how the microstructural morphology of random, heterogeneous, porous materials affects their 
effective properties, i.e., determining quantitative structure–property relationships, is key for the understanding 
and prediction of the physical properties of complex  materials1. Specifically, understanding how fluid transport 
properties are related to the microstructure of a porous medium is crucial in a wide range of areas e.g. geological 
 events2, polymeric composites for packaging  materials3, catalysis, filtration and  separation4, energy, fuels, and 
 electrochemistry5, fiber and textile materials for health care and  hygiene6, and porous, biodegradable polymer 
films for controlled release of medical  compounds7. Numerous efforts in determining the physical properties 
of complex materials have been made since the early work of  Maxwell1,8–11, and such investigations have been 
enhanced due to the availability of high-resolution 3D images of various types of materials microstructures 
using X-ray  nanotomography12,13 or focused ion beam scanning electron  microscopy14, and nuclear magnetic 
resonance as  well15,16.
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The porosity φ (volume fraction of the pore phase) and specific surface s (pore-solid interface area per unit 
volume) are perhaps the most basic geometrical characteristics. These two characteristics are the most frequently 
used in empirical expressions for the permeability. The Kozeny-Carman  equation17,18 is the most notable example, 
usually written as

where k is the permeability and c is the Kozeny-Carman constant. However, the remarkably simple form comes 
with great limitations. The Kozeny-Carman constant was found not to be a universal quantity. It does not only 
vary for different systems, but can also depend on the  porosity19. Additionally, it does not distinguish portions 
of pore space that carries significant flow from portions that do  not1.

To tackle this difficulty, countless modified versions of the original Kozeny-Carman equation have been 
proposed. However, these models are usually ad hoc and only applicable to a specific class of  structures20. More 
importantly, although in many cases tortuosity is incorporated in the Kozeny-Carman  constant21–24, it usually 
only depends on the porosity alone in simplified models, thus the final expression of the permeability is essen-
tially nothing more than a function of porosity and specific surface, i.e., f (φ)/s2 . However, it is well-known that 
the microstructure is highly degenerate given only porosity and specific  surface25,26, which leads to a wide range 
of permeabilities as we show later. Thus, any function of the form f (φ)/s2 cannot be a general predictor and 
suffers from the intrinsic variances in the set of infinite degenerate microstructures.

Indeed, accurate prediction of the effective physical properties of the porous media requires a complete 
quantitative characterization of the microstructure in d-dimensional Euclidean space Rd via a variety of n-point 
correlation  functions1. However, while such complete structural information about the medium is generally not 
available, reduced information in the form of lower-order correlation functions is often very beneficial. Two-
point void-void and three-point void-void-void correlation functions have been used to produce both bounds 
and estimates for the effective electrical conductivity, diffusion coefficient and  permeability27–36. In addition to 
the void-void correlation function, two-point surface-surface and surface-void correlation functions (where the 
surface is the interfacial surface between two phases) can also be defined and provide improved reconstructions 
of two-phase media from imaging  data37,38, as well as sharper bounds on permeability compared to only using 
the void-void correlation  function1.

On the other hand, it has been shown that permeability can be simply connected to the electrical formation 
factor of the porous  material39,40. This has been proved rigorously by Avellaneda and  Torquato41. However, from 
a prediction point of view, the formation factor itself needs to be measured experimentally or solved numerically, 
thus is not that helpful for establishing an explicit link to the microstructure. Although the formation factor is 
related to the hydraulic  tortuosity42, the later also requires heavy computations.

As a complement to rigorous approaches to estimate effective properties from the microstructure, data-driven 
methodologies to establish structure–property relationships are increasingly being  used43–49. The rapid increase 
in computational resources facilitates the computation of effective properties for very large data sets (hundreds 
or thousands) of different microstructures. Moreover, as noted above, affordable high-resolution 3D digitized 
images of actual microstructures provide valuable data sets. As a consequence, it becomes manageable to gener-
ate large numbers of realistic virtual microstructures, and using those to perform exploratory computational 
screening of structure–property relationships. For example, van der Linden et al.43 use a data set of 536 virtual 
granular materials, compute 27 geometrical descriptors and use log-linear regression and other statistical learning 
methods as well as different variable selection schemes to understand the usefulness of the different descriptors 
for predicting permeability in these systems. Stenzel et al.44 study effective conductivity prediction in 43 virtual 
realizations of a stochastic spatial network model structure, using porosity and different tortuosity and constric-
tivity measures. This study was extended to 8,119  microstructures50, which is likely the largest study published 
before, and the same data set was used again later to predict effective conductivity and  permeability45. Barman 
et al.46 studied effective diffusivity prediction in 36 virtual porous polymer films using tortuosity and constrictiv-
ity. In a different direction, there are several attempts to use 2D and 3D convolutional neural networks (CNNs) 
to extract information directly from the binary image data describing the  structure47–49,51–53 in order to predict 
effective properties. However, these models are usually difficult to interpret and hard to rescale.

In this work, we are primarily interested in the predictive power of the information content contained in 
different microstructural descriptors. Specifically, we investigate the two-point surface-surface, surface-void, 
and void-void correlation functions, and also porosity, specific surface, and geodesic tortuosity using different 
regression methods. Unlike the hydraulic tortuosity mentioned above, the geodesic tortuosity is a purely geo-
metric quantity that can be computed efficiently, and has been shown to be superior for diffusivity  prediction46. 
We compare different regression methods, including conventional linear regression with linear and quadratic 
terms, as well as deep artificial neural networks (deep learning). While conventional linear regression has an 
advantage in so far as the transparency of the prediction mechanism, deep learning has the potential to extract 
nearly the full information content of the descriptors, providing insight into the utility of the different descriptors 
for establishing the structure–property relationship. We find that the information content contained in these 
two-point correlation functions and geodesic tortuosity are indeed helpful to overcome the difficulty of apply-
ing a unique Kozeny-Carman-type equation to a variety of distinct microstructures, by yielding much better 
prediction performance. Moreover, our results suggest that artificial neural networks are superior to the more 
conventional regression methods for establishing quantitative structure–property relationships.

Consistent with the purpose of the paper, we have generated a large data set of virtual, porous, isotropic, and 
stationary microstructures of three different types, based on (i) thresholded Gaussian random fields, (ii) thres-
holded spinodal decomposition simulations of phase separation, and (iii) non-overlapping ellipsoid systems. 

(1)k =
φ3

cs2
,
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Varying porosity and length scale and other parameters, we generate 10,000 structures of each of the three types, 
yielding a data set of 30,000 virtual microstructures in total. This is likely to be the largest data set of virtual 
microstructures ever created for studying permeability prediction, and covers both granular (ellipsoids) and 
continuous solid phases to provide a broad variability in the pore space geometry. Fluid flow is simulated using 
the lattice Boltzmann method. The large number of simulated microstructures makes it feasible to use not only 
scalar descriptors but also high-dimensional descriptors such as the two-point correlation functions, while still 
avoiding the well-known ’curse of dimensionality’ in regression caused by having too many dimensions but too 
little data. To facilitate further investigation and development of permeability prediction methods, we make 
the microstructural descriptors, the computed permeabilities, the trained models, and the code used herein 
publicly  available54.

The paper is organized as follows. First, we introduce necessary definitions for the geometric descriptors 
used throughout the paper. Second, we describe how the virtual microstructures are generated, and the flow 
simulations and computations of permeability are described. Third, computation of the different microstruc-
tural descriptors is covered. Fourth, the prediction models for permeability are investigated. Finally, we make 
concluding remarks and discussions.

Background and definitions
Geodesic tortuosity. We compute geodesic tortuosity in the flow direction according to Barman et al.46 in 
the following manner. As a first step, a pointwise geodesic tortuosity is computed as τ(x) = d(x)/d . Here, d is 
the length of the microstructure in the flow direction, and d(x) is the length of the shortest path from any inlet 
pore to any outlet pore through x . The shortest path is calculated as the sum of two geodesic distance transforms 
computed in the pore space of the binary voxel array: one using the set of edge voxels constituting the inlet pores 
as seeding points, and the other using the set of edge voxels constituting the outlet pores as seeding points. Let P 
be the set of voxels for which both geodesic distances are finite, i.e., the set of pore voxels connected to both inlet 
and outlet. Then, the geodesic tortuosity τ can be computed as

In Barman et al.46, it was found that accounting for both inlet and outlet in this manner is superior (in terms 
of diffusivity prediction) to just accounting for the inlet as is commonly  done44,55. Tortuosity calculations were 
implemented in Matlab (Mathworks, Natick, MA, US).

correlation functions. Let I(x) be the indicator function for the void phase (pore space) V1 , i.e.,

The two-point void-void correlation function is then generally defined by

For statistically homogeneous materials, S2 is only dependent on the vector difference r = x2 − x1 . Further, if 
the material is also statistically isotropic, S2 is only dependent on the radial distance r = |r| . Introducing a nota-
tion that is consistent with the other correlation functions defined below, the two-point void-void correlation 
function is now defined as

where the average is taken over all x and over all r with magnitude r. We proceed to the correlation functions 
involving the interfacial surface. Let M(x) be the interface indicator function defined  by1

Still assuming ergodicity and statistical isotropy, the surface-void correlation function can be written as

and the surface-surface correlation function can be written as

Importantly, the information content of one-point correlation functions (porosity φ and specific surface s) is 
automatically encoded into these two-point correlation functions. When r goes to infinity, Fvv(r) , Fsv(r) and 
Fss(r) converge to φ2 , sφ and s2 respectively. Interestingly, the slope of Fsv(r) at the origin is proportional to 
the integrated mean curvature of the  system56, which has recently been shown to be a useful predictor of both 
 permeabilities57 and diffusion  coefficients58.

Accurate and robust computation of Fvv , Fsv , and Fss from discretized structures is a non-trivial task (in 
particular for the later two). The calculations recently became accessible due to the algorithms devised by Ma 
and  Torquato56. There, the calculations involving the interfacial surface are performed using a scalar field which 
when thresholded yields the corresponding two-phase medium. The details of the algorithms and the software 
can be found in  Ref56.

(2)τ =

(

1

|P|

∫

x∈P

dx

τ 2(x)

)−1/2

.

(3)I(x) =

{

1, if x ∈ V1,
0, otherwise.

(4)S2(x1, x2) = �I(x1)I(x2)�.

(5)Fvv(r) = �I(x)I(x + r)�,

(6)M(x) = |∇I(x)|.

(7)Fsv(r) = �M(x)I(x + r)�,

(8)Fss(r) = �M(x)M(x + r)�.



4

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:15239  | https://doi.org/10.1038/s41598-020-72085-5

www.nature.com/scientificreports/

Microstructure data preparation
Microstructure generation. To achieve a large, representative data set, three different types of microstruc-
tures that are commonly studied in the materials literature are generated, including (i) thresholded Gaussian 
random fields, (ii) thresholded spinodal decomposition simulations of phase separation, and (iii) non-overlap-
ping (hard) ellipsoid systems. We simulate 10,000 realizations for each type, with porosities φ selected uniformly 
in 0.3 ≤ φ ≤ 0.7 and varying characteristic length scales. In the end, all structures are converted to N3 binary 
voxel arrays with N = 192 voxels. In Fig. 1, one example of each type of structure is shown. We verified that the 
choice of the system volume size is both computationally manageable and representative. The correlation func-
tions are evaluated for integer radii value bins r from 1 to 96 voxels. In Fig. 2, some examples of correlation func-
tions are shown. Note that these correlation functions are considerably distinct from each other, as seen by their 
different magnitudes and functional shapes. On the other hand, they have already converged to the large-r limits 
within the sample size. The details of how these samples are generated are presented in the following subsections.

Gaussian random fields. Gaussian random fields are generated according to Lang and  Potthoff59. Assuming 
that we wish to simulate a Gaussian random field G(x) , x ∈ R

3 , with mean zero and covariance function �
(

x, y
)

 , 
it utilizes the fact that the covariance function can be written

where γ
(

p
)

 is the spectral density of the Gaussian random field and �·, ·� is the inner product. We wish to generate 
structures with length scale parameter L and resolution N3 voxels. Letting δ = L/N and letting FFT and FFT−1 
denote the forward and inverse 3-dimensional Fast Fourier Transforms, this can be performed in the following 
fashion: Generate an array W where all elements are independent and normal distributed with mean zero and 
standard deviation δ−3 (white noise). Compute FFT(W) . Define the Fourier space grid by p =

(

p1, p2, p3
)

 , where 
p1 ∈ {−N/(2L), (−N/2+ 1)/L, ..., (N/2− 2)/L, (N/2− 1)/L} and likewise for p2 and p3 . Compute γ

(

p
)

 on the 

(9)�
(

x, y
)

=

∫

R3
e−2π i�p,x−y�γ

(

p
)

dp,

Figure 1.  Examples of structures, showing (a) Gaussian random field structure with φ = 0.7 , (b) spinodal 
decomposition structure with φ = 0.5 , and (c) non-overlapping ellipsoid structure with φ = 0.3 . The figure is 
produced using ParaView 5.4.1 (http://www.parav iew.org, freely available without permission).
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Figure 2.  Some examples of (a) Fss , (b) Fsv , and (c) Fvv correlation functions. The examples are taken from the 
three different types of generated microstructures, i.e., thresholded Gaussian random fields (blue), thresholded 
spinodal decomposition simulations of phase separation (red), and non-overlapping ellipsoid systems (green).

http://www.paraview.org
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grid. Compute U = FFT(W)
(

p
)

× γ
(

p
)1/2

/L3 . Then, obtain the Gaussian random field as FFT−1(U) . We use 
several different spectral densities. For type (I),

for n = 1.95 and l = 1.85 (power-law)59,60. For type (II),

for α = 1.75 (exponential). For type (III),

for α = 1.25 (Gaussian). For type (IV),

where ρ = 1.25 (circular top-hat). The parameters are chosen such that the corresponding Gaussian random 
fields have approximately the same characteristic spatial scale. For each spectral density, 2,500 structures are 
generated using uniformly distributed values of L, 4 ≤ L ≤ 16 . Thresholding then converts the scalar fields to 
corresponding two-phase media. To obtain a microstructure with a prescribed porosity φ , the threshold is chosen 
to be an appropriate percentile of the values of G . The method is implemented in Matlab (Mathworks, Natick, 
MA, US). The execution time is approximately 1 s (single core) for each structure.

Spinodal decomposition. The lattice Boltzmann  method61,62, a numerical framework for solving partial differ-
ential equations based on kinetic theory, is used to simulate phase separation kinetics (spinodal decomposition) 
using the Navier–Stokes and Cahn–Hilliard equations. Very briefly, the time evolution of a spatially dependent 
concentration C(x, t) , 0 ≤ C ≤ 1 , is described by

As an initial condition, the values of C are uniformly distributed in 0 ≤ C ≤ 1 , independently in all grid points. 
The phase separation is the coarsening of regions with C ≈ 0 and C ≈ 1 (ideally equal to 0 and 1). Here, u is a 
fluid velocity governed by the Navier–Stokes equations, M is a mobility, i.e., a diffusion coefficient, and µ is the 
chemical potential. The simulation is performed using a dimensionless time step unity and both the density 
ratio and viscosity ratio between the phases are unity. The interface width, i.e., the characteristic length scale of 
the transition between the phases is 5 voxels. The simulations are performed in the resolution 963 voxels with 
periodic boundary conditions, and are run until an appropriate degree of coarsening is obtained. The number 
of iterations K is chosen randomly between 5 and 20,000 such that K1/3 is approximately uniformly distributed; 
this is because according to the Lifschitz-Slyozov law, the typical length scale in the structure will be proportional 
to the cubic root of the simulation time. After terminating the simulation, the solutions are upscaled to 1923 
voxels and thresholded to obtain the desired porosity. The spinodal decomposition simulations are run using 
in-house  software61,62 with efficient scaling to many cores using the MPI interface. The average execution time 
is approximately 13 min (32 cores) for each structure, and up to 60 min for the longest computation.

Non‑overlapping ellipsoids. Random configurations of non-overlapping, hard ellipsoids are generated using a 
hard particle Markov Chain Monte Carlo (MCMC) algorithm. The Perram-Wertheim  criterion63 for two ellip-
soids of arbitrary orientation is used for overlap detection. First, particles are assigned uniformly distributed 
locations and orientations (the latter encoded using a quaternion representation). Second, the configurations are 
relaxed by sequentially performing random translations of all particles and then random rotations of all particles 
until no two particles overlap. Proposed translations and rotations are only accepted if they lead to a lower or 
equal degree of overlap for the considered particle. These “local” stochastic optimization steps eventually lead 
to a “global” optimization resulting in no overlap. Third, the configurations are equilibrated by performing a 
large number of random translations and rotations, ensuring a distribution in location and orientation that is 
as uniform as possible. Now, if the desired porosity φ is larger than 0.50, non-overlapping configurations can be 
generated easily at constant porosity as described above. Otherwise, as a final step, the configuration is further 
compressed in small steps, �φ = 10−5 , until the target porosity φtarget is reached (in some cases, the configura-
tion becomes jammed before reaching φtarget ). The proposed translations are normal distributed with standard 
deviation σt in each direction. The proposed rotations are normal distributed with standard deviation σr in a 
random direction. In every step, σt and σr are chosen in an adaptive fashion to aim for an acceptance probability 
of 0.25. The number of ellipsoids M is distributed in 8 ≤ M ≤ 512 such that M1/3 is approximately uniformly 
distributed, yielding an approximately uniform distribution of length scales. Further, the ellipsoids have semi-
axes (1, 1, η) where η is uniform in 0.25 ≤ η ≤ 1 (oblate) with probability 0.5 and otherwise uniform in 1 ≤ η ≤ 4 
(prolate). The random microstructures are generated using in-house developed software implemented in Julia 
(http://www.julia lang.org)64 and available in a Github repository (https ://githu b.com/rodin g/white fish_gener 
ation , version 0.2). The average execution time is approximately 1 min (single core) for each structure, and up 
to 30 min for the longest computation. The obtained configurations are further smoothed with a Gaussian filter 

(10)γ
(

p
)

=
[

1+
(

p21 + p22 + p23
)l
]−n

(11)γ
(

p
)

= exp
[

−α2
(

p21 + p22 + p23
)1/2

]

,

(12)γ
(

p
)

= exp
[

−α2
(

p21 + p22 + p23
)]

,

(13)γ
(

p
)

=

{

1, if p21 + p22 + p23 ≤ ρ2,
0, otherwise,

(14)
∂C

∂t
+ u · ∇C = M∇2µ.

http://www.julialang.org
https://github.com/roding/whitefish_generation
https://github.com/roding/whitefish_generation
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with σ = 3 voxels and thresholded again to regain the original porosity; the reason for this is that computation 
of some of the correlation functions requires the binary structures to be described as a thresholded version of 
smooth scalar fields.

Flow simulations. The lattice Boltzmann  method61,62, a numerical framework for solving partial differential 
equations based on kinetic theory, is used to simulate fluid flow through the structures. The Navier–Stokes equa-
tions for pressure-driven flow are solved for the steady state using no-slip, bounce-back boundary conditions 
on the solid/liquid interface and periodic boundary conditions orthogonal to the flow direction. We use the two 
relaxation time collision model with the free parameter �eo = 3

16 , which guarantees that the computed perme-
ability is independent of the relaxation time (and thus the viscosity)65. The relaxation time τ = − 1

�e
 is kept at 

1.25. The flow is driven by constant pressure difference boundary conditions across the structure in the primary 
flow  direction66, and a linear gradient is used as initial condition. The computational grid coincides with the 
voxels of the binary structure, i.e., it has 1923 grid points. After convergence to steady state flow, the permeability 
k is obtained from Darcy’s law,

Here, ū is the average velocity, �p is the applied pressure difference, µ is the dynamic viscosity, and d is the 
length of the microstructure in the flow direction. The permeability is independent of the fluid and the pressure 
difference and a property solely of the microstructure provided that the Reynolds number is sufficiently small 
( Re < 0.01 ), which also ensures that the velocity is proportional to the pressure difference. The computed per-
meabilities have units voxels2 , where the voxels have unit length.

Convergence of the computation is assessed in the following fashion. The energy of the fluid flow field, i.e. 
the integral of the squared velocity magnitude in the pore space, is computed for each iteration. In each itera-
tion, the coefficient of variation (the standard deviation divided by the mean) of this energy is computed for the 
latest 500 iterations. The computation is terminated once this coefficient of variation reaches below 10−4 . The 
convergence criterion is the same throughout, although the number of iterations required for convergence differs 
between different types of microstructures. The mean number of iterations needed are approximately 2,840 for 
Gaussian random fields, 2,330 for spinodal decompositions, and 2,270 for non-overlapping ellipsoids. However, 
the number of iterations is also highly dependent on e.g. porosity and varies approximately in the range 1,000 
to 10,000 for all types of microstructures. The average execution time is 97 s (utilizing 32 cores, with efficient 
scaling using the MPI interface).

Figure 3 illustrates the result of a flow simulation in one of the Gaussian random field structures.
We choose 4,500 miscrostructures, 1,500 for each type, and plot their scaled permeabilities ks2 versus porosi-

ties φ in Fig. 4. It is noteworthy that although a clear overall trend can be seen, the scaled permeability is never a 
function of φ alone. In fact, we observe that for the same porosity, the largest scaled permeability is approximately 

(15)ū = −
k�p

µd
.

Figure 3.  An example of a simulated steady state flow through a Gaussian random field microstructure with 
porosity φ = 0.7 . Regions with slow and fast flow are indicated by blue and red flow lines, respectively. The 
figure is produced using ParaView 5.4.1 (http://www.parav iew.org, freely available without permission).

http://www.paraview.org


7

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:15239  | https://doi.org/10.1038/s41598-020-72085-5

www.nature.com/scientificreports/

twice as large as the smallest one. This degeneracy of microstructures clearly show why the Kozeny-Carman 
equation and some of its modifications typically fail for general structures. Consequentially, more detailed 
information is needed to pinpoint the true permeability on this “band”.

Another interesting observation is that the scaled permeabilities of spinodal decomposition patterns are 
almost always lower than those of the other two types. It has been shown that spinodal decomposition gives rise 
to hyperuniform structures in the scaling  region67. This observation is consistent with the fact that hyperuniform 
structures cannot tolerate large “holes” and the pore space is more evenly distributed compared to nonhyperuni-
form structures, thus their permeabilities are generally  lower40.

Microstructural descriptors
We study the performance of the different microstructural descriptors introduced above and the combinations of 
them for predicting the permeability k (dimension length2 ). The descriptors used are porosity φ (dimensionless), 
specific surface s (dimension 1/length), tortuosity τ (dimensionless), the correlation functions Fss (dimension 1/
length2 ), Fsv (dimension 1/length), and Fvv (dimensionless). Additionally, we investigate a particular combina-
tion of the correlation functions: inspired by a rigorous upper bound for permeability in isotropic  media56, i.e.,

we define a function

which is also used for prediction (F is dimensionless and converges to zero when r goes to infinity). Each cor-
relation function is represented by a 96-dimensional vector. In Table 1, the models, denoted 1 through 7, and 
the sizes of the corresponding input features are listed. Additionally, we consider a rescaling of the problem, 
predicting the rescaled, dimensionless permeability ks2 instead of k directly. For model 1, we remove s from the 
descriptors since it is already absorbed in the permeability; for models 2, 3, 4, 6, and 7, the correlation functions 

(16)k ≤
2

3

∫ ∞

0

[

φ2

s2
Fss(r)−

2φ

s
Fsv(r)+ Fvv(r)

]

rdr,

(17)F(r) =
φ2

s2
Fss(r)−

2φ

s
Fsv(r)+ Fvv(r),
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0
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Figure 4.  A scatter plot of scaled permeabilities ks2 versus porosities φ for 4,500 microstructures, 1,500 for each 
type, i.e., thresholded Gaussian random fields (blue), non-overlapping ellipsoid systems (green) and spinodal 
decomposition simulations (red).

Table 1.  Descriptors for prediction of the permeability k.

No. Descriptors Input size

1 φ , s, τ 3

2 Fss 96

3 Fsv 96

4 Fvv 96

5 F 96

6 Fss , Fsv , Fvv 288

7 Fss , Fsv , Fvv , τ 289
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are rescaled to dimensionless versions where applicable. In Table 2, the modified models, denoted 1 ′  through 7 ′  , 
and the dimensions of the corresponding input vectors (that changes only for model 1 ′  ) are listed.

In practice, we use the logarithm of permeabilities, i.e., log10 k and log10
(

ks2
)

 , instead of their original values. 
The reason for using logarithms of the permeabilities is that they span several orders of magnitude. By taking 
logarithms, the predictions are simplified, and guaranteed to be positive. We also use the logarithms of porosity, 
specific surface, and tortuosity since we know that models 1 and 1 ′  are naturally multiplicative in these Kozeny-
Carman-like equations.

predictive models
We assess the predictive performance of the different descriptors/inputs using several regression methods, 
namely, linear regression with linear terms only or combined with quadratic terms, and deep artificial neural 
networks. The inputs are as described above, with no normalization (such as subtracting feature-wise means; 
our investigation suggested no improvement from normalization in this setting). For each microstructure class, 
the data are split randomly into training data (70 %; 7,000 per class), validation data (15 %; 1,500 per class), and 
test data (15 %; 1,500 per class). In total, the training, validation, and test data sets hence consist of 21,000, 4,500, 
and 4,500 samples, respectively. The split is kept fixed across all inputs and all regression methods. Training data 
is used for the actual estimation of a functional relationship mapping input to output. Validation data is used 
for hyperparameter selection, i.e., finding optimal values for e.g. learning rates for ANNs (in the case of linear 
regressions, the validation data is not used because we do not have any hyperparameters to optimize). Test data 
is used for final assessment of the predictive performance. To quantify error/loss in prediction, we use several 
different measures. Let k be the ’true’ permeability, i.e., the value obtained from the lattice Boltzmann simulations, 
and let k̂ be the predicted value. We use mean squared error (MSE) in the logarithmic scale,

root mean squared error (RMSE) which is just RMSE = MSE1/2 , and mean absolute percentage error (MAPE) 
in the linear scale, i.e.,

Using MSE is the most practical and most common choice for model fitting. However, for final assessment of 
performance, the linear scale and MAPE is a more straightforward and intuitive choice.

Linear regression with linear terms. First, we consider using linear regression with only linear terms 
(i.e., only the input descriptors to the power of unity are used). For models 1 and 1 ′  , this becomes multiplicative 
regression in a Kozeny-Carman-like form, i.e.,

and

It is well established that a > 0 , b < 0 , and c < 0 in this setting (and due to the dimensions, b = −2 would be 
preferable).

On the other hand, the rationale behind the linear regression model of correlation functions is inspired by the 
rigorous bounds involving correlation functions, such as Eq. (16). Since the integral in the bounds can be seen as 
the inner product between the correlation functions and another predetermined function, it is natural to assume 
that a functional regression on the correlation functions may yield a reasonable estimation of permeabilities. For 
correlation functions evaluated on discrete grids, the model essentially becomes a linear regression model. To 
give a couple of examples of the regressions on correlation functions, model 2 becomes

(18)MSE =

〈

(

log10 k̂ − log10 k
)2

〉

,

(19)MAPE = 100×

〈∣

∣

∣

∣

∣

k̂ − k

k

∣

∣

∣

∣

∣

〉

%.

(20)log10 k = c0 + a log10 φ + b log10 s + c log10 τ

(21)log10
(

ks2
)

= c0 + a log10 φ + c log10 τ .

Table 2.  Descriptors for prediction of the rescaled, dimensionless permeability ks2.

No. Descriptors Input size

1′ φ , τ 2

2′ Fss/s
2 96

3′ Fsv/s 96

4′ Fvv 96

5′ F 96

6′ Fss/s
2 , Fsv/s , Fvv 288

7′ Fss/s
2 , Fsv/s , Fvv , τ 289
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model 6 becomes

and model 3 ′  becomes

The rest of the models are formulated in an equivalent fashion. For the correlation function-based models, α , 
β , and γ are just vectors of coefficients but can also be thought of as discretized forms of continuous coefficient 
functions α(r) , β(r) , and γ (r) . We use least squares fitting, finding the coefficients that minimize the training set 
MSE. We also include the reference Kozeny-Carman model in this category as a benchmark. Fitting is performed 
in Matlab (Mathworks, Natick, MA, US).

Specifically, the fitted Kozeny-Carman model writes as

For models 1 and 1 ′  , the estimated relationships become

and

Interestingly, the estimated coefficients for models 1 and 1 ′  are quite similar, and they are also comparable to the 
Kozeny-Carman model. Specifically, even without being forced to have the dimensionally correct exponent − 2 
for s, as in the case of model 1 ′  , the estimated exponent from the regression (− 1.88) in model 1 is very close.

To get an idea of the dependence of the coefficient functions on r, we plot the estimated α(r)/r in Fig. 5 
as an example. We scale α(r) by r in order to make it have the appropriate weight consistent with the one that 
multiplies the correlation functions in the integrand of Eq. (16). It is clear that instead of weighting on different 
parts of Fvv(r) equally, the regression emphasizes on the small-to-intermediate-r behavior of the correlation 
function as expected.

We also made an attempt to further smooth the coefficient functions according to a proposed functional 
regression scheme published  earlier68. Briefly, the idea is to introduce a penalty term in the least squares objec-
tive function that is proportional to the integral of the squared second derivative of the coefficient function, 
such that the functional form becomes smoother. To exemplify, pick a model with a coefficient function α(r) , 
and we minimize

(22)log10 k = c0 +
∑

i

α(ri)Fss(ri),

(23)log10 k = c0 +
∑

i

α(ri)Fss(ri)+
∑

i

β(ri)Fsv(ri)+
∑

i

γ (ri)Fvv(ri),

(24)log10
(

ks2
)

= c0 +
∑

i

α(ri)Fsv(ri)/s.

(25)k =
φ3

6.23s2
.

(26)k = 0.29
φ2.68

s1.88τ 7.28
,

(27)ks2 = 0.21
φ2.77

τ 6.36
.

0 20 40 60 80 100
-5

-4

-3

-2

-1

0

1

2

Figure 5.  The estimated coefficient function α(r) scaled by r for model 4 using the linear regression model. One 
can see that it gives larger weight to the small-to-intermediate-r behavior of Fvv.
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for a range of penalty parameters � , and pick � such that the validation MSE is minimized. Interestingly, the 
smoothing procedure provides only a negligible improvement in validation and test errors, and a negligible 
increase in smoothness of the coefficient functions. Thus, we stick to the models without penalties.

The errors for training, validation, and test sets for the aforementioned models are shown in Table 3. Although 
we perform no hyperparameter optimization for these regression models (such as variable selection), we include 
the validation set errors for consistency. There are several noteworthy observations about our results. First, the 
Kozeny-Carman-like model (1 and 1 ′  ) with geodesic tortuosity almost reduce the relative error by half compared 
to the original Kozeny-Carman model, while the combination of all three correlation functions (6 and 6 ′  ) also 
give comparable performance. Interestingly, when we further combine the correlation functions with geodesic 
tortuosity (7 and 7 ′  ), the error shrinks to approximately only one-third of the error generated by the Kozeny-
Carman model. Among single correlation functions, the best performance is given by Fvv , while the worst is given 
by Fss . This result is expected, since Fvv alone can yield a bound on the permeability, while Fss alone does not even 
contain the most important information, i.e., the porosity. The reason we keep model 2 and 2 ′  is indeed just for 
self-consistency. Interestingly, the compound correlation function F performs relatively poorly. This is probably 
due to the fact that it washes out the information content contained in individual correlation functions. However, 
its error can be interpreted as a lower bound on how good the bound in Eq. (16) would work on our data set. To 
better visualize our findings, the predicted values vs the true (simulated) values and histograms of relative errors 
for a few selected models are shown in Fig. 6. It is obvious that by adding geodesic tortuosity and correlation 
functions the prediction error can be greatly reduced. It can also be seen that although the Kozeny-Carman-like 
model (Fig. 6b) and the correlation function based one (Fig. 6c) has similar MAPE, the error distribution of the 
correlation function based one is more symmetric.

Linear regression with quadratic terms. Second, we generalize the previous models that utilized linear 
terms only to incorporate both linear and quadratic terms. For the correlation function models, we use both the 
correlation functions themselves and their squares. For example, we use both Fss and F2ss as input data in model 
2. It is worth to point out that we use only pure quadratic terms, such as F2ss(ri) , but not mixed quadratic terms, 
such as Fss(ri)Fss(rj) for i  = j . We include models 1 and 1 ′  in this investigation as well, mainly for completeness, 
and add terms of the type 

(

log10 φ
)2 . Fitting is performed in Matlab (Mathworks, Natick, MA, US). The errors 

for training, validation, and test sets are again shown in Table 4. In Fig. 7, the predicted values vs the true (simu-
lated) values and histograms of relative errors for a few selected models are shown.

Importantly, we note that adding the quadratic terms leads to an improvement for every model. This suggests 
that the relation between the microstructural descriptors and the permeability can be quite complex such that 
a simple linear model may not be able to fully capture it. However, the relative rank of performances roughly 
remain the same, showing the validity of our previous arguments. The estimated coefficient functions are quite 

(28)
∑

j

(

log10 k̂(j)− log10 k(j)
)2

+ �

∑

i

(α(ri−1)− 2α(ri)+ α(ri+1))
2

Table 3.  RMSE for the training, validation, and test sets and MAPE for the test set for the regression models 
with linear terms. We also include the reference Kozeny-Carman model in this category.

No.

RMSE

Val Test

MAPE (%)

Train Test

Kozeny-Carman model

– 0.084 0.084 0.086 14.986

Unscaled models

1 0.046 0.046 0.047 8.291

2 0.370 0.371 0.376 98.028

3 0.163 0.163 0.167 29.719

4 0.068 0.069 0.069 12.011

5 0.233 0.238 0.243 51.563

6 0.049 0.050 0.051 8.351

7 0.033 0.034 0.034 5.536

Rescaled models

1′ 0.052 0.051 0.052 8.653

2′ 0.360 0.361 0.365 96.907

3′ 0.078 0.078 0.081 14.363

4′ 0.059 0.058 0.060 10.315

5′ 0.165 0.164 0.168 33.823

6′ 0.043 0.044 0.045 7.488

7′ 0.029 0.030 0.031 5.063
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noisy and their physical meaning is not obvious. We also make an attempt to use a full quadratic model, incorpo-
rating also mixed terms such as Fss(ri)Fss(rj) , or even mixed between correlation functions, such as Fsv(ri)Fvv(rj) . 
The numbers of variables in the models then become very large, leading to ill-conditioned estimation problems. 
We investigated whether the Lasso variable selection  technique69, which forces a variable number of coefficients in 
a linear model to become zero by penalizing the sum of absolute values of the coefficients, could act as an efficient 
means of reducing the model dimensionality. However, it turns out that no amount of Lasso regularization can 
decrease the validation MSE in this case. There are two likely reasons for this: Lasso is primarily intended for 
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Figure 6.  Predicted values log10 k̂ vs the true (simulated) values log10 k for linear regression with linear terms, 
showing (a) the Kozeny-Carman model, (b) model 1, (c) model 6 ′  , and (d) model 7 ′  . In (e–h), histograms of 
relative errors are shown for the same set of models.

Table 4.  RMSE for the training, validation, and test sets and MAPE for the test set for the regression models 
with linear and quadratic terms.

No.

RMSE

Val Test

MAPE (%)

Train Test

Unscaled models

1 0.038 0.038 0.039 6.560

2 0.351 0.351 0.359 92.349

3 0.079 0.079 0.081 13.547

4 0.059 0.061 0.061 10.624

5 0.151 0.156 0.163 29.633

6 0.039 0.040 0.040 6.377

7 0.027 0.027 0.028 4.300

Rescaled models

1′ 0.050 0.049 0.050 8.216

2′ 0.358 0.360 0.365 96.739

3′ 0.051 0.051 0.052 8.717

4′ 0.051 0.052 0.053 8.923

5′ 0.118 0.118 0.122 22.362

6′ 0.036 0.039 0.039 6.041

7′ 0.026 0.028 0.029 4.515
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high-dimensional variable spaces where a large fraction of the variables contain little information and mostly 
noise, and can be disregarded easily. This is likely not the case for the correlation functions. Also, because the 
values are taken from continuous functions, they are strongly correlated, which is known to compromise the 
underlying rationale of Lasso.

Neural networks. The complexity of the linear regression models could be further increased, for example 
by incorporating pure cubic terms. Although we expect to see further improvements, the linear regression model 
can quickly become ill-conditioned and intractable on this track. For this reason, we proceed to consider deep 
neural networks, which can potentially fully capture the complex structure–property relationships. Thus we can 
exploit the complete information content contained in the descriptors.

We use four fully-connected hidden layers with 128 nodes each and rectified linear unit (ReLU) activations. 
Given that the input dimension is n, and the output dimension is unity, the number of weights in the network 
is (n+ 1)× 128+ 3× 129× 128+ 128+ 1 , i.e., there are between 50,049 and 86,785 weights to be optimized. 
The network is shown in Fig. 8. Random initial weights are selected using the Glorot/Xavier uniform initializer. 
The networks are trained using the Adam  optimizer70 with learning rate 10−4 , batch size 128, and mean squared 
error loss. All models are trained 100 times for 10,000 epochs using different random weight initializations, and 
the models with the globally minimal validation loss (MSE) are selected (hence utilizing early stopping, but 
performed over multiple realizations/initializations). The reason for this procedure is to minimize the impact 
of the random weight initializations. The models are implemented in TensorFlow 2.1.0 (http://www.tenso rflow 
.org)71. An example of training and validation loss curves is shown in Fig. 9. Again, the errors for training, valida-
tion, and test sets are shown in Table 5. In Fig. 10, the predicted values vs the true (simulated) values are shown. 
Indeed, the neural networks based regressions perform noticeably better than the linear counterpart. Again, we 
see that the combination of correlation functions and geodesic tortuosity gives the best performance, achieving 
an impressive MAPE that is less than 4% . We also notice that all correlation function based models (except for 
Fss and F for aforementioned reasons) perform very well, and all better than the Kozeny-Carman-like model.

To gain some understanding of the neural network and how the prediction is performed, we perform for the 
case of model 4 an analysis of the network’s sensitivity with respect to perturbations in the input. Specifically, 
for the test set, we add random Gaussian noise to Fvv(r) for one r value at a time. The perturbation in the out-
put is quantified by the standard deviation of the difference between the original prediction and the perturbed 
prediction. In Fig. 11, we show the results for σ = 0.02 (it turns out that for a broad range of perturbations, 
0.0001 ≤ σ ≤ 0.1 , the result changes only by a constant scaling). We see a rough resemblance to Fig. 5 in the 
sense that large magnitudes are mostly found for small r, indicating that to some extent the models are using the 
same information in the correlation function.
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Figure 7.  Predicted values log10 k̂ vs the true (simulated) values log10 k for linear regression with linear and 
quadratic terms, showing (a) model 1, (b) model 4 ′  , (c) model 6 ′  , and (d) model 7. In (e–h), histograms of 
relative errors are shown for the same set of models.
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conclusions and discussion
We have studied data-driven structure–property relationships between fluid permeabilities and a variety of 
microstructural descriptors in a large data set of 30,000 virtual, porous microstructures of different types. The 
data set includes both granular and continuous solid phases, and is the largest one ever generated for the study 
of transport properties to our knowledge. To characterize the pore space geometry, we computed one-point cor-
relation functions (porosity, specific surface), two-point surface-surface, surface-void, and void-void correlation 
functions, and geodesic tortuosity. Different combinations of these descriptors were used as input for different 
statistical learning methods, including linear regression with linear and quadratic terms, as well as deep neural 
networks. We find that the performance improves as the regression models become more complex, suggesting the 
complex relationship between the structural descriptors and the physical properties. Sufficiently large neural net-
works are able to fully capture the information content of the descriptors and reveal their utilities. With higher-
order descriptors, we obtain significant improvements of performance when compared to a Kozeny-Carman 
regression with only lowest-order descriptors (porosity and specific surface). We found that combining all three 
two-point correlation functions and tortuosity provides the best prediction of permeability. The void-void cor-
relation function was found to be the most informative individual descriptor. Also, the combination of porosity, 
specific surface, and geodesic tortuosity provides comparable predictive performance, in spite of its simplicity. 
Indeed, this shows that the greater information content contained in higher-order correlation functions are 
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Figure 8.  The topology of the neural network. The input variables are denoted x1 to xn , where the input 
dimension n is either 2, 3, 96, 288, or 289. There are four fully-connected hidden layers with 128 nodes each. The 
k:th node of the l:th layer is here denoted by hl

k
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layers. The output y is just the logarithm of the permeability. The figure is produced by Victor Wåhlstrand 
Skärström in TikZ/LaTeX (MikTeX distribution version 20.6.29, http://www.mikte x.org, freely available without 
permission).
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Figure 9.  An example of a training (blue) and validation (red) loss curves for model 6 ′  . This is the best run for 
this model, i.e., the one that yielded the minimum validation MSE, which is indicated by the vertical line (black).
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extremely useful for predicting physical properties of complex materials. Moreover, our work demonstrates 
that advanced machine learning methods can be very useful in establishing structure–property relationships.

An interesting observation is that in general the rescaling of permeabilities seem to improve the performance 
of the simple linear model, as seen from Table 3 that all models except the Kozeny-Carman-like one outperform 
their unscaled counterparts. However, as we add quadratic terms and the predictive model becomes more com-
plex, the advantage of rescaling does not hold any more. Finally, for the highly nonlinear neural networks, the 
relative performance is completely inverted. This may suggest that the relation between the permeability and 
the specific surface cannot be captured by a simple rescaling, and doing so may reduce the information content 

Table 5.  RMSE for the training, validation, and test sets and MAPE for the test set for the ANN models.

No.

RMSE

Val Test

MAPE (%)

Train Test

Unscaled models

1 0.029 0.030 0.041 6.374

2 0.317 0.322 0.331 76.975

3 0.032 0.035 0.037 5.479

4 0.031 0.032 0.033 4.705

5 0.057 0.066 0.066 10.760

6 0.028 0.030 0.032 4.431

7 0.021 0.023 0.025 3.679

Rescaled models

1′ 0.045 0.045 0.046 7.857

2′ 0.326 0.330 0.339 82.826

3′ 0.032 0.037 0.039 6.101

4′ 0.031 0.034 0.036 5.179

5′ 0.056 0.067 0.069 11.080

6′ 0.029 0.032 0.036 5.176

7′ 0.020 0.026 0.028 4.133
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Figure 10.  Predicted values log10 k̂ vs the true (simulated) values log10 k for deep neural network regression, 
showing (a) model 1, (b) model 4, (c) model 6, and (d) model 7. In (e–h), histograms of relative errors are 
shown for the same set of models.
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contained in the original data. These observed effects of rescaling may lead to some guidelines on developing 
physics-aware machine learning models for other physical properties as well.

As a final remark, we emphasize that by incorporating microstructures with different length scales in our 
data set we make our models very robust and can be applied to real-world data. Since the permeability has 
the dimension L2 , we can easily obtain the permeability of a sample with a different length scale but the same 
microstructure. However, there is no universally applicable characteristic microstructural length to scale the 
permeability that enables a comparison of permeabilities for different microstructures. For example, for sphere 
packings the natural choice can be the radii of particles, but for continuous structures we need to resort to other 
 quantities40. Thus, by training our models on samples with varying length scales, we circumvent this problem 
by only requiring a rescaling to the right order of magnitude. Finally, we make the data and code used publicly 
available to facilitate further development of permeability prediction  methods54.

Data availability
The data, i.e. microstructural descriptors and computed permeabilities, together with the trained models and 
the code used are publicly available via a  repository54.
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