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ARTICLE

Combining mechanistic and machine learning
models for predictive engineering and optimization
of tryptophan metabolism
Jie Zhang 1,13, Søren D. Petersen 1,13, Tijana Radivojevic 2,3,4, Andrés Ramirez 5,

Andrés Pérez-Manríquez 5, Eduardo Abeliuk6, Benjamín J. Sánchez1, Zak Costello2,3,4, Yu Chen 7,8,

Michael J. Fero 6, Hector Garcia Martin 2,3,4,9, Jens Nielsen1,7,10, Jay D. Keasling 1,2,3,11,12 &

Michael K. Jensen 1✉

Through advanced mechanistic modeling and the generation of large high-quality datasets,

machine learning is becoming an integral part of understanding and engineering living sys-

tems. Here we show that mechanistic and machine learning models can be combined to

enable accurate genotype-to-phenotype predictions. We use a genome-scale model to pin-

point engineering targets, efficient library construction of metabolic pathway designs, and

high-throughput biosensor-enabled screening for training diverse machine learning algo-

rithms. From a single data-generation cycle, this enables successful forward engineering of

complex aromatic amino acid metabolism in yeast, with the best machine learning-guided

design recommendations improving tryptophan titer and productivity by up to 74 and 43%,

respectively, compared to the best designs used for algorithm training. Thus, this study

highlights the power of combining mechanistic and machine learning models to effectively

direct metabolic engineering efforts.
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Metabolic engineering is the directed improvement of cell
properties through the modification of specific bio-
chemical reactions1. Beyond offering an improved

understanding of basic cellular metabolism, the field of metabolic
engineering also envisions sustainable production of biomolecules
for health, food, and manufacturing industries, by fermenting
feedstocks into value-added biomolecules using engineered cells2.
These promises leverage tools and technologies developed over
recent decades that include both nonintuitive evolution-guided
approaches, such as adaptive laboratory evolution3,4, as well as
rational approaches combining mechanistic metabolic modeling,
targeted genome engineering, and robust bioprocess optimiza-
tion; ultimately aiming for accurate and scalable predictions of
cellular phenotypes from deduced genotypes5.

Among the different types of mechanistic models for simu-
lating metabolism, genome-scale models (GSMs) are one of the
most popular approaches, as they are genome complete, covering
thousands of metabolic reactions. These computational models
not only provide qualitative mapping of cellular metabolism6,7,
but have also been successfully applied for the discovery of
metabolic functions8, and to guide engineering designs toward
desired phenotypes9. As GSMs are built based only on the stoi-
chiometry of metabolic reactions, several methods have been
developed to account for additional layers of information,
regarding the chemical intermediates and the catalyzing enzymes
participating in the metabolic pathways of interest10. Never-
theless, all these mechanistic models require a priori knowledge,
as well as high-quality data for accurate prediction11,12.

Machine learning (ML) provides a complementary approach to
guide metabolic engineering by learning patterns on system
behavior from large experimental datasets13. As such, ML models
differ from mechanistic models by being purely data-driven.
Indeed, ML methods for the generation of predictive models on
living systems are becoming ubiquitous, including applications
within genome annotation, de novo pathway discovery, product
maximization in engineered microbial cells, pathway dynamics,
and transcriptional drivers of disease states14. While being able to
provide predictive power based on complex multivariate rela-
tionships15, the training of ML algorithms requires large datasets
of high quality, and thereby imposes certain standards for the
experimental workflows. For instance, for genotype-to-phenotype
predictions, it is desirable that datasets contain a high variation
between both genotypes and phenotypes16. Also, measurements
on the individual experimental unit, e.g., a strain, should be
accurate and obtainable in a high-throughput manner, in order to
limit the number of iterative design–build–test–learn cycles
needed to reach the desired output.

While mechanistic models require a priori knowledge of the
living system of interest, and ML-guided predictions require
ample multivariate experimental data for training, the combina-
tion of mechanistic and ML models holds promise for improved
performance of predictive engineering of cells by uniting the
advantages of the causal understanding of mechanism from
mechanistic models, with the predictive power of ML15,17.
Metabolic pathways are known to be regulated at multiple levels,
including transcriptional, translational, and allosteric levels13. To
cost-effectively move through the design and build steps of
complex metabolic pathways, combinatorial optimization of
metabolic pathways, in contrast to sequential genetic edits, has
been demonstrated to effectively facilitate the searching for global
optima for outputs of interest (i.e., production18). Searching
global optima using combinatorial approaches involves facing an
exponentially growing number of designs (known as the combi-
natorial explosion) and requires efficient building of multi-
parameterized combinatorial libraries. However, this challenge
can be mitigated by using intelligently designed condensed

libraries that allow uniform discretization of multidimensional
spaces: e.g., by using well-characterized sets of DNA elements
controlling the expression of candidate genes at defined levels as
opposed to using more less-/non-characterized random
elements19,20. As cellular metabolism is regulated at multiple
levels21,22, an efficient search strategy for global optima using
combinatorial approaches should also take this into considera-
tion, e.g., by using mechanistic models, “omics data repositories”,
and a priori biological understanding. Still it should be noted, that
even with intelligent choice of design parameters and efficient
library construction, there is no guarantee mathematical models
will reach such a global optimum.

Here we combine mechanistic and ML models to enable robust
genotype-to-phenotype predictions as a tool for metabolic engi-
neering. The approach is exemplified for predictive engineering
and optimization of the complexly regulated aromatic amino acid
(AAA) pathway that produces tryptophan in baker’s yeast Sac-
charomyces cerevisiae23. We define a 7776-membered combina-
torial library design space, based on five genes selected from GSM
simulations and a priori biological understanding, each controlled
by six different promoters from a set of 30 promoters selected
from transcriptomics data mining. To train predictive models for
tryptophan biosynthesis rate in yeast, we collect >124,000
experimental time series data points derived from fluorescent
read-outs of an engineered tryptophan biosensor encoded into
>500 different strain designs. This enable selection of optimal
sampling time points, from that we explore fluorescence synthesis
rates of ~3% (250/7,776) of the possible genetic designs of the
library design space. Based on genotype data, growth profiles, and
the biosensor output, we train various ML algorithms. Predictive
models based on these algorithms identify designs exhibiting up
to 74% higher tryptophan titers than best designs used for
training the models.

Results
Model-guided design of high tryptophan production. One
prime example of the multitiered complexity regulating metabolic
fluxes is the shikimate pathway, driving the central metabolic
route leading to AAA biosynthesis24. This pathway has enormous
industrial relevance, since it has been used to produce bio-based
replacements of a wealth of fossil fuel-derived aromatics, poly-
mers, and potent human therapeutics25.

To search for gene targets to perturb tryptophan production,
we initially performed constraint-based modeling for predicting
single gene targets, with a simulated objective of combining
growth and tryptophan production26. From this analysis, we
retrieved 192 genes, covering 259 biochemical reactions, which
showed considerable changes as production shifted from growth
toward tryptophan production (Fig. 1a, b, Supplementary Data 1).
By performing an analysis for statistical overrepresentation of
genome-scale modeled metabolic pathways, we observed that
both the pentose phosphate pathway (PPP) and glycolysis were
among the top pathways with a significantly higher number of
gene targets compared to the representation of all metabolic genes
(Fig. 1c, Supplementary Data 2). Among the predicted gene
targets in those pathways, CDC19, TKL1, TAL1, and PCK1 were
initially selected as targets for combinatorial library construction
(Fig. 1b), as these genes have all been experimentally validated to
be directly linked or to have an indirect impact on the shikimate
pathway precursors erythrose 4-phosphate (E4P) and phosphoe-
nolpyruvate (PEP). Specifically, CDC19 encodes the major
isoform of pyruvate kinase converting PEP into pyruvate to fuel
the tricarboxylic acid cycle, while TKL1 and TAL1 that encode the
major isoform of transketolase and transaldolase, respectively, in
the reversible non-oxidative PPP, have been reported to impact
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the supply of E4P27,28. In addition, focusing on the E4P and PEP
linkage, PCK1 encoding PEP carboxykinase, was also selected due
to its regeneration capacity of PEP from oxaloacetate29. Lastly,
while not being predicted as a target by the constraint-based
modeling approach, the PFK1 gene, encoding the alpha subunit of
heterooctameric phosphofructokinase (PFK1), catalyzing the
irreversible conversion of fructose 6-phosphate to fructose 1,6-
bisphosphate (FBP), was selected, as insufficient activity of this
enzyme is known to cause divergence of carbon flux toward the
PPP across different kingdoms30,31.

Next, we mined transcriptomics datasets for the selection of
promoters to control the expression of the five target genes. Here,
we focused on well-characterized and sequence-diverse promoters
to ensure rational designs spanning large absolute levels of
promoter activities, and limit the risk of recombination within
strain designs and loss of any genetic elements, respectively32,33

(Supplementary Fig. 1). Together, this mining resulted in the
selection of 25 sequence-diverse promoters, which together with

the five promoters natively regulating the target genes constitutes
the parts catalog for combinatorial library design (Fig. 1d,
Supplementary Fig. 1, Supplementary Table 1).

Creation of a platform strain for a combinatorial library. To
construct a combinatorial library targeting equal representation
of 30 promoters expressing five target genes, we harnessed high-
fidelity homologous recombination in yeast together with the
targetability of CRISPR/Cas9 genome engineering for a one-pot
assembly of a maximum of 7776 (65) different combinatorial
designs. Due to the dramatic decrease in transformation efficiency
when simultaneously targeting multiple loci in the genome34, we
targeted the sequential deletion of all five selected target genes
from their original genomic loci, and next assembled a cluster of
five expression cassettes into a single genomic landing as recently
successfully reported for the single-locus glycolysis in yeast35

(Fig. 2a; see “Methods” section). However, as CDC19 is an
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Fig. 1 Gene targets and promoters for combinatorial engineering of tryptophan metabolism in S. cerevisiae. a Gene–gene interaction network built with
Cytoscape, showing that pentose phosphate pathway and glycolysis are both in the core of metabolism in close proximity to many genes. Nodes are all
909 genes in yeast metabolism67, sharing connections based on the number of shared metabolites by the corresponding reactions that the genes are
related to: the thicker the edge, the higher the number of shared metabolites. Currency metabolites such as water, protons, ATP, etc. are removed from the
analysis. The prefuse force directed layout is used for displaying the network. Genes are highlighted with a yellow border if they are selected targets by the
mechanistic modeling approach, and in orange and dark blue if they belong to the pentose phosphate pathway or glycolysis, respectively. b Simplified map
of metabolism showing the selected gene targets from glycolysis (dark blue) and pentose phosphate pathway (orange) based on a combination of
mechanistic genome-scale modeling and literature studies for optimizing tryptophan production. Black dashed lines indicate multistep reactions. Dashed
green line indicates allosteric activation. G6P glucose 6-phosphate, F6P fructose 6-phosphate, FBP fructose 1,6-bisphosphate, GAP glyceraldehyde 3-
phosphate, DHAP dihydroxyacetone phosphate, PEP phosphoenolpyruvate, OAA oxaloacetate, 6PG 6-phosphogluconate, E4P erythrose 4-phosphate, S7P
sedoheptulose 7-phosphate, DAHP 3-deoxy-7-phosphoheptulonate, Tyr tyrosine, Phe phenylalanine, Trp tryptophan. c Percentage of genes in glycolysis
(dark blue) and pentose phosphate pathway (orange) that were predicted by the mechanistic modeling to increase tryptophan production compared to the
percentage of genes predicted as targets from the whole metabolism. ***P-value < 0.05, two-sided Fisher’s exact testing with n= 54 and 24 for the
glycolysis and pentose phosphate pathway, respectively. d Relative messenger RNA (mRNA) abundance, calculated for each gene as the proportion of
mRNA reads obtained for any given promoter relative to the total sum of mRNA reads from each bin of six promoters. Absolute abundances for the 30
promoters were measured in S. cerevisiae CEN.PK113-7D in the mid-log phase32. The promoters are grouped according to intended combinatorial gene
associations. Source data underlying Fig. 1d are provided as a Source data file.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-17910-1 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:4880 | https://doi.org/10.1038/s41467-020-17910-1 | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


essential gene, and deletion of PFK1 causes growth
retardation36,37, our platform strain for library construction had a
galactose-curable plasmid introduced expressing PFK1, CDC19,
TKL1, and TAL1 under their native promoters (see “Methods”
section), after deleting PCK1, TKL1, and TAL1, and knocking
down CDC19 and PFK1 (Fig. 2a). Prior to one-pot assembly of

the combinatorial library, we integrated the two feedback-
resistent shikimate pathway enzymes 3-deoxy-D-arabinose-hep-
tulosonate-7-phosphate (DAHP) synthase (ARO4K229L) and
anthranilate synthase (TRP2S65R, S76L) into the platform
strain38,39, known to increase AAA accumulation in microbial
cells40,41.

One-pot construction of the combinatorial library. For library
construction, we transformed in one-pot the platform strain with
38 different parts (30 promoters, 5 ORFs, HIS3 ORF, and 2
homology regions) for 7776 unique 20 kb 13-parts assemblies at
the targeted genomic locus (Fig. 2a). To assess assembly fidelity
and ensure benchmarking, we also transformed yeast with five
user-defined clusters, including one design with native promoters
in front of each of the five selected genes (herein labeled the
reference strain; Supplementary Table 2). Following transforma-
tion, we randomly sampled 480 colonies from the library,
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Table 1 Key descriptive statistics for the library construction
and genotyping.

Potential unique genotypes 7776
Number of library colonies ~10,000
Number of colonies sampled 480
Cured strains (%) 92
Correct assembly (%) 82
Repeated genotypes (%) 3.7
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together with 27 colonies from the five control strains (507 in
total), and successfully cured 423 out of 461 (92%) sufficiently
growing strains of the complementation plasmid by means of
galactose-induced expression of the dosage-sensitive gene ACT1
(ref. 42; Fig. 2b, Supplementary Fig. 6). Next, genotyping identi-
fied 380 out of 461 (82%) of the sufficiently growing strains to be
correctly assembled with only 9 out of 245 (3.7%) of the fully
filtered library genotypes observed in duplicates (245= 250
library and control genotypes—five control genotypes; Table 1,
Supplementary Fig. 2). Based on a Monte Carlo simulation with
10,000 repeated samplings of 10,000 library colonies, and
assuming percent correct assemblies and promoter distribution as
determined for the library sample (Fig. 2), the expected number
of unique genotypes among all library colonies was calculated to
be 3759, equaling estimated library coverage of 48% (3759/7776).
Importantly, all 30 promoters from the one-pot transformation
were represented in the genotyped designs, with promoters PGK1
(no. 14) and MLS1 (no. 15), represented the least (1%) and most
(35%), respectively (Fig. 2b).

Taken together, these results demonstrate high transformation
efficiency of the platform strain, high fidelity of parts assembly,
and expected high coverage of the genetically diverse combina-
torial library design.

A biosensor for high-throughput library characterization. In
order to support high-throughput analysis of tryptophan accu-
mulation in library strains, we harnessed the power of modular
engineering allosterically regulated transcription factors as small-
molecule biosensors43. Here, a yeast tryptophan biosensor was
developed based on the trpR repressor of the trp operon from
Escherichia coli44. We first tested trpR-mediated transcriptional
repression by expressing trpR together with a GFP reporter under
the control of the strong TEF1 promoter, containing a palin-
dromic consensus trpO sequence45 (5′-GTACTAGTT-AAC-
TAGTAC-3′) downstream of the TATA-like element46

(TATTTAAG; Fig. 3a). From this, we observed that trpR was able
to repress GFP expression by 2.4-fold (Supplementary Fig. 3a).
Next, to turn the native trpR repressor into an activator with
positively correlated biosensor-tryptophan readout, we fused the
Gal4 activation domain to the N-terminus of trpR (GAL4AD-trpR)
under the control of the weak REV1 promoter (Supplementary
Fig. 3). For the reporter promoter, we placed trpO 97 bp upstream
of the TATA-like element of the TEF1 promoter (Supplementary
Fig. 3b) and observed that trpR was able to activate GFP
expression by a maximum of 1.75-fold upon supplementing
tryptophan to the cultivation medium (Supplementary Fig. 3b).
To further optimize the dynamic range of the reporter output, the
GFP reporter was expressed under a hybrid promoter consisting
of tandem repeats of triple trpO sequences (i.e., in total 6× trpO
sequences) located 88 bp upstream of the TATA box in an
engineered GAL1 core promoter without Gal4 binding sites,
ultimately enabling GAL4AD-trpR-mediated biosensing with a
dynamic output range of fivefold, and an operational input
range spanning supplemented tryptophan concentrations from
~2–200mg/L (Fig. 3b).

To further validate the designed biosensor, we measured
fluorescence output in strains engineered for expression of
feedback-resistant versions of ARO4 and TRP2 (refs. 38,39;
ARO4K229L and TRP2S65R,S76L), and observed high biosensor
outputs from these strains in line with previously demonstrated
high enzyme activities in strains expressing ARO4K229L and
TRP2S65R,S76L (refs. 38,39), and thus corroborating the ability of
the tryptophan biosensor to monitor changes in endogenously
produced tryptophan pools (Fig. 3c). Most importantly, we
confirmed the biosensor readout as a valid proxy for tryptophan

levels, by comparing external tryptophan titers measured by
HPLC with a change in GFP intensities for six library strains
spanning 2.5-fold changes in GFP intensities (R2= 0.75; Fig. 3d).

Having established a biosensor for high-throughput screening
of the combinatorial library, we next sought to explore the
maximal resolution of the biosensor readout at the single-design
level of growing isoclonal strains, with the intention to define
optimal data sampling time point. To do so, we measured time
series data of OD and GFP at 82 time points in triplicates for all
507 colonies (that is 480 from the library and 27 from the control
strains), covering a total of 124,722 data points (Supplementary
Figs. 4 and 5). Here, as we observed that the fluorescence per cell
generally stabilized at an OD value of 0.075 and started to
decrease beyond an OD value of 0.15 (Fig. 3e, Supplementary
Fig. 4, see “Methods” section), and the between strains variation
in fluorescence at the single-cell level was relatively high within
this OD interval, we chose this interval for determining the GFP
synthesis rate as a proxy for tryptophan biosynthesis rate. The
average GFP synthesis rate of all quality-controlled strains (see
below) was observed to vary between 43.7 and 255.7 MFI/h
(approximately sixfold; Fig. 3f), with an average standard error of
the mean of 6.6 MFI/h corresponding to an average coefficient of
variation for the mean values of 4.3%. By comparison, the GFP
synthesis rate of the platform strain, expressing ARO4K229L and
TRP2S65R, S76L together with all five candidate genes under native
promoters, was 144.8 MFI/h (Fig. 3f).

Using machine learning to predict metabolic pathway designs.
Having successfully established a combinatorial genetic library
and a large phenotypic dataset thereof, we next assessed the
potential of using ML to predict promoter combinations expected
to improve tryptophan productivity. Since there is no single
algorithm that is optimal for all conceivable general learning
tasks47, we decided to improve our chances by using two different
ML approaches for the single regression learning task of pre-
dicting promoter combinations controlling five genes that best
improve GFP biosynthesis rates, as a proxy for tryptophan pro-
ductivity: the Automated Recommendation Tool (ART) and
EVOLVE algorithm48,49 (see “Methods” section). Briefly, ART
uses a Bayesian ensemble approach where eight regressors from
the scikit-learn library50 are allowed to vote on a prediction with a
weight proportional to their accuracy; the EVOLVE algorithm is
inspired by Bayesian Optimization and uses an ensemble of
estimators as a surrogate model that predicts the outcome of the
process to be optimized (see “Methods” section). As the quality of
the data is of paramount importance for ML predictions, data
were initially filtered in order to avoid strains (i) with insufficient
growth, (ii) without sequencing data, (iii) with incorrect assem-
bly, (iv) without plasmid curation, or (v) that exhibited more than
one genotype (see “Methods” section; Supplementary Fig. 5).
Following this, ~58% (266/461) of the growing strains remained
after filtering, while another 3% of the remaining data were
removed because of lack of reproducibility (high error in tripli-
cate measurements), ultimately leaving high-quality sequencing
and GFP data from 250 genotypes as input training dataset
(Supplementary Fig. 5).

Both modeling approaches, ART and EVOLVE, were able to
recapitulate the data they were trained on. The average (obtained
from ten independent runs) training mean absolute error (MAE)
of the predicted tryptophan production compared to the
measured values was 13.8 and 11.9 MFI/h for the ART and
EVOLVE model approaches, respectively, when calculated for the
whole dataset (Fig. 4a, b). These MAEs represent ~7 and 6% of
the full range of measurements (50–200 MFl/h). The train MAE
uncertainty (represented by the shaded area in Fig. 4a, b and
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quantified as the 95% confidence interval from ten runs)
decreased slightly with increasing size of the training dataset for
ART, whereas the overall uncertainty was smaller for the
EVOLVE model approach (Fig. 4a, b). The ability to predict
the production for new promoter combinations the algorithms
had not been trained on was tested by cross-validation, i.e., by
training the model on 90% of the data, and then testing the
predictions of this model against measurements for the remaining
10% (tenfold cross-validation). Here, the average cross-validated
MAE (test MAE) was 21.4 and 22.4 MFI/h for ART and EVOLVE
model approaches, respectively (Fig. 4a, b), which represent ~11%
of the full range of measurements. The test MAE decreased
systematically with the size of the dataset, yet the decrease rate
declined markedly as more data was added. However, while the
two approaches had similar average cross-validated MAEs, the
uncertainty of the MAEs was slightly smaller for ART than for the
EVOLVE algorithm (Fig. 4a, b).

Predictive engineering of high tryptophan production. Next,
beyond enabling prediction of tryptophan production, we used an
exploitative approach implemented in the ART model and an
explorative one adopting the EVOLVE algorithm to recommend
two sets of 30 prioritized designs aiming for high tryptophan pro-
duction (Supplementary Tables 3 and 4). The exploitative model

focuses on exploiting the predictive power to recommend promoter
combinations that improve production, whereas the exploratory
model combines predictive power with the estimated uncertainty of
each prediction, to recommend promoter combinations48,49.

Among the recommendations from each of the two ML
approaches, two overlapped (SP588 and SP627, Supplementary
Tables 3 and 4). Interestingly, while use of PGK1 promoter to
control TKL1 expression was underrepresented in the original
library sample (Fig. 2b), the explorative set of recommendations
included eight (even top three) designs with PGK1 promoter for
expression control of TKL1, and the exploitative approach included
none (Supplementary Data 2; Fig. 4c, d). From construction of these
recommendations, we used the same genome engineering approach
as for library construction (Fig. 2a) to successfully construct 19
individual assemblies of the explorative recommendations and 24
individual assemblies of the exploitative recommendations. Inter-
estingly, we were not able to construct any of the eight designs with
the PGK1 promoter, partially explaining the lower number of viable
strains found with the explorative approach.

Of the 41 recommendations constructed, the predictions from
both sets generally fitted well with the measurements, and both
approaches successfully enabled predictive strain engineering for
high-performing GFP synthesis rates, with the best recommenda-
tion (SP606) having a measured GFP synthesis rate 106% higher
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Fig. 3 Phenotypic library characterization using an engineered tryptophan biosensor. a Schematic illustration of the design of the tryptophan (Trp)
biosensor (trpRAD) engineered in this study. The trpRAD indicates the engineering tryptophan biosensor composed of the E. coli TrpR fused to the GAL4
activation domain. The biosensor regulates an engineered reporter (yeGFP) GAL1 promoter, including 6× copies of TrpR binding sites (trpO), placed
upstream of the TATA box of GAL1 promoter (pGAL1_6x_trpO). b Fluorescence normalized by optical density (OD600) for two strains related to
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contain the yeGFP reporter under the control of the pGAL1_6x_trpO reporter promoter, and only one strain expresses the Gal4 activation domain fused to
trpR (in green). c Fluorescence normalized by OD600 for a wild-type strain and strains with expression of feedback-resistant versions of ARO4 and TRP2,
ARO4K229L and TRP2S65R,S76L, respectively (mean fluorescence intensity, MFI/h with standard errors, n= 4–5 biological replicates). d Extracellular
tryptophan normalized by OD600 related to fluorescence normalized by OD600 (mean values with standard errors, n= 3 technical replicates).The p-value
showing a significant slope is from a two-sided t-test performed on mean values for the six different genotypes. e Fluorescence divided by OD600 related to
OD600 for library and control strains. Dashed lines are shown at OD600 equals 0.075 and 0.15. f Measured mean green fluorescent protein synthesis rate.
MFI/h with standard errors, n= 3 technical replicates. The data is ranked according to increasing mean rate. The strain with five native promoters
expressing the five candidate genes is highlighted in green. GFP green fluorescent protein, MFI mean fluorescence intensity, OD600 optical density (600
nm), a.u. arbitrary units. Source data underlying Fig. 3b–f are provided as a Source data file.
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than the already improved platform design (SP507), and 17%
higher than the best one (SP271) in the library sample (Fig. 4e, f).
This has been confirmed by HPLC analysis from small-scale
deep-well batch cultivations of a diverse set of control, library,
and recommended strains (Supplementary Fig. 7). We observed
the strain SP606 having a 74 and 43% improvement in
tryptophan titer and productivity, respectively, compared to the
best strain design from the library sample (SP271). Moreover,
eight recommendations were found in the top ten of productivity,
of which four were from the exploitative set, three were from the
explorative set, and one overlapping between the two sets.
Comparing the output of the ART and EVOLVE approaches, the
variation in measurements was higher for strains recommended
with the explorative EVOLVE approach than for strains
recommended with the exploitative ART approach (Fig. 4e, f),
and the explorative approach included recommendations based
on a more diverse set of promoters than the exploitative approach
(Fig. 4c, d). Aligned with this, we observed that the recommenda-
tions from the EVOLVE approach also included a fraction of
combinatorial designs with GFP synthesis rates below the
reference strain (Fig. 4f). Still, taken together, when run in
parallel, ART and EVOLVE approaches successfully enable
predictive engineering of tryptophan biosynthesis strain designs,
and for both approaches even strains with tryptophan biosynth-
esis rates beyond those previously observed for training the
models (Fig. 4e, f, Supplementary Table 5 and 6).

Discussion
In this study, we focus on the current possibility of using
mechanistic and ML-guided models for predictive engineering of
cellular metabolism as compared to sequential trial-and-error
metabolic engineering iterations, or adaptive evolution-based
reverse engineering for identification of nonintuitive changes.
From this, we demonstrated that mechanistic and ML approaches
can complement and enhance each other, enabling a more
effective predictive engineering of living systems. Using a single
design–build–test–learn cycle, this study (i) leveraged mechanistic
GSMs to select and rank reactions/genes most likely to affect
production, (ii) included the efficient one-pot construction of a
library with different promoter combinations controlling the
expression of these genes, and (iii) used ML algorithms trained on
the ensuing phenotyping data to choose promoter combinations
that further enhance tryptophan productivity. In total, we man-
aged to increase tryptophan titers and productivity by up to 74%
and 43%, respectively, compared to an already improved refer-
ence strain (ARO4K229L and TRP2S65R, S76L).

To gather the large high-quality dataset required for ML
approaches, we developed a biosensor that enabled the sampling of
>124,000 GFP intensity measurements (82 time points) as a proxy
for tryptophan flux for 1521 isoclonal designs (three replicates ×
507 strains) in a high-throughput fashion, of which data from
250 strains were eventually used for successful training of ML
algorithms (Fig. 3e, Supplementary Fig. 5a). Indeed, while requiring
a few design iterations (Fig. 3a, Supplementary Fig. 3), the trypto-
phan biosensor ultimately allowed us to (i) phenotypically char-
acterize an order of magnitude higher number of strains than in
previous ML-guided metabolic engineering studies20,51–53, and (ii)
identify optimal sampling points that displayed the largest differ-
ences between genotypes (Fig. 3c, Supplementary Fig. 4). Likewise,
one-pot CRISPR/Cas9-mediated genome editing was a vital
enabling technology for this project, since it allowed us to efficiently
create a diverse 20-kb clustered combinatorial library with repre-
sentation of all 30 specified sequence- and expression-diverse pro-
moters to control five expression units, including very few duplicate
designs (Fig. 2b, Table 1).

Enabled by this high-quality dataset, we used two different ML
models for predicting productivity (ART and EVOLVE algo-
rithm), and two different approaches to recommend strain
designs (exploitative and explorative). Cross-validation showed
that both models could be trained to show good correlations
(MAE ~ 11% of the measurement range) between predictions and
measurements for data they had not seen previously (test data).
The test MAE decreased considerably with the number of gen-
otypes in the dataset, this decrease was similar for both models.
With this in mind, a relevant guideline for choosing a recom-
mendation approach should focus on the desired outcome: the
explorative approach providing a more diverse set of recom-
mendations (Fig. 4c, d), whereas the exploitative approach pro-
vides less varied recommendations. We observed the largest
improvement in titer and productivity when using the exploita-
tive approach (Fig. 4e, f, Supplementary Fig. 7). However, if
subsequent design–build–test–learn cycles are performed, the
diversity of recommendations of the explorative approach could
help avoid local optima of tryptophan production (Fig. 4e, f).

Notably, while the recommendations were able to improve
biosynthesis rates, the predictions from both ML models were
noticeably worse than for the library, reflecting the general
challenge of extrapolating outside of the previous range of mea-
surements. As such, we envision that future ML approaches will
need to focus on models able to extrapolate more efficiently.

Another critical aspect to discuss from this study is the amount
and quality of data needed, in order to increase the impact (e.g.,
improving titers, rates, and yields) and reduce model uncertainty.
From this study, we argue that biosensors for time-resolved
sensing of cellular metabolism not only enable sampling of large
amounts of data points, but most importantly also facilitate the
identification of a smaller sampling space for high-quality
determination of metabolite biosynthesis rates (Fig. 3e). Specifi-
cally, we initially sampled triplicate measurements for 82 time
points for all 576 strains, which when compared to growth,
ultimately allowed us to select 15 time points of relevance for
calculating maximal GFP biosynthesis rates. Likewise, while the
one-pot library construction used in this study had an estimated
coverage of 48% of the full combinatorial design space, the
amount of strains used for training the algorithms only covered
~3%, yet enabled predictive engineering following a single
design–build–test–learn cycle. This could be used to argue that
more engineering iterations on even smaller datasets, potentially
coupled to mixed exploitation and exploration approaches as
recently demonstrated for cell-free production54, should be a
valid avenue for ML-guided engineering of even less genetically
tractable chassis, and for which no high-throughput screening
method may even exist. With regards to this, we performed a
follow-up test running the ART and EVOLVE approaches in
explorative and exploitative modes, respectively. Here, we
observed that the recommendations from EVOLVE in exploita-
tive mode had overlaps of 20% (6/30) and 23% (7/30) to ART
recommendations in exploitative, and EVOLVE recommenda-
tions in explorative mode, respectively. Complementary to this,
the recommendations from ART in explorative mode only had
overlaps of 3% (1/30) and 0% (0/30) to ART recommendations in
exploitative and EVOLVE recommendations in explorative mode,
respectively (Supplementary Fig. 8), indicating that the uncer-
tainty of prediction of high GFP synthesis rate weighted differ-
ently for the two models in explorative mode.

While discovery of strain designs with titers and rates out-
competing previously reported high aromatics producers was not
the main motivation for the study, it should be mentioned that all
strains tested in this study produce much lower mg/L levels of
tryptophan compared to previous studies, focusing on metabolic
engineering and bioprocess optimization for aromatics
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overproduction (Fig. 3d, Supplementary Fig. 7)23. Indeed, as a
suggestion for further optimization, it is possible that the refer-
ence strain used in this study is still subject to certain levels of
feedback inhibition, as suggested by recent studies for AAAs
derivatives25,55. Furthermore, the use of fed-batch cultivations as
part of a bioprocess optimization would also be expected to
enable cells to accumulate higher tryptophan titers compared to
the titers obtained based on short batch cultivations in 96-well
deep plates with low oxygen levels used in this study.

Despite the low production, there is still a positive correlation
between tryptophan titer/productivity and the GFP synthesis rate
(Fig. 3c, d, Supplementary Fig. 7), and the large-scale dataset from
this study provides examples of results anticipated based on
rational engineering, as well as nonintuitive predictions, enabling
further advancement of the biological understanding of trypto-
phan metabolism. For instance, the best-performing strain
(SP606, Supplementary Table 3 and Supplementary Data 3)
predicted by ML, included knockdowns of both CDC19 and
PFK1, corroborating our intuitive strategies for increasing pre-
cursor availability: i.e., lower pyruvate kinase activity would lead
to higher PEP pools, while limiting glycolysis redirects carbon
flux into PPP and subsequently increases E4P27. Indeed, in bac-
teria, pyruvate kinase knockout has been used for the over-
production of shikimate pathway-derived aromatics products in
bacteria56–58. Likewise, since yeast cells with CDC19 deletion
cannot grow on glucose59, dynamic silencing of CDC19 and PYK2
have been used for boosting production of para-hydroxybenzoic
acid60, just as expression of a mutant CDC19 pyruvate kinase with
seemingly lower activity, in combination with overexpression of
transketolase (TKL1), have been demonstrated to improve 2-
phenylethanol production in yeast61. On the contrary, a similar
strategy with lower CDC19 activity, but in combination with
zwf1Δ deletion (lacking the committed step toward the oxidative
branch of PPP) was shown to reduce tyrosine titers62. Surpris-
ingly, the top five strains predicted to have high tryptophan
biosynthesis rates (SP606, SP616, SP624, SP588, and SPSP620,
Supplementary Tables 3 and 4), all had low expression of TKL1
and high expression of TAL1, despite the report that over-
expression of TKL1, rather than TAL1, leads to higher AAA
production in both E. coli and yeast27,61. These discrepancies
remark the importance of carefully considering the systems-level
context of these metabolic rules-of-thumb (e.g., overexpress TKL1
instead of TAL1 for higher amino acid production) to ensure their
validity. Consistently, both the second (SP616) and third (SP624)
best-performing strains, also predicted by ML, had low expression
of TKL1 and high expression of TAL1, together with very low
expression (TPK2 promoter) for PFK1 and high expression of
CDC19. One possible explanation is that, although normally
expressed, the pyruvate kinase activity could be limited by the low
level of its allosteric activator FBP due to the limited PFK
expression. Another plausible explanation is that medium–high
expression of PCK1 (conversion of oxaloacetate to PEP) by ACT1
or TDH3 promoters in these two strains can replenish PEP pools
consumed by pyruvate kinase. The fact that eight out of ten top-
performing strains had high expression of PCK1 (Supplementary
Data 3), which was not predicted to be impactful on glucose by
the GSM approach, indicates that this indeed has a positive effect
on tryptophan biosynthesis rate, and stresses the importance of
combining mechanistic and ML approaches.

Ultimately, in our case study, ML models have demonstrated
good performance in predicting GFP biosynthesis rates for the
training data designs (gray dots in Fig. 4e, f), while the recom-
mended strains’ biosynthesis rates were less accurately predicted,
likely because it involved an extrapolation effort that is a known
weakness for ML methods (blue dots in Fig. 4e, f). In spite of this
decrease in predictive power, the ML models can effectively

recommend designs that improve tryptophan biosynthesis rates
(Supplementary Fig. 7). However, this predictive power is heavily
dependent on the availability of high-quality experimental data,
which is not a prerequisite for mechanistic GSMs. Without any
experimental input, GSMs are able to guide metabolic engineer-
ing using various constraint-based algorithms, which, however,
predict a large number of potential targets and may also miss
some effective ones (e.g., PFK1 in our study), due to the lack of
other information beyond metabolism, e.g., regulation in GSMs.
To address this problem, manual efforts are currently needed to
filter out less relevant targets and add intuitively promising ones
based on existing knowledge. In addition, applying our approach
to new models that enhance GSMs with more levels of infor-
mation, such as kinetics63, gene expression64, and regulation65 is
envisioned to further improve the model’s predictive power.

Irrespective of the ongoing efforts for model-guided engineering
of living cells, this study highlights the enhanced predictive power
from combining GSMs for selecting genetic targets with ML algo-
rithms for leveraging experimental data. Finally, as even more
efficient methods for combining data-driven ML algorithms and
GSMs are developed, we envision accelerated improvements in our
ability to engineer virtually any cell system effectively.

Methods
Experimental models. S. cerevisiae strains were derived from CEN.PK2-1C
(EUROSCARF, Germany). These were cultivated in yeast synthetic dropout media
(Sigma-Aldrich) at 30 °C. E. coli DH5α were cultivated in LB medium containing
100 mg/L ampicillin (Sigma-Aldrich) at 37 °C.

Mechanistic modeling of high tryptophan flux. In order to select targets for
increased tryptophan accumulation, we followed a constraint-based strategy imple-
mented in a recent study66. Briefly, flux balance analysis (FBA)26 was used to simulate
growth of S. cerevisiae at 11 different suboptimal growth conditions ranging from 30
to 80% of the maximum specific growth rate, with all remaining flux oriented toward
tryptophan accumulation. Based on these simulations, a score was calculated for each
reaction in metabolism as the average simulated flux fold change compared to
maximum growth rate conditions. These reaction scores were in turn used to com-
pute gene scores, by averaging the associated reaction scores. A gene score higher than
one means that the gene is associated with reactions that increase in flux as trypto-
phan production increases and could point to a target for overexpression. On the
other hand, a gene score lower than one signifies that the gene is connected to
reactions that decrease their flux as tryptophan production increases, and therefore
could be a target for downregulation. The analysis was performed with either glucose
or ethanol as carbon sources, so to find candidates under a mixed-fermentation
regime, a purely respiratory regime and the overlap between both regimes. The
seventh version of the consensus GSM of S. cerevisiae67, a parsimonious FBA
approach68, and the COBRA toolbox69 v. 3.0.6 were used for all simulations.

Promoter selection. Each of the five gene targets was expressed under six unique
promoters. The six promoters included the promoter native to the gene, as well as
five promoters chosen to span a wide expression range All promoters were chosen
based on absolute mRNA abundances measured for S. cerevisiae CEN.PK113-7D in
the mid-log phase32, and unless otherwise stated were 1 kb in length by default. To
minimize homologous recombination during one-pot transformation for library
construction and potential loop out of promoters and genes following genomic
integration, all scanned promoter sequences were aligned to ensure there were no
extensive homologous sequence stretches.

General strain construction. Strains were edited using the CasEMBLR method70.
All integrations were directed toward EasyClone sites71. Homology regions
between DNA parts were by default 30 bp, and homology regions, framing the
repair assembly, were ~0.5 kb. Yeast transformations were performed by LiAc/SS
carrier DNA/PEG method70. DNA parts and plasmids were purified using kits
from Macherey-Nagel. PCR products for USER assembly were amplified using
Phusion U Hot Start PCR Master Mix (ThermoFisher), bricks for transformation
by Phusion High-Fidelity PCR Master Mix with HF Buffer (ThermoFisher),
whereas colony PCRs were performed using 2× OneTaq Quick-Load Master Mix
with Standard Buffer (New England Biolabs). Genomic DNA was extracted from
overnight cultures using Yeast DNA Extraction Kit (Thermo Scientific). Oligos
were purchased from IDT. Sequencing was performed by Eurofins. All primers,
plasmids, and yeast strains, are listed in Supplementary Data 4 and Supplementary
Tables 7 and 8, respectively.
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Platform strain construction. As CDC19 is an essential gene, and deletion of
PFK1 causes growth retardation36,37, this genetic background was deemed unsui-
table for efficient one-pot transformation. For this reason our platform strain for
library construction had a galactose-curable plasmid introduced expressing PFK1,
CDC19, TKL1, and TAL1 under their native promoters, before performing two
sequential rounds of CRISPR-mediated genome engineering to delete PCK1, TKL1,
and TAL1, and knockdown CDC19 and PFK1 using the weak promoters RNR2 and
REV1, respectively (Fig. 2a). Moreover, several enzymes within the AAA bio-
synthesis are subject to allosteric regulations. Specifically, DAHP synthase (enco-
ded by ARO4), which controls the entry of the shikimate pathway, is feedback
inhibited by all three AAAs, although to different extents72,73. Anthranilate syn-
thase (encoded by TRP2), which catalyzes the first committed step toward the
tryptophan branch, is also inhibited by its end product tryptophan24. To maximize
the transcriptional regulatory effect on the tryptophan flux, and benchmark with
current state-of-the-art in shikimate pathway optimization, feedback-resistant
variants of these two enzymes, ARO4K229L38 and TRP2S65R, S76L39, were over-
expressed under the TEF1 and TDH3 promoters, respectively, at EasyClone site XI-
3 (ref. 71) (Supplementary Table 8). Lastly, a tryptophan biosensor system was
introduced by integrating corresponding sensor and reporter sequences into
EasyClone sites at Chr. XI-2 and XI-5, respectively71.

Construction of combinatorial library. Due to the dramatic decrease in trans-
formation efficiency targeting multiple loci in the genome34, we opted for removing
all five target genes from their original loci and assemble the five expression units
into a single cluster for targeted integration into EasyClone site XII-5 (ref. 71), and
thereby ensuring comparable genomic accessibility of all genes. While PCK1, TKL1,
and TAL1 were successfully knocked out, deleting PFK1 and/or CDC19 was
unsuccessful. Alternatively, we replaced PFK1 and CDC19 promoters with weak
REV1 and RNR2 promoters, respectively. Due to an expected loss of activity in
PFK1 and pyruvate kinase (CDC19), and consequently slow ATP generation, the
resulting strain (TrpNA-W) grew extremely poorly and was barely transformable
using linear DNA fragments for assembly. To overcome this limitation, the
TrpNA-W strain was complemented with plasmid pCfB9307 (Supplementary
Table 8) harboring PFK1, CDC19, TKL1, and TAL1 genes, which restored the
growth to the wild-type level. The plasmid backbone carries yeast ACT1 gene under
the control of GAL1 promoter, which can be used as counterselection of the
plasmid due to the growth arrest caused by ACT1 overexpression on galactose as
the sole carbon source42 (Supplementary Fig. 6).

For combinatorial library construction, we adopted CasEMBLR70. Briefly, five
target genes together with a HIS3 expression cassette (in the order of PCK1-TAL1-
TKL1-CDC19-PFK1-HIS3) were assembled in the same orientation and integrated
at EasyClone site XII-571. All five target genes (the complete ORFs) together with
their terminators (500 bp downstream of the stop codon) were amplified from the
genomic DNA of yeast strain CEN.PK113-7D using primers listed in Supple-
mentary Data 4. All 30 promoters (defined as the 1000 bp upstream of the ORF)
were amplified using primers with a 30 bp overlap to adjacent DNA parts (i.e., the
terminator upstream and the target gene). All promoters can be found in
Supplementary Table 1. The HIS3 cassette was amplified from plasmid pRS413-
HIS3 (ref. 71) with primers 30 bp overlapping with the PFK1 terminator and
fragment homologous to the downstream of XII-5. The HIS3 cassette was included
as one part of the assembly. The one-pot transformation of all 38 parts (30
promoters, 5 candidate genes, HIS3 cassette, and up- and down-homology regions
for EasyClone site XII-5) was performed with 50 mL the base strain grown to an
optical density of 1.0 (equivalent to 6.5 mg of cell dry weight), 5.0 µg of plasmid
expressing the guide RNA targeting XII-5, and 1.0 picomole of each of 13 DNA
fragments. A total of 480 colonies were picked from ten transformation plates by
dividing the area of each individual plate into four subareas of equal size and
picking 12 colonies of varying size from each subarea.

Finally, the complementation plasmid introduced was cured by culturing strains
to stationary phase twice in media with galactose instead of glucose as carbon
source (Supplementary Fig. 6). The success of curing was then gauged by a growth
assay where LEU auxotrophs were considered as cured and prototrophs as not
cured. Control strains and recommended strains were constructed similarly to the
library strains except that instead of transforming pools of promoter parts for each
gene only specific promoters were transformed per gene.

Development of tryptophan biosensor. The yeast tryptophan biosensor was
developed based on the trpR repressor of the trp operon from E. coli44. The trpR
gene was amplified from E. coli M1665 genome. All yeast promoters as well as the
activator domain of GAL4 were amplified from S. cerevisiae strain CEN.PK113-7D
genome. All designs of trpR biosensor and GFP reporter were first cloned into the
pRS416 (URA3) and pRS413 (HIS3) vectors, respectively, by USER cloning (NEB).
The activator domain of GAL4 (GAL4AD) was fused to trpR with a GSGSGS linker
by USER cloning, and the expression of the gene product controlled by the weak
REV1 promoter. The trpO sequence was inserted into the TEF1 promoter 8 bp
downstream of the TATA-like element (TATTTAAG) by inverse PCR from a
plasmid containing the PTEF1-yEGFP-TADH1 cassette, with both primers containing
the overhang AACTAGTAC (ie., half of the trpO sequence). The linear PCR
product was treated with DpnI enzyme to fragmente the template plasmid and self-
ligated to generate circular plasmid (Quick Ligation™ Kit, NEB). Promoters

containing multiple trpO sequences were constructed by USER cloning from a
synthetic DNA fragment (Integrated DNA Technologies) of a minimal GAL1
promoter (−329 to −5 relative to the GAL1 open reading frame, thus without the
GAL4 binding sequence that is located at −435 to −418) with 3× tandem repeats of
trpO (separated by two nucleotides) inserted at 88 bp upstream of the TATA box
(TATATAAA). Plasmids containing the sensor and reporter cassettes were
transformed into yeast strain CEN.PK113-11C. To test the biosensor performance,
yeast transformants were grown in selection media overnight and regrown in Delft
medium supplemented with various tryptophan concentrations (2–1000 mg/L) for
6 h (typically reaching early exponential phase). GFP and mKate2 outputs were
measured on Synergy MX microtiter plate reader (BioTek) with excitation/emis-
sion at 485/515 nm and 588/633 nm, respectively, and always normalized by
absorbance at 600 nm (OD600). To construct the base strain for library assembly,
the tryptophan sensor (PREV1-GAL4AD-trpR-TADH1) and the reporter cassette
(PGAL1core_3xtrpO-yEGFP-TADH1, PTEF1_trpO-mKate2-TCYC1) were integrated into
strain TC-3 (ref. 34) at the EasyClone sites XI-2 and XI-571, respectively.

Validation of biosensor by HPLC. To validate the correlation between biosensor
reporter gene output and tryptophan production, we quantified extracellular trypto-
phan concentrations by HPLC74. Supernatants of cultivated strains were separated
from the culture broth using AcroPrep Advance 96-Well Filter Plates (Pall Cor-
poration) and centrifugation (5 min at 2200 × g) following 24 h of cultivation in
synthetic dropout medium without tryptophan and histidine. From this, 200 µl was
used for analysis on a Dionex 3000 HPLC system with a Zorbax Eclipse Plus C18
column (Agilent Technologies, Santa Clara, CA, USA). The column temperature was
set to 30 °C. The flow rate was set to 1ml/min with a mobile phase consisting of
0.05% acetate and a variable amount of acetonitrile. The total duration per sample was
12min. This consisted of 10min of separation, in which acetonitrile was reduced
from 95 to 38.7% in 9.4min and held for 0.6min, 1min of returning the acetonitrile
concentration to 95%, and 1min of holding the concentration till the end of the run.
The injection volume was set to 10 µl. Elution of tryptophan was detected by UV at a
wavelength of 280 nm. The data were processed using Chromeleon™ Chromatography
Data System Software v7.1.3. Tryptophan concentrations were determined from a
calibration curve. The specific tryptophan productivity was estimated as the average
amount of tryptophan secreted into the medium per unit of biomass during the
period of 1 day (μmol/gDCW/day).

DNA sequencing of assembled clusters. Genomic DNA was extracted from
overnight cultures using the LiOAc/SDS method adapted to a 96-well microtiter
plate format. Each extract was used as a template in five PCR reactions spanning
the five integrated promoters and amplifying from 1200 to 1700 bp. The PCR
products were validated using a LabChip GX II (Perkin Elmer) and sequenced
using PlateSeq PCR Kits (Eurofins) according to the manufacturer’s instructions.
From the LabChip results, a PCR reaction was considered as trusted if it showed a
strong band of the correct size; not trusted if it showed a strong band of the wrong
size, and as no information (NI) gained if it showed a weak or no band. From the
sequencing results, a sequencing reaction was considered as trusted if it showed an
unambiguous sequence of the expected length (i.e., only limited by length of PCR
fragment, stretches of the same nucleotide in the promoter or of ~1 kb limit of
sanger sequencing reactions), not trusted if it showed an unambiguous sequence of
the expected length with an assembly error, and NI gained if there were no or bad
sequence results. If one or more sequencing results from the same strain showed
double peaks in the promoter region the strain was considered as a double
population. Finally, the promoter was noted as a failed assembly if either LabChip
and or sequencing results were considered not trusted, as NI if the sequencing
result was NI and else as the promoter predicted by pairwise alignment between
sequencing results and promoter sequence.

Measuring fluorescence and growth. Yeast cells were cultured O/N to saturation,
diluted to OD600 0.025 (measured by reading the absorbance at 600 nm on Synergy
Mx Microplate Reader, BioTek) and then cultured again in a Synergy Mx Microplate
Reader. While culturing, the reader measured OD600, and fluorescence with excitation
and emission wavelengths of 485 and 515 nm, respectively, every 15min for 20 h. All
wells were sealed with VIEWseal membrane (Greiner Bio-One).

Modeling and recommendation. All genotype and time series data as well as scripts
for preprocessing are publicly available (seen “Data and Code availability” sections).
Briefly, all OD600 and GFP measurements were subtracted background signals (i.e.,
mean value of OD600 and GFP measurements in wells containing pure media).
Background signals were calculated for each 96-well plate. Strains were quality-
controlled based on five criteria. The criteria were: (1) optical densities must cover the
whole range up to 0.15 OD600 units to exclude uninoculated wells and wells with
insufficient growth, (2) sequencing results must exist for all five promoter gene
junctions, (3) the integrated sequence must be exactly as designed, (4) the com-
plementation plasmid must be cured, and (5) the sequencing results must not indicate
the presence of multiple genotypes (Supplementary Fig. 5a). Specific GFP synthesis
rates were calculated as the difference in GFP divided by the difference in time (MFI/
h) in the OD600 interval from 0.075 to 0.150, as measured by a Synergy MxMicroplate
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Reader from BioTek (a detailed description of the rationale behind this method can be
found in connection with Supplementary Fig. 4).

In the ART approach, outliers were identified and removed based on replicate
differences in GFP synthesis rate relative to the mean value for the strain.
Replicates with the one percent most extreme differences were identified and the
corresponding strains were removed. GFP synthesis rate was modeled as a function
of promoter combination, represented through one-hot encoding, using the ART48.
Briefly, ART uses a probabilistic ensemble model consisting of eight individual
models. The weight of each ensemble model is considered a random variable with a
probability distribution characterized by the available training data, and
determined through Bayesian inference and Markov Chain Monte Carlo75. ART
uses the trained ensemble model in combination with a Parallel Tempering
approach76 to recommend 30 promoter combinations (unseen designs), which are
predicted to improve production. The recommended designs were chosen as the
30 strains with the highest expected GFP synthesis rate predicted by the model.
This recommendation approach was labeled exploitative since predictions with
high uncertainty were not prioritized, although ART can provide both exploitative
and explorative recommendations.

For the TeselaGen EVOLVE algorithm used in this study, outliers were
identified and removed based on a method described by Rousseeuw and Hubert77.
The decision was made on a per strain basis taking into account replicate to mean
value differences. In cases where just a single replicate was left after filtering, this
replicate was excluded as well. Of the remaining strains, GFP synthesis rates were
modeled as a function of promoter combination coded as categorical variables
using a TeselaGen-developed ML algorithm based on Bayesian Optimization78.
The algorithm was set up to recommend 30 promoter combinations (unseen
designs), and designs were chosen by highest selection score. The selection score
was the expected improvement79, calculated based on predicted high GFP synthesis
rate and the uncertainty of prediction. The approach was labeled explorative since
high uncertainty weighed positively in the selection score calculation. While using
EVOLVE for explorative recommendations, thereby complementing the ART
approach, it should be mentioned that EVOLVE can be set up to provide both
explorative and exploitative recommendations.

For both approaches, we tried encoding the promoter variables both as numbers
ordered according to the counts from the RNAseq experiment (i.e., promoter
strength32) and as one-hot encoding, and chose the one-hot encoding because it
produced a lower MAE values and higher R-squared values.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data supporting the findings of this work are available within the paper and its
Supplementary Information files. A reporting summary for this article is available as a
Supplementary Information file. The datasets generated and analyzed during the current
study are available from the corresponding author upon request. The genotype and time
series datasets are available at The Joint BioEnergy Institute’s Inventory of Composable
Elements (ICE; https://public-registry.jbei.org) and Experiment Data Depot (EDD;
https://public-edd.jbei.org), respectively under the study “Zhang and Petersen, et al.
2019”. These are also available at GitHub (https://github.com/sorpet/
Zhang_and_Petersen_et_al_2019). Source data are provided with this paper.

Code availability
The FBA, with additional simulation details and filtering criteria, is available at GitHub
(https://github.com/biosustain/trp-scores). The preprocessing and statistical calculations
were made in a Python v. 3.6.5 environment with the packages seaborn 0.7.1, scikit-learn
0.20.2, pymc3 3.5, pandas 0.23.4, numpy 1.14.3, matplotlib 3.0.2, scipy 1.1.0, PTMCMC
Sampler 2015.2, and ART. The process is documented in a jupyter notebook, available at
GitHub (https://github.com/sorpet/Zhang_and_Petersen_et_al_2019). The notebook
also contains the ART approach for model development and strain recommendation.
The Teselagen software is available through commercial and non-commercial licenses
(https://teselagen.com).
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