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Abstract—Search-based test generation is guided by feedback
from one or more fitness functions—scoring functions that judge
solution optimality. Choosing informative fitness functions is
crucial to meeting the goals of a tester. Unfortunately, many
goals—such as forcing the class-under-test to throw exceptions—
do not have a known fitness function formulation. We propose
that meeting such goals requires treating fitness function identi-
fication as a secondary optimization step. An adaptive algorithm
that can vary the selection of fitness functions could adjust its
selection throughout the generation process to maximize goal
attainment, based on the current population of test suites. To test
this hypothesis, we have implemented two reinforcement learning
algorithms in the EvoSuite framework, and used these algorithms
to dynamically set the fitness functions used during generation.

We have evaluated our framework, EvoSuiteFIT, on a set
of 386 real faults. EvoSuiteFIT discovers and retains more
exception-triggering input and produces suites that detect a
variety of faults missed by the other techniques. The ability to
adjust fitness functions allows EvoSuiteFIT to make strategic
choices that efficiently produce more effective test suites.

Index Terms—Automated Test Generation, Search-Based Soft-
ware Engineering, Reinforcement Learning

I. INTRODUCTION

Test creation is an expensive, effort-intensive task. If test
creation could be even partially automated, the benefit to
developers in terms of effort and cost would be immense.
Naturally, a large body of research has amassed around au-
tomated test input generation [3]. One area that has shown
great promise is search-based test generation [3], [23].

Input selection can naturally be seen as a search prob-
lem [15]. Testers approach input selection with a goal in
mind—perhaps they would like to cause the program to crash,
maximize code coverage, detect a set of known faults, or any
number of other potential goals. Of the near-infinite number
of possible input that could be provided to a program, the
tester seeks input that achieves the chosen goal. This search
can be automated. Given a goal, an optimization algorithm
can systematically sample the space of possible test input in
search of a solution to that goal, guided by feedback from
one or more fitness functions—numeric scoring functions that
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judge the optimality of the chosen input [11]. In other words:
algorithm+ fitness functions =⇒ goal.

Effective search-based generation relies on the selection of
the right feedback mechanism—the right fitness functions. The
best fitness functions offer the information needed to rapidly
increase attainment of the goal. For example, a common
goal in test generation is maximum Branch Coverage. Branch
Coverage is a measurement of how much of the code has
been executed. For each program statement that can cause the
execution path to diverge—such as if and case statements—
test input should ensure that at all potential outcomes are
covered at least once [25]. The most effective fitness functions
for attaining Branch Coverage take each subgoal we wish
to cover and judge how close the chosen test input was
to achieving covering those goals. This concept, the branch
distance [4], offers the algorithm the feedback needed to inch
closer and closer to covering each outcome.

From this example, we can see that the selection of fitness
functions is crucially important to maximizing attainment of
our goal. For the goal of attaining Branch Coverage, we have
effective fitness functions that lead to rapid improvement in
coverage. Unfortunately, many goals do not have a known, ef-
fective fitness function formulation. In fact, many goals do not
inherently lend themselves to such a formulation. Consider a
common goal—“cause the program to crash”, often measured
by counting the number of exceptions—program-interrupting
error messages—thrown during test execution [27]. Exceptions
indicate the faults and abnormal operating conditions in pro-
grams. Thus, tests that trigger exceptions are valuable.

However, as we cannot know ahead of time how many
or what exceptions are possible to throw, “throw more ex-
ceptions” is not a goal that translates into an informative
fitness representation. Prior work has proposed the use of a
simple count of thrown exceptions as a fitness function [28].
Unfortunately, this count yields poor results in terms of both
goal attainment and fault detection, as it offers the algorithm
no guidance for improving its guesses [11], [12].

This does not mean that there is no way to effectively
achieve this goal. Rather, we simply do not yet know what



fitness functions will be effective. There are many fitness
functions available for use in search-based test generation,
devised for attainment of other goals. Careful selection of
one or more of those functions could yield high attainment
of our goal, exception throwing, as well. In fact, we may even
attain higher goal attainment by reevaluating our choice of
fitness functions at regular intervals throughout the genera-
tion process, adapting based on the evolving population of
test suites. We hypothesize that an adaptive algorithm—one
that can vary the selection of fitness functions—could make
strategic selections that maximize attainment of our goal.

To evaluate this hypothesis, we propose a hyperheuristic
search that optimizes the test generation process [17]. Through
the use of reinforcement learning [26], this approach is able to
select the most appropriate set of fitness functions for the class-
under-test (CUT) and testing goal, and adjust that set as needed
during generation. Throughout the test generation process,
this algorithm retains test cases that cause exceptions to be
thrown, yielding effective test suites. We have implemented
two reinforcement learning algorithms—Upper Confidence
Bound (UCB) and Differential Semi-Gradient Sarsa (DSG-
Sarsa) [26]—in the EvoSuite generation framework [29].

We have evaluated the modified framework, EvoSuiteFIT,
on 386 Java case examples in terms of the ability of generated
test suites to discover and retain exceptions and to detect
faults. We compare to two baselines: a count of exceptions
thrown—used in prior work to encourage exception-throwing
test suites—and EvoSuite’s default configuration—a combina-
tion of eight fitness functions that serves as a “best guess” at
what will produce effective test suites. We observe that:

• EvoSuiteFIT discovers and retains more exception-
triggering inputs than the baseline techniques, yielding up
to a 203.03% improvement in the number of exceptions
thrown by the final test suite. DSG-Sarsa yields more
consistent performance than UCB.

• Both EvoSuiteFIT techniques produce suites that detect
faults missed by the other techniques. UCB detects 11.92
and 249.57% more faults than the baseline techniques,
and 4.3% more than DSG-Sarsa.

• The ability to avoid the calculation of unhelpful fitness
functions mitigates the additional computational overhead
imposed by reinforcement learning.

• The ability to adjust the set of fitness functions at regular
intervals in the generation process allows EvoSuiteFIT to
make strategic choices that refine the test suite. This is
not possible when a static set of fitness functions is used
throughout the entire generation process.

The use of reinforcement learning algorithms allows Evo-
SuiteFIT to identify combinations of fitness functions effective
at triggering exceptions in a CUT, and strategically vary that
set of functions throughout the ongoing generation process. We
hypothesize that other goals without known effective fitness
function representations could also be maximized in a similar
manner. We make EvoSuiteFIT available to others for use in
test generation research or practice.

II. BACKGROUND

A. Search-Based Test Generation

Test case creation can naturally be seen as a search prob-
lem [15]. Of the thousands of test cases that could be generated
for any CUT, we want to select—systematically and at a rea-
sonable cost—those that meet our goals [23], [1]. Given a well-
defined testing goal, and fitness functions denoting closeness
to the attainment of that goal, optimization algorithms can
sample from a large and complex set of options as guided by
a chosen strategy (the metaheuristic) [5].

Metaheuristics are often inspired by natural phenomena,
such as swarm behavior [8] or evolution [16]. While the
particular details vary between algorithms, the general process
employed by a metaheuristic is as follows: (1) One or more
solutions are generated, (2), The solutions are scored according
to the fitness functions, and (3), the feedback from the fitness
functions is used to reformulate the solutions for the next
round of evolution. This process continues over multiple
generations, ultimately returning the best-seen solutions. By
determining how solutions are evolved and selected over time,
the choice of metaheuristic and fitness functions impact the
effectiveness and efficiency of the search process [9].

B. Reinforcement Learning

The n-armed bandit problem [21] describes a situation
where you are repeatedly faced with a choice of n different
options. After each choice, you receive a reward chosen from
a probability distribution dependent on the action selected.
Reinforcement learning algorithms are designed to learn the
optimal choice of action to maximize the reward earned [26].

Each action has an expected reward when it is selected. Over
time, the reinforcement learning algorithm will try different
actions and refine its estimations of their value. During each
round, the reinforcement learning algorithm will choose an
action based on the expected reward of applying it in the
current problem state. After applying the action, the algorithm
will receive a reward value. The algorithm will update the
expected reward for the chosen set using the new reward.

At any time, there will be a portfolio with the greatest
estimated value. If the algorithm selects that portfolio, it
exploits its current knowledge to gain immediate reward. If,
instead, it selects a portfolio with an unknown or potentially
lower reward, it is exploring the option space to improve
its estimate of a portfolio’s value. Reinforcement learning
algorithms are designed to effectively balance exploration and
exploitation for different problem spaces [26], [18], [17].

III. APPROACH

Search-based test generation requires the selection of one
or more fitness functions to guide the search process. Careful
selection is crucial, as the fitness functions act as strategies
to shape the resulting test suite. Fitness functions should be
selected to maximize attainment of the tester’s overall goal.
In practice, however, many goals do not translate cleanly to
an effective fitness function representation—one that offers
feedback to the search process to attain rapid attainment.
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Fig. 1: An overview of how reinforcement learning fits into the test generation process.

In this work, we focus on the goal of causing the class-
under-test (CUT) to throw exceptions. Exceptions—program-
interrupting error messages—are thrown when the software is
placed outside of normal operating conditions, and indicate
situations the program is not able to handle gracefully [27].
Therefore, it is desirable to force the program into such states
in order to identify areas of improvement or faults to fix.
It is impossible to know all possible exceptions that can be
thrown by a CUT, so there exists no feedback-based fitness
function to encourage the discovery of more exceptions. A
count of the number of exceptions thrown has been used
in previous work [28], [11], [12]. However, this has been
shown to be a poor choice for both finding faults [11] or
triggering exceptions [12], with general functions such as
Branch Coverage able to yield better results in both areas.

We hypothesize, however, that careful selection—at differ-
ent points in the generation process—of fitness functions could
result in test suites that trigger more exceptions than simple
baselines or naive combinations of functions. If this is true,
identifying this set of fitness functions becomes a secondary
search problem—one that could be tackled as an additional
step within the normal test generation process.

We propose the use of reinforcement learning techniques
to adapt the set of fitness functions for a chosen CUT and
the goal of throwing exceptions. Adjusting the set of fitness
functions could be considered as an instance of the n-armed
bandit problem [21]. Given a measurable goal, each action—
each choice of one or more fitness functions—has an expected
reward when it is selected. If we use this function combination,
we will cause additional exceptions to be thrown. Specifically,
we measure reward as the sum of the exceptions discovered
during generation and the exceptions thrown by the current so-
lution, encouraging both discovery and retention of exceptions.
Because test generation is a stateful process—the population
of test suites at round N depends on the population from round
N−1—reinforcement learning affords not just an opportunity
to identify effective fitness functions, but to strategically adjust

the functions based on the changing population of test suites.
We have implemented two reinforcement learning

algorithms—Upper Confidence Bound (UCB) and Differential
Semi-Gradient Sarsa (DSG-Sarsa)—as part of the EvoSuite
test generation framework [29]. The EvoSuite framework
uses a genetic algorithm to evolve test suites over a series
of generations, forming a new population by retaining,
mutating, and combining the strongest solutions. It is actively
maintained and has been successfully applied to a variety of
projects [31]. We call our approach EvoSuiteFIT.

The modified process is illustrated in Figure 1. At a user-
defined interval, the reinforcement learning algorithm will alter
the current set of fitness functions and refine its estimation
of their ability to increase the count of exceptions thrown.
Throughout generation, we will also retain an archive of tests
that cause exceptions to be thrown to ensure that the final
test suite is effective. Note that the process we propose is
generic, with only the reward function reflecting the goal of
exception discovery. Any measurable goal can be used as
a reward function, enabling the use of the same process to
optimize other hard-to-satisfy goals.

EvoSuiteFIT is available from
https://github.com/hukh/evosuite/tree/evosuitefit

A. Upper Confidence Bound (UCB) Algorithm

The UCB algorithm is well-suited to address n-armed bandit
problems [26]. Each time a choice is made, UCB selects
an action that has a higher expected reward than the other
possible actions. Each action returns a numerical value that is
considered as the reward of taking that action.

For a selected action A at time step t (represented as At),
the reward Rt represents the corresponding reward of taking
action At. Using this notation, the expected reward of action

https://github.com/hukh/evosuite/tree/evosuitefit


a is q∗
.
= E[Rt|At = a]. We apply UCB to select the action,

as defined by Sutton [26]:

At
.
= max[Qt(a) + c

√
ln(t)

Nt(a)
] (1)

where At represents the index of the combination that gives
the highest expected reward. The c term represents the confi-
dence level, determining the balance between exploration—
refinement of reward expectation at a potential cost to
reward—and exploitation—taking advantage of the action cur-
rently thought to be best—in the algorithm. The value of c
needs to be larger than 0, otherwise the algorithm will behave
in a purely greedy manner. ln(t) represent the natural log of
the t value. Qt(a) denotes the estimated worth of choosing a
fitness functions (a):

Qt(a) =
1

Nt

t−1∑
i=1

Ri(a) (2)

This equation represents the total reward of a combination a
divided by the number of times that combination had been
selected until the time t. In this project, t denotes the number
of generations that the search has progressed through.

B. Differential Semi-Gradient Sarsa (DSG-Sarsa) Algorithm

A special class of reinforcement learning algorithms are
known as approximate solution methods [26]. Many reinforce-
ment learning approaches associate rewards with particular
states, and work best in a constrained state space. Approximate
methods are appropriate for problems with a large or uncon-
strained state space—i.e., test generation—where finding exact
solutions is not feasible with limited time [6]. Approximate
methods generalize from previously encountered states. As test
case generation has a very large state space, we have explored
the use of an approximate solution method, DSG-Sarsa [26].

DSG-Sarsa is semi-gradient, enabling continual and online
learning. Relevant to our application domain, the algorithm
is well-suited to problems in which there is no termination
state. Each round, the action—choice of fitness functions—
is applied, and the test suite evolves to a new state S‘, with
observed reward R. We then use this information to choose a
new action A‘, using the formula:

q̂(S,A,W )
.
= W⊤ ·X(S,A) =

∑
wixi(S,A) (3)

This action-value function is calculated by the inner product
of weights and feature vectors. X(S,A) is the feature vector:
X(s,A) = (x1(S,A), x2(S,A), . . . xd(S,A)). The feature
vector describes the current state of a test suite using a set
of attributes. In this case, the state is represented using the
current set of fitness functions, the current fitness value for
that set of functions, the suite size, the number of exceptions
thrown, and the number of exceptions covered. These features
are utilized because that can describe a particular test suite.

W represents a weight vector, used to bias action selec-
tion [26]. A weight is provided for each feature, and represents
the importance of its contribution to the action value. The

weight for an action is updated each round using the semi-
gradient with delta, controlled by the learning rate:

Wt+1
.
= Wt + αδ∇q̂(St, At,Wt) (4)

Where δ is an error function representing the difference be-
tween the immediate reward R and the average reward R̄t and
the difference between the value of a target q̂(St+1, At+1,Wt)
and the value of the old estimate q̂(St, At,Wt).

δt = Rt+1 − R̄t + q̂(St+1, At+1,Wt)− q̂(St, At,Wt) (5)

R̄t is the is estimated average reward at time t. R̄t is calculated
using the following equation:

R̄t+1 = Rt + βδ (6)

α and β are algorithm parameters that represent the step size
of updating the weight and the average reward. The notation t
represent the the time step (the number of generations, in our
case).

By using the average reward, we consider the immediate
reward as important as a delayed one. This means that we
treat all fitness function combinations impartially without bias
toward the combinations that were selected first. This mean
there is no priority for the chosen combinations.

C. Implementation in EvoSuite

We have implemented both reinforcement learning algo-
rithms in EvoSuite, and integrate their use into the stan-
dard Genetic Algorithm (GA)—adding an additional fitness
function selection stage. At a user-defined interval, the RL
algorithm will choose a new set of one or more fitness
functions. The modified process is illustrated in Figure 1.

We use combinations of the following fitness functions:
• Exception Count: A simple count of the number of

exceptions thrown by a test suite.
• Branch Coverage: See Section I.
• Direct Branch Coverage: Branch coverage may be

attained by calling a method directly, or indirectly—
calling a method from another method. Direct branch
coverage requires coverage through a direct call.

• Line Coverage: A test suite satisfies line coverage if
it executes each non-comment source code line at least
once. To cover each line, EvoSuite tries to ensure that
each basic code block is reached. For each conditional
statement that is a control dependency for some other
line in the code, the branch of the statement leading to
the dependent code must be executed.

• Method Coverage: Method Coverage simply requires
that all methods in the CUT are executed at least once.
The fitness function for method coverage is discrete, as
a method is either called or not called.

• Method Coverage (Top-Level, No Exception): Test
suites sometimes achieve high levels of method coverage
by calling methods in an invalid state or with invalid
parameters. This variant requires that methods be called
directly and terminate without throwing an exception.



• Output Coverage: Output coverage rewards diversity
in output by mapping return types to a list of abstract
values [2]. For numeric data types, distance functions
offer feedback using the difference between the chosen
value and target abstract values.

• Weak Mutation Coverage: Test effectiveness is often
judged using synthetic faults, called mutants [19]. Weak
mutation coverage is satisfied if, for each mutated state-
ment, at least one test detects the mutation. The search
is guided by the infection distance, a variant of branch
distance tuned towards reaching mutated statements [10].

Rojas et al. provide more details on each of these fitness
functions [28]. The RL algorithm chooses a combination of
one to four of these fitness functions each time it makes
a selection. Initial experimentation revealed that the most
effective combinations of functions all included the exception
count. Therefore, we filtered the set of choices down to all
combinations of one to four fitness functions that include the
exception count as one of the choices. This means that the RL
algorithm can choose from 64 actions (different sets of fitness
functions).

In the beginning, EvoSuiteFIT will make sure that all the
actions have been tried once before it starts using the standard
UCB or DSG-Sarsa selection mechanisms. This allows seeding
of reward estimations. Before the initial selection occurs,
the list of actions is randomized to avoid an ordering bias.
This is important, as the population of test suites is shaped
by the action used each generation. After this stage, every
time the RL algorithm makes a selection, the set of chosen
fitness functions will change unless the currently-selected
combination is exploited.

After changing the fitness functions, EvoSuiteFIT will pro-
ceed through the normal population evolution mechanisms,
judging solutions using the new set of fitness functions. We
use the reformulated population to calculate the reward. Then,
we used this reward to update the expectations of the RL
algorithm. For UCB, we store the accumulated reward of each
combination alongside the number of times each is selected
Nt, so we can calculate the average reward. Over time, the
combination that gains the highest reward will be more likely
to be selected again until reaching convergence. For DSG-
Sarsa, after getting the reward, the new combination is selected
using the policy. Based on the new and current combination,
the new and current state, and the reward, the average reward
and the weight of the state is updated. Then the current fitness
function combination will change to the new one.

After experimentation, we found that changing the set of
fitness functions every three generations allows enough time
to adequately adjust reward expectations. Fewer generations
does not allow sufficient time for the chosen fitness function
combination to reshape the test suite. This means that the GA
will have three generations to reshape the population before
the reward is evaluated.

In EvoSuiteFIT, during the search and optimization process,
test cases that cover a set of chosen goals can be retained in
a test archive to prevent loss in coverage as the test suites are

reshaped. In traditional EvoSuite, this archive is based on the
chosen fitness functions. However, as we use RL to change the
fitness function, we have altered how the test archive is used.
We store test cases known to trigger discovered exceptions.
After the search process completes, the archive is used to
produce the final test suite. This prevents the loss of test cases
that trigger exceptions due to changes in the fitness functions.

IV. STUDY

To better understand the effectiveness, use, and applicability
of our hyperheuristic approach, we have assessed EvoSuiteFIT
against 386 case examples from the Defects4J dataset [20]. In
doing so, we wish to address the following research questions:

1) Is either EvoSuiteFIT approach more effective, in terms
of the number of discovered exceptions and the number
of exceptions thrown by the final test suite, than test
generation using static fitness function choices?

2) Is either EvoSuiteFIT approach more effective, in terms
of fault detection effectiveness than test generation using
static fitness function choices?

3) What impact does the computational overhead from rein-
forcement learning have on the test generation process?

4) Are there trends that can be discerned in the behavior
of EvoSuiteFIT based on class or project features?

In order to investigate these questions, we have performed
the following experiment:

1) Collected Case Examples: We have used 386 case
examples, from six Java projects, as test generation
targets (Section IV-A).

2) Generated Test Suites: For each class, we gener-
ate 10 suites per approach. Approaches include the
two reinforcement learning algorithms—UCB and DSG-
Sarsa—and two baselines—generation guided by ex-
ception count and a combination of all eight fitness
functions. A search budget of 10 minutes is used per
suite (Section IV-B).

3) Removed Non-Compiling and Flaky Tests: Any tests
that do not compile, or that return inconsistent results,
are removed (Section IV-B).

4) Assessed Effectiveness: We measure the number of
exceptions thrown and detected by each test suite, the
number of faults detected by each approach, and the
number of generations of evolution that occur during
the generation process (Section IV-C).

Tools and experiment scripting are available from
https://github.com/Greg4cr/evosuitefit-exp

A. Case Examples

Defects4J is an extensible database of real faults extracted
from Java projects [20]1. The version we employed, Defects4J
1.4, consists of 395 faults from six projects: Chart (26 faults),

1Available from http://defects4j.org

https://github.com/Greg4cr/evosuitefit-exp
http://defects4j.org


Closure (133 faults), Lang (65 faults), Math (106 faults),
Mockito (38 faults), and Time (27 faults). Nine of the case
examples were excluded from our analysis—Closure faults 38,
44, 47, and 51, Math faults 13, 31, and 59, Mockito fault 6,
and Time fault 21—as no technique caused exceptions to be
thrown. For each fault, Defects4J provides access to the faulty
and fixed versions of the code, developer-written test cases
that expose the fault, and a list of classes and lines of code
modified by the patch that fixes the fault.

Each fault is required to meet three properties. First, a pair
of code versions must exist that differ only by the minimum
changes required to address the fault. The “fixed” version
must be explicitly labeled as a fix to an issue, and changes
imposed by the fix must be to source code, not to other project
artifacts such as the build system. Second, the fault must be
reproducible—at least one test must pass on the fixed version
and fail on the faulty version. Third, the fix must be isolated
from unrelated code changes such as refactoring.

B. Test Suite Generation

For each class from each case example from Defects4J, we
have generated test suites using each reinforcement learning
approach—UCB and DSGSarsa. In addition, we generate tests
for two baseline approaches representing current practice:

• Exception Count: A common fitness function representa-
tion of the goal of throwing exceptions is to simply count
the number of exceptions thrown by a test suite. This
would be the likely starting point for a tester interested
in inducing exceptions.

• Combination of all Eight Functions (“Default”): The
default configuration of EvoSuite is a combination of all
eight criteria also used in the RL process. This config-
uration is used because it attains reasonable fulfillment
of each individual function, and in theory will produce
multifaceted test suites effective at fault-finding [28]. This
configuration represents a “best guess” at what would
produce effective test suites, and would be considered a
reasonable approach in the absence of a known, informa-
tive fitness function.

Test suites are generated that target the classes reported
as relevant to the fault by Defects4J. Tests are generated
using the fixed version of the CUT and applied to the faulty
version because EvoSuite generates its own assertions for use
as oracles. In practice, this translates to a regression testing
scenario, where tests are generated using a version of the
system understood to be “correct” in order to guard against
future issues [31]. Tests that fail on the faulty version, then,
detect behavioral differences between the two versions2.

To perform a fair comparison between approaches, each is
allocated a ten minute search budget for test generation. In past
work, 10 minutes was used as the maximum generation time
and represented a point of “diminishing returns” for detection
of the faults in Defects4J [30].

2Note that this is identical practice to other studies using EvoSuite with
Defects4J, i.e. [31], [30]

To control experiment cost, we deactivated assertion
filtering—all possible regression assertions are included. All
other settings were kept at their default values. As results may
vary, we performed 10 trials for each fault and search budget.
This resulted in the generation of 15,800 test suites (ten trials,
four approaches, 395 faults), representing over 2,633 hours
of computation time. We performed experiments on Amazon
EC2 infrastructure.

Generation tools may generate flaky (unstable) tests [31].
For example, a test case that makes assertions about the sys-
tem time will only pass during generation. We automatically
remove flaky tests. First, all non-compiling test suites are
removed. Then, each remaining test suite is executed on the
fixed version five times. If the test results are inconsistent, the
test case is removed. This process is repeated until all tests
pass five times in a row. On average, less than one percent of
tests tends to be removed from each suite.

C. Data Collection

In order to address our research questions, we collect the
following data for each test suite:

• Number of Unique Exceptions Discovered During
Generation

• Number of Unique Exceptions Thrown by the Final
Test Suite: Tests that trigger an exception can be lost
during the generation process. We calculate this number
by monitoring test suite execution.

• Number of Faults Detected
• Number of Generations of Evolution: The amount of

time that it takes to complete one generation of evolution
is not static, and each approach may complete a different
number of generations during the test generation process
based on the time needed to calculate each employed
fitness function. Reinforcement learning will add addi-
tional overhead to this process, further decreasing the
number of completed generations. We collect the number
of generations to assess the impact of fitness function
choice and RL overhead.

• Decisions Made by EvoSuiteFIT: The reinforcement
learning algorithms reformulate the fitness function com-
bination in use at regular intervals. Each time a combi-
nation is selected, we log the decision made. This can
assist in understanding how the reinforcement learning
algorithms function, and how they make decisions in
service of goal attainment.

V. RESULTS & DISCUSSION

We are interested in understanding the effectiveness of
EvoSuiteFIT in terms of discovering and exposing exceptions
and faults. We are also interested in the impact of the overhead
of reinforcement learning on the generation process and trends
in how the RL algorithm makes selections. The following
subsections detail our observations.



TABLE I: Median count of exceptions thrown and exceptions discovered for each technique, along with the median ratio of
thrown to discovered. Counts are normalized between 0-1 for each fault to allow comparison across case examples.

DSG-Sarsa UCB Exception Count Default
System Thrown Discovered Thrown Discovered Thrown Discovered Thrown Discovered
Chart 1.00 1.00 1.00 1.00 0.40 0.40 0.76 0.76

Closure 1.00 1.00 1.00 1.00 0.33 0.33 0.67 0.67
Lang 1.00 1.00 1.00 1.00 0.68 0.68 0.92 0.95
Math 1.00 1.00 1.00 1.00 0.60 0.60 0.75 0.75

Mockito 1.00 1.00 1.00 1.00 0.67 0.67 0.89 0.90
Time 1.00 1.00 1.00 1.00 0.42 0.43 0.73 0.73

Overall 1.00 1.00 1.00 1.00 0.50 0.50 0.75 0.75
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Fig. 2: Unique exceptions thrown by each technique. Counts
are normalized between 0-1 for each case example.

A. Ability to Discover and Retain Exceptions

Our first question asks whether reinforcement learning can
be used to more effectively meet our goal of throwing more
exceptions than baseline approaches. We assess this along two
dimensions. First, we look at the number of unique exceptions
discovered by each approach during test generation. Second,
we look at the number of unique exceptions thrown by the
final test suite produced by each method. Are exception-
inducing tests cases both produced and retained by the gener-
ation framework? An effective approach must excel at both.

We do not know a priori how many exceptions can be
thrown by a class. However, we do know that the number of
possible exceptions varies from class to class. Therefore, it is
not reasonable to compare raw counts of exceptions between
each case example. If we discover thirty exceptions when
testing one class, and five when testing another, we should
not compare five to thirty. Instead, we normalize exception
counts between 0-1 for each case example, using the formula
( Number of Exceptions Discovered/Thrown

Maximum Number of Observed Exceptions for the Current Class ). Scaling all
counts in this manner allows fair comparison.

The median count of exceptions thrown and discovered
for each technique is listed in Table I for each project and
overall. Boxplots of the exceptions thrown by each technique
are shown in Figure 2. Results for exceptions discovered are
similar, so are omitted. The results show that both reinforce-
ment learning techniques have a higher median performance in
both measurements than the two baselines. This is true across
all systems, with EvoSuiteFIT attaining up to a 203.03%
improvement in median exceptions thrown over the basic

TABLE II: P-Values for Mann-Whitney rank-sum test for
exceptions discovered. Exceptions thrown are the same.

DSG-Sarsa UCB Exception Default
DSG-Sarsa - < 0.01 < 0.01 < 0.01

UCB 0.99 - < 0.01 < 0.01
Exception 1.00 1.00 - 1.00

Default 1.00 1.00 < 0.01 -

TABLE III: Results of Vargha-Delaney A Measure for excep-
tions thrown/discovered. Large positive effect sizes are bolded.

DSG-Sarsa UCB Exception Default
DSG-Sarsa - 0.53, 0.53 0.90, 0.90 0.90, 0.80

UCB 0.47, 0.47 - 0.89, 0.89 0.80, 0.77
Exception 0.10, 0.10 0.11, 0.11 - 0.31, 0.31

Default 0.19, 0.21 0.21, 0.32 0.69, 0.69 -

exception count and a 49.25% improvement over the eight-
way default configuration. EvoSuiteFIT also tends to retain
all discovered exceptions, while the default configuration may
discard a small number of exception-triggering tests if offered
improvements in the other fitness functions.

Figure 2 further shows the ability of reinforcement learning
techniques to trigger unique exceptions. Both RL techniques
not only offer a higher median than the competing techniques,
but also have a narrower interquartile spread, showing rela-
tively consistent performance. DSGSarsa and UCB attain the
same median performance. However, DSG-Sarsa yields more
consistent performance, as shown by the decreased spread of
results. Both reinforcement learning techniques demonstrate
superior ability to discover exception-triggering input over
traditional baselines. Additionally, due to the use of a test
archive to retain exception-triggering input, the two techniques
do a better job of retaining exceptions.

We can perform statistical analysis to assess our observa-
tions. For each pair of techniques and baselines, we formulate
hypotheses and null hypotheses:

• H1: Test suites generated using technique A will have a
different distribution of exception discovery results than
suites generated using technique B.

• H2: Test suites generated using technique A will have a
different distribution of exception retention results than
suites generated using technique B.

• H01: Observations of exception discovery for both tech-
niques are drawn from the same distribution.

• H02: Observations of exception retention for both tech-
niques are drawn from the same distribution.

Our observations are drawn from an unknown distribution;
To evaluate the null hypotheses without any assumptions



TABLE IV: Number of faults detected by each approach.

System DSG-Sarsa UCB Exception Count Default
Chart 21 22 10 17

Closure 9 8 5 20
Lang 38 42 11 34
Math 73 73 13 61

Mockito 5 6 3 5
Time 16 18 5 14

Overall 162 169 47 151

on distribution, we use a one-sided (strictly greater) Mann-
Whitney-Wilcoxon rank-sum test [33], a non-parametric test
for determining if one set of observations is drawn from a
different distribution that another set. We apply the test for
each pairing of techniques and baselines with α = 0.05.

The resulting p-values are listed in Table II. P-values are
the same for both discovered and thrown. The results confirm
our informal observations. For DSG-Sarsa, we can reject both
null hypotheses for UCB and two baselines. For UCB, we can
reject the null hypotheses for the two baselines. For the default
baseline, we can reject the null hypotheses for the exception
count baseline, but not for either EvoSuiteFIT technique.

We have also used the Vargha-Delaney A measure to assess
effect size [32]. The results for both exception discovery and
retention are listed in Table III, with large effect sizes in
bold (≥ 0.80). This test further confirms our observations.
In terms of both exceptions retained and discovered, DSG-
Sarsa outperforms the two baselines with a large effect size.
UCB outperforms the exception count baseline with a large
effect size in both exception discovery and retention, and
outperforms the default baseline with a large effect size for
exception retention and a medium effect size in discovery.
DSG-Sarsa outperforms UCB, but with a negligible effect size.

Both EvoSuiteFIT techniques discover and retain more
exception-triggering input than the baseline techniques,

with DSG-Sarsa yielding more consistent results.

B. Fault Detection Effectiveness

In theory, forcing the class-under-test to throw exceptions
will help developers discover faults in the system. Therefore,
our second research question revolves around the ability of the
generated test suites to trigger and detect failures. Both DGS-
Sarsa and UCB trigger more exceptions than the baseline fit-
ness functions. Does this translate into greater fault detection?

Table IV lists the number of faults detected by each
technique. We can immediately see that both EvoSuiteFIT
techniques generate suites that are able to detect faults that
are missed by suites generated using the baselines. UCB,
in particular, detects the most faults—identifying seven more
faults than DSG-Sarsa (4.32%), 18 more than default (11.92%
more), and 122 more than the exception count (259.57%).

The Default combination outperforms EvoSuiteFIT in one
system—Closure—discovering 11 more faults than DSG-
Sarsa. In these cases, it is likely that triggering these fault
requires deep exploration of the code structure, and these faults
may not be detected by triggering exceptions, requiring the

TABLE V: Median time per generation (in seconds).
EX+(1,2,3) = exception count + 1-3 fitness functions. The
comparison data [30] lacked EX+1 and EX+3 data for Mock-
ito.

DSG-Sarsa UCB EX+1 EX+2 EX+3 Default
Chart 0.24 0.26 0.36 0.49 0.75 3.29

Closure 0.32 0.49 1.40 1.61 2.70 5.71
Lang 0.30 0.44 0.23 0.34 1.03 4.38
Math 0.14 0.22 0.18 0.25 0.42 3.03

Mockito 0.03 0.03 - 0.03 - 0.08
Time 0.33 0.43 0.32 0.50 0.97 3.72

Overall 0.22 0.31 0.72 0.64 1.23 3.84

production of incorrect output instead. The default configura-
tion is outperformed across all other systems.

We previously found that DSG-Sarsa yielded slightly better
and more consistent performance. This does not necessarily
translate into higher fault detection, as UCB detected more
faults. The difference between the two may come down to dif-
fering strategies in how fitness functions are chosen. In search-
based test generation, fitness functions bias the selection of
input. The reinforcement learning strategy, by impacting how
and which fitness functions are selected, will further impact
the selection process. Differences in how UCB and DSG-
Sarsa make this selection will influence the likelihood of fault
detection. Further analysis is required to understand the full
impact that reinforcement learning strategy can have on fault
detection capability. Still, the broad hypothesis that triggering
exceptions can aid fault discovery appears to have some merit.

Both EvoSuiteFIT techniques produce suites that detect
faults missed by the other techniques. UCB detects
11.92 and 249.57% more faults than the baseline

techniques, and 4.3% more than DSG-Sarsa.

C. Impact of Reinforcement Learning Overhead

Search-based test generation approaches are generally
benchmarked using a fixed time budget [31]. During this pe-
riod, the amount of work completed by each algorithm may not
be equal. The number of generations of evolution completed
will largely depend on the choice of fitness functions, with
the cost being determined largely by the total cost to calculate
fitness. The addition of reinforcement learning will further
impact this cost. We are interested in understanding whether
the cost of reinforcement learning has more of an effect than
the cost of fitness calculation, and the further impact of being
able to change that set of fitness functions.

Table V lists the median time per generation for DSG-
Sarsa, UCB, and the Default combination. An issue in the
version of EvoSuite deployed prevented us from collecting
accurate generation times for the exception count alone, but—
as it is an extremely simple count that does not require
sophisticated instrumentation—it can be assumed that the
exception count is far less expensive than any other option.
Using data from past experiments [30], [12], we can also
compare the time per generation with a sample of 33,759 test
suites generated using combinations of the exception count and



 0
 10000
 20000
 30000
 40000
 50000
 60000
 70000
 80000
 90000

EX, MNE

EX, BR, WM

EX EX, WM

EX, DB, ME

EX, BR, LI

EX, MU

EX, BR

EX, OU

EX, LI

Ti
m

es
 C

ho
se

n

(a) Chart

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

EX, MNE

EX EX, WM

EX, BR, WM

EX, OU

EX, ME

EX, BR

EX, BR, LI

EX, DB

EX, LI

Ti
m

es
 C

ho
se

n

(b) Closure

 0

 20000

 40000

 60000

 80000

 100000

 120000

EX, MNE

EX EX, WM

EX, BR, WM

EX, BR

EX, OU

EX, LI
EX, ME

EX, BR, LI

EX, DB

Ti
m

es
 C

ho
se

n

(c) Lang

 0

 50000

 100000

 150000

 200000

 250000

 300000

EX, BR, WM

EX, MNE

EX EX, ME

EX, WM

EX, DB

EX, OU

EX, BR, LI

EX, BR

EX, LI

Ti
m

es
 C

ho
se

n

(d) Math

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

EX, MNE

EX EX, WM

EX, OU

EX, BR, WM

EX, ME

EX, DB

EX, WM, MNE, DB

EX, BR, LI

EX, BR

Ti
m

es
 C

ho
se

n

(e) Mockito

 0

 5000

 10000

 15000

 20000

 25000

 30000

EX, MNE

EX, WM

EX, BR, WM

EX, BR

EX, OU

EX, ME

EX, BR, LI

EX, WM, DB, OU

EX, DB

Ti
m

es
 C

ho
se

n

(f) Time

Fig. 3: Top ten fitness function combinations chosen by DSG-Sarsa for each system. EX = Exception Count, BR = Branch
Coverage, DB = Direct Branch Coverage, LI = Line Coverage, OU = Output Coverage, ME = Method Coverage, MNE =
Method (No Exception), WM = Weak Mutation Coverage

1-3 additional fitness functions—options that can be chosen by
reinforcement learning. This sample lacked EX+1 or EX+3
cases for Mockito, but can still be used to understand the
impact of reinforcement learning.

From Table V, we can see that the median cost per gen-
eration tends to increase as additional fitness functions are
added to the calculation, with the cost per generation for the
Default combination often being many times higher than that
of either EvoSuiteFIT approach. While reinforcement learning
may add to the cost of generation, its overhead is far less than
that required to use a larger number of fitness functions.

Most of the potential users of a test generation framework
would, rightfully, not be interested in tinkering with fitness
functions until they stumbled on the right approach. In the
absence of perfect knowledge, using the “default”—all eight
fitness functions—is a reasonable idea. However, it is also an
expensive option. Reinforcement learning can reduce the time
required to get effective test cases.

Both reinforcement learning approaches perform similarly
to static EX+1 combinations, if not faster. Figure 3 helps
explain why. In Figure 3, we show the ten actions chosen
most often by DSG-Sarsa for each system. While the Evo-
SuiteFIT techniques can choose combinations of up to four
fitness functions, it rarely does so in practice. Often, EX+1
combinations are chosen, or even the simple exception count.
Because EvoSuiteFIT can strategically change its fitness func-
tion selection, any overhead added by reinforcement learning
is mitigated by speed gains from the ability to avoid the use
of unhelpful fitness functions.

The ability to avoid calculation of unhelpful fitness
functions mitigates reinforcement learning overhead.

D. Trends in Reinforcement Learning Behavior

EvoSuiteFIT is able to freely alternate between 64 combi-
nations of fitness functions. To understand why reinforcement
learning is effective, it is important to understand how RL
techniques choose between these actions. We list the most
commonly-chosen actions taken by DSG-Sarsa in Figure 3.

From Figure 3, we can see that the systems differ in terms of
the frequency choices are made, and to a small extent, in terms
of the combinations chosen. For example, DSG-Sarsa fre-
quently used a combination of exception count, Direct Branch
Coverage, Weak Mutation Coverage, and Output Coverage for
the Time system. However, although the ordering differs, there
are also a lot of commonalities between the choices made.

For the most part, the favored combinations are simple—
pairing the exception count with, at most, one additional fitness
function. It is reasonable that simple combinations would
be used frequently. Larger combinations introduce a risk of
conflicting goals, and are harder to maximize. Simple com-
binations offer a reasonable feedback mechanism to increase
the exception count. Complex combinations may offer less
feedback by adding noise to the search.

Many of the fitness function combinations chosen by DSG-
Sarsa would yield poor results when used on their own, as
static fitness functions for suite generation. For example, DSG-
Sarsa often uses the pure exception count, when this yields
poor results when used as the sole fitness function. Similarly,



we know from past unpublished experiments that the EX-MNE
combination produces poor results.

However, it is important to remember that test generation
is a stateful process. Each round of the generation process
builds on the results of previous rounds. There are times where
the choices that DSG-Sarsa makes are relevant given the state
of generation, even if those choices yield poor results when
used in a static context. For example, if a suite already has
achieved a high level of code coverage, it might make sense
to switch to pure use of the exception count to further tune the
population. Similarly, the EX-MNE combination makes sense
as a strategic choice because it adds a light feedback mecha-
nism to the exception count. Method (No Exception) Coverage
requires that methods execute without exception. This does not
mean that the test itself cannot throw an exception. Rather, it
means that test generation will be encouraged to execute some
code before the exception is thrown. This combination may
be ineffective in a static context, as it does not offer enough
feedback to fully explore the code space. However, it can be
very effective if chosen at the right stage of the generation
process, as part of an adaptive process.

The ability to adjust the set of fitness functions at
regular intervals in the generation process allows

EvoSuiteFIT to make strategic choices that refine the
test suite. This is not possible when a static set of fitness

functions is used throughout the generation process.

VI. RELATED WORK

Hyperheuristic search—often based on reinforcement
learning—has been employed in addressing a number of
search-based software engineering problems. Jia et al. used
reinforcement learning to select the metaheuristic algorithm
for Combinatorial Interaction Testing, improving performance
by learning the best algorithm for test generation for targeted
problems [17], [18]. Similarly, Zamli et al. used hyperheuristic
search to learn the selection and acceptance mechanisms used
by the metaheuristic in Combinatorial Interaction Testing [34].
Guizzo et al. have used a reinforcement learning-based hy-
perheuristic search to tune the algorithm for optimizing the
integration and test ordering problem [13], [14]. In addition,
Kumari and Srinivas have used hyperheuristic search to tune
software design—with the algorithm learning how to cluster
classes for maximum cohesion and minimum coupling [22].

In all of these cases, the hyperheuristic is used to tune the
algorithm itself, and not the fitness functions. Fitness function
selection has been performed by hyperheuristic search in other
domains, such as production scheduling [7], [24]. However,
our approach is the first automated technique for optimizing
the set of fitness functions used during test generation.

VII. THREATS TO VALIDITY

External Validity: Our study has focused on six systems—a
relatively small number. Nevertheless, we believe that such
systems are representative of, at minimum, other small to

medium-sized Java systems. We believe that Defects4J offers
enough fault examples that our results are generalizable to
other, sufficiently similar, projects. As Defects4J is used across
multiple research fields, the use of this dataset also allows
comparisons of our approach with other research, and allows
others to replicate our experiments.

We have implemented our reinforcement learning tech-
niques in a single test generation framework. There are many
search-based methods of generating tests and these methods
may yield different results. Unfortunately, no other generation
framework offers the same number and variety of fitness
functions. Therefore, a more thorough comparison of tool
performance cannot be made at this time. By using the same
framework to generate all test suites, we can compare our
approach to the baselines on an equivalent basis.

To control experiment cost, we have only generated ten test
suites for each combination of fault, budget, and configuration.
It is possible that larger sample sizes may yield different
results. However, given the consistency of our experiment
results, we believe that this is a sufficient number of repetitions
to draw stable conclusions.
Conclusion Validity: When using statistical analyses, we
have attempted to ensure the base assumptions behind these
analyses are met. We have favored non-parametric methods,
as distribution characteristics are not generally known a priori,
and normality cannot be assumed.

VIII. CONCLUSIONS

Choosing informative fitness functions is crucial to meeting
the goals of a tester. Unfortunately, many testing goals—
such as forcing the class-under-test to throw exceptions—
do not have a known, effective fitness function formulation.
We propose that the key to meeting such goals is to treat
fitness function identification as a learning problem. An adap-
tive algorithm—one that can vary the selection of fitness
functions—could adjust fitness functions throughout the gen-
eration process to maximize attainment of the chosen goal. To
test this hypothesis, we have implemented two reinforcement
learning algorithms in the EvoSuite framework.

Both EvoSuiteFIT techniques discover and retain more
exception-triggering input than two baseline techniques. Both
techniques also produce suites that detect a variety of faults
missed by the other techniques. The ability to adjust the
set of fitness functions at regular intervals in the generation
process allows EvoSuiteFIT to make strategic choices that
refine the test suite. Further, the ability to avoid the calcu-
lation of unhelpful fitness functions mitigates the additional
computational overhead imposed by reinforcement learning.
This is not possible when a static set of fitness functions is
used throughout the generation process.

We make EvoSuiteFIT available to others for use in test gen-
eration research or practice. We hypothesize that other goals
without known effective fitness function representations could
also be maximized in a similar manner, such as triggering
more generic crashes or Strong Mutation coverage. In future
work, we will examine apply EvoSuiteFIT to such goals.
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