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Abstract

Background: High-throughput amplicon sequencing of marker genes, such as the 16S rRNA gene in Bacteria and
Archaea, provides a wealth of information about the composition of microbial communities. To quantify differences
between samples and draw conclusions about factors affecting community assembly, dissimilarity indices are
typically used. However, results are subject to several biases, and data interpretation can be challenging. The
Jaccard and Bray-Curtis indices, which are often used to quantify taxonomic dissimilarity, are not necessarily the
most logical choices. Instead, we argue that Hill-based indices, which make it possible to systematically investigate
the impact of relative abundance on dissimilarity, should be used for robust analysis of data. In combination with a
null model, mechanisms of microbial community assembly can be analyzed. Here, we also introduce a new
software, qdiv, which enables rapid calculations of Hill-based dissimilarity indices in combination with null models.

Results: Using amplicon sequencing data from two experimental systems, aerobic granular sludge (AGS) reactors
and microbial fuel cells (MFC), we show that the choice of dissimilarity index can have considerable impact on
results and conclusions. High dissimilarity between replicates because of random sampling effects make incidence-
based indices less suited for identifying differences between groups of samples. Determining a consensus table
based on count tables generated with different bioinformatic pipelines reduced the number of low-abundant,
potentially spurious amplicon sequence variants (ASVs) in the data sets, which led to lower dissimilarity between
replicates. Analysis with a combination of Hill-based indices and a null model allowed us to show that different
ecological mechanisms acted on different fractions of the microbial communities in the experimental systems.

Conclusions: Hill-based indices provide a rational framework for analysis of dissimilarity between microbial
community samples. In combination with a null model, the effects of deterministic and stochastic community
assembly factors on taxa of different relative abundances can be systematically investigated. Calculations of Hill-
based dissimilarity indices in combination with a null model can be done in qdiv, which is freely available as a
Python package (https://github.com/omvatten/qdiv). In qdiv, a consensus table can also be determined from
several count tables generated with different bioinformatic pipelines.
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Microbial fuel cell
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Background
Microbial communities drive global cycles of elements
and play important roles for human health, food pro-
duction, and environmental engineering services such
as wastewater treatment. On Earth, there may be as
many as 1012 different microbial species [1], and un-
derstanding how communities assemble, develop, and
function is a formidable task. During the last decades,
significant progress in DNA sequencing technology
has provided a wealth of information about the diver-
sity of microbial communities in both natural and
engineered environments. Polymerase chain reaction
(PCR) amplification of parts of the 16S rRNA gene
followed by high-throughput sequencing using plat-
forms such as 454 pyrosequencing, Illumina, Ion
Torrent PGM, and PacBio has made it possible to
probe millions of sequences in samples. For example,
the Illumina MiSeq platform and dual-indexing of
PCR primers allow over 100 samples to be sequenced
in parallel at a depth exceeding 10,000 reads per sam-
ple [2, 3]. In addition to the rRNA gene, PCR target-
ing functional genes, such as the amoA in ammonia-
oxidizing bacteria, can be used to study specific func-
tional groups [4].
Interpretation of results from high-throughput

amplicon sequencing experiments is, however, chal-
lenging. Varying copy numbers of the target gene,
sampling, DNA extraction, PCR amplification, and se-
quencing can all lead to biases, which distort the rela-
tive proportions of taxa in a sample [5–7]. For
example, Gonzalez et al. [8] showed that taxa with
low abundance are typically underrepresented in PCR-
based assays. PCR and sequencing also produce error-
containing sequences [9]. Several computational
pipelines can be used to differentiate between correct
and erroneous sequence reads. After quality filtering,
the reads are typically clustered into operational taxo-
nomic units (OTUs), which are formed by grouping
sequences that are similar. A similarity threshold of
97% has commonly been used. Recently, instead of
OTU-clustering, alternative approaches have been de-
veloped that denoise the reads and derive exact bio-
logical sequences [10–12]. The denoiser algorithms
use different methods to differentiate between true
amplicon sequence variants (ASVs) and errors. The
generated ASVs can differ from each other by as little
as one nucleotide, which makes it possible to investi-
gate microbial diversity at higher resolution (e.g.,
[13]). Another advantage is that the ASVs represent
true biological entities and can be compared to re-
sults from other sequencing runs. In OTU clustering,
the centroid sequences which represent the OTUs, as
well as the classification of a read to an OTU, depend
on all the other sequences in the run [14]. Thus,

OTU sequences do not have a meaning outside of
the specific context in which they are generated [15].
Once OTUs or ASVs have been determined, it is

often of interest to study compositional differences
between microbial communities in samples collected
from different locations or time points (beta diver-
sity). Indices describing the similarity or difference
between sampled communities using a single number
are commonly used. Many dissimilarity indices are
available [16, 17]. Some, such as the Jaccard and
Sørensen indices, are incidence-based, which means
they do not consider differences in relative abundance
between OTUs/ASVs. Other indices take the relative
abundance into account. In microbial community as-
says, it is difficult to know how much weight should
be put on the relative abundance of individual OTUs/
ASVs. On the one hand, we know that the read
abundance and the true relative abundance of
microorganisms do not always correlate in PCR-based
assays [18]. Rare OTUs/ASVs often are underrepre-
sented [8] but can play important roles for commu-
nity function [19]. It may therefore be tempting to
use indices that weigh detected OTUs/ASVs equally.
On the other hand, we know that PCR and sequen-
cing cause errors, which may remain in the dataset
after bioinformatics processing [9, 20]. Microbial
communities typically also contain a long tail of ex-
tremely low-abundant taxa, and random sampling af-
fects the observed dissimilarity [5]. This view would
favor the use of an index giving higher weight to
abundant OTUs/ASVs, and indeed, the Bray-Curtis
index, which takes relative abundance into account, is
probably the most commonly used taxonomic dissimi-
larity index in microbial ecology (equations for the
Jaccard and Bray-Curtis indices are shown in Text
S1.1, Additional file 1). The Bray-Curtis index is very
sensitive to differences in relative abundance for the
most abundant OTUs/ASVs, and a way to amplify the
importance of differences for low-abundant OTUs/
ASVs is to log-transform the count data before calcu-
lating the index [21]. However, a systematic approach
for evaluating how relative abundance information
affect observed dissimilarity is lacking for the indices
described above.
There are, however, other indices that deserve more

attention. Hill numbers are a set of diversity indices for
which the weight given to the relative abundance of an
OTU/ASV can be varied [22]. Hill numbers, which are
also called effective numbers, were originally presented
as measures of alpha diversity, i.e., OTU/ASV diversity
within a community [23]. Equations 1a and 1b show
how Hill numbers are calculated. The diversity order (q)
determines the weight given to the relative abundance of
an OTU/ASV in a community. For example, if q is 0, the
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relative abundance is not considered; if q is 1, the
OTUs/ASVs are weighted exactly according to their
relative abundance; and if q is higher than 1, more
weight is given to OTUs/ASVs having high relative
abundance. For a community with S OTUs/ASVs, all
having the same relative abundances (i.e., 1/S), the Hill
number is equal to S for all diversity orders.

q
D ¼

XS

i¼1
pqi

� �1= 1 − qð Þ
Eq:1a; if q≠1ð Þ

1
D ¼ exp −

XS

i¼1
pi � ln pið Þð Þ

� �
Eq:1b; if q ¼ 1ð Þ

D is the Hill number, q is the diversity order, S is the
total number of OTUs/ASVs, and pi is the relative abun-
dance of the ith OTU/ASV in the community.
For two or more communities, Hill numbers can be

decomposed into alpha (α), gamma (γ), and beta (β)
components [24]. qDα is the effective number of OTUs/
ASVs per community (for a more detailed definition, see
Text S1.2 in Additional file 1), qDγ is the Hill number
for the combined communities (i.e., the regional or
pooled community), and qDβ is the ratio between the
two (Eq. 2).

q
D

β
¼

q
Dγ

q
Dα

ð2Þ

The parameter qDβ represents the effective number of
distinct communities. It ranges from one to the number
of communities being compared (N). If qDβ = 1, the
compared communities are identical to each other. If
qDβ = N, the compared communities are completely dis-
tinct and do not share any OTUs/ASVs with each other.
qDβ can be transformed to an overlap or dissimilarity
index constrained between 0 and 1 (dissimilarity = 1 −
overlap) [25]. There are several ways of doing this trans-
formation [26]. Chao and Chiu [27] describe two classes
of overlap indices. The local overlap indices measure the
effective average proportion of OTUs/ASVs in a com-
munity shared with the other compared communities.
The regional overlap indices measure the effective pro-
portion of OTUs/ASVs in the pooled community that
are shared between all compared communities. At a di-
versity order of 0, which means only the presence/ab-
sence of OTUs/ASVs is considered, the local index
equals the Sørensen index and the regional index equals
the Jaccard index. Equations 3a and 3b show the trans-
formation of qDβ into the class of local dissimilarity indi-
ces (qd). Thus, qd quantifies the effective average
proportion of OTUs/ASVs in a community not shared
with the other compared communities. Throughout the
article, we use this local class of indices when we refer
to Hill-based dissimilarity. Further details about the

calculations and equations for the class of regional indi-
ces can be found in Text S1.2, Additional file 1.

q
d ¼

�
q
Dβ

� 1 − qð Þ
− 1

N 1 − qð Þ − 1

Eq: 3a; if q≠1ð Þ

1
d ¼

ln
�
q
Dβ

�

ln Nð Þ Eq:3b; if q ¼ 1ð Þ

qd is the local dissimilarity index of diversity order q
and N is the number of communities being compared.
The use of Hill numbers is more common in the

macroecological literature, both as measures of alpha di-
versity and for partitioning of diversity [28]. For micro-
bial community studies using high-throughput amplicon
sequencing, Hill numbers have also been recommended
as measures of alpha diversity [29–31]. However, Hill-
based indices are rarely used to quantify beta diversity.
In two recent studies, we used Hill-based dissimilarity
indices of specific diversity orders to quantify differences
between microbial communities, giving different weight
to the relative abundance of OTUs/ASVs [32, 33]. In this
paper, we will show that examining dissimilarity (qd) for
a continuum of diversity orders is a rational approach to
illustrate how OTUs/ASVs with different relative abun-
dances contribute to the dissimilarity between
communities.
A difficulty with analyzing beta diversity, irrespective

of the chosen index, is the interpretation of the results.
We might be interested in determining if deterministic
factors select for the same or different OTUs/ASVs in
two sampled habitats or if the distribution of OTUs/
ASVs between the habitats is governed by stochastic fac-
tors. The dissimilarity value alone tells us nothing about
this. For example, if two habitats have different areas for
microbial growth, the habitat with the larger area will
likely have higher richness (number of detected OTUs/
ASVs) because of the taxa-area relationship [34]. Since
alpha and beta diversity are not independent (Eq. 2), the
richness difference will cause a high observed dissimilar-
ity even if the two habitats select for the same OTUs/
ASVs [35, 36]. Null models are useful in the interpret-
ation of dissimilarity values and allow us to differentiate
between different community assembly mechanisms [36,
37]. A null model introduced by Raup and Crick [38]
and developed by Chase et al. [36] controls for richness
differences between samples. Samples with pre-defined
numbers of OTUs/ASVs are randomly assembled from a
regional pool. The definition of the regional pool and
the randomization scheme will affect the outcome of a
null model analysis [39, 40]. The regional pool could
consist of all OTUs/ASVs detected in the samples being
compared and could also include other OTUs/ASVs that
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could possibly colonize the studied habitat. The
randomization scheme could, e.g., be based on the fre-
quency of samples in which a certain OTU/ASV is found
[41] or the total abundance of reads associated with the
OTU/ASV in the regional pool. The random assembly
process is repeated many times, and a null distribution
for the dissimilarity between the two samples is gener-
ated. This null distribution is then compared to the ob-
served dissimilarity. If the values are similar, the
observed dissimilarity can be explained by stochastic fac-
tors. If the observed dissimilarity is higher or lower than
the null expectation, there are likely deterministic factors
that favor different or similar taxa in the two habitats
[37]. The Raup-Crick model was originally developed for
incidence-based data [36, 38] and was recently extended
to also function with the Bray-Curtis index [41]. In this
paper, we further extend the Raup-Crick null model to
function with the whole continuum of Hill-based dis-
similarity indices (qd) (Text S1.3, Additional file 1). The
index, here denoted as the Raup-Crick index for diver-
sity order q (qRC), is calculated using Eq. 4.

q
RC ¼

N½qdexp<
q
dobs� þ 0:5 � N½qdexp¼q

dobs�
NTOT

ð4Þ

N[qdexp<qdobs] is the number of randomizations in
which the dissimilarity between the randomly assembled
samples is less than between the observed samples,
N[qdexp=qdobs] is the number of randomizations in which
the dissimilarities are equal, and NTOT is the total num-
ber of randomizations.
The goal of this study is to show how the choice of

dissimilarity index impacts the results from high-
throughput amplicon sequencing experiments. We
examine sequencing data from a new experiment with
aerobic granular sludge (AGS) reactors, and we re-
analyze a previously published data set [32] from a study
with microbial fuel cells (MFCs). To reduce the effects
of bioinformatics choices on the sequencing results, we
examine count tables generated with several bioinfor-
matics pipelines and use a consensus approach to infer a
count table that only includes ASVs detected by two dif-
ferent denoiser pipelines. In the AGS experiment, we
test the hypothesis that two bioreactors started from the
same inoculum and operated under identical conditions
for 150 days exhibit the same change in microbial com-
munity composition compared to the inoculum. In the
MFC experiment, we test the hypothesis that microbial
communities growing in different habitats within a
glucose-fed MFC are more similar than microbial com-
munities growing in different habitats within an acetate-
fed MFC. We show that the conclusions from an experi-
ment may differ depending on the chosen dissimilarity

index. We propose that a solution to this problem is to
analyze community dissimilarity for a span of diversity
orders using Hill-based indices, and we demonstrate that
for the whole range of dissimilarity indices, null models
can be used to disentangle community assembly mecha-
nisms. Finally, we introduce a free software and Python
package, qdiv, which enables rapid and simple calcula-
tions of the indices and includes an algorithm for the
generation of consensus count tables. Our study focuses
on taxonomic dissimilarity indices. The presented
methods could, however, be extended to indices taking
phylogenetic relationships into account.

Results
Behavior of Hill-based dissimilarity indices and the qRC
null model
Count tables from microbial community surveys typ-
ically consist of a few highly abundant OTUs/ASVs
and many low-abundant ones. Using a highly simpli-
fied count table (Fig. 1a, b), we demonstrate how the
Hill-based dissimilarity indices behave in comparison
to the Jaccard and Bray-Curtis indices, which are
more commonly used in microbial community stud-
ies. Hill-based dissimilarity (qd) is shown as functions
of the diversity order, q (Fig. 1c, d). Since the Jaccard
index is identical to the regional Hill-based dissimilar-
ity index of diversity order 0 (Text S1.2, Additional
file 1), it is plotted at q equals 0. The Bray-Curtis
index is plotted at q equals 1. Bray-Curtis and Hill-
based dissimilarity indices are usually not comparable.
However, in the special case when two samples have
the same species abundance distribution and a species
detected in both samples have the exact same relative
abundance in both samples, the Bray-Curtis dissimi-
larity is identical to 1d (for proof, see Text S1.4 in
Additional file 1).
First, let us consider the situation when samples have

equal richness, i.e., the same numbers of detected spe-
cies (Fig. 1c). Four samples (S0, S1, S2, S3) each have 2
abundant, 4 intermediate, and 8 rare species. Samples S0
and S1 share 1 abundant, 2 intermediate, and 4 rare spe-
cies. As expected, the Hill-based dissimilarity (qd) be-
tween S0 and S1 is 0.5 for all values of q. Sample S0 and
S2 share half of the rare and intermediate species, but
none of the abundant species and consequently qd goes
towards 1 as q increases. Samples S0 and S3 share all
intermediate species, but only 1 of the abundant and 1
of the rare, and consequently, we see a valley in the qd
vs q curve. In these special cases, both samples have the
same species abundance distribution and a species de-
tected in both samples have the exact same relative
abundance in both samples. Consequently, the Bray-
Curtis dissimilarity is identical to 1d. Sample S4, how-
ever, has the same richness as S0 but a different species
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Fig. 1 Behavior of dissimilarity indices with a theoretical data set. a Theoretical count table and b richness of each sample. c Behavior of
dissimilarity indices for samples with equal species abundance distribution, sharing exactly half of the abundant, intermediate, and rare species
(S0–S1); sharing no abundant but half of the rare and intermediate species (S0–S2); or sharing all the intermediate species but only half of the
rare and abundant (S0–S3). S0–S4 share all species but have different species abundance distributions. d Behavior of dissimilarity indices for
samples having different richness (14 in S0 and 2 in S5–S7). In S0–S5, the shared species are the same as the most abundant in S0; in S0–S6, the
shared species are those of intermediate abundance in S0; and in S0–S7, the shared species are rare in S0. e, f Null model analysis comparing
observed dissimilarity to the null expectation for samples S0–S3. The black line and shaded region in e show the average and standard deviation
for the null expectation based on 99 randomizations. Observed dissimilarity and the null expectation (e), and qRC values (f) for the Jaccard
(squares) and Bray-Curtis (circles) indices are also shown
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abundance distribution, and the Bray-Curtis index is dif-
ferent from 1d.
Second, let us consider the situation when samples

have unequal richness (Fig. 1d). Samples S5–S7 have
only two species each. In S5, those two species are the
same as the most abundant ones in sample S0, and con-
sequently, qd decreases with increasing q. In S6, the two
species are the same as two intermediates in S0 and we
can see a valley in the curve. In S7, the two species are
the same as two rare ones in S0 and the dissimilarity in-
creases with q. The Bray-Curtis index shows a different
behavior. For S0–S5, Bray-Curtis is equivalent to Hill-
based dissimilarity with a low diversity order (q) of 0.52,
and for S0–S6 and S0–S7, it is equivalent to diversity or-
ders (q) much higher than 2.
Using the qRC null model, we can compare the ob-

served dissimilarity between two samples to the expected
dissimilarity if the two sampled communities had been
randomly assembled from a regional species pool. The
qRC values, as calculated in Eq. 4, are constrained be-
tween 0 and 1. A value close to 0 means lower dissimi-
larity than the null expectation, and a value close to 1
means higher dissimilarity than the null expectation. In
Fig. 1e, f, the sample pair S0–S3 is used as an example.
For values of q close to 0, the observed dissimilarity is
higher than the null expectation and consequently 0RC
is 1. For higher values of q, the observed dissimilarity is
close to the null expectation and consequently the qRC
values are intermediate, i.e., neither close to 0 or 1 (Fig.
1f). For this theoretical example, it means that if we
weigh species according to their relative abundance (q ≈
1), the observed dissimilarity could be explained by ran-
dom assembly of the two communities from the regional
species pool, but if we give equal weight to all species (q
≈ 0), the observed dissimilarity is higher than we can ex-
pect from a random assembly process.

Inferring consensus count tables from the experimental
data
The number of low-abundant OTUs/ASVs detected
when microbial communities are analyzed using high-
throughput amplicon sequencing can be highly
dependent on bioinformatics pipeline [42]. Here, we
compare results using several pipelines operated with
different settings and infer a consensus table based on
the output from two denoiser pipelines. Samples col-
lected from two experiments (AGS and MFC) were se-
quenced in two separate sequencing runs. The
sequences were processed using DADA2 version 1.10
[43], Deblur version 1.04 [44], USEARCH version 10
[45], and Mothur version 1.41 [46] with various settings,
resulting in 11 count tables for each experiment. In
USEARCH, we used both UNOISE to determine ASVs
and UPARSE to cluster OTUs (see Text S2.1 in

Additional file 2). There were large differences in the
number of detected OTUs/ASVs by different pipelines.
This was mostly caused by large numbers of low-
abundant, potentially spurious OTUs/ASVs appearing
when the pipelines were run with relaxed quality filter-
ing thresholds. Despite the large richness differences,
count tables generated with different pipelines generally
had similar abundance-based diversity values and even-
ness. They also showed similar beta diversity patterns
and were able to distinguish between different sample
categories in the data sets (see Text S2.3-4 in Additional
file 2).
Denoiser pipelines generate exact ASVs, which repre-

sent true biological entities. Thus, an ASV found with
one denoiser pipeline should also be found with another.
To filter out potentially spurious ASVs, information
from several pipelines can be combined in a consensus
table. A function for generating a consensus table from
an unlimited number of count tables was implemented
in qdiv. The consensus function identifies ASVs that are
detected in all compared count tables. For each count
table, the fraction of the reads associated with the set of
shared ASVs is calculated. The count table with the
highest fraction is retained, all ASVs not belonging to
the shared set are discarded, and the retained count
table with the remaining shared ASVs is returned as the
consensus table (for a more detailed description, see
Text S2.2 in Additional file 2). In this study, we inferred
a consensus table based on two count tables generated
with DADA2 and UNOISE. For the AGS data set, the
DADA2 and UNOISE count tables had 1768 and 1192
ASVs, respectively. The consensus function identified
919 shared ASVs. The UNOISE count table had 99.7%
of its read counts mapped to these shared ASVs and was
retained as the consensus table after being subsetted to
the shared ASVs. For the MFC data set, the DADA2 and
UNOISE count tables had 3355 and 3152 ASVs, respect-
ively. The consensus table was based on the UNOISE
table, which had 99.4% of its reads mapped to the 2258
shared ASVs. The relative abundances of the ASVs de-
tected by the count tables are shown in Fig. 2. The ASVs
that are not retained in the consensus table have low
relative abundance spanning from 8 × 10−6 to 0.05% in
the AGS data set and 3 × 10−6 to 0.8% in the MFC data
set. Before analysis of dissimilarity, the count tables were
rarefied to the number of reads in the smallest sample.
This was 278,758 reads/sample in the AGS data set and
33,171 reads/sample in the MFC data set. Further details
about the count tables are shown in Fig. S2.1-10 in Add-
itional file 2.
The consensus count tables were used to evaluate dis-

similarity between replicate samples and test hypotheses
on the experimental data from the AGS and MFC
systems.
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The observed dissimilarity between replicates is affected
by the choice of dissimilarity index
Both the AGS and MFC samples contained microbial
community replicates, which means that DNA was ex-
tracted in parallel from six aliquots of biomass collected
from the same microbial community (e.g., the same
AGS reactor or the same MFC biofilm). The MFC sam-
ples also contained one set of technical replicates, which
in this study means that the same DNA extract was
processed in six separate PCR reactions followed by se-
quencing of the six separate PCR products.
The diversity order (q) of the dissimilarity index had a

strong effect on the dissimilarity between replicates. The
highest dissimilarity was observed for incidence-based
indices (0d and Jaccard), and the dissimilarity typically
decreased with increasing diversity order (Fig. 3). Over-
all, the technical replicates had lower dissimilarity than
the community replicates for diversity orders from 0 to
2 (p < 0.05, n = 15, Welch’s anova). The consensus table
had lower dissimilarity between replicates than the two
count tables used to generate the consensus table at low

diversity orders (q < 1) for all seven sets of community
replicates as well as for the technical replicates (see Fig.
S2.12 in Additional file 2).

Random sampling affects the observed dissimilarity
between replicates
The high dissimilarity between replicates for low diver-
sity orders could be the result of undersampling [47]. To
examine this effect, we used a simulation. The AGS data
set served as a hypothetical case. Figure 4a shows the
relative abundance distribution of the 919 ASVs found
in the AGS consensus table. Let us assume this repre-
sents the true relative abundances of all taxa present in
the investigated microbial community. Five sets of sam-
ples with sequencing depths ranging from 10,000 to 3
million reads per sample were obtained from the com-
munity. The samples were generated by random sam-
pling with replacement from the relative abundance
distribution. Increasing sequencing depth led to increas-
ing number of detected ASVs (Fig. 4b). The average
pairwise dissimilarity between six replicate samples is

Fig. 2 Relative abundance (%) of ASVs retained in the consensus tables for the AGS (a) and MFC (b) data sets. Each ASV in the two input tables,
arranged from highest to lowest relative abundance, is shown on the x-axis. The blue lines show the maximum relative abundances of the ASVs
in the DADA2 and UNOISE count tables, and the red lines show the cumulative relative abundances. The heatmaps show whether the ASVs were
detected in the DADA2 and UNOISE count tables (light red). If it was detected in both, it was also retained in the consensus table, which is
indicated by dark red color
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shown in Fig. 4c. The curves have the same shape as the
experimentally observed dissimilarities in Fig. 3. A se-
quencing depth of 300,000, which is similar to the actual
sequencing depth for the AGS data set (278,758 reads/
sample), generated approximately the same dissimilarity
profile as the real data (see Figs. 3c and 4c). The detec-
tion of the ASVs increased, and the dissimilarity between
replicates decreased with increasing sequencing depth

(Fig. S2.13, Additional file 2). At a sequencing depth of 3
million reads, 98.5 ± 0.4% of the ASVs were detected.

Effect of the choice of diversity index on observed
differences between sample categories
The ability of different dissimilarity indices to distinguish
between sample categories in the experimental data was
also tested. The AGS data set was more challenging than

Fig. 3 Dissimilarities between replicates (n = 6). a A comparison between the community and technical replicates for samples from the MFC
experiment. b Other community replicates from the MFC experiment and c community replicates from the AGS experiment. Hill-based
dissimilarity values (qd) are shown as lines. Jaccard and Bray-Curtis dissimilarities are shown as squares and circles, respectively. Shaded regions
and error bars are standard deviations of pairwise dissimilarities (n = 15). The MFC data set had four categories of samples: acetate-fed biofilms
growing on anodes (Ac.anod.), acetate-fed biofilms growing on non-conductive surfaces (Ac.non-cond.), glucose-fed biofilms growing on anodes
(Glu.anod.), and glucose-fed biofilms growing on non-conductive surfaces (Glu.non-cond.). The AGS data set had three sample categories: the
inoculum (Inoc), reactor 1 (R1), and reactor 2 (R2). The technical replicates were taken from a Glu.anod. sample
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the MFC data set because most taxa were shared be-
tween different samples. Therefore, the AGS consensus
table with the three sample categories, the inoculum, re-
actor 1 (R1), and reactor 2 (R2), was used in the analysis.
The F-statistic is the ratio of between-group variability
and within-group variability. Dissimilarity matrices
resulting in the calculation of a high F-statistic are
thus better at resolving differences between sample
categories. Dissimilarity matrices generated with the
1d and 2d indices resulted in F-statistics of 2492 and
2969, respectively. The Bray-Curtis index resulted in
an F-statistic of 153. The incidence-based 0d and Jac-
card indices resulted in values of 20 and 15, respect-
ively. High dissimilarity between replicates, which was
observed for the incidence-based indices (Fig. 3),
would result in lower F-statistic. Despite large differ-
ences in the F-statistic, statistically significant separ-
ation between the three sample categories was found
with all dissimilarity indices (permanova, p = 0.001,
999 permutations) (see also Text S2.4 in Additional
file 2). A PCoA showing separation between the sam-
ple categories using the 0d index is shown in Fig.
S2.11 (Additional file 2).

The choice of dissimilarity index influence hypothesis
testing
AGS experiment
In the AGS experiment, we hypothesized that R1 and R2
diverged from the inoculum to the same extent after 150
days of operation since they were operated under identi-
cal condition and had similar performance. Thus, the
dissimilarity between the inoculum and R1 should be
the same as between the inoculum and R2. The results
are shown in Fig. 5a. For high diversity orders (q ≥ 0.4),
the dissimilarity between the inoculum and R2 is larger
than between the inoculum and R1, and for low diversity
order (q ≤ 0.1), higher dissimilarity is observed between
the inoculum and R1 (p < 0.05, Welch’s anova). How-
ever, it should be noted that the magnitude of the differ-
ence is small at low diversity order.

MFC experiment
In the MFC experiment, we compared microbial com-
munities of electroactive biofilms growing on anodes
with biofilms growing on non-conductive porous separa-
tors. We hypothesized that biofilms growing on con-
ductive and non-conductive surfaces would be more

Fig. 4 Simulation of the effect of sequencing depth on dissimilarity between replicates. a Relative abundance distribution for the microbial
community being sampled. b ASVs detected in samples having different sequencing depths. Dark red color indicates that the ASV was detected.
Three samples are shown for each sequencing depth. c Average pairwise dissimilarities between replicate samples at each sequencing depth. The
shaded regions show the standard deviations (n = 15). Jaccard- and Bray-Curtis dissimilarities are shown as squares and circles, respectively
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dissimilar to each other in the acetate-fed MFC than in
the glucose-fed MFC. Glucose is a fermentable substrate,
and fermentative microorganisms should be able to grow
anywhere within the MFCs, leading to a more
homogenous microbial community structure. Acetate,

on the other hand, is non-fermentable, and the microbial
communities in an acetate-fed MFC are therefore
dependent on electron acceptor availability. On the
anode surface, the anode serves as an electron acceptor
while in other locations within the MFCs, the

Fig. 5 a Average pairwise dissimilarity between the inoculum and R1, and the inoculum and R2 for the AGS data set. b Average pairwise
dissimilarity between the electroactive biofilm growing on the anode and the biofilm growing on the non-conductive separator in the acetate-
fed and glucose-fed MFCs. Shaded regions show standard deviations. The horizontal bars near the x-axis indicate significant difference in
dissimilarity (Welch’s anova, p < 0.05, n = 36). The color of the bar shows which pair has the highest dissimilarity

Fig. 6 Null model simulation (199 randomizations). a–c Results for the AGS data set. d–f Results for the MFC data set. a Dissimilarity between the
inoculum and R1 (blue) in comparison to the null distribution (black). b Dissimilarity between the inoculum and R2 (red) in comparison to the
null distribution (black). c qRC values for the inoculum-R1 (blue) and inoculum-R2 (red) comparisons. d Dissimilarity between biofilms on anodes
and non-conductive surfaces in the acetate-fed MFC (blue) in comparison to the null distribution (black). e Dissimilarity between biofilms on
anodes and non-conductive surfaces in the glucose-fed MFC (red) in comparison to the null distribution (black). f qRC values for the biofilm
comparisons in the acetate-fed MFC (blue) and glucose-fed MFC (red). Shaded regions show standard deviations based on all pairwise
comparisons (n = 36)
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microorganisms must use soluble compounds such as
oxygen diffusing in through the gas-diffusion cathode.
Microbial communities in different locations of the
acetate-fed MFCs should therefore have different metab-
olisms, which likely leads to higher dissimilarity than be-
tween communities within the glucose-fed MFCs which,
at least partly, could have the same metabolism, namely
fermentation [32]. For high diversity orders (q ≥ 0.8),
there was higher dissimilarity in the acetate-fed MFC
than in the glucose-fed MFC. For low diversity orders (q
≤ 0.6), the glucose-fed MFC had higher dissimilarity (p <
0.05, Welch’s anova) (Fig. 5b).

Null model
Null models were used to aid in the interpretation of
dissimilarity values. The results from the AGS experi-
ment are shown in Fig. 6a–c. The dissimilarity between
the inoculum and R1 is not significantly different from
the null distribution at any diversity order, and conse-
quently, qRC is close to 0.5. For the inoculum and R2,
the observed dissimilarity is higher than between the in-
oculum and R1; however, the null expectation of ran-
dom assembly could not be rejected at a significance
level of 0.05.
For the MFC data set, the results from the null model

analysis are shown in Fig. 6d–f. At a diversity order of 0,
the observed dissimilarity is similar to the null expect-
ation, and consequently, qRC is close to 0.5. This indi-
cates that if we only care about presence/absence of
ASVs, there is a random distribution between the two
biofilm communities. With increasing emphasis on rela-
tive abundance, the dissimilarity between biofilm types is
higher than the null distribution. For the acetate-fed
MFCs, the qRC values are close to 1, which means sig-
nificant compositional differences between the two com-
munities. For the glucose-fed MFCs, the qRC again
drops to lower values at a diversity order above 1. This
means that some of the most abundant ASVs are shared
between biofilms growing on conductive and non-
conductive surfaces. This indeed turned out to be the
case with a Trichococcus sp. being highly abundant in
both biofilm communities, likely carrying out fermenta-
tion in both places [32].

Discussion
A consensus count table removes many low-abundant
ASVs but retains most of the reads
Previous studies comparing bioinformatics pipelines for
high-throughput sequencing of marker genes have found
large differences in alpha diversity estimates [42, 48–51].
We also observed that both the pipeline and the in-
put parameter values chosen by the user affected the
number of inferred OTUs/ASVs as well as the num-
ber of reads mapped to these (see Fig. S2.1-2 in

Additional file 2). With real samples of unknown
composition, it is difficult to choose which pipeline
and which settings to use for the analysis. A way to
approach the problem of inflated OTU/ASV counts is
to infer a consensus table based on ASVs detected
using several different pipelines. We have imple-
mented an algorithm for doing this in qdiv. Running
the algorithm with DADA2 and UNOISE count tables
as input resulted in dramatic drops in the ASV
counts in the consensus tables; however, most of the
reads (99.4–99.7%) were associated with the consen-
sus ASVs.

Dissimilarity between replicates depends on the diversity
order and can be explained by random sampling effects
High dissimilarity between replicates can make it diffi-
cult to use marker-gene amplicon sequencing to distin-
guish categories of samples. For example, Bautista-de los
Santos et al. [52] studied microbial communities in
drinking water using the Jaccard and Bray-Curtis indices
on an OTU table generated with Mothur. Fewer signifi-
cant differences between sample categories were ob-
served with the Jaccard index because of high
dissimilarity between replicate samples [52]. We also ob-
served much lower F-statistics for the AGS data set with
incidence-based dissimilarity indices, which was caused
by higher dissimilarity between community replicates in
relation to dissimilarity between sample categories.
Dissimilarity between replicates can be caused by

many factors associated with sampling, DNA extraction,
PCR, sequencing, and data processing [53]. The com-
parison between community and technical replicates in
Fig. 3a suggested that only a relatively small fraction was
associated with sampling and DNA extraction for the
case of an MFC biofilm sampled from an anode. The
dissimilarity of replicates was the highest for incidence-
based indices and low diversity order (q < 1), which
means that low-abundant ASVs had a strong influence
on the observed dissimilarity. The species-abundance
distribution of microbial communities can contain a
long tail of low-abundant taxa of which only some may
be detected in the analyzed samples. This random sam-
pling effect [5, 47], as well as the generation of errone-
ous OTUs/ASVs during PCR, sequencing, and data
processing, causes dissimilarity between replicates. The
random sampling effect was shown using a simulation in
Fig. 4, where the simulated dissimilarity between
replicates corresponded very well with the experimen-
tally observed dissimilarity at a sequencing depth of ap-
proximately 300,000 reads/sample.
Previously, Haegeman et al. [31] showed the difficulty

of estimating alpha diversity at low diversity orders (q <
1) because even in deeply sequenced samples, we lack
information about the tail of low-abundant OTUs/ASVs.
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In the simulation in Fig. 4, the true dissimilarity was 0
since all samples were collected from the same hypothet-
ical community. However, the simulated dissimilarity for
low diversity orders (q < 1) was much higher than 0, al-
though it decreased as sample size increased.
Figures 3, 4, and 5 show dissimilarity as a function of

diversity order. The mean and standard deviation of sev-
eral pairwise comparisons of samples from the compared
communities are shown in each figure. Although we
know that the calculated dissimilarities at low diversity
order are likely incorrect, the standard deviations
(shaded regions) are generally very small. This means
that for a given sample size (sequencing depth), the cal-
culated dissimilarity is reproducible. It does not mean
that the calculated dissimilarity is a good estimate of the
true dissimilarity between the microbial communities
from which the samples were taken. For example, Fig. 4
shows the mean and standard deviation of 15 pairwise
dissimilarity values between six simulated samples. The
standard deviation of the simulated dissimilarity is very
small, but the mean is far from the true value. For a
sample size of 300,000 reads, 0d was 0.11 ± 0.01. How-
ever, in this case, we know that the true dissimilarity
was 0.
The dissimilarity between replicates decreased with

increasing diversity order until q was approximately
one (Fig. 3). For some samples, most notably the bio-
film samples from non-conductive surfaces in the
MFC experiment, the dissimilarity between replicates
then increased at higher diversity order and for the
Bray-Curtis index (Fig. 3b). At low diversity order (q
< 1), the dissimilarity between replicates could be
lowered by generating a consensus table (Fig. S2.12,
Additional file 2). The consensus table excludes many
low-abundant and potentially spurious ASVs from the
data sets. Since low-abundant OTUs/ASVs have a
large impact on low diversity order dissimilarity indi-
ces, dropping some of them from the data set leads
to reduced dissimilarity. At a high diversity order
(e.g., q = 2), the calculated dissimilarity is highly
dependent on the relative abundance of the most
abundant OTUs/ASVs in each sample. Small differ-
ences in relative abundance values of those OTUs/
ASVs are amplified, which leads to increasing dissimi-
larity. In the MFC sample, heterogeneity of the bio-
films growing on the non-conductive surfaces may
have caused the observed dissimilarity between com-
munity replicates at high diversity order. The 1d
index, which weighs OTUs/ASVs exactly according to
their relative abundance in the sample, seems to be a
good compromise leading to low dissimilarity between
replicates and hence better possibilities of detecting
actual differences between samples collected from mi-
crobial communities exposed to different treatments.

Hypotheses should be tested for a range of diversity
orders to determine the effects of taxa with different
relative abundances
Previous research has shown that Hill numbers are suit-
able for quantifying alpha diversity in samples obtained
by high-throughput sequencing of marker-genes [29].
For example, Haegeman et al. [31] analyzed alpha diver-
sity as a function of diversity order and concluded that
Hill numbers with q > 1 give robust estimates of alpha
diversity. In this study, we show that dissimilarity pro-
files, which show the dissimilarity between samples as a
function of diversity order (Fig. 5), are highly informative
also in the study of beta diversity. The use of a single
dissimilarity index would have given misleading informa-
tion for the data sets investigated in this study. In the
AGS experiment, incidence-based indices showed that
R1 and R2 were about equally dissimilar to the inocu-
lum. However, at higher diversity order, there was a
clear difference. In the MFC experiment, the incidence-
based indices would have led us to conclude that the dis-
similarity between biofilms on conductive and non-
conductive surfaces in the acetate-fed MFCs was lower
than in the glucose-fed MFCs, contrary to our hypoth-
esis. However, when we plot dissimilarity as a function
of q, we see that when we focus on the more abundant
ASVs (q > 1), the bioanodes and biofilms in the glucose-
fed MFCs are in fact less dissimilar, in line with our
hypothesis.
Contrary to the commonly used Bray-Curtis index, the

Hill-based dissimilarity indices have an intuitive inter-
pretation. The qd index quantifies the effective average
proportion of OTUs/ASVs in one sample not shared
with the other sample [54]. If two samples have S num-
ber of equally common OTUs/ASVs and C of them are
shared, the dissimilarity value would be 1-C/S [25].
Thus, the number itself has a meaning. For example, 0d
can be interpreted as the average proportion of all
OTUs/ASVs-, 1d as the average proportion of “common”
OTUs/ASVs-, and 2d as the average proportion of
“abundant” OTUs/ASVs not shared between two
samples.
The Hill-based dissimilarity indices can also be ex-

tended to take relationships between OTUs/ASVs into
account [54]. Using either a phylogenetic tree or a
matrix of pairwise distances as input, phylogenetic, or
functional dissimilarity indices can be calculated [26, 55,
56]. As phylogenetically closely related taxa tend to have
similar functional capabilities and habitat preferences
[57], dissimilarity indices that take phylogenetic related-
ness into account could, in comparison to taxonomic in-
dices, provide more information about functional
differences between microbial communities.
Null models help us to further interpret the meaning

of the dissimilarity values. In the AGS experiment,
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reactors R1 and R2 were inoculated and then operated
for 150 days. Ecological drift could have caused the mi-
crobial communities in the reactors to diverge from the
inoculum. The null model tested if there was significant
compositional turnover in R1 and R2 in comparison to
the inoculum. However, the null expectation of random
community assembly could not be rejected. Even for R2,
which displayed the highest dissimilarity from the inocu-
lum at q≥ 0.4, random assembly could explain the ob-
served dissimilarity values. Thus, 150 days appears to be
a too short time frame to see the effect of ecological drift
in the studied system. The data set from the MFCs
showed that for a diversity order of 0, the distribution of
ASVs between the two types of biofilms was close to the
null expectation. This is logical considering that the two
biofilms were physically located close to each other and
linked by dispersal. There is, thus, a high likelihood that
the same ASVs can be detected in both locations, even if
they do not grow in both locations. For higher diversity
order (i.e., q = 1), we see a higher dissimilarity than the
null expectation, suggesting that the common ASVs
were different in the two locations. This could be ex-
plained by heterogeneous selection. The conductive
anode surface selected for electroactive microorganisms
whereas the non-conductive separator selected for oxy-
gen scavengers. For even higher diversity order (q = 2),
the dissimilarity between the two biofilms in the glucose-
fed MFC again approaches the null expectation. This is lo-
gical considering that one of the most abundant taxa in
the glucose-fed MFCs was a fermentative Trichococcus sp.,
which could grow in both locations [32].

Conclusions

� Bioinformatics pipelines ran with different settings
resulted in count tables having large differences in
the number of OTUs/ASVs and total reads. A way
to minimize the effect of low-abundant and possibly
spurious OTUs/ASVs on the analysis is to generate
a consensus table based on several other count ta-
bles generated using different denoising pipelines
(e.g., UNOISE, DADA2, and Deblur).

� Conclusions drawn from experimental data can
depend on the chosen dissimilarity index. To fully
understand beta diversity patterns, Hill-based dis-
similarity values should be calculated for several di-
versity orders (q). Dissimilarity profiles plotting qd as
a function of q are informative.

� Null models, which can be calculated based on all
dissimilarity indices, help in the interpretation of
dissimilarity values and give information about
community assembly mechanisms.

� The Python package qdiv, freely available at https://
github.com/omvatten/qdiv with documentation at

https://qdiv.readthedocs.io/en/latest/, enables simple
calculation of Hill-based dissimilarity indices and as-
sociated null models. It can also be used to calculate
consensus count tables.

Methods
Experimental
Samples collected from two separate experiments were
analyzed in this study. In the AGS experiment, granular
sludge from a sequencing batch reactor was used to in-
oculate two new reactors (R1 and R2). Six samples were
collected from the inoculum as well as from each of the
two new reactors after 150 days of operation (Fig. S3.1,
Additional file 3). The sets of six are called community
replicates. Reactor R1 and R2 had similar performance
over time with total organic carbon removal > 90% and
total nitrogen removal of 35.2 ± 14.6% in R1 and 37.0 ±
12.7% in R2. They also had similar average granule size
in the end of the experiment and followed the same tra-
jectory in terms of suspended solids concentrations in
the reactors.
In the MFC experiment, parallel MFCs were operated

with either acetate or glucose as the sole electron donor
[for details, see 32]. Samples were collected from the
anode where a biofilm of electroactive microorganisms
oxidized the electron donor and generated electrical
current, and from a non-conductive porous separator
where a biofilm oxidized or fermented the electron
donor and scavenged oxygen (Fig. S3.2 Additional file 3).
In one acetate- and one glucose-fed MFC, the biofilm
samples were each cut into six pieces and DNA was ex-
tracted and processed separately from each piece. These
samples are called community replicates. The DNA ex-
tracted from one of the anode-attached biofilm samples
was also processed in six separate PCR reactions. These
samples are called technical replicates.
DNA was extracted using the FastDNA Spin Kit for

Soil (MP Biomedicals). PCR amplification of the V4 re-
gion of the 16S rRNA gene was carried out with the pri-
mer pair 515′F (GTGBCAGCMGCCGCGGTAA) and
806R (GGACTACHVGGGTWTCTAAT) [58, 59] and
the dual indexing strategy by Kozich et al. [3]. High-
throughput sequencing was carried out using the Illu-
mina MiSeq platform and reagent kit V3 (2 × 300 bp
paired-end sequencing). Further details are provided in
Text S3.1 (Additional file 3). The samples from the AGS
and MFC experiments were processed in two separate
sequencing runs. The sequencing results were deposited
in the European Nucleotide Archive with accession
numbers PRJEB35721 (AGS data set) and PRJEB26776
(MFC data set). The specific run accession numbers for
each pair of fastq files used in the study and the corre-
sponding sample identities are shown in Tables S3.1-2
(Additional file 3).
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Bioinformatics
The sequence reads were processed using DADA2 ver-
sion 1.10 [43], Deblur version 1.04 [44], USEARCH ver-
sion 10 [45], and Mothur version 1.41 [46]. The
pipelines offer the user various choices. For example, the
stringency of the quality filtering method can typically
be varied, and the reads can often be processed either
separately sample-by-sample or in pooled mode. Ana-
lysis of pooled samples requires more computer mem-
ory. DADA2 and Deblur generate ASVs whereas
Mothur generate OTUs. USEARCH can either generate
ASVs using UNOISE [60] or OTUs using UPARSE [61].
Several count tables were generated using various input
parameter settings in the pipelines (see Additional file
2). Details about the pipelines are provided at github.
com/omvatten/amplicon_sequencing_pipelines. DADA2
and UNOISE count tables were used to generate consen-
sus tables consisting of ASVs detected using both pipe-
lines. This was done with a function implemented in
qdiv.

Software
A software, qdiv, allowing calculation of all the indices
and null models mentioned above was developed in Py-
thon3 and is available as a Python package. It makes use
of the following Python packages: pandas [62], numpy
[63], matplotlib [64], and python-Levenshtein. The
source code for qdiv is available at https://github.com/
omvatten/qdiv. It is available via PyPI and the Anaconda
cloud.

Statistical analysis
To determine statistical significance of the association
between different dissimilarity matrices, Mantel’s permu-
tation test was used [65]. To compare the variability
within sample categories to the variability between sam-
ple categories, permanova was used [66]. Both the Man-
tel test and permanova were implemented in qdiv.
Welch’s anova was carried out using SciPy [67].

Null model
In the AGS experiment, we defined all samples from the
inoculum, R1, and R2 as the regional pool. In the MFC
experiment, we were interested in the dissimilarity be-
tween the anode biofilm and biofilm growing on a non-
conductive surface within the same MFC. Thus, we de-
fined all samples collected from one specific MFCs as
one regional pool. For randomization scheme, we used
the frequency approach, which is the same as in Stegen
et al. [41]. Briefly, the number of OTUs/ASVs and reads
in a sample are recorded. The null version of the sample
is generated by randomly picking the same number of
OTUs/ASVs from the regional pool. The likelihood of
being picked corresponds to the frequency of samples in

which the OTU/ASV is found. The picked OTUs/ASVs
are then populated with reads so that the total number
of reads in the randomly assembled sample equals that
of the real sample. The likelihood for a read of being
picked is related to the total number of reads associated
with the OTUs/ASVs in the regional pool.
It should be noted that the qRC value defined in Eq. 4

is constrained between 0 and 1. If a range between − 1
and 1 is desired, e.g., as in Chase et al. [36], this can be
accomplished by subtracting 0.5 from the qRC value and
multiplying by 2.
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