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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

Recently the automotive industry has made a huge leap forward in Automated Driver Assistance Systems (ADAS) development, increasing the 
level of driving processes automation. However, ADAS design does not imply any individual support to the driver; this results in a poor 
understanding of how the ADAS works and its limitations. This type of driver uncertainty regarding ADAS performance can erode the user’s 
trust in the system and result in decreasing situations when the system is in use. This paper presents the design of a data-driven communication 
framework that can utilize historical and real-time vehicle data to support ADAS users. The data-driven communication framework aims to 
illustrate the ADAS capabilities and limitations and suggests effective use of the system in real-time driving situations. This type of assistance 
can improve a driver’s understanding of ADAS functionality and encourage its usage. 
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1. Introduction 

The automotive industry today, stimulated by the runaway 
enthusiasm of Industry 4.0, is globally competing in the 
development of smart programmable systems where the 
automatization of driving processes, development of smart 
sensors, and utilization of real-time data is of critical 
importance. Automated Driver Assistance Systems (ADAS), as 
an example of such systems, aim to help the driver to handle 
various driving situations by providing longitudinal control of 
a vehicle through accelerating or braking in different traffic 
conditions, and/or lateral control by implementing steering 
assistance. This research is focused on ADAS with levels 1-2 
of driving automation [1]. The sustained basis of driver-system 
interactions when the driver’s role is fully or partially 
eliminated during the driving task is essential for this 
framework. The control shift of the driving activity between the 
driver and the system requires a good driver understanding of 

how the interaction is built and who has control over the driving 
activity at a particular moment. 

Although the ADAS functionalities offer advanced support 
to a driver, nowadays systems are still not able to handle all 
challenging driving conditions, for example: (i) slippery road 
conditions; (ii) a great deal of water or slush on the road; (iii) 
heavy rain or snow; (iv) poor visibility; (v) curving roads; (vi) 
highway ramps, and (vii) situations when clear markings on the 
road are missing [2]. Thus, the systems remain semi-
autonomous - a fact that makes the driver fully responsible for 
the performed driving activities. The research on user behavior 
related to ADAS shows that a significant number of drivers do 
not fully understand the limitations of driving support systems 
[3,4]. In many cases drivers expect the system to be able to 
handle on-road situations when the system activation 
preconditions are not fulfilled.  The study conducted by Jenness 
et al. [4] demonstrated that drivers’ expectations were higher 
than the actual system capabilities. The study revealed that 81% 
of respondents were unaware that ADAS does not have the 
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importance. Automated Driver Assistance Systems (ADAS), as 
an example of such systems, aim to help the driver to handle 
various driving situations by providing longitudinal control of 
a vehicle through accelerating or braking in different traffic 
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assistance. This research is focused on ADAS with levels 1-2 
of driving automation [1]. The sustained basis of driver-system 
interactions when the driver’s role is fully or partially 
eliminated during the driving task is essential for this 
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how the interaction is built and who has control over the driving 
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to a driver, nowadays systems are still not able to handle all 
challenging driving conditions, for example: (i) slippery road 
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et al. [4] demonstrated that drivers’ expectations were higher 
than the actual system capabilities. The study revealed that 81% 
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capability to detect stationary obstacles, pedestrians, or pets. 
Another misconception regarding the speed for ADAS 
activation was identified by Aziz et al. [5]. Participants in that 
study mistakenly believed that the ADAS function could work 
at any speed. The misinterpretation of the ADAS capabilities 
creates misunderstandings between the driver and the system. 
Consequently, this has an impact on the driver´s trust and 
reliance on the technology [6,7].     

Moreover, the design of ADAS does not imply explicit 
communication support between driver and system. Even the 
transition phase from the system to the driver is not clearly 
communicated. According to the developers, there is a need to 
keep the driver’s attention on the performed tasks and to avoid 
the situations when the driver can feel overconfident with the 
system performance. The lack of system support to the driver 
subsequently often results in a poor understanding of how the 
system is performing and what limitations it has [8]. This type 
of uncertainty regarding ADAS performance can erode the 
user’s trust in the system and result in a decrease in the time 
that systems are in use. According to McDonald et al. [9], 
further research is needed to determine the way to transfer 
critical information regarding ADAS capabilities and 
limitations to the driver.   

Modification of the ADAS functions on a physical level to 
fit individual driver needs is not feasible due to the diversity of 
driver needs and the high cost of such development. A possible 
solution could be the design of data-driven communication 
support solutions for ADAS users. Historical data on driver 
performance can help in the analysis of the driver’s needs for 
additional support. The ability to identify the driving event and 
evaluate the driving conditions for ADAS performance in real-
time can help to understand correct “situational” attributes for 
communication. Processing of the real-time data, together with 
historical usage data for the identified driver, can potentially 
enable the development of personalized support to the driver.    

Thus, the question we address in this research is, “How can 
vehicle sensors data be used to convey system design features 
to ADAS users?” This paper presents the design of a data-
driven communication framework that utilizes historical and 
real-time data. The developed framework aims to convey the 
ADAS capabilities and limitations to the driver, providing 
personalized support. Personalized support, in turn, can build 
drivers’ confidence and increase ADAS usage. 

2. Related work 

Today the interest in data-based quantitative evaluation has 
increased due to the improved feasibility of in-vehicle sensor 
data. Naturalistic Driving (ND) studies have become helpful in 
understanding driving behavior in a driving context,  
investigating the complexity of driver and system interaction in 
ADAS. Data obtained from vehicle sensors, as the primary 
source of ND data, enable inobtrusive driver behavior 
evaluation in a time-efficient and reliable way. The great 
potential of analyzing vehicle data for diverse purposes is 
shown in various user-related studies [10-13]. Sensor-based 
data offers the possibility to determine individual user 
behavior, describe, categorize, and compare it to the average 
within a group. Furthermore, it is possible to identify specific 

use errors, change the use strategy regarding the ADAS, and 
assess the severity of identified problems. All of the above 
mentioned provide the possibility for the effective application 
of qualitative research methods focusing on an in-depth 
investigation of detected driver behavior.    

However, to design data-driven personalized 
communication in real-time, it is not enough to only understand 
and categorize driver behavior regarding ADAS. There is also 
a need to assess the driving situation on the road and prioritize 
primary driving activities. Moreover, we need to estimate the 
driver’s workload, including secondary task performance, not 
to hinder or interrupt driver activities with higher priorities. 
Thus, the driving event recognition and the driver workload 
estimation that consists of the evaluation of the primary and 
supplementary driving tasks are the main processes 
contributing to the framework.  

A variety of methods for driving event recognition have 
been developed over the past ten years. In general, driver event 
recognition can be achieved through smartphone sensors [14-
16], vehicle sensors [17-19], and social sensors [20]. The 
development of smartphone sensor technology is relatively fast 
and usually low cost compared to the vehicle sensors [19]. 
However, vehicle sensors provide more precise and reliable 
data. Additionally, vehicle sensors allow better data 
synchronization and support local data saving. Smartphone 
sensors are not designed to detect the vehicle environment. The 
position of the phone and its orientation are not always optimal 
for the reliability of data [21]. The data from smartphone 
sensors also depends on cloud computing, energy efficiency, 
and additional sensors that need to be added to achieve the 
desired results. Nowadays, when the number of vehicles with 
built-in telematics systems is increasing, the development of 
data acquisition methods utilizing on-board diagnostics looks 
likely to be the most natural approach for in-vehicle communi-
cation design. This will provide better integration of data 
regarding driving events, system and driver performance data. 

To identify the right moment for driver-system 
communication, we need to improve the system awareness 
about the driver workload. We need to evaluate the driver 
distraction caused by primary driving activities and the driving 
situation on the road. We also need to consider the performance 
of secondary tasks that the driver can be involved in. Driver-
system communication must only take place when a driver’s 
workload is medium-low. The safety of a driver must always 
be prioritized. 

According to Aghaei et al. [22], a number of studies with a 
focus on smart driver monitoring have been published. Several 
attempts were made to measure driver distraction and predict 
heavy driver workload due to the situation on the road. A 
considerable amount of research has focused on combining 
vehicle data with individual physiological measures [23-26]. 
However, the ability of driver workload estimation, based 
solely on vehicle sensors data, is also a prominent topic of 
research. For example, Li et al. [27], based on ND data, 
identified a correlation between driver distraction and steering 
entropy. They proposed a method for driver distraction 
prediction based on this correlation. Kircher et al. [28] 
illustrated how visual distraction could be predicted by 
calculating vehicle-based measures, such as throttle hold rate, 
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steering wheel reversal rate, and speed variability. They found 
a relationship between vehicle-based measures and visual 
distraction, but the accuracy rate (76%) was not good enough 
to rely only on the results of this method. Kanaan et al. [29] 
investigated how ND data can be utilized to predict long off-
path glances and secondary task engagement, which indicates 
the level of distraction. This research took into consideration 
the motor control activities with the aim of understanding if a 
critical driving context caused the driver distraction.  

Although there has been significant progress in the 
development of methods for the detection of driver distraction 
and driver workload estimation, the quality of the results shows 
that further development is required. Moreover, many driver 
interactions that can cause a driver distraction (e.g., 
adjustments on the HMI panel or different activities on the 
phone) still cannot be further tracked. In general, the above 
research reveals that vehicle sensors cover the assessment of 
driver workload caused by primary driver activities in a better 
way. The evaluation of driver secondary task performance is 
covered less. Therefore, the means and methods for driver 
secondary task estimation need to be developed further. 

3. Data-driven communication framework 

The data-driven communication framework aims to 
facilitate ADAS usage by providing the driver with 
personalized support in various driving conditions. This 
support aims to improve the understanding of hidden system 
processes and explains the ADAS capabilities and limitations 
in real-time driving. Fig. 1 presents the framework design that 
will be described further in detail. 

Fig. 1. Data-driven communication framework. 

The data-driven communication framework consists of four 
predefined processes: (1) measuring the driving context, (2) 
deciding on the interaction time, (3) driver identification and 
driver profile loading, (4) communicating and response 
measuring. Three types of data are supposed to be used in the 
data-driven communication framework: the real-time data, 
historical data, and data generated through the Machine 
Learning (ML) process as the result of communication. Real-
time data has to be used for the driving context measuring, 
driver identification, and measuring of the driver workload to 
ensure that the provided support will not distract the driver 
from more urgent tasks. Historical data needs to be used to load 
the respective driver profile to design a personalized 
communication strategy for the driver. The driver profile in this 
context is the sum of the parameters that allow understanding 
of how the particular driver usually uses the ADAS and vehicle 
itself. All driver profile parameters need to be recorded after 
every driving activity and saved as historical data for the driver. 
Both real-time data and historical data are based on Controller 
Area Network (CAN) bus data. It is necessary to use an in-
vehicle data acquisition system, which reads CAN bus data and 
allows the real-time transfer of data to the self-learning 
communication unit.  

The self-learning communication unit aims to integrate real-
time and historical data processing analyzing the input and 
making decisions on the communication strategy, interaction 
time, communication process, and measuring the driver 
response. Data generated as an outcome of ML processes, 
needs to be saved as historical data and considered during the 
next driving activity. 

3.1. Measuring the driving context 

The driving context is the summary of external factors that 
affect driver behavior while using the evaluated system [30]. 
For the ADAS specifically, the driving context is defined as the 
aggregation of traffic, road, and weather conditions that, in 
association, encourage or discourage the ADAS usage. The 
driving context plays a central role in designing the 
communication between the system and the driver. ADAS, due 
to its limitations, does not perform in all driving conditions. 
Therefore, to be able to support the drivers in various driving 
situations, all contextual data affecting the ADAS performance 
needs to be collected. Driving context variables that are 
relevant for the ADAS driving context assessment are 
presented and described in Table 1. 

Table 1. Summary of driving context variables for the ADAS assessment. 

Driving context variables Description  

Wiping status  
Fog illumination 
Ambient temperature 
Lane markings reading 
Speed limits 
Driving speed 
Driving distance 
Braking/Acceleration 

to detect heavy rain or snow 
to control visibility on the road 
to exclude slippery road conditions 
a precondition for ADAS performance 
to identify the road type  
to see the deviation from speed limits  
to determine the distance between changes 
to identify condense traffic 

 
The driving context description, however, is not something 

predefined or stable. It highly depends on the evaluated 
objectives [30] and therefore needs to be set accordingly for 
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capability to detect stationary obstacles, pedestrians, or pets. 
Another misconception regarding the speed for ADAS 
activation was identified by Aziz et al. [5]. Participants in that 
study mistakenly believed that the ADAS function could work 
at any speed. The misinterpretation of the ADAS capabilities 
creates misunderstandings between the driver and the system. 
Consequently, this has an impact on the driver´s trust and 
reliance on the technology [6,7].     

Moreover, the design of ADAS does not imply explicit 
communication support between driver and system. Even the 
transition phase from the system to the driver is not clearly 
communicated. According to the developers, there is a need to 
keep the driver’s attention on the performed tasks and to avoid 
the situations when the driver can feel overconfident with the 
system performance. The lack of system support to the driver 
subsequently often results in a poor understanding of how the 
system is performing and what limitations it has [8]. This type 
of uncertainty regarding ADAS performance can erode the 
user’s trust in the system and result in a decrease in the time 
that systems are in use. According to McDonald et al. [9], 
further research is needed to determine the way to transfer 
critical information regarding ADAS capabilities and 
limitations to the driver.   

Modification of the ADAS functions on a physical level to 
fit individual driver needs is not feasible due to the diversity of 
driver needs and the high cost of such development. A possible 
solution could be the design of data-driven communication 
support solutions for ADAS users. Historical data on driver 
performance can help in the analysis of the driver’s needs for 
additional support. The ability to identify the driving event and 
evaluate the driving conditions for ADAS performance in real-
time can help to understand correct “situational” attributes for 
communication. Processing of the real-time data, together with 
historical usage data for the identified driver, can potentially 
enable the development of personalized support to the driver.    

Thus, the question we address in this research is, “How can 
vehicle sensors data be used to convey system design features 
to ADAS users?” This paper presents the design of a data-
driven communication framework that utilizes historical and 
real-time data. The developed framework aims to convey the 
ADAS capabilities and limitations to the driver, providing 
personalized support. Personalized support, in turn, can build 
drivers’ confidence and increase ADAS usage. 

2. Related work 

Today the interest in data-based quantitative evaluation has 
increased due to the improved feasibility of in-vehicle sensor 
data. Naturalistic Driving (ND) studies have become helpful in 
understanding driving behavior in a driving context,  
investigating the complexity of driver and system interaction in 
ADAS. Data obtained from vehicle sensors, as the primary 
source of ND data, enable inobtrusive driver behavior 
evaluation in a time-efficient and reliable way. The great 
potential of analyzing vehicle data for diverse purposes is 
shown in various user-related studies [10-13]. Sensor-based 
data offers the possibility to determine individual user 
behavior, describe, categorize, and compare it to the average 
within a group. Furthermore, it is possible to identify specific 

use errors, change the use strategy regarding the ADAS, and 
assess the severity of identified problems. All of the above 
mentioned provide the possibility for the effective application 
of qualitative research methods focusing on an in-depth 
investigation of detected driver behavior.    

However, to design data-driven personalized 
communication in real-time, it is not enough to only understand 
and categorize driver behavior regarding ADAS. There is also 
a need to assess the driving situation on the road and prioritize 
primary driving activities. Moreover, we need to estimate the 
driver’s workload, including secondary task performance, not 
to hinder or interrupt driver activities with higher priorities. 
Thus, the driving event recognition and the driver workload 
estimation that consists of the evaluation of the primary and 
supplementary driving tasks are the main processes 
contributing to the framework.  

A variety of methods for driving event recognition have 
been developed over the past ten years. In general, driver event 
recognition can be achieved through smartphone sensors [14-
16], vehicle sensors [17-19], and social sensors [20]. The 
development of smartphone sensor technology is relatively fast 
and usually low cost compared to the vehicle sensors [19]. 
However, vehicle sensors provide more precise and reliable 
data. Additionally, vehicle sensors allow better data 
synchronization and support local data saving. Smartphone 
sensors are not designed to detect the vehicle environment. The 
position of the phone and its orientation are not always optimal 
for the reliability of data [21]. The data from smartphone 
sensors also depends on cloud computing, energy efficiency, 
and additional sensors that need to be added to achieve the 
desired results. Nowadays, when the number of vehicles with 
built-in telematics systems is increasing, the development of 
data acquisition methods utilizing on-board diagnostics looks 
likely to be the most natural approach for in-vehicle communi-
cation design. This will provide better integration of data 
regarding driving events, system and driver performance data. 

To identify the right moment for driver-system 
communication, we need to improve the system awareness 
about the driver workload. We need to evaluate the driver 
distraction caused by primary driving activities and the driving 
situation on the road. We also need to consider the performance 
of secondary tasks that the driver can be involved in. Driver-
system communication must only take place when a driver’s 
workload is medium-low. The safety of a driver must always 
be prioritized. 

According to Aghaei et al. [22], a number of studies with a 
focus on smart driver monitoring have been published. Several 
attempts were made to measure driver distraction and predict 
heavy driver workload due to the situation on the road. A 
considerable amount of research has focused on combining 
vehicle data with individual physiological measures [23-26]. 
However, the ability of driver workload estimation, based 
solely on vehicle sensors data, is also a prominent topic of 
research. For example, Li et al. [27], based on ND data, 
identified a correlation between driver distraction and steering 
entropy. They proposed a method for driver distraction 
prediction based on this correlation. Kircher et al. [28] 
illustrated how visual distraction could be predicted by 
calculating vehicle-based measures, such as throttle hold rate, 
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steering wheel reversal rate, and speed variability. They found 
a relationship between vehicle-based measures and visual 
distraction, but the accuracy rate (76%) was not good enough 
to rely only on the results of this method. Kanaan et al. [29] 
investigated how ND data can be utilized to predict long off-
path glances and secondary task engagement, which indicates 
the level of distraction. This research took into consideration 
the motor control activities with the aim of understanding if a 
critical driving context caused the driver distraction.  

Although there has been significant progress in the 
development of methods for the detection of driver distraction 
and driver workload estimation, the quality of the results shows 
that further development is required. Moreover, many driver 
interactions that can cause a driver distraction (e.g., 
adjustments on the HMI panel or different activities on the 
phone) still cannot be further tracked. In general, the above 
research reveals that vehicle sensors cover the assessment of 
driver workload caused by primary driver activities in a better 
way. The evaluation of driver secondary task performance is 
covered less. Therefore, the means and methods for driver 
secondary task estimation need to be developed further. 

3. Data-driven communication framework 

The data-driven communication framework aims to 
facilitate ADAS usage by providing the driver with 
personalized support in various driving conditions. This 
support aims to improve the understanding of hidden system 
processes and explains the ADAS capabilities and limitations 
in real-time driving. Fig. 1 presents the framework design that 
will be described further in detail. 

Fig. 1. Data-driven communication framework. 

The data-driven communication framework consists of four 
predefined processes: (1) measuring the driving context, (2) 
deciding on the interaction time, (3) driver identification and 
driver profile loading, (4) communicating and response 
measuring. Three types of data are supposed to be used in the 
data-driven communication framework: the real-time data, 
historical data, and data generated through the Machine 
Learning (ML) process as the result of communication. Real-
time data has to be used for the driving context measuring, 
driver identification, and measuring of the driver workload to 
ensure that the provided support will not distract the driver 
from more urgent tasks. Historical data needs to be used to load 
the respective driver profile to design a personalized 
communication strategy for the driver. The driver profile in this 
context is the sum of the parameters that allow understanding 
of how the particular driver usually uses the ADAS and vehicle 
itself. All driver profile parameters need to be recorded after 
every driving activity and saved as historical data for the driver. 
Both real-time data and historical data are based on Controller 
Area Network (CAN) bus data. It is necessary to use an in-
vehicle data acquisition system, which reads CAN bus data and 
allows the real-time transfer of data to the self-learning 
communication unit.  

The self-learning communication unit aims to integrate real-
time and historical data processing analyzing the input and 
making decisions on the communication strategy, interaction 
time, communication process, and measuring the driver 
response. Data generated as an outcome of ML processes, 
needs to be saved as historical data and considered during the 
next driving activity. 

3.1. Measuring the driving context 

The driving context is the summary of external factors that 
affect driver behavior while using the evaluated system [30]. 
For the ADAS specifically, the driving context is defined as the 
aggregation of traffic, road, and weather conditions that, in 
association, encourage or discourage the ADAS usage. The 
driving context plays a central role in designing the 
communication between the system and the driver. ADAS, due 
to its limitations, does not perform in all driving conditions. 
Therefore, to be able to support the drivers in various driving 
situations, all contextual data affecting the ADAS performance 
needs to be collected. Driving context variables that are 
relevant for the ADAS driving context assessment are 
presented and described in Table 1. 

Table 1. Summary of driving context variables for the ADAS assessment. 

Driving context variables Description  

Wiping status  
Fog illumination 
Ambient temperature 
Lane markings reading 
Speed limits 
Driving speed 
Driving distance 
Braking/Acceleration 

to detect heavy rain or snow 
to control visibility on the road 
to exclude slippery road conditions 
a precondition for ADAS performance 
to identify the road type  
to see the deviation from speed limits  
to determine the distance between changes 
to identify condense traffic 

 
The driving context description, however, is not something 

predefined or stable. It highly depends on the evaluated 
objectives [30] and therefore needs to be set accordingly for 
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every evaluated function. Thus, more variables can be 
included, depending on the selected ADAS.  

Moreover, according to SAE International [1], there are 
three primary actors in driving with ADAS: the driver, the 
ADAS, and other vehicle systems and components that the 
ADAS performance depends on. The effect of the other vehicle 
systems and components also need to be considered as a part of 
the ADAS context while the prompt message is designing. 

3.2. Deciding on the interaction time 

A driver’s primary driving activities (such as driving speed 
control, steering, braking, acceleration, and others) together 
with the driving context supervision (such as the road in front, 
road signs, traffic situation, etc.) demand a high concentration 
from the driver. To achieve a safe communication and avoid 
the driver’s distraction from tasks with higher priority, the 
driver’s involvement in different driving tasks needs to be 
considered before communication starts. The system must be 
designed in a non-distracting, supportive way.   

To understand the driver workload, not only primary driving 
tasks but also secondary task performance needs to be 
evaluated. Secondary task performance (such as driver 
activities on the human-machine interface, usage of the mobile 
phone, distraction from the passengers, and similar) is focused 
on the evaluation of in-vehicle conditions in this framework. 
Estimation of in-vehicle conditions contributes to the overall 
driver workload assessment, which needs to be done prior to 
the communication moment. 

Moreover, communication for primary driver activities and 
other more safety-related processes in the vehicle always needs 
to be prioritized. The support message from this framework can 
be sent only if the situation outside and inside the vehicle is 
stable, and the driver does not have a heavy workload or highly 
demanding tasks. 

3.3. Driver identification and driver profile loading 

To be able to decide if a particular driver needs additional 
stimulating communication, we need to identify the driver’s 
identity. It will help to connect the correct driver profile to the 
specific driver. The driver profile in this framework implies:  

- Level of ADAS usage: total driving time, total driving 
distance, driving start/end time, ADAS activation start/end 
time, ADAS statuses (active mode, standby mode, off mode), 
activation duration time, activation duration distance, 
longitude/latitude for all activations and other. 

- Level and types of driving activities: number of driving 
events per day/month, number of kilometers driven per 
day/month, driving event types (long/short DCs, inside/outside 
the city), etc. 

- Driver characteristics: active/passive driving style, the 
driving mode used, etc. 

- Driver response to the communication: after the contact 
with the driver is established, the driver’s reaction needs to be 
measured and saved together with the rest of the driver profile 
data. This will enable the real-time adjustment of the 
communication strategy, according to the driving response. 
The driver profile needs to be updated after every single driving 

event, adding the driver performance data during the last 
driving event to the driver profile. 

3.4. Communication and driver response measuring 

Several communication strategies can be used, depending 
on the common issues identified during the historical data 
evaluation. The examples of the communication strategies are 
the stimulation, explanation and/or warning strategies. The 
stimulation strategy can be used when needed to encourage 
drivers to use the system in specific conditions where the 
system works typically well.  

The explanation strategy can be used to explain the 
deactivations of the system. If the driver understands why the 
system behaves as it does, the driver can learn the system’s 
limitations more quickly. This will positively affect the driver’s 
perception regarding ADAS as a reliable system that works 
perfectly according to the set limits. The warning strategy can 
be used to raise the driver’s attention in situations where the 
system performance is not stable or is about to deactivate. The 
warning strategy aims to prevent cases leading to the mode 
confusion. 

The flow chart describing the decision-making process in 
the data-based communication framework (Fig.1) is illustrated 
in Fig. 2. According to the framework design, historical data is 
used to identify the individual communication strategy. If the 
driver is new for the system, communication will not be 
provided until a significant amount of data on this driver is 
collected and analyzed. The feasibility of communication is 
decided based on real-time data by evaluating the driving 
context, in-vehicle conditions, and complete vehicle 
performance. If the overall conditions are considered as equal 
or less prioritized, the communication will take place. 
Otherwise, it will be postponed as any secondary task for a 
driver. When communication with the driver takes place, the 
driver's response to this communication is measured. The 
response measuring is based on ML algorithms; the data is 
analyzed in real-time. Depending on the driver's reaction, the 
number of scenarios is proposed. The primary purpose is not to 
guide the driver all the time, but allow him/her to decide and 
act independently. Therefore the "day off strategy" is 
implemented, aiming to exchange ADAS support with free 
driving activity. If the driver shows an improvement of ADAS 
usage during the system's day off, the communication strategy 
will be adjusted or even disengaged.  

Furthermore, the communication strategies need to be 
optional for a driver. As soon as the driver understands the 
ADAS limitations, he/she should be able to disengage from the 
explanation about ADAS limitations. If the driver does not 
want prompting messages, he/she should be able to turn the 
stimulation strategy off. The communication strategies need to 
be adjusted in real-time, based on the data saved in the driver 
profile. For example, if the driver turned off or ignored the 
system message, this should be considered in the next event. 

4. Discussion 

The proposed data-driven personalized support is a novel 
approach based on vehicle data utilization. Analysis of 
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Fig. 2. The flow chart of the decision-making process for the data-driven 

communication framework. 

 

historical and real-time data helps to understand the usage of 
in-vehicle functions, and subsequently provide personalized 
assistance to the drivers, explaining the implications, 
applicability, and limitations of the ADAS functions. The 
framework contributes to the development of methods for 
automated driving event recognition, methods for real-time 
driving context assessment, and ML algorithms, creating new 
opportunities to design data-driven support for smart in-vehicle 

systems, like ADAS. 
Since data-driven support is a relatively new topic for the 

automotive area, the feasibility of all data types used in the 
framework needs to be assessed. The data feasibility mostly 
depends on the particular OEM’s industrial practices on data 
utilization. In the course of this research, three main limitations 
leading to low availability of the vehicle data were detected.  

Firstly, the data in the automotive industry is traditionally 
linked to the vehicle’s ID, but not the driver’s ID. The driver 
recognition unit is often absent in the current vehicle models. 
However, driver recognition is a critical factor for this 
framework and any driver-oriented research. We need to know 
who is operating the vehicle to use correct historical data in the 
driving profile to make the right choice regarding the 
communication strategy. Several methods for driver 
identification [31,32] and driving style recognition [33,19] 
have been proposed. This research is a step forward in the 
understanding of future perspectives regarding driver 
identification. Consequently, methods mentioned above can be 
tested as an indirect driver identification in this framework. 

Secondly, the analysis of vehicle data for many years was 
focused mainly on the evaluation of system performance. As a 
result, we are now better informed about the status change of 
the system, rather than about understanding which driver 
interactions with the system led to this change. The capacity for 
capturing the user-related data is often limited. As previously 
mentioned, the assessment of driver activities regarding the 
secondary task performance (e.g., changing route at the 
navigation system or making a phone call) is not covered by 
the CAN bus data. This limitation becomes one of the main 
constraints, leading to an incomplete set of data information 
that is needed for the assessment of driver secondary task 
performance. 

Finally, one of the limitations is connected to the quality of 
the driving context description received through sensors data. 
The detailed description of a dynamic driving context obtained 
through vehicle sensors data (e.g., oncoming-traffic, 
uphill/downhill driving, curving roads) is not fully determined 
and needs to be developed further. The detailed description of 
the driving context also contributes to a better driving event 
recognition process. Overall, better driving context-awareness 
improves the quality of the decision-making process prescribed 
by the proposed framework. 

During the design validation stage, which planned as a next 
step, design improvements will be considered. The description 
of the driving context and the “smart” communication strategy 
have to be a focus of the validation process. Considering the 
current limitations, we are planning to use only drivers who are 
the sole users of their vehicles. To extend the framework 
applicability to the concept of shared vehicles, the problem of 
in-vehicle driver recognition needs to be solved. 

Conclusion 

In this paper the design of a vehicle data-driven 
communication framework that utilizes historical and real-time 
data to support ADAS users is proposed. The aim of the 
designed framework is to develop driver understanding 
regarding the ADAS performance, illustrating its capabilities 
and limitations in real-time driving situations. Communication 
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every evaluated function. Thus, more variables can be 
included, depending on the selected ADAS.  

Moreover, according to SAE International [1], there are 
three primary actors in driving with ADAS: the driver, the 
ADAS, and other vehicle systems and components that the 
ADAS performance depends on. The effect of the other vehicle 
systems and components also need to be considered as a part of 
the ADAS context while the prompt message is designing. 

3.2. Deciding on the interaction time 

A driver’s primary driving activities (such as driving speed 
control, steering, braking, acceleration, and others) together 
with the driving context supervision (such as the road in front, 
road signs, traffic situation, etc.) demand a high concentration 
from the driver. To achieve a safe communication and avoid 
the driver’s distraction from tasks with higher priority, the 
driver’s involvement in different driving tasks needs to be 
considered before communication starts. The system must be 
designed in a non-distracting, supportive way.   

To understand the driver workload, not only primary driving 
tasks but also secondary task performance needs to be 
evaluated. Secondary task performance (such as driver 
activities on the human-machine interface, usage of the mobile 
phone, distraction from the passengers, and similar) is focused 
on the evaluation of in-vehicle conditions in this framework. 
Estimation of in-vehicle conditions contributes to the overall 
driver workload assessment, which needs to be done prior to 
the communication moment. 

Moreover, communication for primary driver activities and 
other more safety-related processes in the vehicle always needs 
to be prioritized. The support message from this framework can 
be sent only if the situation outside and inside the vehicle is 
stable, and the driver does not have a heavy workload or highly 
demanding tasks. 

3.3. Driver identification and driver profile loading 

To be able to decide if a particular driver needs additional 
stimulating communication, we need to identify the driver’s 
identity. It will help to connect the correct driver profile to the 
specific driver. The driver profile in this framework implies:  

- Level of ADAS usage: total driving time, total driving 
distance, driving start/end time, ADAS activation start/end 
time, ADAS statuses (active mode, standby mode, off mode), 
activation duration time, activation duration distance, 
longitude/latitude for all activations and other. 

- Level and types of driving activities: number of driving 
events per day/month, number of kilometers driven per 
day/month, driving event types (long/short DCs, inside/outside 
the city), etc. 

- Driver characteristics: active/passive driving style, the 
driving mode used, etc. 

- Driver response to the communication: after the contact 
with the driver is established, the driver’s reaction needs to be 
measured and saved together with the rest of the driver profile 
data. This will enable the real-time adjustment of the 
communication strategy, according to the driving response. 
The driver profile needs to be updated after every single driving 

event, adding the driver performance data during the last 
driving event to the driver profile. 

3.4. Communication and driver response measuring 

Several communication strategies can be used, depending 
on the common issues identified during the historical data 
evaluation. The examples of the communication strategies are 
the stimulation, explanation and/or warning strategies. The 
stimulation strategy can be used when needed to encourage 
drivers to use the system in specific conditions where the 
system works typically well.  

The explanation strategy can be used to explain the 
deactivations of the system. If the driver understands why the 
system behaves as it does, the driver can learn the system’s 
limitations more quickly. This will positively affect the driver’s 
perception regarding ADAS as a reliable system that works 
perfectly according to the set limits. The warning strategy can 
be used to raise the driver’s attention in situations where the 
system performance is not stable or is about to deactivate. The 
warning strategy aims to prevent cases leading to the mode 
confusion. 

The flow chart describing the decision-making process in 
the data-based communication framework (Fig.1) is illustrated 
in Fig. 2. According to the framework design, historical data is 
used to identify the individual communication strategy. If the 
driver is new for the system, communication will not be 
provided until a significant amount of data on this driver is 
collected and analyzed. The feasibility of communication is 
decided based on real-time data by evaluating the driving 
context, in-vehicle conditions, and complete vehicle 
performance. If the overall conditions are considered as equal 
or less prioritized, the communication will take place. 
Otherwise, it will be postponed as any secondary task for a 
driver. When communication with the driver takes place, the 
driver's response to this communication is measured. The 
response measuring is based on ML algorithms; the data is 
analyzed in real-time. Depending on the driver's reaction, the 
number of scenarios is proposed. The primary purpose is not to 
guide the driver all the time, but allow him/her to decide and 
act independently. Therefore the "day off strategy" is 
implemented, aiming to exchange ADAS support with free 
driving activity. If the driver shows an improvement of ADAS 
usage during the system's day off, the communication strategy 
will be adjusted or even disengaged.  

Furthermore, the communication strategies need to be 
optional for a driver. As soon as the driver understands the 
ADAS limitations, he/she should be able to disengage from the 
explanation about ADAS limitations. If the driver does not 
want prompting messages, he/she should be able to turn the 
stimulation strategy off. The communication strategies need to 
be adjusted in real-time, based on the data saved in the driver 
profile. For example, if the driver turned off or ignored the 
system message, this should be considered in the next event. 

4. Discussion 

The proposed data-driven personalized support is a novel 
approach based on vehicle data utilization. Analysis of 
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Fig. 2. The flow chart of the decision-making process for the data-driven 

communication framework. 

 

historical and real-time data helps to understand the usage of 
in-vehicle functions, and subsequently provide personalized 
assistance to the drivers, explaining the implications, 
applicability, and limitations of the ADAS functions. The 
framework contributes to the development of methods for 
automated driving event recognition, methods for real-time 
driving context assessment, and ML algorithms, creating new 
opportunities to design data-driven support for smart in-vehicle 

systems, like ADAS. 
Since data-driven support is a relatively new topic for the 

automotive area, the feasibility of all data types used in the 
framework needs to be assessed. The data feasibility mostly 
depends on the particular OEM’s industrial practices on data 
utilization. In the course of this research, three main limitations 
leading to low availability of the vehicle data were detected.  

Firstly, the data in the automotive industry is traditionally 
linked to the vehicle’s ID, but not the driver’s ID. The driver 
recognition unit is often absent in the current vehicle models. 
However, driver recognition is a critical factor for this 
framework and any driver-oriented research. We need to know 
who is operating the vehicle to use correct historical data in the 
driving profile to make the right choice regarding the 
communication strategy. Several methods for driver 
identification [31,32] and driving style recognition [33,19] 
have been proposed. This research is a step forward in the 
understanding of future perspectives regarding driver 
identification. Consequently, methods mentioned above can be 
tested as an indirect driver identification in this framework. 

Secondly, the analysis of vehicle data for many years was 
focused mainly on the evaluation of system performance. As a 
result, we are now better informed about the status change of 
the system, rather than about understanding which driver 
interactions with the system led to this change. The capacity for 
capturing the user-related data is often limited. As previously 
mentioned, the assessment of driver activities regarding the 
secondary task performance (e.g., changing route at the 
navigation system or making a phone call) is not covered by 
the CAN bus data. This limitation becomes one of the main 
constraints, leading to an incomplete set of data information 
that is needed for the assessment of driver secondary task 
performance. 

Finally, one of the limitations is connected to the quality of 
the driving context description received through sensors data. 
The detailed description of a dynamic driving context obtained 
through vehicle sensors data (e.g., oncoming-traffic, 
uphill/downhill driving, curving roads) is not fully determined 
and needs to be developed further. The detailed description of 
the driving context also contributes to a better driving event 
recognition process. Overall, better driving context-awareness 
improves the quality of the decision-making process prescribed 
by the proposed framework. 

During the design validation stage, which planned as a next 
step, design improvements will be considered. The description 
of the driving context and the “smart” communication strategy 
have to be a focus of the validation process. Considering the 
current limitations, we are planning to use only drivers who are 
the sole users of their vehicles. To extend the framework 
applicability to the concept of shared vehicles, the problem of 
in-vehicle driver recognition needs to be solved. 

Conclusion 

In this paper the design of a vehicle data-driven 
communication framework that utilizes historical and real-time 
data to support ADAS users is proposed. The aim of the 
designed framework is to develop driver understanding 
regarding the ADAS performance, illustrating its capabilities 
and limitations in real-time driving situations. Communication 
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of this type can improve driver confidence while using ADAS 
and consequently can increase its usage.  

However, the limitations regarding the data feasibility 
identified in this research might restrict the framework 
applicability. Thus, the means and methods for better 
development of data support in the current framework need to 
be further investigated. Better data feasibility will contribute to 
a higher level of awareness regarding the driving context and 
driver state at the moment of the driver-system communication. 
Moreover, we suggest that subsequent research needs to be 
focused on developing methods for driver recognition and 
driving event recognition. These methods can allow the 
development of new personalized solutions for driver-system 
communication in the dynamic driving task. 

The implementation of this communication can potentially 
improve the driver comprehension of the ADAS complexity, 
which will have a positive impact on developing the trust 
toward the automation in general and make the transition to a 
higher level of automation easier. 
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