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A B S T R A C T   

Short fiber reinforced composites have a variety of micro-structural parameters that affect their macro- 
mechanical performance. A modeling methodology, capable of accommodating a broad range of these param
eters, is desirable. This paper describes a micro-mechanical model which is developed using Finite Element 
Analysis and Orientation Averaging. The model is applicable to short fiber reinforced composites with a wide 
variety of micro-structural parameters such as arbitrary fiber volume fractions, fiber aspect ratios and fiber 
orientation distributions. In addition to the Voigt and Reuss assumptions, an interaction model is developed 
based on the self-consistent assumption. Comparisons with experimental results, and direct numerical simulations 
of Representative Volume Elements show the capability of the model for fair predictions.   

1. Introduction 

Short Fiber Reinforced Composites (SFRCs) are becoming more and 
more interesting for different industries due to their high strength-to- 
density and stiffness-to-density ratios in comparison to unreinforced 
polymers. Besides, the manufacturing process of these materials are 
quick and low cost [1,2]. In order to obtain efficient and optimized 
designs, the ability to predict the behavior of SFRCs in a quantitative 
manner is crucial. To do so, and more specifically, to capture the effect of 
a wide variety of micro-structural parameters of SFRCs affecting their 
macro-mechanical behavior, it is necessary to use micro-mechanics 
based models. As a result, a large number of studies have been 
devoted to this topic (see e.g. Ref. [3–8]). 

A micro-mechanical modeling approach which has been frequently 
used for SFRCs is computational homogenization (see e.g. Ref. [9–12]). 
In this approach, a numerical Representative Volume Element (RVE) of 
an SFRC is analyzed by numerical methods (most often by the Finite 
Element Method) and the homogenized material response is obtained by 
volume averaging. This modeling approach has a very strong predictive 
capability. Nevertheless, it is not always feasible to use this method for 
SFRCs mainly due to: computationally expensive simulations, and more 
importantly, difficult RVE generation [13,14]. Mirkhalaf et al. [15] found 
out that generating realistic RVEs for SFRCs with high fiber volume 

fractions and particularly, high fiber aspect ratios is very challenging. 
An alternative approach to computational homogenization for 

modeling SFRCs is two-step homogenization techniques (see e.g. Ref. [6, 
16,17]). In this modeling approach, the first step typically uses a 
mean-field model such as Mori-Tanaka [16,17], and in the second step, 
the fiber orientation distribution is taken into account using an inter
action rule such as the Voigt assumption. Within a two-step homoge
nization approach, another possibility is to use Finite Element Analysis 
in the first step [6], and performing Orientation Averaging (OA) in the 
second step. Modniks and Andersons [6] used this method to estimate 
anisotropic elastic properties of short flax fiber reinforced Poly
propylene. A Finite Element model was developed to predict the elastic 
properties of a Unit Cell (herein considered as a single fiber embedded in 
the matrix material), still respecting the respective volume fractions of 
fibers and matrix. The elastic properties of a randomly distributed SFRC 
was then obtained using the OA approach assuming Voigt interaction. 

In this study, we present a two-step homogenization approach for 
SFRCs, using Finite Element Analysis and Orientation Averaging. FE 
calculations of a UC are used to obtain UC homogenized properties. 
Using FEA not only gives accurate UC properties, but also provides the 
opportunity of including further phenomena such as matrix inelasticity 
and fiber-matrix debonding. For the orientation averaging phase (sec
ond step), in addition to the Voigt assumption (upper bound), a Reuss 
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interaction is developed to obtain the lower bound of stiffness, as well. 
Simulations in this study show that they are strong assumptions, and not 
always resulting in accurate predictions. Thus, the self-consistent 
assumption was used to develop a novel interaction model as an in- 
between approach. Comparisons to computational homogenization an
alyses on realistic RVEs (performed in this study) show that for some 
cases, the self-consistent model provides a more accurate prediction of 
the composite stiffness properties than the Voigt and Reuss models. The 
presented method in this paper is applicable to almost any SFRC, with 
any desired fiber aspect ratio, fiber volume fraction and fiber orientation 
distribution. This is an important advantage over computational ho
mogenization, since RVE generation is, for some cases, very challenging. 

The remainder of this paper is structured as follows. Section 2 de
scribes the modeling approach and the Voigt and Reuss interactions. 
Section 3 illustrates the implementation of the model and FE calcula
tions required for elastic predictions. Some initial results, and compar
ison to experiments (adopted from literature), are presented in Section 
4. Section 5 describes the interaction model developed based on the self- 
consistent assumption, and its implementation. Section 6 gives final 
results and comparisons to experiments, and RVE simulations. Finally, 
Section 7 summarizes the contribution of this study and gives some 
concluding remarks. 

2. Orientation averaging 

In this section, the micro-mechanical model, developed based on an 
orientation averaging method, is illustrated. First, the homogenized 
properties of a UC (including a single fiber) are obtained. Different ap
proaches could be used for that purpose (see Ref. [18] for an overview). 
In this study, FE simulations are used due to two main reasons, first: to 
have a more accurate description of a UC, and second: to be able to 
incorporate other phenomena such as inelasticity and fiber-matrix 
debonding in future studies. Once the UC homogenized properties are 
known, the mechanical response of the studied SFRC is calculated based 
on the orientation distribution of the fibres. Fig. 1 shows schematically 
different phases of the method. 

Two configurations are considered: one at the composite level 
(global), and one at the UC level (local). Fig. 2 shows a schematic rep
resentation of a Unit Cell and the two aforementioned configurations. 

If R is the rotation from the composite configuration to the UC 
configuration, we have: 

eLi =R⋅ei, (1)  

where, ei and eL
i indicate the global and local orthonormal base vectors, 

respectively. A convenient and practical way of parameterizing the 
orientation of a fibre in a 3D space is using two angles [19], as it is shown 
in Fig. 3. 

In Fig. 3, p is a unit vector representing the fibre orientation. Then, 
the rotation tensor (represented in matrix format) is obtained as 

R{p}=R{p{ϕ, θ}}=

⎡

⎣
cos{ϕ}cos{θ} − sin{ϕ} cos{ϕ}sin{θ}
sin{ϕ}cos{θ} cos{ϕ} sin{ϕ}sin{θ}

− sin{θ} 0 cos{θ}

⎤

⎦. (2)  

In order to obtain the rotation tensor, first, the global configuration is 
rotated by an angle of θ around axis-2 and then, it is rotated by an angle 
of φ around axis-3 (considering fiber extension in 3-direction). 

The UC stress is obtained by 

σU =RT{p} ⋅ σL
U ⋅ R{p}=

[
RT{p} ⊗ RT{p}

]
: σL

U , (3)  

where, σL
U is the UC stress at the local configuration. We note that 

Equation (3) represents the change from local to global coordinates. 
However, in order to formally use the notation of tensors (as opposed to 
matrices), we identify each coordinate system as a configuration. The 
symbol ⊗ represents a non-standard open product.1 By weighted inte
gration over the unit sphere, the volume averaged composite stress 
becomes: 

σC =

∫

Ω

[
RT{p}⊗RT{p}

]
: σL

Uψ{p}dΩ, (4)  

Fig. 1. Schematic representation of the two-step homogenization model 
developed for SFRCs, (b) to (c): First homogenization step, (c) to (d): Second 
homogenization step. 

Fig. 2. (a): Schematic representation of a Unit Cell, (b): Schematic represen
tation of configurations at the composite and UC levels. 

Fig. 3. Angles to describe a fibre orientation in a 3D configuration.  

1 The index notation for the non-standard open product (⊗) is given 
by.(A⊗B)ijkl = AikBjl.
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where σC is the composite stress, and ψ{p} is the probability distribution 
function of the orientation [19]. We define the integration over the unit 
sphere Ω as 
∫

Ω
•dΩ=

∫ 2π

φ=0

∫ π

θ=0
•sin(θ)dθdφ, (5)  

and note that distribution function (ψ{p}) has to be normalized, i.e., 
∫

Ω
ψ{p}dΩ=

∫ 2π

φ=0

∫ π

θ=0
ψ{θ,φ}sin(θ)dθdφ= 1. (6)  

In the same fashion, we may introduce the transformation of the UC 
strain: 

εU =
[
RT{p} ⊗ RT{p}

]
: εLU , (7)  

where εL
U is the UC strain in the local configuration. The composite strain 

is then obtained as the average of UC strains: 

εC =
∫

Ω

[
RT{p}⊗RT{p}

]
: εLUψ{p}dΩ. (8)  

In the elastic regime (where both fibre and matrix are described by the 
Hooke’s law), the UC stress at the local configuration is given by 

σL
U =CL

U : εLU . (9)  

In order to determine εL
U and σL

U for each UC (pertaining to each direction 
p), we need to introduce a modeling assumption for the local global 
interaction. Below, we introduce the two limiting assumptions of Voigt 
and Reuss. 

2.1. Voigt assumption 

The Voigt interaction can be referred to as the uniform strain 
assumption. In other words, using this interaction implies full kinematic 
compatibility between the interacting components (assuming they are in 
parallel). Using Voigt interaction could be interpreted as a global iso- 
strain situation. Thus, we assume the uniform strain εC throughout the 
composite, and the local strain of each UC is obtained as 

εLU =R{p} ⋅ εC ⋅ RT{p}= [R{p}⊗R{p}] : εC. (10)  

Using Equation (10) together with the constitutive relation (9) in rela
tion (4) results in the composite stress: 

σV
C =CV

C : εC. (11)  

Where the composite stiffness using the Voigt assumption is identified as 

CV
C =

∫

Ω

[
RT{p}⊗RT{p}

]
: CL

U : [R{p}⊗R{p}]ψ{p}dΩ, (12)  

where the superscript V stands for the Voigt assumption. 

2.2. Reuss assumption 

The Reuss interaction is in fact a uniform stress assumption. This 
assumption implies that all UCs have the same global stress state (UCs 
connected in series), where σC is constant, and 

σL
U = [R{p}⊗R{p}] : σC. (13)  

Inserting Equation (9) with the transformed composite stress in Equa
tion (13) into Equation (8) gives the flexibility relation: 

εC =
[
CR

C

]− 1
: σC, (14)  

where the composite stiffness using the Reuss assumption is identified as 

CR
C =

(∫

Ω

[
RT{p}⊗RT{p}

]
:
[
CL

U

]− 1
: [R{p}⊗R{p}]ψ{p}dΩ

)− 1

, (15)  

where the superscript R stands for the Reuss assumption. 

3. Implementation and unit cell FE calculations 

In this section, the implementation of the OA approach, and FE 
calculations for the elastic predictions are described. 

3.1. Voigt interaction 

For an actual case of finite number of fibres, the integral (in relation 
(12)) converts to a summation over the number of fibres or Unit Cells: 

CV
C =

1
Nf

∑Nf

i=1

[
RT{pi}⊗RT{pi}

]
: CL

U : [R{pi}⊗R{pi}], (16)  

where Nf refers to the number of fibres. It will be explained in Section 
3.3 how to obtain the UC stiffness (CL

U) by FE simulations. 

3.2. Reuss interaction 

In case of Reuss interaction assumption (Equation (15)), the com
posite stiffness is obtained as 

CR
C =

(
1
Nf

∑Nf

i=1

[
RT{pi}⊗RT{pi}

]
:
[
CL

U

]− 1
: [R{pi}⊗R{pi}]

)− 1

. (17)  

3.3. FE calculations for elastic predictions 

To compute the composite stiffness (Equation (16) and (17)), it is 
needed to calculate the stiffness of a UC (CL

U). FE analyses are performed 
for that purpose. To obtain the UC dimensions, the same distance is 
considered from the fiber to all sides of the UC. This is schematically 
shown in Fig. 4. 

Thus, knowing the fiber dimensions and the fiber volume fraction, 
the UC dimensions are obtained. The UC with a unidirectional fibre is 
assumed to be transversely isotropic, for which the matrix representation 
of the compliance tensor is given by (note that direction 3 is the fiber 
direction and plane 12 is the isotropic plane): 

SL
U =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
E11

−
ν12

E11
−
ν31

E33
0 0 0

−
ν12

E11

1
E11

−
ν31

E33
0 0 0

−
ν13

E11
−
ν13

E11

1
E33

0 0 0

0 0 0
1
G12

0 0

0 0 0 0
1
G13

0

0 0 0 0 0
1
G13

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (18) 

Fig. 4. Obtaining the UC dimensions by assuming the same distance from the 
fiber to all sides of a UC. 
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The Voigt notation has been used where the stress and strain com
ponents are ordered as 

σT = [σ11 σ22 σ33 σ12 σ13 σ23]

εT = [ε11 ε22 ε33 2ε12 2ε13 2ε23].
(19) 

Due to the symmetry of the compliance matrix, and considering the 
assumption of UC transverse isotropy, there are 5 independent elastic 
components to calculate the UC stiffness (CL

U). To obtain these elastic 
properties from FEA, it is needed to conduct three simulations under 
three different loading conditions. Application of a uniaxial stress 
loading in the fiber direction (see Fig. 5(a)), the Young’s modulus in the 
fiber direction (E33) and the Poisson’s ratios ν31, ν32 (which are equal due 
to the UC symmetry in 1 and 2 directions) are obtained. Uniaxial stress 
on transverse direction (see Fig. 5(b)), the transverse Young’s modulus 
(E11) and the Poisson’s ratio ν12 are obtained. Finally, for the shear 
modulus in planes parallel to the fiber direction (G13 or G23) a shear 
loading parallel to the fiber direction is needed (see Fig. 5(c)). 

Abaqus was used to perform FE simulations on UCs. In order to 
enforce Periodic Boundary Conditions in Abaqus simulations, a plugin 
developed by Omairey et al. [20] is used. 

Remark 1: By packing UCs in a periodic structure, the transverse 
directions (all possible directions in a plane perpendicular to the fiber 
direction) do not have the exact same properties. This is because the 
distances between the fibers (in a plane perpendicular to the fiber) in 
different directions are different. Hence, the UC structure used in this 
study (see Fig. 2(a)) is not a perfectly transversely isotropic material. 
Nevertheless, since deviations from a perfect transverse isotropy are 
negligible, it is a reasonable assumption. 

Remark 2: To check the validity of the suggested UC (Fig. 2(a)), 
unidirectional RVEs were generated for a polyamide/glass composite, 
and the homogenized properties of the RVEs and the UC were compared. 
Spatial discretization of these RVEs are shown in Fig. 6. Homogenized 
elastic properties of these RVEs and the UC are given in Table 1. It is seen 
that there are good agreements between RVEs and UC homogenized 
properties, and thus, it is reasonable to use the suggested UC structure. 

Remark 3: Mesh sensitivity analyses were performed to make sure 
about the convergence of the behavior of UCs. Fig. 7 shows the trans
verse cross section of three FE discretizations of a UC for a poly
propylene/flax SFRC with 13% of fiber volume fraction (this SFRC is 
modeled in Section 6). The mesh size in the longitudinal direction is 
similar to the cross section mesh size. The elastic properties of the UC 
with different FE meshes are shown in Table 2. 

Remark 4. The number of fibres (or equivalently the number of UCs) is 
important since it should be a representative number. For each of the 
simulations performed in this study, the number of fibres (Nf ) has been 
increased until a convergence in the macroscopic behavior is obtained. 
Table 3 gives the values of the Young’s modulus obtained for a mag
nesium/carbon SFRC with 10% of Fiber volume fraction (this composite 
is modeled in Section 4) considering different number of UCs in the 
simulations, and assuming Voigt interaction. 

4. Initial results 

In this section, different SFRCs are modeled and the results are 
compared against experimental results and computational homogeni
zation performed on Representative Volume Elements (RVEs). Infor
mation about these composites are summarized in Table 4. 

4.1. A polyamide/glass composite 

Elastic stiffness of an SFRC made from Polyamide 6.6 (PA 6.6) matrix 
reinforced with Vf = 10% of short glass fiber is obtained and compared 
to experiments taken form [1]. The fiber length and diameter are lf =
240μm and df = 10μm which result in an aspect ratio of λ = 24. Fibers 
have a planar distribution with a preferred direction which is caused by 
the injection molding fabrication process. Fig. 8(a) shows the prefer
entially planar orientation distribution of fibers in the composite. 
Kammoun et al. [1] cut samples from the injection molded plate with 
different angles with respect to the Injection Flow Direction (IFD). This 
is schematically shown in Fig. 8(b). Fig. 9 shows a comparison between 
stiffness prediction of the model and experimental results. 

4.2. A magnesium/carbon composite 

A composite made from AZ91D magnesium alloy matrix and T300 
short carbon fibers is analyzed in this section. Fiber volume fraction is 
equal to 10%. Fibers are randomly distributed, and they have a length of 
105 μm and a diameter of 7 μm which lead to an aspect ratio of 15. 
Experimental results are taken from Ref. [21] and compared to the 
predictions obtained by the OA method (A random distribution of fibers 
is considered). Also, computational homogenization is performed on a 
realistic micro-structural sample and homogenized elastic properties are 
obtained. Digimat-FE was used for RVE generation and the pertinent FE 
analysis. Fig. 10 shows an RVE (with 3D randomly distributed fibers) 
and its spatial discretization. 

It was very challenging to generate an RVE which fulfill both of 
intended fiber orientation distribution and fiber volume fraction. As a 
result, several attempts were required to reach that goal and create such 
an RVE. Hence, results obtained for only one realization is presented 
here. 

In order to have a representative micro-structural sample, it is needed 
to obtain a representative size for the sample. Mirkhalaf et al. [22] 
proposed an approach for determining the required RVE size for het
erogeneous materials at finite strains. For short fiber composites, 
different values are suggested by different authors (see e.g. Refs. 
[23–25]). We chose the RVE size as LRVE = 210 μm which is two time the 
fiber length. A comparison of the obtained results in the simulations and 
experiments is presented in Table 5. 

4.3. Polyamide/glass composites 

In this section, polyamide matrix SFRCs reinforced with randomly 
distributed short glass fibers are considered, with two fiber volume 
fractions, namely 7% and 10%. Using the chosen software, generating 
and simulating RVEs with higher fiber volume fractions were found to be 
very difficult and thus, a maximum of 10% was considered. Fig. 11 
depicts an RVE of this composite with 10% of fiber volume fraction, 
distributed randomly. The length of the RVE was considered LRVE =

240 μm which is the same as the fiber length. A few efforts were given to 
generate bigger samples but they failed at either meshing or solution 
phases.. 

The obtained elastic properties are shown in Fig. 12. It is seen that 
RVE results for this composite are between the Voigt and Reuss bounds. 
In the next section, an intermediate interaction model (between the 
upper and lower bounds) will be presented based on the self-consistent 
assumption. 

Fig. 5. Representation of three different loading conditions on a UC Finite 
Element model to obtain its elastic properties, (a): uniaxial stress in the fiber 
direction to obtain E33 and ν31, (b): uniaxial stress in the transverse direction to 
obtain E11 and ν12, (c): shear in 13 plane to obtain G13. 
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5. Self-consistent interaction 

Theoretically, the Voigt and Reuss interactions will result in upper 
and lower bounds of the stiffness, respectively. Therefore, the model was 
extended to also include the self-consistent interaction assumption, 
which is an intermediate approach between the upper and lower 
bounds. We seek the effective stiffness (CSC

C ) such that: 

σSC
C =CSC

C : εC, (20)  

under the assumption that each of the unit cells are embedded in an 
equivalent homogeneous medium of stiffness CSC

C . In other words, using 
this assumption means that the state of each UC in the aggregate is 
equivalent to the state of the UC embedded in a matrix with properties 
equivalent to the whole aggregate. Obviously, the properties of this 
equivalent homogeneous medium is not known a priori and are meant to 
be obtained. 

To obtain the stiffness of a SFRC assuming the self-consistent inter
action, we start with a matrix-inclusion problem [26], as schematically 
shown in Fig. 13. Two different domains are distinguished denoted by 
Ωm (matrix domain) and Ωr (reinforcement domain). In the present case, 
the reinforcement domain Ωr corresponds to the homogenized UC (Fig. 1 
(c)), and the matrix domain Ωm corresponds to the homogenized com
posite (Fig. 1(d)). The stresses in the matrix and reinforcement domains 
are given by 

σm =Cm : ε, (21)  

σr =Cr : εr, (22)  

where, Cm and Cr are assumed constant. Furthermore, for elliptic in
clusions, εr (and thus σr) will be constant over the elliptic reinforcement 
[26]. The strain in the reinforcement is related to the average strain as 
follows: 

Fig. 6. Four unidirectional sample RVEs for a polyamide/glass composite.  

Table 1 
Homogenized elastic properties of the UC and RVEs.   

E11 (GPa)  ν12  E33 (GPa)  ν31  G13 (GPa)  

RVE 1 3.89 0.44 8.41 0.32 1.40 
RVE 2 3.89 0.44 8.54 0.33 1.40 
RVE 3 3.91 0.44 8.66 0.33 1.39 
RVE 4 3.95 0.44 8.79 0.33 1.40  

Fig. 7. Transverse cross section of three FE mesh of a UC for a polypropylene/flax SFRC.  

Table 2 
Homogenized elastic properties of a polypropylene/flax UC with different 
spatial discretizations (see Fig. 7).   

E11 (GPa)  ν12  E33 (GPa)  ν31  G13 (GPa)  

Mesh 1 2.25 0.58 8.66 0.37 0.72 
Mesh 2 2.31 0.58 9.17 0.36 0.73 
Mesh 3 2.32 0.58 9.28 0.36 0.73  

Table 3 
Elastic modulus of a magnesium/carbon SFRC obtained for different number of 
UCs.  

Number of UCs 100 1000 5000 10,000 100,000 200,000 

E (GPa) 52.04 52.08 52.09 52.15 52.13 52.13  

Table 4 
Characteristics of short fiber reinforced composites analyzed in Section 4.   

Section 4.1/Section 4.3 Section 4.2 

Matrix Polyamide 6.6 A magnesium alloy 
Matrix elastic 

properties 
E = 3.1 GPa, ν = 0.35  E = 44.8 GPa, ν = 0.35  

Fibers Glass Carbon 
Fibers elastic properties E = 76 GPa, ν = 0.22  E = 230 GPa, ν = 0.25  
Fiber volume fraction 10% 10% 
Fiber aspect ratio 24 15 
Fiber length 240 μm  105 μm  
Fiber diameter 10 μm  7 μm  
Orientation distribution Preferential planar/3D 

random 
3D random  

S.M. Mirkhalaf et al.                                                                                                                                                                                                                           
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εr =A{Cr ,Cm} : ε, (23)  

where, A is the fourth order strain concentration tensor. Assuming 
perfectly bonded single ellipsoidal inclusion in an infinite elastic me
dium, the Eshelby solution [26] is used. The strain concentration tensor 
is the obtained as (see the mathematical manipulations in Appendix A): 

A=
[
I + E :

(
C− 1

m : Cr − I
)]− 1

, (24)  

where I is the fourth order identity tensor and E is the fourth order 
Eshelby tensor. Assuming the self-consistent interaction implies that the 
matrix domain has the properties of the equivalent homogeneous 
medium: 

Cm =C. (25)  

Using the homogenized stiffness (C) in the strain concentration tensor 
(Equation (24)) results in: 

A=
[
I + E :

(
C

− 1
: Cr − I

)]− 1
, (26)  

and by using Equation (23), we obtain: 

εr =A
{

Cr,C
}
: ε. (27)  

In this study, the inclusions are the Unit Cells. Thus, Equation (27) can 
be re-written as 

εU =A
{

CU ,C
SC
C

}
: εC, (28)  

where, the superscript “SC” stands for the Self-Consistent assumption. 
Re-writing Equation (26) and using Equation (28) results in: 

εU =
[
I + E :

([
CSC

C

]− 1
: CU − I

)]− 1
: εC. (29)  

The composite stress (in global configuration) is given by 

σC =

∫

Ω
CU : εU ψ{p}dΩ. (30)  

Using Equations (29) and (30), the composite stiffness, using the self- 
consistent assumption, is identified as 

CSC
C =

∫

Ω
CU :

[
I + E :

([
CSC

C

]− 1
: CU − I

)]− 1
ψ{p}dΩ. (31)  

In Equation (31), the UC stiffness is given by 

Fig. 8. (a): Planar and preferentially oriented fibers reproduced after [1], (b): Schematic representation of samples cut form an injection molded plate with different 
angles with respect to the Injection Flow Direction. 

Fig. 9. Comparison between model predictions and experimental results taken 
from Ref. [1]. Note that the all the results in Fig. 9 are normalized results. For 
all three sets of results (experimental, Voigt and Reuss) the obtained stiffness at 
different angles are compared to their corresponding stiffness at angle θ = 0∘. It 
basically shows that the ratio of Voigt results at different cutting angles to the 
Voigt reference angle (θ= 0∘) has a better agreement to the corresponding 
experimental ratios. The comparison is presented in this way because absolute 
stiffness values were not given in the experiments. 

Fig. 10. An RVE of the magnesium/carbon composite (Vf = 10%, λ = 15), 
and its spatial descritzation. 
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CU =
[
RT{p}⊗RT{p}

]
: CL

U : [R{p}⊗R{p}]. (32) 

It should be noted that Equation (31) does not have an explicit so
lution, and it has to be solved through an iterative procedure. We chose a 
fixed point iterative procedure which is explained in Appendix B. Also, 
since the UC used in this study, is not isotropic, the standard Eshelby 

tensor for isotropic inclusion can not be used. Therefore, for complete
ness, it is in Appendix C described how to calculate the Eshelby tensor 
for an anisotropic medium. 

5.1. Implementation 

Assuming self-consistent interaction between UCs, the composite 
stiffness is obtained by (see Equation (31)) 

CSC
C =

1
Nf

∑Nf

i=1
CU,i :

[
I + E :

([
CSC

C

]− 1
: CU,i − I

)]− 1
. (33)  

In Equation (33), each UC stiffness CU,i is obtained as 

CU,i =
[
RT{pi}⊗RT{pi}

]
: CL

U : [R{pi}⊗R{pi}]. (34) 

Table 5 
Comparison of the elastic properties of the magnesium/carbon SFRC obtained in simulations and experiments.   

OA with Voigt OA with Reuss Experiments RVE computational homogenization 

E (GPa) 52.13 51.66 50.45 52.07 
ν (− ) 0.36 0.36 0.34 0.34  

Table 6 
Comparison of the elastic modulus of the polyamide/glass SFRC obtained in OA 
and RVE simulations.The simulation time of the OA method is 35 s for 1000 UCs, 
and 115 s for 10,000 UCs, for all interactions.   

OA- 
Voigt 

OA- 
Reuss 

OA-(self- 
consistent) 

RVE computational 
homogenization 

E (GPa) 4.97 4.76 4.89 4.90  

Fig. 11. An RVE and its corresponding mesh for the polyamide/glass composite (Vf = 10%, λ = 24).  

Fig. 12. Elastic properties of the polyamide/glass composites (Vf = 7,10%, λ = 24) obtained in simulations, (a): elastic modulus, (b): shear modulus.  
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6. Results including self-consistent interaction 

An aspect ratio of 1 is considered for calculation of the Eshelby tensor 
for the simulations of this study (in the fourth order tensor D, calculated 
at the global configuration). It should be, however, noted that the actual 
aspect ratio was considered in the UC Finite Element simulations. 

6.1. Polyamide/glass composites 

The polyamide/glass composites, modeled in 4.3, is analyzed with 
the self-consistent model, as well. The obtained properties are shown in 
Fig. 14. It is seen the self-consistent model predictions are closer to the 
RVE results for this composite. The Orientation Averaging simulations 
take 49 s for 1000 UCs, and 107 s for 10,000 UCs, for all three in
teractions (for volume fraction of Vf = 7%, and using a personal laptop). 
These are simulation times once the UC stiffness is known. 

To make comparisons to RVE computational homogenization simu
lations for SFRCs with higher fiber volume fractions, glass fibers with a 
lower aspect ratio (λ= 5) was considered as well. The same fiber diameter 
(df = 10 μm) is considered, but with a length of lf = 50 μm. With this 
aspect ratio, a fiber volume fraction of Vf = 20% was achieved in the 
RVE analyses. Fig. 15 shows an RVE of this composite with its spatial 
discretization. 

6.2. Polypropylene/flax composites 

The last set of SFRCs modeled in this study are bio-composites made 
from Polypropylene matrix and short flax fibers. The details of these 
composite are given in Table 7. 

Elastic properties of these composites are obtained using the OA 
method and compared against experimental results taken from Ref. [6]. 
It should be mentioned that we assumed isotropic fibers in this study. 
Due to the high aspect ratio of fibers and random distributions, the 
desired fiber volume fractions were not achieved for comparative RVE 

analyses. Fig. 16 shows a comparison between the model predictions 
and experiments. It is seen that with the Voigt assumption, good pre
dictions of the elastic modulus is obtained for fiber volume fraction Vf =

13%,21%. For the highest volume fraction (Vf = 29%), the model (with 
the Voigt assumption) slightly overestimates the experiments. This 
might be a consequence of assuming a single length for all fiber re
inforcements. It is shown by Andersons et al. [27] there is a fiber length 
distribution in extruded flax composites which is not accounted for in 
the simulations. 

Fig. 13. Schematic representation of a matrix-inclusion problem.  

Fig. 14. Elastic properties of the polyamide/glass composites obtained in simulations, (a): elastic modulus, (b): shear modulus.  

Fig. 15. An RVE of the polyamide/glass composite (Vf = 20%, λ = 5), and its 
spatial discretization. The RVE dimensions are LRVE = 150 μm. Table 6 gives 
obtained elastic modulus using the OA method and RVE analysis. 

Table 7 
Characteristics of polypropylene/flax SFRCs.  

Matrix Polypropylene 

Matrix elastic properties E = 1.6 GPa, ν = 0.4  
Fibers Flax 
Fibers elastic properties E = 69 GPa, ν = 0.15  
Fiber volume fraction 13%, 21% and 29% 
Fiber aspect ratio 75 
Fiber length 1200 μm  
Fiber diameter 16 μm  
Orientation distribution 3D random  
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7. Conclusions 

In this paper, a micro-mechanics based approach, combining Finite 
Element Analysis and Orientation Averaging, was developed to predict 
elastic properties of Short Fiber Reinforced Composites. A self-consistent 
interaction was developed as an intermediate approach between the 
upper and lower bounds. The authors believe the method is favorable 
with the following motivation: 

• Comparisons between the method results, experiments and compu
tational homogenization of realistic RVEs show the capability of the 
method for adequate predictions;  

• The method is applicable to almost any short fiber composite with an 
arbitrary fiber volume fraction, fiber aspect ratio and fiber orienta
tion distribution (among other properties);  

• The method is computationally efficient;  
• It is possible to extend the method and include other micro-structural 

phenomena such as inelasticity and matrix-fiber debonding. 

As a result of the aforementioned advantages, this modeling 
approach can be used for real-life engineering components. According to 
the results obtained in this study, more comprehensive numerical ex
amples and comparisons to experiments are needed to investigate the 
appropriateness of each interaction model for different composites. It 
should, however, be emphasized that theoretically, each interaction 
which results in a closer agreement with computational homogenization 
simulations on realistic RVEs, is a more accurate interaction. 
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Appendix A 

In this Appendix, the mathematical manipulations required to obtain the strain concentration tensor (Equation (24)) are given. I) Original problem 
For a single inclusion embedded in an infinite medium, we have: 
⎧
⎪⎨

⎪⎩

− σ⋅▽ = 0
u→ε⋅xas|x|→∞{

σ = Cr : ε(u)inΩr
σ = Cm : ε(u)inΩm

(A.1)  

where we seek the resulting strain inside the inclusion, i.e. ε in Ωr. For an ellipsoid inclusion, this strain will be uniform. II) Eigen-strain problem The 
original problem (A.1) can be transformed into an eigen-strain problem, with uniform elastic stiffness: 
⎧
⎪⎨

⎪⎩

− σ̃⋅▽ = 0
ũ→0as |x|→∞{

σ̃ = Cm : [ε(ũ) − ε*] inΩr
σ̃ = Cm : ε(ũ) inΩm

(A.2)  

where ε* is the eigen-strain defined by 

ε* =C− 1
m : [Cm − Cr] : ε(u). (A.3) 

From a comparison between the original problem (I) and the eigen-strain problem (II), we have the following: 
{

u = ũ + ε⋅x
σ = σ̃ + Cm : ε (A.4)  

which verifies the relation between problems. III) Solution of the eigen-strain problem (Eshelby solution) Eshelby showed that the following relation holds 

Fig. 16. Elastic properties of Polypropylene/flax SFRCs with different volume 
fractions: Model predictions versus experimental results taken from Ref. [6]. 
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for the uniform strain inside Ωr: 

ε(ũ)=E(Cm) : ε* (A.5)  

where E is the Eshelby tensor. Using (A.3) in (A.5) together with 

ε(u)= ε + ε(ũ), (A.6)  

results in: 

ε= [Cm − Cr]
− 1

: [Cm − (Cm − Cr) : E] : ε*. (A.7)  

The strain in the reinforcement is related to the macroscopic strain by 

ε(u)=A(Cm,Cr) : ε. (A.8)  

where, A is the strain concentration tensor. Using (A.5)-(A.8), the strain concentration tensor is obtained. 

Appendix B 

In this Appendix, the implicit solution to obtain the composite stiffness using the self-consistent interaction (Equation (31)) is explained. In an 
actual case of finite number of fibers, Equation (31) gets a summation form: 

CSC
C =

1
Nf

∑Nf

i=1
CU,i :

[
I + E :

([
CSC

C

]− 1
: CU,i − I

)]− 1
. (B.1)  

In an iterative scheme, the composite stiffness at iteration (m+1) is given by 

[
CSC

C

]

m+1 =
1
Nf

∑Nf

i=1
CU,i :

[
I + [E]m :

( [
CSC− 1

C

]

m : CU,i − I
)]− 1

. (B.2)  

For the initial guess, the composite stiffness obtained using Voigt interaction is used. To make sure that the model predictions using the self-consistent 
interaction is independent of the initial guess, the Reuss stiffness was also tried as the initial guess, and the same results were obtained. However, we 
stress that the Voigt stiffness is obtained at a (slightly) lower computational cost. 

The iterative procedure continues until the following convergence criterion is satisfied for all the components of the stiffness tensor: 
⃒
⃒
⃒

[
CSC

C, ijkl

]

m+1
−
[
CSC

C, ijkl

]

m

⃒
⃒
⃒

⃒
⃒
⃒

[
CSC

C, ijkl

]

m+1

⃒
⃒
⃒

< Tol, (B.3)  

where Tol is a pre-defined value which is considered to be 0.001 in this study. 

Appendix C 

To obtain the composite stiffness using relation (31), it is needed to have the Eshelby tensor (Eijkl). Since the UCs are not isotropic, the standard 
Eshelby tensor for isotropic inclusions can not be used. Instead, the Eshelby tensor for an anisotropic medium with stiffness tensor Cijkl, is given by 
Ref. [28]: 

Eijmn = −
1
2
Clkmn

(
Diklj +Djkli

)
, (C.1)  

where, the components of the fourth order tensor D are given by 

Dijkl =
abc
4π

∫ π

0

∫ 2π

0

(
T− 1)

ijzkzl
sinθ
β3 dφdθ, (C.2)  

where, a, b and c are the principal dimensions of the ellipsoidal inclusion, z is a unit vector in spherical coordinates defined by 

z=

⎡

⎣
sin{θ}cos{φ}
sin{θ}sin{φ}

cos{θ}

⎤

⎦, (C.3)  

and the components of the second order tensor T is given by 

Tki =Cpkimzpzm. (C.4) 
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The last parameter in relation (C.2) to be introduced (β) is given by 

β=
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
a2cos2{φ} + b2sin2{φ}

)
sin2{θ} + c2cos2{θ}

√

. (C.5)  
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