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ABSTRACT: The photoluminescence (PL) spectrum of transition-
metal dichalcogenides (TMDs) shows a multitude of emission peaks
below the bright exciton line, and not all of them have been explained
yet. Here, we study the emission traces of phonon-assisted
recombinations of indirect excitons. To this end, we develop a
microscopic theory describing simultaneous exciton, phonon, and
photon interaction and including consistent many-particle dephasing.
We explain the drastically different PL below the bright exciton in
tungsten- and molybdenum-based materials as the result of different
configurations of bright and momentum-dark states. In good
agreement with experiments, our calculations predict that WSe2
exhibits clearly visible low-temperature PL signals stemming from
the phonon-assisted recombination of momentum-dark K−K′
excitons.

KEYWORDS: dark excitons, photoluminescence, transition-metal dichalcogenides, exciton−phonon interaction, phonon side bands,
microscopic model

The cryogenic photoluminescence (PL) spectrum of two-
dimensional (2D) semiconductors provides a powerful

tool to study intriguing quantum phenomena invisible at room
temperature or in linear optical experiments. The large variety
of low-temperature emission features at energies below the
bright exciton resonance indicates the existence of bound
exciton configurations, such as trions, biexcitons,1−6 and
trapped excitons,7,8 but could also result from the indirect
recombination of momentum-dark exciton states.9−16 The
radiative decay of a momentum indirect electron−hole pair
requires the simultaneous interaction with a phonon to fulfill
the momentum conservation and is therefore very inefficient
compared to the direct recombination of an exciton with zero
center-of-mass momentum. However, in indirect semiconduc-
tors, where the momentum indirect exciton is located below
the bright state, the low-temperature emission can exhibit
strong phonon-assisted signals due to a large population of
momentum-dark states, as depicted in Figure 1. Recently, the
PL spectrum of hexagonal boron nitride has been shown to be
dominated by phonon-assisted processes17,18 resulting from an
indirect band gap. Several theoretical and experimental studies
have demonstrated that in tungsten-based monolayer materi-
als, intervalley excitons are located below the optically bright
exciton,15,19−24 and recent experimental PL studies on hBN-
encapsulated tungsten diselenide have revealed a multitude of

low-temperature emission peaks whose microscopic origin still
needs to be clarified.3−5,9

While the radiative decay of bright excitons has been
extensively studied,25−30 phonon-assisted exciton recombina-
tion has remained widely unexplored in the technologically
promising field of TMD monolayers. In particular, a micro-
scopic treatment of the large number of possible decay
channels and the complex interplay between phonon-induced
dephasing and recombination is challenging. In previous
studies, restricted cases, such as optical phonon replicas of
bright excitons, have been theoretically investigated within the
polaron-frame31,32 and nonmarkovian treatments of the density
matrix.33,34 However, there is so far no general theoretical
framework for the phonon-assisted exciton recombination
including optical and acoustic phonons as well as intra- and
intervalley recombination channels on a microscopic footing.
Here, we present a fully microscopic model and low-

temperature PL experiments demonstrating the emergence of
pronounced phonon-assisted signals from momentum dark
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excitons. Based on the fundamental equations-of-motion of the
many-particle density matrix, we find an analytical formula
which allows us to calculate temperature-dependent PL
spectra. We apply the derived formula to calculate the
luminescence spectrum of hBN-encapsulated TMD mono-
layers. For tungsten diselenide (WSe2), our calculations predict
clearly visible low-temperature emission features between 50
and 80 meV below the bright exciton, in good agreement with
experimental observations. We identify these signals as
phonon-assisted recombinations of momentum-dark K−K′
excitons. These peaks have been observed in several
independent experiments, while their microscopic origin has
not been clarified yet.3,9,35 In contrast, for molybdenum
diselenide (MoSe2), we find no additional peaks and an
opposite asymmetric broadening of the bright exciton
resonance compared to WSe2, which can be explained by the
absence of lower lying momentum-dark excitons. Overall, our
work provides new insights into phonon-assisted exciton
luminescence and can be applied to determine emission
spectra of arbitrary semiconducting materials, in particular
including van der Waals stacked multilayers.
Microscopic Model. The central property determining the

PL of a semiconductor is the electronic bandstructure in
vicinity of the band gap. Therefore, we focus on the local band
extrema, which in TMDs are located at the K, K′, and Λ point
of the hexagonal Brillouin zone, cf. Figure 2a. Due to the
strong Coulomb interaction in 2D materials, electrons and
holes are tightly bound into excitons. Thereby, TMDs can host
momentum direct intravalley excitons (K−K) as well as
intervalley excitons, such as K−K′, where electrons and holes
are located at the K′ and K point, respectively. The latter are
optically dark, since the required momentum transfer cannot
be provided by a photon. As a result of the peculiar ordering of
spin-polarized electronic bands in tungsten-based TMDs,36 the
momentum-dark intervalley K−K′ excitons lies below the
bright K−K excitons, cf. Figure 2b. When taking into account
excitonic effects, the K−Λ excitons are also shifted below the
bright K−K exciton due to the significantly larger mass of the
Λ valley.
To set up a realistic model, we used ab initio input

parameters for the electronic bandstructure, phonon dis-

persion, dielectric constants, and electron−phonon coupling
elements.36−38 The excitonic properties are derived in effective
mass approximation by solving the Wannier equation.39 In the
following, we focus on the exemplary monolayers of tungsten
diselenide (WSe2). Moreover, we only consider spin-like
exciton states, since their formation and recombination does
not require spin-flip processes. The possible impact of spin-
unlike K−K excitons is discussed later in the text. In Table 1,
we have summarized all relevant exciton energies obtained
from our Wannier model for different substrates as well as
phonon energies in WSe2 taken from ref 37. The phonon
energies are in good agreement with experimental Raman
measurements.40,41 The calculated exciton binding energies
and spectral exciton separations agree well with values found in
literature using similar Wannier models,42,43 ab initio
studies,24,44 and experiments.45 In the following, we focus on
hBN encapsulated samples, which have been shown to be less
affected by undesirable external disorder effects.46,47 The exact
position of the K−Λ state relative to the bright exciton can be
externally tuned via substrate-induced screening or
strain.23,24,48 In contrast, the valley-inverted spin-orbit coupling
makes sure that the K−K′ exciton in tungsten-based TMDs is

Figure 1. Sketch of direct and indirect decay channels for excitons
showing the underlying scattering processes in the excitonic center-of-
mass dispersion (right) and the corresponding PL signals (left).
Momentum-dark excitons can decay by emitting or absorbing a
phonon (blue arrow) and subsequently emitting a photon, which
contributes to the indirect PL signal (red arrow).

Figure 2. Schematic illustration of the (a) electronic and (b)
corresponding excitonic dispersion around high-symmetry points in
tungsten-based TMDs. While transitions involving electronic bands
with the same spin are dipole allowed (red), the spin-dark excitons
(pink dashed) require spin-flip processes. The specific spin-orbit
coupling in tungsten-based TMDs renders the K−K′ as the lowest-
lying spin-allowed exciton, in agreement with a recent ab initio
calculation.24

Table 1. Relevant Exciton Binding Energy Ebind, Spectral
Exciton Separation ΔK−Λ, ΔK−K′ (with Respect to the Bright
K−K State), and Phonon Energies in WSe2

a

exciton energies WSe2 (meV)

hBN enc. (εr = 4.5) vacuum (εr = 1)

Ebind(K − K↑↑) 168 (172)45 465 (450,42, 480)44

ΔK−Λ −34 −54 (−60)24

ΔK−K′ −46 −57 (−60)24

phonon energies WSe2 (meV)

from ref 37 Γ Λ K

TA/LA 0 11.6/14.3 15.6/18
TO/LO 30.5/30.8 27.3/32.5 26.7/31.5
A1 30.8 30.4 31

aThroughout this work, we consider hBN encapsulated samples. The
free-standing results are given for direct comparison with literature
values given in brackets. Phonon energies are taken from ref 37.
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always below the bright state independently of the used
substrate.
After optical excitation and a quick thermalization process,

excitons distribute across all valleys to form a Boltzman-like
distribution in energy. Therefore, the energetically lowest
momentum-dark states have, in particular at low temperatures,
a much higher occupation then the bright exciton, so that in
principle, PL signatures stemming from the indirect (phonon-
assisted) recombination of dark excitons might become visible.
In order to predict intensities and line shapes of the indirect PL
signals, a sophisticated model of the mixed exciton−photon−
phonon interactions is needed. Previous studies on PL
phonon-side bands have used perturbative approaches or
were restricted to specific phonon modes and intravalley
processes. Here, we develop a more universal approach
including acoustic and optical modes, intra- and intervalley
scattering, all temperature ranges, and a self-consistent
description of phonon-induced broadening and recombination.
We derive the PL signal from the many-particle density

matrix of an interacting system of electrons, phonons and
photons. Throughout this work, we assume an excitation
density far away from the exciton-Mott transition and model
excitons as a gas of non-interacting bosons. In this regime, the
many-particle physics of an undoped monolayer can be
described by the excitonic Hamiltonian,33,49−51 which in the
rotating frame52 reads

∑ ∑
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where k∥ denotes the component of the momentum k parallel
to the monolayer plane. We use annihilation (creation)

operators μ
†a Q

( ) , α
†b q

( ) and σ
†c k

( ) for excitons in the state μ,

phonons in the mode α, and photons with the polarization σ,
respectively. Moreover, the corresponding dispersions for the
three particle species are given by μEQ , Ωα

q and ω σ
k . Here, the

excitonic bandstructure μEQ is decomposed into valleys around

energetic extrema, cf. Figure 2, where excitons can be
described as free particles with effective valley masses. The
exciton index μ acts as a compound index containing main,
angular, spin, and valley quantum numbers. The second line of
eq 1 describes the conversion of excitons to photons and vice
versa under conservation of the in-plane momentum, whose
probability is determined by the exciton-photon matrix
element σ

μM k . Finally, excitons can scatter from the state (μ,
Q∥) to (ν, Q∥ + q∥) by emitting or absorbing a phonon, guided
by the exciton−phonon matrix element α

νμD q . Details about the

calculation of these matrix elements are given in previous
works15,53,54 and can also be found in the Supporting
Information.
In this framework, the PL can be determined from the

temporal change of the photon density = ⟨ ⟩†n c ck k k .55 Applying
the Heisenberg equation of motion, we find coupled
differential equations for the photon density, the polarization

= ⟨ ⟩μ
μ

†c ak k k , t h e p honon - a s s i s t e d po l a r i z a t i o n
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μ

± †
∓

†
−c b akq k q k q

, ( ) and further higher-order correlations.

We factorize appearing many-particle expectation values
according to the cluster expansion scheme.56 Here, we
disregard contributions connected to multiphonon emission/
absorption. However, we include correlations giving rise to the
p h o n o n - i n d u c e d d e p h a s i n g

π η δΓ = ∑ | | ± Ω −μ
ν

μν μ ν
±

±
+D E E( )Q q q q Q q Q q,

2 as well as the

radiative dephasing for exciton states within the light cone
γ π δ δ ω= ∑ | | −μ μ μ

′ ′ ′ ′M E( )k k k k k k k
2 . A detailed study on these

dephasing rates can be found in our previous studies.15,47 It is
of key importance to include these dephasing contributions in
the truncation scheme. In particular, we find that phonon-
assisted recombinations via virtual states close to the actual
bright state are physically equivalent to a phonon-induced
broadening of the bright state. Therefore, a phenomenological
inclusion of dephasing rates can give rise to nonphysical
negative luminescence signals. A detailed derivation and
discussion is provided in the Supporting Information. Finally,
we find the following analytic expression for the σ-polarized
photon flux emitted in perpendicular direction with respect to
the monolayer:
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where η = ∓ + ⟨ ⟩± †b b1/2 1/2q q q denotes the relevant phonon

occupat ion factor for absorpt ion/emiss ion , and
= ⟨ ⟩μ

μ μ
†N a aQ Q Q represents the exciton occupation. The first

term reflects the Lorentz-shaped response of the direct
recombination of bright excitons, with a small difference that
the phonon dephasing only appears in the denominator.
However, for energies E ≈ E0, the second term containing the
scattering contributions is proportional to the phonon-assisted
in-scattering to the bright state, so that close to thermal
equilibrium, the second term in the brackets becomes Γ0

μN0
μ.

Therefore, in the resonant case, eq 2 can be well approximated
with the exciton Elliot formula:39
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μ

σ
μ

σ
μ μ

μ
σ
μ μ

μ
≈I E

M

E E
N( )

2 ( )

( ) ( )E E

2
0 0

0
2

0 0
2 00

(3)

The second part of eq 2 containing phonon-assisted decay
channels agrees with luminescence formulas derived in
previous studies31,32 for optical phonon replicas in the polaron
picture. The advantage of our approach is that it consistently
includes broadening and additional decay channels allowing to
quantitatively compare line shapes and intensities of bright and
dark states. The equation can be generally applied to other
semiconducting systems as long as the band edge excitations
are of excitonic nature. We have used general compound
indices for the excitons allowing to include phonon-assisted
transitions involving other exciton states as the ones studied in
this work, such as phonon-mediated spin-flip transitions and
layer-hybridized Moire excitons as well as localized/charge
trapped excitons.
Note that the model does not account for exciton−exciton

interaction or the presence of residual free charge carriers,
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which can enable further bound many-particle states, such as
biexcitons or trions. The latter gives rise to well studied low-
temperature PL features1−5,57 below the bright exciton.
Results. Now we apply the derived eq 2 together with the

calculated exciton energies and wave functions to calculate the
PL signal of the multivalley exciton landscape. Figure 3 shows
calculated PL spectra for hBN-encapsulated monolayer WSe2
at four different temperatures. In addition to the full spectra
calculated from eq 2 (color shaded), we also present the
spectra in the case of Γq

ν → 0 (solid line). This corresponds to
δ functions in the brackets of eq 2, requiring strict energy
conservation for the conversion from an exciton to a phonon
and photon. The sharp steps in the solid line conveniently
illustrate the multitude of exciton valleys and phonon modes
contributing to the overall PL signal. Here, each step in the
spectrum corresponds to a transition from the energetic
minimum of a certain valley, while absorbing/emitting a
phonon.
At 300 and 150 K, the PL spectrum is dominated by the

bright exciton resonance, but already here, phonon-assisted
indirect recombinations have a significant impact resulting in
an asymmetric resonance. At energies larger than E0, the signal
is mainly shaped by recombinations of small momentum
excitons in the K−K valley, which scatter to virtual states in the
light cone via low-energy acoustic phonons. For energies
smaller than E0, a much larger broadening is observed. This
can be ascribed to K−K excitons emitting optical phonons and,
more importantly, to the indirect decay of momentum-dark

intervalley excitons. Our Wannier model predicts that the
K−Λ and K−K′ excitons are located about 34 and 46 meV
below the bright exciton, respectively. These momentum-dark
states can perform indirect PL transitions as depicted in Figure
1, preferably to virtual states close to the bright exciton,
yielding the asymmetric peak shape at room temperature.
At low temperatures, the optical response shifts toward

multiple indirect PL peaks below the bright exciton stemming
from the phonon-assisted recombination of the energetically
lowest K−K′ exciton. The observed temperature dependence
is a result of a competition between oscillator strength and
occupation probability. The phonon-assisted peaks become
only visible at low temperatures because here the exciton
distribution becomes very narrow in energy. Therefore,
excitons are “forced” to take the unlikely indirect recombina-
tion pathway via a virtual state, since it is even more unlikely to
occupy the energetically higher bright state. This temperature
behavior is analogue to localized excitons, which only become
visible for thermal energies smaller than the trapping energy.
The predicted low-temperature PL signals at about −60

meV (K−K′, acoustic K phonon-assisted) and −75 meV (K−
K′, optical K phonon-assisted) correspond well to exper-
imentally observed but so far not fully explained PL peaks in
hBN-encapsulated samples tuned to charge neutrality. In
agreement with our theory, these peaks are not visible in
reflection/absorption spectra.58 We have also performed
calculations for tungsten disulfide (WS2) monolayers and
find the same qualitative temperature trend. Here, the phonon-
assisted peaks are located at about −70 and −90 meV (cf.
Supporting Information), resulting from slightly different
exciton and phonon dispersions.
In Figure 4 we directly compare an experimentally measured

PL spectrum with our simulation. The blue shaded curve
shows the PL measured at T = 15 K for hBN-encapsulated
WSe2 at charge neutrality. Details about the experiment can be
found in ref 3. The red line shows the corresponding calculated
spectrum. For a better comparison, the calculated spectrum in
Figure 4 was convoluted with a 1 meV broad Gaussian to
simulate disorder in the experiment, viz. small statistical
fluctuations of resonance energies resulting from inhomoge-
neities throughout the sample. Figure 4 illustrates that the

Figure 3. PL spectra of hBN-encapsulated WSe2 monolayers at four
different temperatures. Together with the full simulation (colored
curves), we also show the solution for zero dark-state dephasing (thin
solid lines). At higher temperatures, the lower-lying momentum-dark
states K−K′ and K−Λ give rise to a strong asymmetric broadening of
the bright exciton resonance toward lower energies. For low
temperatures, the PL signal exhibits indirect peaks stemming from
the phonon-assisted recombination of momentum-dark excitons.

Figure 4. Direct comparison between experiment and theory. The
blue shaded curve shows the PL spectrum measured on hBN-
encapsulated WSe2 at charge neutrality at T = 15 K. The red line
shows the corresponding simulated spectrum. Peaks P and Q denote
the acoustic and optical phonon-assisted recombination of K−K′
excitons.
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theoretically predicted PL features from the momentum-dark
K−K′ exciton agree well with the experimentally observed
resonances between 50 and 80 meV below the bright exciton
denoted with P and Q. The two pronounced peaks around 40
and 30 meV below the bright state (denoted with D and T)
have been assigned to spin-dark states4 and charge defect
bound trions,59 respectively. They are beyond the scope of this
work.
When comparing peak intensities in theory and experiment

we find quantitative differences in the height of the bright
exciton X0 and the phonon side peaks P and Q. This deviation
could result from numerical inaccuracies in the exciton−
phonon matrix element, for example, resulting from the applied
deformation potential approximation.37 Moreover, the pres-
ence of the neglected defect-bound trions (T) and the spin-
forbidden exciton (D) could influence the oscillator strength
and occupation of the bright state. In general, the complex
interplay of optical pumping and phonon-induced relaxations
as well as radiative and nonradiative recombination, which at
low temperatures take place on comparable time scales, could
result in quasi-equilibrium distributions in the experiment that
deviate from the assumed Boltzmann distribution. However,
we find a good qualitative agreement for the temperature
dependence of peak shapes and intensity ratios. In the
Supporting Information, we show further spectra measured
on the same system at different temperatures. We find that the
intensity of P and Q relative to X0 increases, while the slope on
the high-energy side of the peak P becomes steeper with
decreasing temperature. Both findings are consistent with our
model, since both the intensity as well as the peak shape of the
phonon-assisted emission are determined by the energetic
distribution of excitons ∝ exp(−E/kBT).
Moreover, we have summarized several independent PL

measurements on hBN-encapsulated WSe2
3−5 in the Support-

ing Information. All of these studies show the phonon-assisted
peaks discussed above. Interestingly, the strongest peak
denoted as P in Figure 4 (attributed in our work to the
acoustic phonon-assisted decay of K−K′ excitons) shows a
double peak structure in experiments performed at 4 K. The
lower one of the two peaks (P2) splits in magnetic fields into
two resonances with the same g-factor as the spin-dark D
peak.60 In contrast, the other peak (P1) shows a different
behavior in magnetic fields, cf. Supporting Information. The
studies in refs 60 and 61 suggest that P2 is most likely a
phonon replica of the spin-dark exciton D, involving chiral E′′
phonons for the necessary spin-flip. However, the origin of the
second peak P1 has not been explained yet. Polarization
resolved measurements show both peaks P1 and P2 in
copolarized measurements, while the energetically higher P1
is much weaker in cross-polarized set-ups.4 Both, the magnetic
field dependence from ref 60 as well as the polarization
dependent measurements in ref 4 support our assignment of
P1 to the phonon-assisted recombination of K−K′ spin-like
excitons, cf. Supporting Information for further details.
Finally, we compare our results obtained for WSe2 with

molybdenum-based TMDs, cf. Figure 5. Here, we show a
continuous temperature study of the PL spectrum for (a) WSe2
and (b) MoSe2. In tungsten-based TMDs, the lower-lying
K−Λ and K−K′ valley provide a continuous density of
(momentum-dark) states below the bright exciton, yielding an
asymmetric broadening of the bright exciton peak toward
lower energies. In contrast, for MoSe2, the bright state
constitutes the global minimum of the exciton dispersion

calculated in our Wannier model. Therefore, there are no
phonon-assisted PL peaks below the bright state, and the main
peak is asymmetrically broadened toward higher energies, cf.
Figure 5b. Here the broadening of the low energy side of the
main line is predominantly given by the energy uncertainty of
the bright state giving rise to a Lorentzian shape. In contrast,
the high-energy side is additionally shaped by the decay of
small momentum excitons in the K−K valley assisted by long-
range acoustic phonons, which agrees with the findings in ref
34.
In summary, we have presented an analytical expression for

the phonon-assisted exciton PL from momentum-dark excitons
which allows to model the emission spectrum of an arbitrary
semiconducting material. When applying our model to the
luminescence of WSe2, we find a good agreement with
experiment clear PL signals stemming from momentum-dark
intervalley excitons, potentially explaining the origin of so far
observed but unidentified PL peaks. In contrast, MoSe2 does
not exhibit indirect PL peaks and shows an opposite
asymmetric broadening which is consistent with the absence
of lower-lying momentum-dark exciton states. Our work will
trigger future experimental and theoretical studies on
momentum-dark exciton PL and in particular addressing
exciton thermalization and diffusion.
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Figure 5. Temperature-dependent PL spectra calculated for (a) WSe2
and (b) MoSe2. For each temperature, the spectra have been
normalized to the integrated PL. While WSe2 shows a clearly
asymmetric broadening toward lower energies and distinct indirect
peaks at low temperatures, MoSe2 has no additional indirect peaks
and is more strongly broadened toward higher energies.
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Derivation of the equations of motion, many-particle
dephasing and PL formula; details on the calculation of
excitonic energies, wave functions and matrix elements;
summary of supporting PL spectra published in other
works; time dependent PL of P1 and P2; temperature
dependent PL spectra of WSe2; calculated energies and
PL in WS2 (PDF)
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