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Two-scale models for reinforced concrete, where the large-scale problems are defined in terms of Euler–
Bernoulli beam and Kirchhoff–Love plate models, are constructed. The subscale problem on the
Representative Volume Element (RVE) is correspondingly outlined as finding the response of the three-
dimensional RVE comprising plain concrete continuum, reinforcement bars and the bond between them.
The boundary region of the periodic mesh is modelled with special solid elements, which allow for pre-
scribing the macroscopic input via strongly periodic boundary conditions in an effective way. The effec-
tive response of the reinforced concrete RVEs of different sizes subjected to tension and pure bending is
investigated for both effective beam and plate models. A series of experiments on reinforced concrete
panels subjected to bending and membrane loads is simulated, and the effective moment–curvature
response is studied. Within the developed framework, an arbitrary macroscopic loading in terms of mem-
brane strains and curvatures can be prescribed on the RVE, and the corresponding effective response is
obtained, making the proposed formulation feasible for future use in an FE2 scheme.

� 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
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1. Introduction

Concrete is the most widely used construction material in the
world, and the use of it is forecast to increase in the future. It is
therefore necessary to be able to design and build optimised, safe
and sustainable structures. Finite element analysis of concrete
structures is a useful tool when developing new structural systems,
and it is thus necessary to be able to create robust models capable
of providing accurate results efficiently. Reinforced concrete, being
ubiquitous in construction around the world typically has cracks
appearing already at moderate load levels. Wide cracks can be
detrimental to structural performance and thus need to be accu-
rately predicted. This is particularly true for large-scale reinforced
concrete structures such as frames, bridges or nuclear reactor con-
tainments. In analysis and design of such structures, many simpli-
fications are often made in order to make the computations
tractable and to get results within a reasonable amount of time.
Therefore, shell and beam elements are often used to approximate
the real geometry as they reduce the computational complexity.
Strain localisation in concrete is a complicated phenomenon,
and it is not straightforward to obtain accurate predictions. Crack-
ing of plain concrete has been extensively studied in the literature
(Hillerborg et al., 1976; Bažant and Oh, 1983; Peerlings et al., 1996;
Mazars and Pijaudier-Cabot, 1989; Jirásek, 1998; Grassl and
Jirásek, 2006), and there is today a multitude of techniques that
treat the cracking problem and provide good quality results (de
Borst et al., 2004; Lotfi and Shing, 1995; Ulfkjær et al., 1995;
Grassl and Jirásek, 2010). Computational models, often based on
strong (Ottosen and Ristinmaa, 2013; Mosler and Meschke, 2003;
Ibrahimbegovic and Melnyk, 2007) or weak (Bažant and Oh,
1983; de Borst, 2002; Rots et al., 1985; Wriggers and Moftah,
2006) discontinuity approaches have made their way to most of
the commercial finite analysis codes, and are today widely used
by engineers and researchers. These models are usually formulated
for two- or three-dimensional solids, but not for beams and shells.

Since concrete structures are almost always reinforced, the sit-
uation is further complicated as cracking of the quasi-brittle con-
crete matrix does not mean structural failure. Instead, structural
interaction effects such as tension stiffening (Ben Romdhane and
Ulm, 2002; Lundgren and Gylltoft, 2000; Ibrahimbegovic et al.,
2010) caused by the bond in the steel–concrete interface must be
carefully considered when modelling crack growth. Information
about the amount and arrangement of reinforcement is thus vital
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and must be accurately represented in the model. All of these rea-
sons make accurate modelling of large-scale reinforced concrete
structures challenging and possibly computationally expensive.

In order to tackle both of the described issues, computational
multiscale modelling can be employed. More specifically, the FE2

approach, introduced by Feyel and Chaboche (2000), stands out
as an attractive option. In the method, the problem is split into
modelling the structure itself at the coarse scale, and the material
at the fine scale. Computations are performed on the so-called Rep-
resentative Volume Elements (RVEs, cf. Gitman et al., 2007),
located at the Gauss point level, which are used to model a repre-
sentative sample of the material at an arbitrary level of detail. The
macroscopic loading information is then defined on each RVE via
suitable boundary conditions. The response of the RVE is homoge-
nised, whereafter the result is sent back to the coarse scale. It is
noteworthy that the FE2 method addresses both the material
model complexity and the potentially large computational cost of
analysing large reinforced concrete structures. Within this compu-
tational scheme, it is natural to combine the complex fine-scale
material behaviour with a large-scale effective model. Further-
more, this approach is very well suited for parallel computing as
all RVE problems are independent and, therefore, can be solved
simultaneously.

Even though there exists a wide spectrum of multiscale meth-
ods and many of them have already been applied to concrete struc-
tures (Unger and Eckardt, 2011; Rodrigues et al., 2018; Nilenius
et al., 2015; Sun and Li, 2015; Nguyen et al., 2012) or reinforced
concrete (Huguet et al., 2017; Sun and Li, 2016; Le et al., 2015;
Carbone and Codegone, 2000; Nader et al., 2017) structures,
upscaling of the fine scale response of reinforced concrete to effec-
tive beam and plate models has not been treated in the literature
to the same extent. Studies addressing these problems have
focused on different materials, such as masonry (Mercatoris and
Massart, 2011; Petracca et al., 2017) or composite structures
(Herwig and Wagner, 2018; Coenen et al., 2010; Reinaldo
Goncalves et al., 2016; Karttunen et al., 2019). For reinforced con-
crete, two-scale modelling of frame structures considering effec-
tive beam models was studied by Mata et al., 2008. Recently,
solid, waffle and hollow core reinforced concrete slabs were anal-
ysed in a multiscale setting by Moyeda and Fish, 2019. Still, the
FE2 technique has rarely, to the knowledge of the authors, been
used to analyse reinforced concrete structures with large-scale
beam and plate models. Studies conducted by the authors
(Sciegaj et al., 2018; Sciegaj et al., 2019) considered only two-
dimensional RVEs, which were upscaled to effective solid
elements.

In this work, the first step is taken towards applying the FE2

procedure to large-scale reinforced concrete structures, which
Fig. 1. A three-dimensional reinforced concrete structure. For each reinforcem
can be modelled with beam and plate elements. To this end, the
response of three-dimensional reinforced concrete RVEs is
upscaled to effective Euler–Bernoulli and Kirchhoff–Love plate
models. First, the developed two-scale model for reinforced con-
crete (Sciegaj et al., 2018; Sciegaj et al., 2019) is extended within
the computational homogenisation framework to cases of having
an Euler–Bernoulli beam and Kirchhoff–Love plate models at the
macroscale. Next, special boundary elements for prescribing the
effective fields on the three-dimensional RVE via periodic bound-
ary conditions are developed. The focus of the paper is placed on
the effective response of the three-dimensional reinforced concrete
RVE comprising plain concrete continuum, reinforcement bars and
the bond between them. Within the developed framework, an arbi-
trary loading in terms of membrane strains and curvatures can be
prescribed on the RVE, and the corresponding effective response is
obtained in a straightforward way, making the proposed formula-
tion feasible for future use in an FE2 scheme.

The remainder of the paper is structured as follows: The single-
scale problem is briefly recapped in Section 2. In Section 3, varia-
tionally consistent homogenisation is used to derive the two-
scale formulation and the necessary scale transitions. In Section 4,
the method of imposing the macroscopic fields on the RVE via peri-
odic boundary conditions with help of special boundary elements
is described in detail. The modified boundary elements are intro-
duced, and the procedure of generating a periodic mesh for an arbi-
trary reinforced concrete RVE is outlined. In Section 5, the effective
response of the three-dimensional RVEs is investigated in a series
of numerical examples comprising both uniaxial tension and bend-
ing. Furthermore, the effective moment–curvature response of the
RVE is compared to experiments on reinforced concrete panels
subjected to bending and membrane loads. The paper is concluded
with Section 6, which contains some final remarks and an outlook
to future work.
2. Single-scale problem

The single-scale boundary value problem for a general three-
dimensional reinforced concrete structure is here briefly recapped,
cf. Sciegaj et al. (2018) for a more detailed derivation. The problem
domain, X, occupied by the reinforced concrete structure can be
split into the concrete part, Xc, and the reinforcement part, Cint.
The domain boundary can be separated into the essential (Cu)
and natural (Ct) parts, with either displacement or traction
defined, respectively. A representation of the problem domain
along with its components can be seen in Fig. 1.

Denoting the body force b̂ and the stress in the concrete rc, the
momentum equilibrium can be stated as:
ent bar, longitudinal and transverse unit vectors el and e?;i are defined.
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�rc � $ ¼ b̂ in Xc;

u ¼ up on Cu;
ð1Þ

t :¼ rc � n ¼ t̂ on Ct:

To retain generality, both loads along and across the reinforcement
are considered. Thus, the normal force, Ns, is linked to the bond
stress, tC, which is distributed along the perimeter of the bar, Ss.
Even though different reinforcement bars may have different
dimensions, it is assumed in the following that the diameter (and
consequently the perimeter) are constant for each bar. For the
transverse loading in two perpendicular directions, the bending
moments, Ms ¼ Ms;1 Ms;2½ �T, can be expressed as function of the

transverse loads k ¼ k?;1 k?;2½ �T. On top of that, it is assumed that
there are no end forces applied to the reinforcement bars, i.e. the
forces are applied only on the concrete surface. Consequently, the
strong form of equilibrium for the reinforcement is:

� @Ns

@l
þ SstC ¼ 0 in Cint;

� @2Ms

@l2
þ k ¼ 0 in Cint;

Ns ¼ 0; Ts ¼ 0; Ms ¼ 0 on @Cint:

ð2Þ

The forces acting on both reinforcement and concrete in the
interface are reproduced in Fig. 2. Here, the perpendicular direc-
tions represented by the unit vectors el; e?;1 and e?;2, are intro-
duced. These vectors can be defined separately for each
reinforcement bar comprising the domain Cint. For a given rein-
forcement bar, these directions may be different in different parts
of the structure. There is no formal requirement of orthogonality of
the reinforcement bars. However, only orthogonal reinforcement
grids will be considered in the numerical examples below.

As a next step, we define the displacement fields
us ¼ us vs ws½ �T for steel and uc ¼ uc vc wc½ �T for concrete. It is pos-
sible to split these fields into longitudinal and transversal compo-
nents along the interface Cint:

us ¼ us;l þ us;? ¼ us;lel þ us;?;1e?;1 þ us;?;2e?;2; ð3Þ
uc ¼ uc;l þ uc;? ¼ uc;lel þ uc;?;1e?;1 þ uc;?;2e?;2: ð4Þ
For simplicity, we introduce the tensor I? ¼ I � el � el½ �, which
extracts the transversal part of the displacement vector, i.e.,
us;? ¼ I? � us and uc;? ¼ I? � uc.

Along the interface, we allow for reinforcement slip, i.e.,
s :¼ us;l � uc;l, but the contact deformation in the transverse direc-
tion is neglected. Thus, the following interface constraint is
adopted:
Fig. 2. Steel–concrete interface. Boundary forces on the re
us;? � uc;? ¼ 0 in Cint: ð5Þ
In order to maintain generality, the constitutive relations for con-
crete, steel, and the interface are considered only implicitly in this
work, i.e., they are assumed to be known. The strong forms (1)–
(2) and (5) are multiplied by suitable test functions and integrated
over the domain. Upon employing the interface equilibrium we
obtain the weak forms. Thus, the single-scale quasi-static problem
can now be defined as: Find uc;us;l;us;?; k 2 Uc �Us;l �Us;? � L such
that

ac uc; ducð Þ � b s; el � ducð Þ � c k; I? � ducð Þ ¼ lc ducð Þ 8 duc 2 U0
c ; ð6Þ

al us;l;us;?; dus;l
� �þ b s; dus;l

� � ¼ 0 8 dus;l 2 Us;l; ð7Þ
ab us;l;us;?; dus;?
� �þ c k; dus;?ð Þ ¼ 0 8 dus;? 2 Us;?; ð8Þ

c dk;us;? � I? � ucð Þ ¼ 0 8 dk 2 L; ð9Þ
for suitable trial spaces Uc;Us;l;Us;?;L:

Uc ¼ uðxÞ : X# R2;

Z
Xc

u2 þ u� $½ �2dX < 1;u ¼ up on Cu

� �
;

Us;l ¼ vðlÞ : Cint # R;

Z
Cint

v2 þ @v
@l

� �2

dC < 1
( )

;

Us;? ¼ vðlÞ : Cint # R2;

Z
Cint

v2 þ @v
@l

� �2

þ @2v
@l2

 !2

dC < 1
8<
:

9=
;;

L ¼ kðlÞ : Cint # R2;

Z
Cint

k2dC < 1
( )

;

and the test space U0
c :

U0
c ¼ uðxÞ : X# R

2;

Z
Xc

u2 þ u� $½ �2dX < 1;u ¼ 0 on Cu

� �
:

The following functionals in the system (6)–(9) can then be identi-
fied as:

(i) Pertinent to concrete:
bar cut
ac uc; ducð Þ :¼
Z
Xc

rc e uc½ �ð Þ : duc � $½ � dX; ð10Þ

lc ducð Þ :¼
Z
Cext

t̂ � duc dCþ
Z
Xc

b̂ � duc dX: ð11Þ
(ii) Pertinent to steel in longitudinal direction:
al us;l;us;?; dus;l
� �

:¼
Z
Cint

Ns
@us;l

@l
;
@2us;?

@l2

 !
@dus;l

@l
dC: ð12Þ
(iii) Pertinent to steel in transverse direction:
out and concrete boundary tractions omitted.
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ab us;l;us;?; dus;?
� �

:¼ �
Z
Cint

Ms
@us;l

@l
;
@2us;?

@l2

 !
� @

2dus;?

@l2
dC:

ð13Þ

(iv) Pertinent to the coupling terms:
b s;wð Þ :¼
Z
Cint

SstCðsÞw dC; ð14Þ

c k;vð Þ :¼
Z
Cint

k � v dC: ð15Þ
Remark:
In the continuous setting, the displacement field in the concrete

formally has to be regularised when comparing to the bar/beam
elements in Eqs. (7), (8) in order to avoid artificial singularities.
One possibility would be to measure the displacement on a rigid
cylinder surrounding the reinforcement bars. However, in this
study, we restrict to coarse mesh approximations, whereby we
assume the finite elements of the concrete to be larger than the
physical dimensions of the reinforcement cross-section.
3. Two-scale problems

In this paper, the term microscale commonly used in multiscale
modelling literature has been substituted with the term subscale.
This is done to better reflect the chosen level of modelling detail
for the RVEs (homogeneous concrete and distinct reinforcement
bars can be considered physically macroscopic), and to avoid con-
fusion, as plain concrete has a heterogeneous microstructure,
which is not taken into account in this study. Further, the com-
monly used term macroscale is used interchangeably with the term
large-scale in this paper.

The so-called Variationally Consistent Homogenisation (Larsson
et al., 2010) is used to derive the two-scale problem. We use the
Variational MultiScale (VMS) ansatz and separate the unknown
fields uc; us;l; us;? into the smooth (large-scale) and fluctuating
(subscale) parts:

uc ¼ uM
c þ us

c; ð16Þ
us;l ¼ uM

s;l þ us
s;l; ð17Þ

us;? ¼ uM
s;? þ us

s;?; ð18Þ

with the superscripts M and s denoting the macroscopic and sub-
scale components, respectively. It is assumed that the Lagrange
multiplier k lives only at the subscale, and thus the total field is
equal to the fluctuation part, k ¼ ks.

As the next step, we introduce the running averages, i.e., at each
location �x 2 X the field is approximated by the volume average on
Fully-resolved representation (a) and the macroscopic model (b) for a beam struct
X� �xð Þ. Thus, for given functions fX and f C defined on Xc and Cint,
respectively, we haveZ
Xc

fX dXþ
Z
Cint

f C dC#
Z
X
f� dX; ð19Þ

where the running average f� is defined as:

f� ¼ 1
X�j j

Z
X�;c

fX dXþ
Z
C�;int

f C dC

( )
: ð20Þ

Utilising the running averages, the fully-resolved problem from Eqs.
(6)–(9) is then expressed asZ
X

a�;cðuc;ducÞþa�;lðus;l;us;?;dus;lÞþa�;bðus;l;us;?;dus;?Þþc�ðk;dus;? � I? �ducÞ
�

þb�ðs;dus;l �el �ducÞþc�ðdk;us;? � I? �ucÞ� dX¼ lcðducÞ; ð21Þ

where we introduced the RVE-forms

a�;cðuc; ducÞ :¼ 1
jX�j

Z
X�;c

rc : duc � $½ � dX; ð22Þ

b�ðs;wÞ :¼ 1
jX�j

Z
C�;int

SstCðsÞw dC; ð23Þ

c�ðk;wÞ :¼ 1
jX�j

Z
C�;int

k � v dC; ð24Þ

a�;lðus;l;us;?; dus;lÞ :¼ 1
jX�j

Z
C�;int

Ns
@dus;l

@l
dC; ð25Þ

a�;bðus;l;us;?; dus;?Þ :¼ 1
jX�j

Z
C�;int

�Ms � @
2dus;?

@l2
dC: ð26Þ

Consequently, we have a large-scale boundary value problem
defined on globally ‘‘smooth” fields, and a subscale boundary value
problem defined on the fluctuation fields within an RVE. As the inte-
grals are numerically evaluated only at the integration points, RVEs
occupy regions X� in the vicinity of large-scale integration points,
centered around �x. Furthermore, it is assumed that the reinforce-
ment bars do not change direction inside the RVE, i.e. the unit vec-

tors el ¼ elx ely elz
� 	T and e?;i ¼ e?;i;x e?;i;y e?;i;z

� 	T, where i ¼ 1;2, are
constant for each reinforcement bar in the RVE.

In order to derive the partial differential equations governing
the large-scale problems, as well as the associated scale transitions,
we test the fully-resolved problem in (21) with test functions asso-
ciated with the macroscopic part of the total field, i.e.,Z

X
a�;cðuc; duM

c Þ þ a�;lðus;l;us;?; duM
s;lÞ þ a�;bðus;l;us;?; duM

s;?Þ
h
þc�ðk; duM

s;? � I? � duM
c Þ þ b�ðs; duM

s;l � el � duM
c Þ
i
dX ¼ lcðduM

c Þ:
ð27Þ
ure. Prescribed boundary tractions t̂ at beam ends give rise to end forces N̂, V̂ and M̂.
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3.1. Macroscopic Euler–Bernoulli beam

For the beam model, we introduce model assumptions, pre-
sented briefly in Fig. 3. The beam is defined in the xz-plane and
spans the length L in x-direction. Its cross-section is assumed to
be rectangular with height Lz and width Ly. The beam is subjected

to body load b̂ ¼ b̂ q̂
h iT

, where b and q are the longitudinal and

transversal loads per length, respectively. At the ends, i.e., at
x ¼ 0 and x ¼ L, the beam is subjected to prescribed tractions

t̂ ¼ t̂x t̂z
� 	T

.
Since the beam model is two-dimensional, only x- and z-

components of the total displacement field are considered to vary
at the macroscale, while the y-component of the total displace-
ment field lives only at the subscale. According to the kinematics
of this beam model, we have the following relation between the
large-scale and subscale displacement fields:

ucð�x; zÞ ¼�uð�xÞ � z
@ �w
@x






�x

; ð28Þ

wcð�x; zÞ ¼�wð�xÞ: ð29Þ
Consequently, the VMS ansatz in (16) can be expressed as

uc ¼ uM
c þ us

c ¼
uM
c

0
wM

c

2
64

3
75þ

us
c

v s
c

ws
c

2
64

3
75: ð30Þ

Following the procedure proposed in (Larsson et al., 2010), we aim
at prolonging the large-scale components of the resolved fields

(16)–(18) from the effective large-scale fields, �u ¼ �ub �w½ �T ¼ �u �w½ �T.
More specifically, we consider a Taylor series expansion of the
large-scale fields inside X�, centered at �x:

uM
c ð�x; x; zÞ ¼�uð�xÞ � z

@ �w
@x






�x

þ @�u
@x






�x

x� �x½ � � z
@2 �w
@x2







�x

x� �x½ �; ð31Þ

wM
c ð�x; x; zÞ ¼�wð�xÞ þ @ �w

@x






�x

x� �x½ �; ð32Þ

uM
s;lð�x; x; zÞ ¼el � uM

c ¼ elxuM
c þ elzwM

c ; ð33Þ
uM
s;?ð�x; x; zÞ ¼I? � uM

c : ð34Þ
Upon expanding of (27), we getZ
L

1
jL�j

Z
X�;c

rc : duM
c � $

� 	
dXþ

Z
C�;int

Ns
@duM

s;l

@l
dC

 !
dx

¼
Z
@L
t̂ � duM

c dxþ
Z
L
b̂ � duM

c dx ð35Þ

with L� being the length of the RVE in x-direction. Assuming that
the applied loads are sufficiently smooth, we discard the higher
order terms and express the parts of the right hand side of (35) with
help of (31)–(32) as
�N ¼ 1
jL�j

Z
C�

t̂�;x x� �x½ � dCþ
X

C�;int\C�

R̂Lelx þ
X2
i¼1

R̂?;ie?;i;x

" #
x� �x½ � þ

X
C�;int\C

8<
:

�M ¼ 1
jL�j

Z
C�

zt̂�;x x� �x½ � dCþ
X

C�;int\C�

z R̂Lelx þ
X2
i¼1

R̂?;ie?;i;x

" #
x� �x½ � þ

X
C�;i

8<
:

Z
@L
t̂ � duM

c dx �
Z Lz=2

�Lz=2

Z Ly=2

�Ly=2
t̂x d�u� z

@d �w
@x

� �
dydzþ

"
Z Lz=2

�Lz=2

Z Ly=2

�Ly=2
t̂zd �w dydz

#L
0

¼ N̂d�u
h iL

0
� M̂

@d �w
@x

� �L
0
þ V̂d�w
h iL

0
;

Z
L
b̂ � duM

c dx �
Z L

0
b̂d�uþ q̂d �w dx;

where

N̂¼
Z Lz=2

�Lz=2

Z Ly=2

�Ly=2
t̂x dydz; M̂¼

Z Lz=2

�Lz=2

Z Ly=2

�Ly=2
zt̂x dydz; V̂ ¼

Z Lz=2

�Lz=2

Z Ly=2

�Ly=2
t̂z dydz:

are the prescribed boundary data or reaction forces. The left hand
side of (35) is then expanded with help of (31)–(34) toZ L

0

1
jL�j

Z
X�;c

rxx dXþ
Z
C�;int

Nse2lx dC

 !
@d�u
@x

(

�
Z
X�;c

zrxx þ rxz x� �x½ � dXþ
Z
C�;int

Ns ze2lx þ x� �x½ �elxelz
� � 

þ2Mse?xelzelx dC

!
@2d �w
@x2

þ
Z
X�;c

ð�rxz þ rzxÞ dX
 !

@d�w
@x

g

Utilising the symmetry of the stress tensor, we obtain the effective
form of (35) asZ L

0

�N
@d�u
@x

� �M
@2d �w
@x2

dx ¼ N̂d�u
h iL

0
� M̂

@d�w
@x

� �L
0
þ V̂d �w
h iL

0

þ
Z L

0
b̂d�uþ q̂d �w dx;

ð36Þ

where the effective normal force and bendingmoment are defined as

�N ¼ 1
jL�j

Z
X�;c

rxx dXþ
Z
C�;int

Nse2lx dC

( )
; ð37Þ

�M ¼ 1
jL�j

Z
X�;c

zrxx þ rxz x� �x½ � dXþ
(

�
Z
C�;int

Ns ze2lx þ elzelx x� �x½ �� �þ 2elz
X2
i¼1

Ms;ie?;i;xelx dC

)
; ð38Þ

Finally, the large-scale problem for themacroscopic Euler–Bernoulli
beam is defined as: Find �u; �w 2 �U� �W such thatZ L

0

�N
@d�u
@x

dx¼ N̂d�u
h iL

0
þ
Z L

0
b̂d�u dx 8 d�u2 �U0; ð39Þ

Z L

0

�M
@2d �w
@x2

dx¼ M̂
@d�w
@x

� �L
0
� V̂d �w
h iL

0
�
Z L

0
q̂d�w dx 8 d �w2 �W0; ð40Þ

with the suitable trial and test spaces.

Remark:
Using the divergence theorem, we have also (assuming the

absence of body forces within the RVE)
�

X2
i¼1

R̂M;ie?;i;xelx

9=
;; ð41Þ

nt\C�

X2
i¼1

R̂M;ie?;i;x zelx þ elz x� �x½ �ð Þ
9=
;; ð42Þ



Fig. 4. Discrete forces and tractions at the boundary C� of an RVE.
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where the summation over the discrete forces R̂L; R̂? ¼ R̂?;1 R̂?;2

h iT
and R̂M ¼ R̂M;1 R̂M;2

h iT
is performed at locations where the rein-

forcement intersects C�, cf. Fig. 4. These forces together with the
boundary traction t̂� are defined as follows:

rc � n ¼ t̂� on C�; ð43Þ
Nseln ¼ R̂L on C� \ C�;int; ð44Þ
Tseln ¼ R̂? on C� \ C�;int; ð45Þ

�Mseln

with the scalar eln defined as

eln ¼ 1 if n � el > 0;
�1 if n � el < 0:

�
ð47Þ
3.2. Macroscopic Kirchhoff–Love plate

For the plate model, we begin with defining the model assump-
tions, illustrated in Fig. 5. The plate occupies the region A in the xy-
plane and is assumed to have a uniform cross-section with the

height Lz. It is subjected to in-plane body load b̂p ¼ b̂x b̂y

h iT
and

the out-of-plane load q̂. Furthermore, membrane forces Nnx;Nny,
Fig. 5. Fully-resolved representation (a) and the macroscopic model (b) for a plate structu
N̂nx; N̂ny, shear force V̂n, and bending moments M̂nx; M̂ny at a point on the external bou
shear force Vn and bending momentsMmx;Mmy are acting at a point
situated on the external boundary @A with the normal and tangen-
tial unit vectors n and m.

Similar to body loads, we split the coordinate vector x into the

in-plane and out-of-plane components, i.e., x ¼ xp z
� 	T, where the

xp ¼ x y½ �T are the membrane (in-plane) components. The same
procedure is applied to the tangential and transversal reinforce-

ment unit vectors, i.e., el ¼ elp elz
� 	T and e?;i ¼ e?;i;p e?;i;z

� 	T with

the membrane components elp ¼ elx ely
� 	T and

e?;i;p ¼ e?;i;x e?;i;y
� 	T, respectively. Similarly, we introduce the oper-

ator $p, which denotes the gradient with respect to the in-plane
coordinates.

According to the kinematics of this plate model, we have the
following relation between the large-scale and subscale displace-
ment fields:

ucð�xp; zÞ ¼ �upð�xpÞ � z$p �w



�xp
; ð48Þ

wcð�xp; zÞ ¼ �wð�xpÞ; ð49Þ
In contrast to the beam model, the full VMS ansatz (16)–(18) can be
utilised. Following the procedure proposed in (Larsson et al., 2010),
we aim at prolonging the large-scale components of the resolved

fields from the effective large-scale fields, �u ¼ �up �w
� 	T ¼ �u �v �w½ �T.

More specifically, we consider a Taylor series expansion of the
large-scale fields inside X�, centered at �xp:

uM
c ¼

�upð�xpÞ�z$p �w



�xp
þ �up�$p
� 	



�xp
� xp� �xp
� 	�z $p �w�$p

� 	


�xp
� xp� �xp
� 	

�wðxpÞþ$p �w



�xp
� xp� �xp
� 	

2
4

3
5;

ð50Þ
uM
s;l ¼ el �uM

c ; ð51Þ
uM
s;? ¼ I? �uM

c : ð52Þ
Upon expanding (27), we getZ
A

1
jA�j

Z
X�;c

rc : duM
c � $

� 	
dXþ

Z
C�;int

Ns
@duM

s;l

@l
dC

 !
dA

¼
Z
@A
t̂ � duM

c dCþ
Z
A
b̂ � duM

c dA; ð53Þ

with A� being the area of the RVE projection onto the xy-plane. The
right hand side of (53) can be expanded with help of (50) toZ
@A

N̂p;n � d�up � M̂p;n
@d�w
@n

þ V̂K
nd�w

� �
dCþ

Z
A

b̂p � d�up þ q̂d�w
 �

dA;

with the boundary membrane traction, boundary Kirchhoff force,
and the boundary moment defined as
re. Prescribed tractions t̂ at the external boundary Cext give rise to membrane forces
ndary @A with normal and tangential unit vectors n and m, respectively.
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N̂p;n ¼ N̂p � n; V̂K
n ¼ V̂n þ @

@m
M̂p : n�m½ �
 �

; M̂p;n ¼ M̂p : n� n½ �:

The boundary membrane forces and bending moments are defined
with component representation as

N̂p ¼ N̂xx N̂xy

N̂yx N̂yy

" #
and M̂p ¼ M̂xx M̂xy

M̂yx M̂yy

" #
:

Expanding the left hand side of (53) with help of (50)–(52), we
obtain:Z
A

�N : d�up � $p
� 	� �M : $pd�w� $p

� 	
dA

¼
Z
@A

N̂p;n � d�up � M̂p;n
@d�w
@n

þ V̂K
nd�w

� �
dC

þ
Z
A

b̂p � d�up þ q̂d�w
 �

dA; ð54Þ

where the effective membrane forces and bending moments are
defined as

�N ¼ 1
jA�j

Z
X�;c

rp dXþ
Z
C�;int

Nselp � elp dC

( )
; ð55Þ

�M ¼ 1
jA�j

Z
X�;c

zrp þ rz � xp � �xp
� 	

dXþ
(

Z
C�;int

Ns zelp � elp þ elzelp � xp � �xp
� 	� �þ 2elz

X2
i¼1

Ms;ie?;i;p � elp dC

)
;

ð56Þ
where rp and rz are the in-plane and out-of-plane components of
the concrete stress tensor rc, i.e.,

rp ¼ rxx rxy

ryx ryy

� �
and rz ¼

rxz

ryz

� �
:

Finally, the large-scale problem for the macroscopic Kirchhoff–
Love plate is defined as: Find �up; �w 2 �U� �W such thatZ

A

�N : d�up �$p
� 	

dA¼
Z
@A
N̂p;n � d�up dCþ

Z
A
b̂p � d�up dA 8 d�up 2 �U0;

ð57ÞZ
A

�M : $pd�w�$p
� 	

dA¼
Z
@A
M̂p;n

@d �w
@n

� V̂K
nd �w dC

�
Z
A
q̂d�w dA 8 d�w 2 �W0; ð58Þ

with the suitable trial and test spaces.

Remark:
By the divergence theorem, we have also (assuming the absence

of body forces within the RVE)
N
�
¼ 1

jA�j
Z

C�

t
^

�;p � xp � x
�
p

h i
dCþ

X
C�;int\C�

R
^

Lelp þ
X2
i¼1

R
^

?;ie?;i;p

" #
� xp
h8<

:

�M ¼ 1
jA�j

Z
C�

zt̂�;p � xp � �xp
� 	

dCþ
X

C�;int\C�

z R̂Lelp þ
X2
i¼1

R̂?;1e?;i;p

" #
� xp
�8<

:

where t̂�;p denotes the in-plane components of the boundary trac-

tions t̂�, and the summation over the discrete forces R̂L; R̂? and R̂M

is performed at locations where the reinforcement intersects C�, cf.
Fig. 4.
3.3. Subscale problem

In accordance with the VMS ansatz, the fully-resolved problem
(21) is tested with functions pertaining to the fluctuation fields. In
general, before the boundary conditions on any given RVE are spec-
ified, the subscale equilibrium can be expressed in the weak format
as

a�;c uc;dus
c

� ��b� s;el �dus
c

� ��c� k; I? �dus
c

� �¼ l�;c dus
c

� � 8 dus
c 2U�;c;

ð61Þ
a�;lus;l;us;?;dus

s;lþb� s;dus
s;l

 �
¼ l�;l dus

s;l

 �
8 dus

s;l 2U�;s;l; ð62Þ

a�;b us;l;us;?;dus
s;?

 �
þc� k;dus

s;?
 �

¼ l�;b dus
s;?

 �
8 dus

s;? 2U�;s;?;

ð63Þ
c� us;? � I? �uc;dkð Þ¼0 8 dk2 L� ð64Þ

with the test spaces defined as follows:

U�;c ¼ uðxÞ :X� #R
2;

Z
X�

u2þ u�$½ �2dX<1
� �

; ð65Þ

U�;s;l ¼ vðlÞ :C�;int #R;

Z
C�;int

v2þ @v
@l

� �2

dC<1
( )

; ð66Þ

U�;s; ¼ vðlÞ :C�;int #R
2;

Z
C�int

v2þ @v
@l

� �2

þ @2v
@l2

 !2

dC<1
8<
:

9=
;;

ð67Þ

L� ¼ kðlÞ :C�;int #R2;

Z
C�int

k2dC<1
( )

: ð68Þ

Furthermore, in the general case, the boundary terms are given as

l�;cðducÞ ¼ 1
jX�j

Z
C�

t̂� � duc dC; ð69Þ

l�;lðdus;lÞ ¼ 1
jX�j

X
C�;int\C�

R̂Ldus;l; ð70Þ

l�;bðdus;?Þ ¼ 1
jX�j

X
C�;int\C�

R̂? � dus;? þ R̂M � @dus;?
@l

� �
; ð71Þ

where the discrete forces R̂L; R̂?; R̂M , and the traction t̂� were
defined in Fig. 4. Furthermore, the body forces acting within the
RVE were neglected. Note that, although the above formulation
maintains generality, the boundary conditions on the local fields
need to be specified in order to produce a solvable system. In this
paper, we consider periodic boundary conditions, which are
imposed on the RVE strongly.
� x
�
p

i
þ

X
C�;int\C�

X2
i¼1

R
^

M;ie?;i;p � elp

9=
;; ð59Þ

� �xp
	þ X

C�;int\C�

z
X2
i¼1

R̂M;ie?;i;p � elp þ elz
X2
i¼1

R̂M;ie?;i;p � xp � �xp
� 	 !9=

;;

ð60Þ
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4. Periodic RVE problem – finite element modelling

In this section, explicit expressions for periodicity constraints
are derived for the cases of Euler–Bernoulli beam and Kirchhoff–
Love plate models at the macroscale. These constraints serve then
as the basis for the finite element implementation, which is also
outlined.

4.1. Periodicity constraints

In order to introduce periodicity to the subscale unit cell, we
divide the RVE boundary into an image part Cþ

� and a mirror part
C�

�. Furthermore, we introduce a mapping uperðxÞ : Cþ
� ! C�

� such

that all points on Cþ
� can be uniquely associated with correspond-

ing points on C�
�; i.e. they have a unique periodic image. It is note-

worthy that the definition of the image and mirror parts will vary
depending on the macroscale problem. For the beam model, we
have a periodic mapping uper;xðxÞ in one direction. Analogically, a
two-directional periodic mapping uper;xyðxÞ is defined for the case
of a plate model at the large-scale. For a visual representation,
see Fig. 6.

In terms of scale separation, the periodicity requires that the
subscale fluctuations are equal at both image and mirror bound-
aries, cf. Fig. 7 for a schematic representation for a one-
dimensional case. Starting from the VMS ansatz (16)–(18), in the
first-order computational homogenisation setting we have:

uþ
c � u�

c ¼ �u� $½ �j�x: � xþ � x�½ �; ð72Þ

where uþ
c ¼ uþ

c vþ
c wþ

c

� 	T and u�
c ¼ u�

c v�
c w�

c

� 	T are the displace-
ments at the image and mirror boundary of the RVE, respectively.
It is noteworthy, that although the equations in this section are sta-
ted only for the displacement fields pertaining to concrete, the cor-
responding formulation holds for the displacement fields in steel
reinforcement, and is skipped here for the sake of brevity.
Fig. 6. Periodic mappings for the case of mac

Fig. 7. Scale separation in case of periodic boundary conditions illustrated for the case o
macroscopic part.
4.1.1. Euler–Bernoulli beam
Keeping in mind the periodicity requirements (usþ

c ¼ us�
c and

wsþ
c ¼ ws�

c ), we express the total displacement fields at the image
and mirror boundary of the RVE and substitute (31)–(34) for the
macroscopic parts to obtain the periodicity constraints:

uþ
c � u�

c ¼ @�u
@x

� z
@2 �w
@x2

" #
xþ � x�½ �; ð73Þ

wþ
c �w�

c ¼ @ �w
@x

xþ � x�½ �; ð74Þ

where xþ and x� are the x-coordinates of the image and mirror
boundary, respectively. It is noteworthy that in the common case
of a cuboid RVE, the difference xþ � x� is simply the length of the
RVE, L�;x. Note that these periodicity conditions depend only on
the effective variables (corresponding to macroscopic strains and
curvature) and the size of the unit cell.

4.1.2. Kirchhoff–Love plate
Similarly as before, we express the total displacement fields at

the image and mirror boundary of the RVE and substitute (50)
for the macroscopic parts. It is noteworthy that the macroscopic
fields �u; �v and �w do not depend on z. Therefore, the terms pertinent
to z in the gradients and coordinates in (50) disappear. Applying
the periodicity requirements (usþ

c ¼ us�
c ;vsþ

c ¼ vs�
c and wsþ

c ¼ ws�
c )

and dropping the tensor notation, we obtain the periodicity
constraints:

uþ
c � u�

c ¼ @�u
@x

� z
@2 �w
@x2

" #
xþ � x�½ � þ @�u

@y
� z

@2 �w
@x@y

" #
yþ � y�½ �; ð75Þ

vþ
c � v�

c ¼ @�v
@x

� z
@2 �w
@x@y

" #
xþ � x�½ � þ @�v

@y
� z

@2 �w
@y2

" #
yþ � y�½ �; ð76Þ

wþ
c �w�

c ¼ @ �w
@x

xþ � x�½ � þ @ �w
@y

yþ � y�½ �: ð77Þ
roscopic beam (a) and plate (b) models.

f deformation across the length. First order Taylor expansion was considered for the
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where xþ; yþ; x� and y� are the x- and y-coordinates of the image
and mirror boundary, respectively. It is noteworthy that in the com-
mon case of a cuboid RVE, the differences xþ � x� and yþ � y� are
simply the lengths of the RVE in x- and y-directions. As before, note
that these periodicity conditions depend only on the effective vari-
ables (corresponding to macroscopic strains and curvatures) and
the size of the unit cell.

In the remainder of the section we simplify the notation used
for the macroscopic deformation gradient and curvatures tensors
as follows:

@�u
@x ¼ �Exx;

@�v
@y ¼ �Eyy;

@�u
@y ¼ �Exy;

@�v
@x ¼ �Eyx;

@ �w
@x ¼ �Ezx;

@ �w
@y ¼ �Ezy;

@2 �w
@x2 ¼ �Kxx;

@2 �w
@y2 ¼ �Kyy;

@2 �w
@x@y ¼ �Kxy;

@2 �w
@y@x ¼ �Kyx:

Similarly, we denote the distances between the image and mirror
boundaries

xþ � x� ¼ L�;x;

yþ � y� ¼ L�;y:
4.2. Periodic mesh generation

The easiest way of satisfying the periodicity constraints (73)–
(74) or (75)–(77) in the RVE model, is to apply them strongly to
specific finite element nodes. As a result, the finite element mesh
has to fulfil certain requirements. First, all nodes on the image
boundary must have a periodic counterpart on the mirror bound-
ary. Secondly, for any node on the image boundary, it must be pos-
sible to uniquely identify its periodic counterpart. The method
presented here is inspired by the works of Yip et al. (2005) and
Grassl and Antonelli (2019) and consists of four stages.

First, points are randomly generated within a specified geome-
try, usually a cuboid. While there are no requirements on the
points generated within the region, it is required that as soon as
a point is placed on a surface, another point is automatically placed
in the same location on the opposite surface. In this way, it is
assured that regardless of which boundaries are later considered
as image or mirror boundaries, a periodic image exists for any
point located on the surface of the unit cell. Secondly, given the list
of point coordinates, Delaunay tessellation is performed. In this
stage, the solid finite elements, which will later constitute the con-
crete phase, are generated. In the next stage, the dual Voronoi tes-
sellation is performed for the same point input, and the Voronoi
Fig. 8. Placement of the reinforcement
polyhedra associated with each point are generated. Those polyhe-
dra bound regions in space within which it is closer to the associ-
ated point than to any other point in the neighbourhood. Although
not formally needed to generate the finite element mesh for con-
crete, this tessellation is later used to include reinforcement and
the steel–concrete interface in the RVE, which is done in the last
stage. Since the reinforcement bars are modelled with beam ele-
ments, the discretisation is rather straight-forward due to the sim-
ple geometry of the rebars. Given the start and end point of any
reinforcement bar and the Voronoi polyhedra data, the intersection
of the rebar line with the polyhedra can be found. Having found the
entry and exit point within a specific polyhedron associated with a
concrete node , the reinforcement node is placed midway between
the intersection points. To model the interface, a node-to-node
interface element is placed between the concrete and reinforce-
ment node (see Fig. 8). Lastly, for all elements with nodes on the
image boundary, the periodic images of these nodes are found
and the information is stored for future use.

It is noteworthy, that this design allows to quickly generate
periodic mesh for a reinforced concrete RVE with arbitrary direc-
tions and reinforcement layout. The coordinates of the region occu-
pied by the RVE, and the start and end points of each reinforcement
bar, is all information needed. Although it is assumed that the rein-
forcement bars will go throughout the RVE, it is also possible to
include rebars which are partly or completely contained, i.e. which
start or end, inside the RVE.

4.3. Modified boundary elements

In order to resolve the periodicity constraints within a finite ele-
ment model, special modified boundary elements were imple-
mented in the open source C++ finite element code OOFEM
(Patzák, 2012). Formulation of these finite elements, located at
the image boundary of the RVE, takes advantage of the fact that
the degrees of freedom on the image boundary are not free.
Instead, due to the periodicity constraints (73)–(74) and (75)–
(77), they depend on the periodic degrees of freedom located at
the mirror boundary, the effective variables coming from the
macroscale, and the size of the unit cell. Therefore, these degrees
of freedom can be eliminated from the equation system during
solution, and later easily reconstructed for the purpose of postpro-
cessing. The strategy is represented schematically for a tetrahedral
element in Fig. 9, which shows an example of the modified element
with three periodic nodes.
node. Based on Yip et al. (2005).



Fig. 9. An example of the modified boundary tetrahedral element with three nodes located at the image boundary. Nodes i0 , j0 and k0 are replaced by their periodic
counterparts i, j, k.
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In the picture, nodes i0; j0 and k0 are situated at the image
boundary, while the remaining node l0 is located inside the RVE.
It is noteworthy that in the general case, any number of element
nodes can be situated at the image boundary. Also note that the
information whether the specific node has a periodic image is
readily available from the mesh generation stage. We gather the
degrees of freedom of the boundary element in the element vector

u0
e ¼ ui0 uj0 uk0 ul0

� 	T
; ð78Þ

and the ‘‘master” degrees of freedom in element vector

ue ¼ ui uj uk ul C
� 	T

; ð79Þ
where C is a vector containing the effective variables coming from
the large-scale. Contents of this vector depend on the choice of the
macroscopic model. For the Euler–Bernoulli beam model we have

C ¼ Cb ¼ �Exx
�Ezx

�Kxx
� 	

; ð80Þ
while the Kirchhoff–Love plate model yields

C ¼ Cp ¼ �Exx
�Eyy

�Ezy
�Ezx

�Exy
�Eyx

�Kxx
�Kyy

�Kxy
�Kyx

� 	
: ð81Þ

Remark:
In addition to the macroscopic variables, rigid body motions

must be prevented. This means constraining 3 translations and 2
rotations for the Euler–Bernoulli beam model and 3 translations
for the Kirchhoff–Love plate model.

We are now in position to establish the relationship between u0
e

and ue with the help of periodicity constraints (73)–(74) and
(75)–(77) as

u0
e ¼ Teue; ð82Þ

with Te representing the periodicity-related linear transformation
matrix. More explicitly, we have

ui

uj

uk

ul

2
6664

3
7775 ¼

I 0 0 0 mi

0 I 0 0 mj

0 0 I 0 mk

0 0 0 I ml

2
6664

3
7775

ui0

uj0

uk0

ul0

C

2
6666664

3
7777775
; ð83Þ

where I is a 3 � 3 identity matrix. Matrices mi; mj; mk; ml repre-
sent the part of periodicity constraints depending on the macro-
scopic fields and the unit cell size. For the effective Euler–
Bernoulli beam model, we have for a ¼ i; j; k; l

ma ¼
paxL�;x 0 �paxzaL�;x

0 0 0
0 paxL�;x 0

2
64

3
75; ð84Þ
where za is the z-coordinate of node a0, and pax is an indicator vari-
able equal to 1 if node a0 has a periodic image in x-direction and 0
otherwise. Analogically, for the effective Kirchhoff–Love plate
model we identify the matrix ma as

ma ¼
paxL�;x 0 0 0 payL�;y 0

0 payL�;y 0 0 0 paxL�;x

0 0 payL�;y paxL�;x 0 0

2
64

�paxzaL�;x 0 �payzaL�;y 0
0 �payzaL�;y 0 �paxzaL�;x

0 0 0 0

3
75;
ð85Þ

where za is the z-coordinate of node a0, and pax is an indicator vari-
able equal to 1 if node a0 has a periodic image in x-direction and 0
otherwise. Analogically, pay is an indicator variable equal to 1 if
node a0 has a periodic image in y-direction and 0 otherwise.

During assembly of the stiffness matrix and internal force vec-
tor for the system, the contributions from the boundary elements
are computed as

Ke ¼ TT
eK

0
eTe; ð86Þ

fint ¼ TT
ef

0
int; ð87Þ

where K0
e and f 0int are the element stiffness matrix and internal force

vectors with respect to the nodes located at the image boundary,
and Te is the element transformation matrix. Effectively, all the
degrees of freedom at the image boundary are eliminated from
the equation system, but they are easily recovered with (82).

Regarding practical implementation aspects, few things are
worth mentioning. First of all, an analogous treatment can be
applied to beam elements which are used to model reinforcement
bar. In this case, the equations are simplified, since we know that at
most only one node will be located at the image boundary. The
analogous derivation for the beam element is not repeated here
for the sake of brevity. Secondly, the macroscopic effective vari-
ables are stored as degrees of freedom of a global control node,
which is shared among all boundary elements. Therefore, each
boundary tetrahedral element is defined by 5 nodes (3 nodes for
boundary beam element). Note that the control node is global for
a specific RVE problem and not global for the macroscopic prob-
lem, i.e. every unit cell has a unique control node which stores
the macroscopic data associated with it. Third, an arbitrary effec-
tive strain (curvature) history can be imposed on the RVE in an ele-
gant and effective way by prescribing the effective variables as
boundary conditions in the control node. Lastly, the effective work
conjugates (which translate to effective membrane forces and
bending moments) are obtained automatically as reactions in the
control node. It is noteworthy that the effective work conjugates
can also be imposed on the RVE by prescribing the associated



Fig. 10. The bond stress–reinforcement slip relation for the steel–concrete interface
adopted from the Model Code (Fib, 2013).

Fig. 11. A sample Representative Volume Element for uniaxial tension load case,
large-scale Euler–Bernoulli beam model.
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forces, which can be useful in stress control setting at the
macroscale.

5. Numerical examples

In order to ascertain the feasibility of the developed three-
dimensional reinforced concrete RVE model for use in a potential
Fig. 12. Normalised effective normal force versus normalised macroscopic axial strain
average crack spacings (sm) indicated.
FE2 scheme, it is necessary to verify its response under some com-
mon loading cases. In this section, the response of RVEs in terms of
the effective membrane forces and bending moments as well as
subscale fracture patterns is investigated. First, RVEs correspond-
ing to both effective beam and plate models are subjected to uni-
axial tension. Next, the RVEs from both effective models are
subjected to uniaxial bending. Lastly, a series of experiments on
reinforced concrete panels subjected to bending and membrane
loads is modelled with the proposed technique, and the effective
moment–curvature response is compared. All the simulations pre-
sented here were carried out in the open source C++ finite element
code OOFEM (Patzák, 2012).

5.1. Uniaxial tension and bending for effective beam and plate models

Before introducing the individual tests, the assumptions behind
the constitutive models for all materials are briefly presented, as
these choices were common across all the simulations in this sub-
section. For the concrete, an isotropic damage model with and
exponential softening in tension was used. The Rankine strength
envelope was used, i.e. tensile stresses were limited while a linear
elastic response in compression was considered. For the cracking,
the smeared crack formulation, with a crack band width equal to
element size, was used. The concrete grade was assumed to be
C30 and the necessary material parameters were obtained from
the Model Code (Fib, 2013): elasticity modulus of 33.6 GPa, Pois-
son’s ratio of 0.2, tensile strength of 2.9 MPa and mode I fracture
energy of 140.5 N/m. For the reinforcing steel, the von Mises ide-
ally plastic material model was used with Young’s modulus of
200 GPa, Poisson’s ratio of 0.3 and the yield strength of 500 MPa.
The bond-slip behaviour of steel–concrete interface was modelled
according to the recommendation of the Model Code (Fib, 2013), cf.
Fig. 10. The interface characteristics s1 ¼ 1 mm; s2 ¼ 2 mm; s3 ¼
6:5 mm; sbmax ¼ 15:41 MPa and sbf ¼ 6:16 MPa were adopted.

5.1.1. Uniaxial tension
In the first series of tests, uniaxial tension was considered as the

macroscopic load case. First, the effective Euler-Bernoulli beam
model was considered. An example of the unit cell for this model
can be seen in Fig. 11.
for beam RVEs with lengths 0.2 m and 0.3 m. Strain localisation patterns and the
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The beam had a square cross-section with Ly ¼ 0:1 m and
Lz ¼ 0:1 m and was reinforced with one steel bar (diameter
/ ¼ 16 mm) in the middle of the cross-section, resulting in the
effective depth d ¼ 50 mm. In order to investigate the effect of
RVE length on the effective response (and on the crack spacing),
eight different unit cells sizes L� ¼ L�;x were considered. Namely,
the RVEs with lengths 0:2 m ðnel ¼ 8034Þ; 0:3 m ðnel ¼ 12154Þ;
0:4m ðnel ¼15956Þ; 0:5m ðnel ¼19567Þ; 0:6m ðnel ¼23657Þ; 0:7m
ðnel ¼ 27912Þ; 0:8 m ðnel ¼ 31595Þ and 0:9 m ðnel ¼ 35368Þ were
studied. In the parentheses, the number of finite elements for each
unit cell is given.

Uniaxial tension was imposed by prescribing the degree of
freedom corresponding to the effective strain �Exx in the control
node of the RVE model. The simulations were run in displacement

control, where the total macroscopic strain of E
�
xx ¼ 2:75� 10�3
Fig. 14. Normalised effective normal force versus normalised macroscopic axial strain
average crack spacings (sm) indicated.

Fig. 13. Normalised effective normal force versus normalised macroscopic axial strain fo
and the average crack spacings (sm) indicated.
was prescribed in 275 steps. In order to ensure that deformation
is purely tensile, the degrees of freedom associated with macro-
scopic rotation �Ezx and curvature �Kxx were set to 0 for both beam
and plate models. The effective normal force was then obtained
as the corresponding reaction in the control node. The results
for the effective Euler–Bernoulli beam model can be seen in
Figs. 12–14.

In the graph, the effective normal force was normalised with
respect to the force causing yielding of the reinforcement bar,
Fy ¼ Asf y, where As is the cross-section area of the reinforcement
bar and f y denotes the yield strength of steel. The macroscopic
strain was normalised with respect to the yield strain of the rein-
forcement, ey ¼ f y=Es, where Es is the Young’s modulus for steel.
Furthermore, the average crack spacing, sm, was estimated for each
unit cell and is indicated in the figure. It can be concluded that the
for beam RVEs with lengths 0.8 m and 0.9 m. Strain localisation patterns and the

r beam RVEs with lengths 0.4 m, 0.5 m, 0.6 m and 0.7 m. Strain localisation patterns



Fig. 16. A sample Representative Volume Element, large-scale Kirchhoff–Love plate
model.
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effective response of the RVEs agrees with the well-known
response of reinforced concrete in tension. First, the response is
linear elastic until first cracking occurs. After that, the concrete
experiences softening and load is carried by the uncracked con-
crete and reinforcement, which explains the change in slope of
the response. If the geometry allows for it, i.e. if the RVE is large
enough, more than one crack can form in the model, which is
reflected in the strain localisation patterns for each model. After
cracks have formed, the load can increase until the stress in the
steel reaches the yield stress. Subsequently, the deformations will
increase at constant load due to the assumption of ideal plasticity.
Qualitatively, it can be concluded that the effective response of the
RVEs follows this theoretical development and the strain localisa-
tion patterns correspond to a large extent to what can be expected
in reality. The exact shape of the force versus strain response
depends on the number of cracks, but overall the response is inde-
pendent of the unit cell after the initial cracking is resolved.

As the crack spacing in a reinforced concrete tie in tension is
governed by the geometry, reinforcement layout and material
properties, ideally one constant value of crack spacing would be
expected for all RVEs. However, in an RVE, only an integer number
of cracks can be observed. Therefore, if the length is not large
enough for another crack to fit inside, no more cracks will appear
in the RVE. In all simulations, the first crack appeared at the bound-
ary, while the first intermediate crack appeared in the middle of
the RVE (first in the 0:4m long RVE), thus dividing the unit cell into
two equal parts. Subsequent cracks were observed in the RVE only
when the length of those parts was large enough for another inter-
mediate crack to fit inside on both sides, i.e., 3 intermediate cracks
were only observed in the 0:8m and 0:9 m long RVEs. For the
shorter RVEs (0:5m; 0:6 m and 0:7m long) only one intermediate
crack was observed in the middle. This can be seen in Figs. 12–14.
From the figures it seems that the total number of cracks is always
doubled if the RVE is long enough (either 1, 2 or 4 cracks were
observed). As the crack spacing is not known a priori, it might be
necessary to use a large (long) RVE to confirm the correct crack
spacing.

As a next step, the influence of the element size within the RVE
of a fixed length was investigated. To this end, the 0.4m long RVE
was modelled with various size of finite elements. The tensile test
described earlier was then repeated for all the models. The results
for five different finite element meshes can be seen in Fig. 15,
Fig. 15. Normalised effective normal force versus normalised macroscopic axia
where the normalised force versus strain response was plotted
for the different element sizes. The finite element models con-
tained 2056;15956;31374;47200, and 124818 elements in total,
respectively. The approximate average element sizes were then
computed for each model by relating the volume of the RVE to
the number of concrete finite elements, assuming that all concrete
elements are regular tetrahedra. From the graph, it can be con-
cluded that there is good agreement between the different mesh
sizes when it comes to the effective response. Even though the sec-
ondary crack appears at different stages of the loading for different
mesh sizes, the slopes both at the initial stage and after softening
agree with each other. Furthermore, the strains tend to localise
in the same way regardless of the mesh size, and thus the average
crack spacing remains the same across the meshes.

To summarise, the initial crack formation and the ultimate pla-
teau are independent of the RVE size. While qualitatively the same,
the transition between these two states depends on the RVE size
(number of fractures) and the mesh size.
5.1.2. Uniaxial bending
In the subsequent test series, uniaxial bending was considered

as the macroscopic load case. Previously studied RVEs were used
as a starting point for these simulations. The main modification
consisted of lowering the position of the reinforcement bar, as this
reflected better what is done in practice for reinforced concrete
beams. Therefore, the effective depth d was changed from 50 mm
l strain for the 0.4 m long RVE modelled with different element sizes, he.
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to 72mm. The unit cells with lengths L� ¼ 0:2m; L� ¼ 0:4m and
L� ¼ 0:8m comprised 7949; 16044 and 31547 elements,
respectively.

Subsequently, similar RVEs corresponding to large-scale Kirch-
hoff–Love plate model subjected to uniaxial bending were consid-
ered, cf. Fig. 16. The plate had a thickness of Lz ¼ 0:1m and was
reinforced with a reinforcement grid consisting of 16mm bars in
both directions spaced 0.1 m apart to agree with the previously
described beam geometry. The reinforcement grid was placed clo-
ser to the bottom of the cross-section, with the effective depths
dx ¼ 72mm and dy ¼ 56 mm. In this case, the unit cells were
assumed to be cuboids with a square base, i.e., it was assumed that
L�;x ¼ L�;y ¼ L�. Similarly, three different RVEs with
L� ¼ 0:2 m; L� ¼ 0:4 m and L� ¼ 0:8 m were considered for the
simulations. The unit cells comprised 16044; 64390 and 255248
elements, respectively.

Uniaxial bending was imposed by prescribing the degree of
freedom corresponding to the effective curvature �Kxx in the control
node of the RVE model. The simulations were run in displacement
control, where the total macroscopic curvature of �Kxx ¼ 0:1m�1

was prescribed in 400 steps. In order to eliminate overconstraining,
the degrees of freedom corresponding to macroscopic strains
remained free, i.e., the RVEs could extend and contract freely.
The rotations �Ezx for the beam model as well as �Ezx and �Ezy for
the plate model were set to 0 in order to simulate uniaxial bending.
The effective bending moment was then obtained as the corre-
sponding reaction in the control node.

The results for the effective Euler–Bernoulli beam model can be
seen in Fig. 17 while the results for the effective Kirchhoff–Love
plate model are presented in Fig. 18. In the figures, the effective
bending moment was normalised with respect to the ultimate
moment, My, of the cross-section. The moment was calculated
approximately as My ¼ 0:9Asf ydd, where As and f yd are the rein-
forcement area and yield strength, respectively. The corresponding
curvature at yielding, jy, was used to normalise the macroscopic
curvature. The curvature was found in a post-processing step and
corresponds to the macroscopic value at the stage when yielding
in the reinforcement happens for the first time. Furthermore, aver-
age crack spacings, sm, were estimated for the different unit cells
and are indicated in the figures. By looking at the graphs, it can
be concluded that the response of the RVEs for both macroscopic
Fig. 17. Normalised effective bending moment versus normalised macroscopic curvatur
spacings (sm) indicated.
models agrees with the theoretical response of reinforced concrete
section under bending. First, the response is linear elastic until first
cracking occurs (stage I). In contrast to axial loading, the cracking
starts at the bottom of the cross-section, leaving the concrete at
the top uncracked and subjected to compressive stresses. The ten-
sile stresses are after cracking carried by the reinforcement bars
and the concrete between the cracks (tension stiffening). Thus,
the slope of the effective response changes to reflect the weaker
cracked parts in the model (stage II). As the load increases, new
cracks form at the bottom of the cross-section and the already
existing cracks grow. The load can increase until the reinforcing
steel reaches yielding (stage III). At even later stage the section fails
either by rupture of the steel, or by crushing of the concrete in the
top of the beam. However, this later stage is not described in the
model, because of the assumptions of ideal plasticity of the steel
and the Rankine strength envelope for the concrete. As a result,
the curvature will increase at constant load due to the assumption
of perfect plasticity.

Qualitatively, it can be concluded that the effective response of
the RVEs under uniaxial bending for both large-scale beam and
plate models follows the expected theoretical three-stage develop-
ment and the strain localisation patterns correspond to what can
be expected in reality. There does not seem to be a large depen-
dence on the size of the unit cell after the initial cracking is
resolved. For the plate models, the number of cracks formed per
length of the RVE was slightly higher for the larger unit cells than
in the corresponding beam RVEs. In case of the beam RVEs, the
cracks were short and as result could be considered to be straight.
In case of the plate RVE, the cracks were no longer straight, and the
inter-crack distances varied along the width of the RVE and it was
also possible to observe branching of the cracks. However, the
average crack spacing showed a rather small variance between
the unit cells of different lengths.

Remark:
It is noteworthy that the choice of periodic boundary conditions

has an impact on the cracking that can occur within the RVE. For
the case of beam, periodicity is enforced only in one direction (at
the two opposite faces normal to the longitudinal direction). As
such, this does not prevent the formation of inclined cracks which
cross the other surfaces of the RVE. The situation is slightly
e for three different beam RVEs. Strain localisation patterns and the average crack



Fig. 18. Normalised effective bending moment versus normalised macroscopic curvature for three different plate RVEs. Strain localisation patterns and the average crack
spacings (sm) indicated.

Fig. 19. Test layout of Polak and Vecchio (1994) experiments. All dimensions in mm. Unit cell indicated in red.
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different for the case of plates, where the periodicity is two-
dimensional, and the proposed implementation will produce crack
patterns aligned with the (in-plane) coordinate axes. As a result,
inclined cracks are generally not possible without special treat-
ment. To alleviate this issue, it is possible to align the periodicity
with the direction of the crack, which has been studied e.g., in
Coenen et al. (2012), Svenning et al. (2017) and Svenning et al.
(2019). Such a treatment might prove necessary if inclined crack
growth, e.g., close to the supports of the structure, is to be studied.
It is noteworthy that the two-scale method proposed by Svenning
et al. (2019) does not require a priori knowledge of the crack direc-
tion, as this issue is handled by the solution procedure. Moreover,
different points in the large-scale domain can have different peri-
odicity orientations.

5.2. Bending and membrane loads – experimental comparison

Although the previously presented virtual simulations agree
qualitatively and quantitatively with what can be expected for
reinforced concrete, it is useful to study the feasibility of the devel-



Table 1
Material properties for concrete and steel–concrete interface for the SM1–SM3 test simulations.

Test SM1 SM2 SM3

Loading pattern

�Nxxj j
�Mxx

¼ �Nyyj j
�Mxx

¼ 4m�1
�Mxx
�Myy

¼ 3:2

Compressive strength [MPa]a 47 62 56
Tensile strength [MPa] 2.78 3.16 2.6

Elasticity modulus [GPa] 36.01 39.48 38.18
Fracture energy [N/m] 145.98 153.45 150.66
Peak bond stress [MPa] 17.14 19.69 18.71
Residual bond stress [MPa] 6.86 7.87 7.48

a The compressive strength of concrete was used only as a basis for calculating the elasticity modulus and fracture energy. It was not used as an input parameter for the
simulations.

Table 2
Material and slip parameters for reinforcement.

Reinforcement X-direction Y-direction

Diameter [mm] 19.5 11.3
Yield strength [MPa] 425 430
Ultimate stress [MPa] 611 480

Ultimate strain [�10�3] 150 75

s1 [mm] 1 1
s2 [mm] 2 2
s3 [mm] 8 4.5
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oped model in simulating real reinforced concrete sections. A ser-
ies of experiments suitable for this purpose was conducted at
University of Toronto and reported in Polak and Vecchio (1994).
In the tests, reinforced concrete panels were subjected to bending
and membrane loads. A system of in-plane and out-of-plane actu-
ators applied the loads along the edges of the panel and made it
possible to subject the panel to a wide range of combinations of
bending moments, in-plane and out-of-plane forces. The layout
of the panel tests together with the geometry and reinforcement
layout is schematically presented in Fig. 19, based on the report
from the study.

Three experimental loading cases, named SM1 through SM3,
were analysed, cf. Table 1. In the SM1 experiment, the panel was
tested in uniaxial bending. The SM2 test comprised uniaxial bend-
ing together with in-plane tension in x-direction as well as in-
plane compression in y-direction with the loads fulfilling the con-
dition �Nxx



 

 ¼ �Nyy



 

 ¼ �Mxx � 4m�1. Lastly, the response under biaxial
bending was studied in the SM3 test, with the bending moment in
x-direction being 3.2 times larger than the corresponding moment
in y-direction, i.e. �Mxx ¼ 3:2 �Myy. The tested panels had a square
shape and were uniformly reinforced, with identical reinforcement
placed on the top and bottom of the cross-section. The thicker
rebars oriented along the x-direction were placed closer to the sur-
face. The reinforcement grid had a uniform spacing of 76 mm in
both directions. Three-dimensional unit cell with a square base
of length 836 mm, marked in Fig. 19, was considered for the sim-
ulations. The unit cells contained 11 reinforcement bars per layer
in each direction and comprised 110892 elements.

As previously, an isotropic damage model with Rankine
strength envelope and exponential softening in tension was used
for the concrete. Material parameters for both the concrete and
the steel–concrete interface are summarised in Table 1. In the orig-
inal report, only the compressive peak strength and strain, as well
as the tensile strength obtained from standard cylinder tests, were
given. Due to lack of information on the additional parameters
needed for the constitutive model, they were estimated according
to the guidelines in the Model Code (Fib, 2013).

The constitutive behaviour of reinforcing steel was reported as
trilinear with perfect plasticity until the hardening strain is
reached. After that, a linear hardening regime is entered until the
ultimate strain is reached. In the simulations, this behaviour was
simplified to bilinear elastoplastic model, with linear hardening
starting directly after yielding. The material parameters for the
reinforcing steel along with some interface characteristics are sum-
marised in Table 2.
In the simulations, arc-length control was used with the refer-
ence loading prescribed in the corresponding degrees of freedom
in the control node. In this way, the solver finds a deformation of
the model such that the resulting reactions satisfy the given con-
straints, e.g. moment or force ratios. In the SM1 analysis, a refer-
ence moment of 1 Nm was applied to the degree of freedom
corresponding to �Kxx in the control node. In order to introduce
the in-plane loads in the SM2 test, reference loads of 4 N and
�4 N were applied to the degrees of freedom corresponding to
�Exx and �Eyy. In conjunction, a bending moment of 1 Nm applied
to the degree of freedom corresponding to �Kxx. Similarly, in the
SM3 simulation, a reference moment of 3.2 Nm was prescribed
in the degree of freedom corresponding to �Kxx and a reference
moment of 1 Nm was prescribed in the degree of freedom corre-
sponding to �Kyy. The load factor, output directly by the solver,
can then be interpreted as the macroscopic load. The actual values
of the effective curvatures and in-plane strains can be obtained
directly from the ‘‘displacements” of the control node.

The results for the SM1 through SM3 simulations are presented
in Fig. 20a–c, with the experimental results marked with crosses.
Even though the results overestimate the effective bending
moments slightly, the stiffnesses (slopes) agree well with experi-
mental results. The slight discrepancy might be caused by the lack
of necessary information about the concrete. Furthermore, it is
noteworthy that the proposed formulation contains ‘‘extra” con-
crete in the volume of the unit cell, as the reinforcement is simply
added to the model. For the tested cases, this adds around 4% of
superficial concrete volume. In view of these facts, it is considered
that the RVE model reflected the experimental behaviour rather
well.

Even though crack patterns for plate RVEs subjected to uniaxial
bending have already been studied in previous sections, it is still
insightful to look at the crack pattern and spacing for the case of



Fig. 20. Moment–curvature relations for SM1 (a), SM2 (b) and SM3 (c) test simulations. Experimental results from Polak and Vecchio, 1994.

A. Sciegaj et al. / International Journal of Solids and Structures 202 (2020) 835–853 851
biaxial bending, which is simulated in the SM3 test. Fig. 21 shows
the crack pattern along the width on the bottom surface of the unit
cell at the initial yielding of reinforcement, i.e. at the macroscopic

curvature K
�
xx ¼ 12� 10�3 m�1. The average crack spacings in x-

and y-directions are indicated as well. From the figure, it is note-
worthy that cracking in both directions is captured. The average
spacing between cracks parallel to y-direction was reported to be
100 mm, while the average spacing between cracks parallel to x-
direction was reported to be 200 mm. The corresponding values
of 167.2 mm and 209 mm were obtained in the simulation, and
are considered to reflect the experiments moderately well.

It is noteworthy that the only difference between the simula-
tions (apart from the minor discrepancy between material param-
eters) was the load vector of the control node. As a result, it can be
concluded that an arbitrary loading state (in terms of in-plane
loads and bending moments) can be prescribed on the RVE and
the corresponding effective response is obtained in a reliable and
straightforward way. This can in turn function as an ‘‘ad hoc” con-
stitutive model of reinforced concrete, making the proposed for-
mulation FE2 friendly.
6. Conclusions

In this paper, the response of three-dimensional reinforced con-
crete RVEs was homogenised to macroscopic beam and plate mod-
els. To this end, special modified finite elements were constructed.
The new RVE formulation makes it possible to apply an arbitrary
combination of macroscopic membrane strains and curvatures



Fig. 21. Crack width, wcr, at yielding of reinforcement for the SM3 test simulation.
Average crack spacings, �smx and �smy, are indicated in the figure.
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via periodic boundary conditions. The performance of the RVEs
coming from both effective beam and plate models was investi-
gated in a series of analyses, where the unit cells were subjected
to uniaxial tension and bending. It was found that the effective
response of the RVE followed the expected response of a reinforced
concrete cross-section in tension and bending. Furthermore, the
influence of the size of the RVE on the effective response was neg-
ligible. Similarly, the effective response and crack patterns were
consistently captured by the model for various finite element mesh
sizes. Subsequently, the RVE was used to simulate experiments, in
which reinforced concrete panels were subjected to bending and
membrane loads. The simulations predicted the moment–curva-
ture relations well, with the response being slightly overestimated.
Cracking in both directions was captured correctly by the model,
and the average crack spacings were reflected in a satisfactory
way. Within the developed framework, an arbitrary loading in
terms of membrane strains and curvatures can be prescribed on
the RVE and the corresponding effective response is obtained in a
straightforward way, making the proposed formulation feasible
for future use in an FE2 scheme.

The main benefit of the proposed method is the reduction in the
number of degrees of freedom from full three-dimensional rein-
forced concrete representation considering embedded reinforce-
ment and bond-slip to effective beam and shell models. For the
proposed method to be applicable to real-world applications, the
size of the macroscopic elements should be much larger than the
crack spacing observed in the structure. The intended application
of this method are very large reinforced concrete structures which
are often modelled with shell elements, such as bridges or nuclear
reactor containment buildings. Nevertheless, as the concept is still
valid for other materials, the proposed method could also be
applied to thin textile reinforced shells, which exhibit much finer
cracking networks. Furthermore, the FE2 models are a necessary
basis for reduced order modelling which can improve the numeri-
cal efficiency of engineering simulations. The homogenisation
techniques can also be used for identification of effective macro-
scopic beam/shell models. Last, the proposed RVE modelling
approach could also be used for investigating parts of the structure
where the impact of reinforcement detailing is of interest.

As future work, this subscale RVE model will be integrated in
the full FE2 scheme, making it possible to simulate the behaviour
of large structures and at the same time enabling the study of crack
growth in detail in the RVEs. Moreover, before the FE2 scheme is
applied to analyses of real structures, it is necessary to investigate
the validity of the scale separation assumption for this particular
application. In the case of reinforced concrete, scale separation is
rather small. It might therefore prove difficult to model some more
complex structures, where e.g. high strain gradients are present
already at the macroscopic level. In this setting, it is also important
to extend the current formulation to effective Timoshenko beam
and Mindlin plate models to allow for modelling a wider range of
structures, for which the assumptions of Euler–Bernoulli or Kirch-
hoff–Love models are too restrictive. Furthermore, in the current
model, the reinforcement slip varied only locally, i.e., at the RVE
level. It was shown in previous work by the authors (Sciegaj
et al., 2019) that it is necessary to allow for reinforcement slip vari-
ation at the macroscale. A similar strategy can be applied also to
the effective beam and plate models.
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