
Non-invasive analysis of motor neurons controlling the intrinsic and
extrinsic muscles of the hand

Downloaded from: https://research.chalmers.se, 2024-03-13 09:10 UTC

Citation for the original published paper (version of record):
Tanzarella, S., Muceli, S., Del Vecchio, A. et al (2020). Non-invasive analysis of motor neurons
controlling the intrinsic and extrinsic muscles of the
hand. Journal of Neural Engineering, 17(4). http://dx.doi.org/10.1088/1741-2552/aba6db

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)



Journal of Neural Engineering

PAPER

Non-invasive analysis of motor neurons controlling the intrinsic and
extrinsic muscles of the hand
To cite this article: Simone Tanzarella et al 2020 J. Neural Eng. 17 046033

 

View the article online for updates and enhancements.

This content was downloaded from IP address 129.16.140.251 on 28/09/2020 at 14:09

https://doi.org/10.1088/1741-2552/aba6db
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsv-gs7J1YBCDwxYXURpWPz9j_wZprglhNFu3gj9VcGJqwhpOmPmennkS2b1Fguz3er9-mUmBBQzV2nHUCnG22KYZd-DQcNNUbu_Ei1sCvowOPerm-ZUh00C47XoS46IGVz5PmNQXxNej8PxcnTzcuYih-ibXDDypeLrKauqFFVxuZrvTaRJD9zHYStx9iVcdCY_kz6zEQ-7Ko6eyNyIoCCehv_jzmAQm7ojACSC6p6MoxRZL1uv&sig=Cg0ArKJSzOsFvS6VmMgH&adurl=https://brightrecruits.com/jobs/translational-bioengineering


J. Neural Eng. 17 (2020) 046033 https://doi.org/10.1088/1741-2552/aba6db

Journal of Neural Engineering

OPEN ACCESS

RECEIVED

25 February 2020

REVISED

7 July 2020

ACCEPTED FOR PUBLICATION

16 July 2020

PUBLISHED

11 August 2020

Original content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

PAPER

Non-invasive analysis of motor neurons controlling the intrinsic
and extrinsic muscles of the hand
Simone Tanzarella1, Silvia Muceli2, Alessandro Del Vecchio1, Andrea Casolo1 and Dario Farina1
1 Department of Bioengineering, Imperial College London, London, United Kingdom
2 Division of Signal Processing and Biomedical Engineering, Department of Electrical Engineering, Chalmers University of Technology,
Gothenburg, Sweden

E-mail: d.farina@imperial.ac.uk

Keywords:HD-sEMG, hand muscles, neural drive, motor units, neural interface

Abstract
Objective. We present a non-invasive framework for investigating efferent commands to 14 extrinsic
and intrinsic hand muscles. We extend previous studies (limited to a few muscles) on common
synaptic input among pools of motor neurons in a large number of muscles. Approach. Seven
subjects performed sinusoidal isometric contractions to complete seven types of grasps, with each
finger and with three combinations of fingers in opposition with the thumb. High-density surface
EMG (HD-sEMG) signals (384 channels in total) recorded from the 14 muscles were decomposed
into the constituent motor unit action potentials. This provided a non-invasive framework for the
investigation of motor neuron discharge patterns, muscle coordination and efferent commands of
the hand muscles during grasping. Moreover, during grasping tasks, it was possible to identify
common neural information among pools of motor neurons innervating the investigated muscles.
For this purpose, principal component analysis (PCA) was applied to the smoothed discharge rates
of the decoded motor units.Main results. We found that the first principal component (PC1) of the
ensemble of decoded motor neuron spike trains explained a variance of (53.0± 10.9) % and was
positively correlated with force (R= 0.67± 0.10 across all subjects and tasks). By grouping the
pools of motor neurons from extrinsic or intrinsic muscles, the PC1 explained a proportion of
variance of (57.1± 11.3) % and (56.9± 11.8) %, respectively, and was correlated with force with
R= 0.63± 0.13 and 0.63± 0.13, respectively. Significance. These observations demonstrate a low
dimensional control of motor neurons across multiple muscles that can be exploited for extracting
control signals in neural interfacing. The proposed framework was designed for hand
rehabilitation perspectives, such as post-stroke rehabilitation and hand-exoskeleton control.

1. Introduction

The human hand is a neuromuscular-skeletal system
fundamental for interacting with the external envir-
onment and for communicating. Its complexity has
been investigated functionally and biomechanically
(Napier 1956, Landsmeer 1962, Iberall 1987, Della
Santina et al 2017) as well as in neuromechanical
modelling studies (Santello et al 2013, Valero-Cuevas
and Santello 2017).Hand functions can be comprom-
ised by sensory-motor impairment, e.g. resulting
from stroke (Meyer et al 2014). In case of impairment,
given the hand complexity, specific rehabilitation
systems (e.g. based on robotics) may be necessary in
addition to conventional therapy (Kwakkel 2008).

The hand is controlled by numerous extrinsic and
intrinsic muscles. Due to this complexity, few studies
have investigated the activation of both extrinsic and
intrinsic muscles responsible for hand movements
(Huesler and Maier 2000, Weiss and Flanders 2004,
Ajboye andWeir 2009). Aijboye andWeir(2009) com-
bined surface and intramuscular electromyography
(EMG) to detect the global activation level of intrinsic
and extrinsic muscles. However, surface EMG amp-
litude provides an approximate indication of the
actual muscle activation and more importantly it
is only crudely associated to the underlying motor
unit activities (Farina et al 2004). A more accurate
estimation of the efferent command (neural drive)
received by the muscle is obtained investigating the
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recruitment and firing patterns of motor units, which
constitute the final pathway of the nervous system.
This analysis has been applied to single handmuscles,
such as the first dorsal interosseous (FDI) (Enoka
and Fuglevand 2001) and abductor digiti minimi
(ADM) (Negro et al 2009), typically using intramus-
cular electromyography. The studies by Weiss (2004)
and Huesler (2000) are the only reports that attemp-
ted to estimate single motor unit activity from mul-
tiple intrinsic and extrinsic muscles, with surface
and intramuscular EMG, respectively. However, these
studies were successful in few subjects (four and five
respectively) and muscles (respectively 7 and 14, but
in the latter case these were onlymuscles actuating the
thumb and the index finger).

A non-invasive way to assess neural strategies
and motor unit control is provided by high-
density surface EMG (HD-sEMG) (Farina et al
2004, 2014a). HD-sEMG is recorded with grids
of closely spaced electrodes over the skin (Mer-
letti and Muceli 2019) and it allows segmentation
of surface EMG 2D maps and decomposition into
the constituent motor unit action potential trains
(Merletti et al 2010, Stegeman 2012). HD-sEMG
decomposition enables the decoding of the neural
drive to muscles (Negro et al 2009, Farina et al 2010)
and the estimation of common drive (Nordstrom et al
1992,De Luca andErim1994,Negro et al 2009, Farina
and Negro 2015). HD-sEMG was used to study the
global muscle activity of the hand, without decom-
position, for single finger classification (Celadon
et al 2015) and in proportional single finger control
(Celadon et al 2016). It was also applied to extract the
neural drive to forearm muscles actuating the wrist
(Kapelner et al 2017) and fingers (Del Vecchio et al
2019).

Here, we propose for the first time a non-invasive
framework for the investigation of motor neuron dis-
charge patterns, muscle coordination and efferent
commands to extrinsic and intrinsic handmuscles for
a total of 14 muscle compartments. By applying this
framework to seven grasp types, we demonstrate that
it enables to discriminate the location of the electrical
activity of single motor units among the investigated
muscles and to determine common neural informa-
tion among pools of motor units of themain intrinsic
and extrinsic muscles actuating the hand. The frame-
work is proposed for future applications in hand
rehabilitation, such as post-stroke rehabilitation and
hand-exoskeleton control. The electrode configura-
tion chosen for this study can indeed lead to a wear-
able device to be integrated with other rehabilitation
technologies.

2. Methods

2.1. Subjects
Seven healthy men (age, 27.0 ± 2.2 yrs; weight,
79.0 ± 8.3 kg; height, 180.1 ± 5.0 cm) volunteered

to the experiment after signing an informed consent.
The study protocol and procedures were approved by
the Imperial College London Research Ethics Com-
mittee (approval no. 18IC4685) and conformed to the
requirements of the Declaration of Helsinki.

2.2. HD-sEMG
EMG signals were recorded from extrinsic and
intrinsic hand muscles with six grids of 64 surface
EMG electrodes each, with electrodes arranged in a
13× 5 configuration and one electrodemissing at the
corner (OTBioelettronica, Torino, Italy), for a total of
384 electrodes, as depicted in figure 1(a). Two 13× 5
grids with 8-mm inter-electrode distance (IED) were
placed over the extrinsic muscles (extensor digitorum
communis and flexor digitorum superficialis). Four
grids with 13× 5 electrodes at 4-mm IEDwere placed
over the following intrinsic muscles: FDI, the other
three dorsal interossei, the thenar and the ADM.

Prior to electrode positioning, the subject was
asked to repeatedly move the fingers in order to
identify the muscle belly locations through palpation.
To identify the extensor and flexor digitorum, the
subject was asked to move the little and the index fin-
ger, to assure the covering of all four compartments
of these muscles. Before placing the electrodes, the
skin over the forearm and the hand was shaved and
cleansed with alcohol with 70% ethanol to minim-
ize electrode-skin impedance. Grids were attached to
the skin with disposable bi-adhesive foam layers filled
with conductive paste and were secured with tape. An
overview of the positioning of the grids on the tested
muscles is shown in figure 1(a).

The grids targeting the extensor (EXT) and flexor
(FLX) digitorum muscles were placed on the dorsal
and ventral sides of the forearm, respectively, with the
shortest side aligned to the ulna bone. The first grid
was placed in the most proximal third of the fore-
arm and the second grid distal to the first. Due to
its length (about 10 cm), the grid on the dorsal side
extended over the extensor carpi radialis and extensor
carpi ulnaris longus muscles, while the grid on the
ventral side extended over the flexor carpi radialis and
flexor carpi ulnaris. The grid over the thenar muscles
(THE) had its shortest side along the thumb meta-
carpal bone and extended on the palmar side of the
hand to cover the opponens pollicis, flexor pollicis
brevis, and abductor pollicis brevis muscles. The FDI
was covered with a grid aligned with its longer side on
the dorsal side of the thumbmetacarpal bone and the
ADM with a grid along the muscle fibers. Finally, the
grid over the II, III and IV dorsal interossei (DI) was
mounted in themiddle between the indexmetacarpal
bone and the little metacarpal bone, equidistant
from the wrist and the knuckles. Thus, a total of 14
muscles, three for each grid on the forearm, the three
composing the thenar, the four interossei and ADM,
were recorded. The acronyms for each grid electrodes
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Figure 1. Experimental setup and protocol. (a) The layout of the electrode grids over the first dorsal interosseus, II–IV interossei,
abductor digiti minimi, thenar, extensor digitorum communis, and flexor digitorum superficialis muscles. (b) The experimental
setup depicting the custom hand-dynamometer. (c) The different types of combinations of fingers in opposition with the thumb
in the tested grasps. (d) Example of the sinusoidal force cue followed by the subjects. The cue started after 2 min of rest.

and the corresponding recordedmuscles are reported
in table 1.

The electrode grids were connected to a
multi-channel EMG amplifier (Quattrocento, OT
Bioelettronica, Torino, Italy) through 64-channel
impedance-adapters with a gain of 5 V/V. EMG sig-
nals were recorded in monopolar derivation, ampli-
fied with a gain of 150, band-pass filtered between 10
and 900 Hz, sampled at 2048 Hz and A/D converted
on 16 bits. A single reference electrode was placed on
the wrist of the tested arm.

The forces exerted by the fingers were meas-
ured by two load sensors (ATI Industrial Automa-
tion, Apex, NC) and recorded through a 12-bit A/D
converter board (sampling frequency 2048 Hz, PCI-
6225, National Instruments, Austin, TX). Load cells
were fixed coaxially in a custom-made hand sup-
port by means of two plastic handles for positioning
the thumb and a combination of the other fingers
(figure 1(b)), according to the tasks represented in
figure 1(c).

2.3. Experimental protocol
Subjects sat in a comfortable posture with the fore-
arm and the hand restrained in a brace so that the
wrist was kept in a neutral position and all the
involved muscles were relaxed during the rest con-
dition. The custom hand-dynamometer (figure 1(b))
was fixed stably on the experimental table. A screen

in front of the subject was used to visualize the target
force and to provide feedback on the exerted force.
The protocol consisted in performing seven types of
grasps simultaneously activating the thumb, with one
or more fingers opposed to the thumb (figure 1(c))
to press against the two load cells. The subject per-
formed four tasks with the thumb and each other
finger. Moreover, they performed three additional
grasps, with all fingers, with the thumb and index
andmiddle finger, and with the thumb and index and
little finger. The three combined grasps corresponded
respectively to the palmar and tripod pinch which are
commonly used in daily life activities as well as an
unusual grasp.

Subjects were asked to produce the maximal force
twice for each finger combination, with a rest of
1 min between attempts. The highest recorded force
was considered as the maximal voluntary contrac-
tion (MVC). Then, subjects were instructed to match
sinusoidal force trajectories, opposing the thumb and
the other combination of fingers. For each combina-
tion of fingers, the subject had to follow a 30 s-long
sinusoidal force profile in the peak-to-peak range
10%–20% MVC (figure 1(d)), with a frequency of
1 Hz and followed by a rest of 2 min. The task was
preceded and followed by a 5-s ramp contraction to
reach the target level (15% MVC) and return to the
rest position (null force), respectively. The sequence
of tasks was randomized. All the contractions, both
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for the MVC recording and for all the trials, were
isometric.

2.4. Signal processing
EMG signals were digitally filtered between 20 and
500 Hz with a 4th-order Butterworth filter and
then the convolution kernel compensation (CKC)
algorithm (Holobar and Zazula 2007) was used to
decompose the signals into the constituent trains
of motor unit action potentials. Decomposition was
applied separately to the data recorded in each trial
and separately to the 64 channels of each grid. Only
the central 30 s of the tasks were considered for
the analysis. The results of the decomposition were
manually inspected and validated by experienced
investigators, by discarding all the motor units with
pulse-to-noise ratio (PNR) (Holobar et al 2014) lower
or equal than 25 dB (i.e. with accuracy in the confid-
ence interval of 0–70%) or with less than 60 peaks
(i.e. with mean discharge rate of 2 Hz), by remov-
ing the false-positive peaks over the physiological
threshold of firing (35–40 Hz) and by checking evid-
ent false-negative undetected peaks, by analyzing each
motor unit innervation pulse train (IPT) (Holobar
and Zazula 2007). For each recording, themean firing
rate (MFR) was computed as the mean of the recip-
rocal of the inter-spike interval (ISI) (Nordstrom et al
1992) for each pair of consecutive spikes. The MFR
was also computed by grouping, for each motor unit,
the spikes during increasing and decreasing force.
The force phases were segmented by a zero-crossing
threshold on the derivative of the low-pass filtered
force signal.

Each spike train was represented as a binary sig-
nal, with 1 representing the occurrence of a discharge
and 0 otherwise. To have a continuous representa-
tion of the neural activity and, thus, an estimation of
the instantaneous FR, the spike trains were smoothed
by convolving the binary spike trains with a 400-ms
Hanning window (De Luca 1985, Negro et al 2009).
The smoothed cumulative spike train was obtained
by summing sample by sample the smoothed spike
trains acrossmotor units. The delay between the force
signal and the smoothed cumulative spike trains was
also computed for each trial as the time lag corres-
ponding to the peak of the cross-correlation function.

To locate each motor unit under the relative elec-
trode grid from which it was detected, we averaged
the epochs of signal, for each channel of the grid, seg-
mented around each firing of the considered motor
unit with a 103-samples-wide window (50 ms), as
described in Farina et al 2002.

2.5. Common drive quantification by PCA
The common input to pools of motor neurons
innervating different muscles was investigated by
principal component analysis (PCA) (Negro et al
2009, Farina and Negro 2015). First, all motor units
extracted separately from the grids were pooled

together. We also analysed separately the pool of
the intrinsic muscles and of the extrinsic muscles.
Then, PCA was applied to the smoothed spike trains
to extract common components in the behaviour
of the motor units. For this purpose, the smoothed
discharge rates were factorized by a singular value
decomposition PCA.

Singular value decomposition (SVD) is a mat-
rix factorization technique and can be used to com-
pute PCA alternatively than performing an eigenvalue
decomposition of the covariance matrix (Negro et al
2009), to obtain a more accurate result and a more
efficient computation of the PCA (Jolliffe andCadima
2016). SVD applied to a real-valuedmatrix X ∈ Rn×m

provides the following factorization (Brunton and
Kutz 2019):

X= UΣVT,

where U ∈ Rn×n and V ∈ Rm×m are unitary matrices
with orthonormal columns, Σ ∈ Rn×m is a matrix
with real, nonnegative entries on the diagonal and
zeros everywhere else, and VT is the transpose of
V. The dimensions n and m are respectively for
the observation and for the variables, thus, in our
case, they are respectively indexes for the number of
samples in the 30-s intervals of analysis and the num-
ber ofmotor units. The scores (here, the time-varying
components shown in figure 2(b)) are the columns of
the matrix product UΣ, and the coefficient (here, the
weights representing the contribution of each motor
unit for each component) are the columns of V. U is
the standardized version of the PC scores, and the per-
centage of each single value in Σ over the trace of Σ
provides the explained variance of each component
(after sorting Σ in descendent order) (Jolliffe and
Cadima 2016). PCA was computed among all the
motor units, separately for each recording.

3. Results

table 2 reports the descriptive statistics on the num-
ber of identified motor units and MFR across the
seven subjects for the seven tasks. The number of
motor units identified per grid was 6.4 ± 3.4, MFR
was 14.4± 8.8Hz, and PNRwas 30.4± 4.8 dB. Values
for MFR were all in the physiological range and the
number of identified motor units changed for differ-
ent tasks. In general, the number ofmotor unitswhich
were detected from extrinsicmuscles was smaller than
from intrinsic muscles. The table also distinguishes
the MFR computed during increasing and decreas-
ing phases of the force signal (represented in figure
2), to provide a further information about discharge
of motor units for each grid during different tasks.
Globally, MFR was 15.9 ± 9.7 Hz during increas-
ing force and 13.2 ± 8.6 Hz during decreasing force.
Mean values reported in table 2 are in general greater
for increasing force than for decreasing force for the
grids FDI, DI, ADM and EXT for all the tasks (except

4



J. Neural Eng. 17 (2020) 046033 S Tanzarella et al

Table 1. Acronyms for each electrode grid and corresponding muscles from which each grid recorded EMG.

Grid acronym Recorded muscles

FDI First dorsal interosseous
DI II, III, IV dorsal interossei
ADM Abductor digiti minimi
THE Thenar muscles: opponens (OPP), flexor pollicis brevis (FPB), abductor pollicis brevis (APB)
EXT Extensor carpi ulnaris, extensor digitorum communis, extensor carpi radialis
FLX Flexor carpi ulnaris, flexor digitorum superficialis, flexor carpi radialis

Figure 2. (a) Example of motor unit spike trains extracted from the investigated muscles for one representative subject
performing a grasp with a sinusoidal isometric contraction. The exerted force measured by the two load cells is represented as %
MVC. One example of increasing (I) and decreasing (D) interval of force is represented for one cycle of sinusoidal force. (b) The
same spike train pool is smoothed and PCA is applied. The first three principal components are represented and the respective
values of explained variance are reported. See table 1 for the muscle definition.

for ADM in middle-thumb grip). For the grids THE
and FLX more variability can be observed.

Figure 2(a) shows a set of motor unit spike trains
from all the investigated muscles for a representative
subject during a five-digit grasp task. The force sig-
nal, respectively for the thumb and the other four fin-
gers, is represented as % MVC. figure 2(b) shows the
smoothed continuous signals from the spike trains
as well as the result of PCA. In this representat-
ive example, the first principal component (PC1)
explained approximately 70% of the total variance,
whereas the second and third components explained

less than 5% of the variance. Therefore, the activity
of all the decoded motor neurons during this task
could be reduced to one principal component signal.
Moreover, in this example, the delays between the
smoothed cumulative spike trains and the generated
force for the six grids were 235 ms (grid on FDI),
225 ms (dorsal interossei), 225 ms (ADM), 201 ms
(thenar), 219 ms (extensor muscles), and 236 ms
(flexor muscles), which correspond to previous neur-
omuscular latencies estimated from motor unit and
force recordings in the FDI (Erimaki et al 2013, Del
Vecchio et al 2018).
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Figure 3 shows the localization of muscle units
under the grid area, obtained by triggering the
averaging of the motor unit action potentials with
the time occurrences of the motor unit discharges
for each EMG channel (Farina et al 2002). Examples
are presented for the II, III and IV dorsal interos-
sei (DI), under the same grid, and for the oppon-
ens pollicis (OPP), abductor pollicis brevis (APB) and
the flexor pollicis brevis (FPB), the three parts of the
thenar. One example is also presented for the group
of the extensor muscles (EXT), by showing the posi-
tion of the different muscles in the forearm. Finally,
one example is shown for FDI and ADM, which
are the only muscles under their respective grid, but
have motor units which can be in different locations
depending on the innervation zone. For ADM, the
spike-triggered average (STA) is also useful to assess
the propagation of the motor unit action potentials
along the fibres (Merletti et al 2010), as can be seen in
the figure. The action potential time window for the
STA is the same for all grids (50 ms).

Figure 4 shows the strength of the PC1 for all
motor units extracted from all muscles and its asso-
ciation with the force exerted by the fingers. The
PCA was performed separately for each recording,
as explained in the Methods, and then the results
were averaged across recordings. figure 4(a) shows the
comparison between PC1 and the force signals. Each
trace is normalized by itsmaximumvalue, to emphas-
ize the time course of the signals rather than their
amplitude. figure 4(b) shows the mean and stand-
ard deviation of the variance explained by the first
10 principal components extracted by PCA from the
neural drive in 49 recordings, for all subjects. PC1 is
much higher with respect to the other components,
with an explained variance of (53.0 ± 10.9) % for all
the motor units pooled together, (57.1 ± 11.3) % by
pooling the extrinsic motor units and (56.9 ± 11.8)
% by pooling the intrinsic motor units. The second
component explained only (11.5± 4.5)% of the vari-
ance for the motor units pooled together. figure 4(c)
shows the spectral coherence between the PC1 and
the finger combination force (in opposition with the
thumb) separately for each task across subjects. Thus,
each averaged spectral coherence is calculated over 7
recordings. The peak at 1 Hz corresponds to the fre-
quency of the sinusoidal contractions performed by
the subjects.

Table 3 reports the mean and standard devi-
ation across all subjects of the cross-correlation peak
between finger combination force (in oppositionwith
the thumb) andPC1, both separately for each task and
across all tasks. The values in table 3 are computed
over the interval of 30 s. Eliminating the first and last
10 s of the sinusoidal contraction and maintaining
the central 10 s of recording only, i.e. the most stable
portion of the task, the cross-correlation values fur-
ther increased compared to the total 30 s and reached
the values of 0.70 ± 0.14 (All), 0.68 ± 0.16 (Extr),

0.68 ± 0.16 (Intr), 0.67 ± 0.17 (FDI), 0.65 ± 0.17
(DI), 0.58 ± 0.23 (ADM), 0.54 ± 0.19 (THE),
0.69 ± 0.17 (EXT), and 0.61 ± 0.18 (FLX).

Cross-correlation peak values for FDI in all
the tasks involving the index finger, i.e. five-digits
grasp, index-thumb pinch, index-little-thumb grip
and index-middle-thumb grip, were respectively
0.62 ± 0.09, 0.67 ± 0.13, 0.67 ± 0.05, 0.64 ± 0.12.
Values for ADM in all the tasks involving the
little finger, i.e. five-digits grasp, index-little-thumb
grip and little-thumb pinch were, respectively,
0.48 ± 0.16, 0.51 ± 0.09, 0.62 ± 0.12, all exceeding
the average value computed across all tasks.

The PCA loads, representing the contribution
of motor units to PC1, are shown for all the sub-
jects in figure 5. As explained in Methods, PC1 is
extracted for each EMG recording across a unique
pool of motor units from all muscles. They are rep-
resented in boxplots after being normalized by the
maximum, grouped by grid and sorted before aver-
aging. The number of loads reflect the number of
motor units per grid and per task, therefore this
information corresponds to table 3. However, figure 5
provides also the information about how much each
motor unit is represented in PC1, with some units
contributing with a negative weight. Across all sub-
jects, 78% of the motor units contributed to PC1
with a positive load. The muscles from where the
greatest number of motor units contributed with
negative loads were under the grids FLX and DI,
with respectively 26% and 21% of the total motor
units.

4. Discussion

This study presents a framework to investigate how
motor units are recruited in the main muscles actuat-
ing the hand, both intrinsic and extrinsic. The nov-
elty introduced by this framework is the quantific-
ation of the common neural drive from more than
ten muscles concurrently (the four dorsal interossei,
abductor digiti minimi, the three muscles compos-
ing the thenar, extensor digitorum communis, flexor
digitorum superficialis, plus other muscles actuat-
ing the wrist which are recorded by the grids over
the forearm) in a non-invasive way. In particular,
results about motor unit discharge patterns of the
four dorsal interossei from HD-sEMG are presented
for the first time. With this framework we confirm
and expand the results of previous studies investig-
ating common synaptic input among pool of motor
units of only one or few muscles (Nordstrom et al
1992, De Luca and Erim 1994, Negro et al 2009), or
with many muscles but a single motor unit observed
at a time (Weiss and Flanders 2004, Husler et al
2000). We assessed common synaptic input among
motor neurons innervating 14 muscles. We choose
to examine the muscles of the hand because of the
vast number of applications in rehabilitation and
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Figure 3. Examples of spike-triggered average for motor units of one representative subject for different electrode grids. The
action potential waveforms as detected by the surface grids are shown for individual motor units of the dorsal interossei (II, III
and IV DI), thenar, composed by flexor pollicis brevis (FPB), abductor pollicis brevis (APB), and opponens pollicis (OPP), first
dorsal interosseus (FDI), abductor digiti minimi (ADM) and the extensor (EXT) and flexor (FLX) muscles groups. See table 1 for
the muscle definition.

Figure 4. Analysis of the common drive among motor units from different extrinsic and intrinsic muscles of the hand, extracted
by using PCA. In (a), for one subject, the first principal component (PC1) is compared with the force measured for the thumb
and the other combinations of fingers. In (b), for all seven subjects, the mean and standard deviation of the percentage of
explained variance for the first ten principal components is represented. In (c), for all seven subjects, the averaged spectral
coherence between the PC1 and the force developed for each type of task is represented between 0 and 5 Hz. See figure 1(c) for the
task definition. A.U.: arbitrary unit.

considering the complexity inherent in this part of the
body presenting many degrees of freedom. Common
amount of neural information among the motor
neurons of all the muscles was quantified by PCA
computed from the motor unit smoothed discharge
patterns. PCA was computed intra-task and the res-
ults were averaged across trials and subjects, to assess
the average common neural drive when performing

grasps and pinches with different combinations
of fingers. The results showed the possibility of
estimating descending commands to multiple spinal
levels to assess global synergistic control of motor
neurons.

The use of the proposed framework indicated a
low dimensionality in control of the motor neuron
pools of the multiple muscles investigated during
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Table 3.Mean and standard deviation of the cross-correlation peaks between force and PC1 over 30 s for each task. Results are for all
subjects for PC1 calculated by pooling all the motor units and by pooling motor units within each single electrode grid. See table 1 for
the muscle definition and figure 1(c) for the task definition. Extr: extrinsic muscles; Intr: intrinsic muscles.

GRASP INDEX IND-LIT IND-MID LITTLE MIDDLE RING ALL TASK

All 0.62± 0.13 0.71± 0.11 0.62± 0.14 0.67± 0.10 0.69± 0.05 0.69± 0.10 0.67± 0.08 0.67± 0.10
Extr 0.60± 0.13 0.61± 0.15 0.64± 0.10 0.63± 0.13 0.66± 0.15 0.65± 0.13 0.59± 0.14 0.63± 0.13
Intr 0.61± 0.14 0.69± 0.11 0.61± 0.14 0.66± 0.10 0.61± 0.10 0.68± 0.10 0.57± 0.19 0.63± 0.13
FDI 0.62± 0.09 0.67± 0.13 0.67± 0.05 0.64± 0.12 0.57± 0.12 0.64± 0.11 0.49± 0.15 0.61± 0.12
DI 0.60± 0.09 0.65± 0.13 0.59± 0.07 0.64± 0.10 0.47± 0.16 0.68± 0.09 0.52± 0.19 0.59± 0.14
ADM 0.48± 0.16 0.28± 0.12 0.51± 0.09 0.44± 0.13 0.62± 0.12 0.39± 0.13 0.46± 0.20 0.46± 0.16
THE 0.48± 0.10 0.44± 0.22 0.49± 0.13 0.52± 0.12 0.41± 0.16 0.54± 0.13 0.44± 0.16 0.47± 0.15
EXT 0.57± 0.11 0.61± 0.13 0.63± 0.08 0.63± 0.12 0.61± 0.15 0.60± 0.20 0.59± 0.08 0.61± 0.12
FLX 0.58± 0.12 0.52± 0.12 0.56± 0.13 0.53± 0.10 0.59± 0.21 0.57± 0.08 0.53± 0.15 0.56± 0.13

Figure 5.Mean (dark bars) and standard deviation (light bars) of the sorted PCA loads grouped for each grid for PC1 across the
subjects. These loads represent how each motor unit contributes to PC1 and may have a negative value representing a
contribution in counterphase with respect to the other motor units of the pool. For each row, representing a task, the averaged
loads are extracted by PCA from the same EMG recording, then normalized by the maximum, grouped by grid (columns) and
descently sorted in each boxplot. See table 1 for the muscle definition and figure 1(c) for the task definition.

grasping. The variance explained by the first prin-
cipal component PC1 of the complete set of motor
neuron spike trains across the different grasp types
was indeed very high ((53.0± 10.9)%) (figure 4(b)).
Moreover, PC1 was highly correlated with force (table
3). The value of explained variance for PC1was higher
than the value previously reported by Negro et al
(2009) for a single muscle (ADM) (44.2 ± 7.5)%
for the abduction of the little finger. Moreover, also
the correlation between PC1 and force that we have
observed across all trials (0.67 ± 0.10, table 3) was
greater than the value reported by Negro et al (2009)
for ADM only (0.63± 0.10).

PC1 explained a variance, for all the considered
hand muscles, five times greater than the second
component, while the third component explained
only ~6% and the others <5% of the variance. This
result indicates that PC1 is a strong common drive
signal sent to all muscles by the central nervous

system, underlying a highly synergistic control of
grasp. We did not further investigate the individu-
ation of synergies associated to particular degrees
of freedom or to particular tasks, nor we aimed
to assess the robustness of these synergies and the
sensory-motor models behind their behaviour. How-
ever, this framework could be used in future stud-
ies to assess synergies in motor neurons innervat-
ing hand muscles. Here we aimed at assessing how
common drive explains force modulation, as it can
be observed representatively in figure 4(a). In the
perspective of man-machine interfacing applications,
PC1 would provide a robust motor-neuron based
myoelectric control of grasp (Bergmeister et al 2017,
Farina et al 2017).

We further evaluated the common drive to
muscles by separating intrinsic and extrinsic motor
units. This is of practical relevance in interfacing pros-
theses since intrinsic muscles may be missing. We
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Table 2. Number of motor units (N MUs), and mean firing rate (MFR) for each task (rows) and for each grid (columns). MFR is
reported by considering all the spikes for each motor unit, and by grouping them respectively during the increasing and decreasing
phase of the force signal.

FDI DI ADM THE EXT FLX

NMUs 9.9± 3.3 8.1± 2.9 5.9± 4.0 6.0± 3.6 7.7± 3.4 7.1± 3.5
MFR (Hz) 13.6± 2.5 14.5± 3.8 13.0± 2.9 14.5± 3.6 15.2± 3.0 14.9± 2.3
MFR increase (Hz) 15.5± 2.7 16.2± 3.4 14.5± 3.1 14.2± 3.3 16.9± 3.1 16.0± 4.3

GRASP

MFR decrease (Hz) 9.9± 2.8 10.6± 3.7 10.6± 3.1 14.1± 4.7 13.1± 3.5 12.6± 3.4
NMUs 10.1± 2.5 7.3± 3.1 5.2± 3.2 5.8± 3.7 5.9± 2.1 5.4± 2.8
MFR (Hz) 14.1± 3.1 14.8± 3.0 12.0± 2.4 14.9± 2.9 16.0± 3.2 13.2± 2.1
MFR increase (Hz) 16.1± 3.3 16.9± 2.8 13.1± 2.4 14.5± 3.5 17.6± 3.7 13.6± 3.7

INDEX

MFR decrease (Hz) 11.9± 4.1 12.9± 3.3 11.6± 2.8 14.9± 4.7 14.1± 3.4 13.5± 2.4
NMUs 9.9± 2.2 6.0± 1.8 6.6± 3.6 9.6± 2.6 5.9± 2.9 6.0± 3.1
MFR (Hz) 12.9± 2.8 13.1± 3.1 13.9± 2.6 15.5± 3.2 14.7± 2.9 13.2± 3.2
MFR increase (Hz) 14.0± 3.9 14.4± 3.8 14.8± 3.1 15.2± 3.8 16.2± 3.2 13.7± 4.3

IND-LIT

MFR decrease (Hz) 11.3± 4.1 12.0± 2.8 12.7± 3.5 15.7± 4.1 13± 3.8 12.8± 3.0
NMUs 9.3± 2.4 8.4± 2.8 4.4± 3.2 5.5± 3.6 7.9± 2.7 5.4± 3.3
MFR (Hz) 13.3± 2.4 13.9± 2.1 13.4± 3.2 14.8± 3.4 15.6± 2.6 13.7± 2.6
MFR increase (Hz) 15.1± 2.5 15.9± 2.3 14.3± 3.3 14.5± 4.3 17.0± 3.0 14.5± 4.1

IND-MID

MFR decrease (Hz) 9.1± 3.3 10.0± 2.5 13.1± 4.7 15.1± 5.3 12.9± 3.1 12.2± 3.3
NMUs 3.0± 1.3 3.9± 3.2 6.1± 3.1 5.7± 3.5 4.7± 2.1 5.3± 3.3
MFR (Hz) 10.8± 3.6 11.3± 2.1 14.2± 1.7 16.8± 3.8 14.3± 2.7 14.0± 3.2
MFR increase (Hz) 12.6± 4.7 12.3± 3.0 15.2± 2.1 17.2± 4.4 15.7± 3.2 15.1± 3.5

LITTLE

MFR decrease (Hz) 9.4± 2.8 11.2± 2.4 13.5± 2.6 16.9± 4.5 13.7± 3.8 13.5± 4.2
NMUs 6.2± 3.6 8.0± 3.7 4.7± 4.1 7.8± 4.2 6.8± 3.4 5.0± 4.2
MFR (Hz) 12.8± 3.5 13.4± 2.1 13.0± 2.8 14.2± 3.1 14.3± 2.5 12.5± 1.8
MFR increase (Hz) 14.1± 4.1 14.7± 2.4 13.1± 3.3 14.1± 3.2 15.7± 2.6 13.1± 2.3

MIDDLE

MFR decrease (Hz) 11.5± 5.0 12.5± 3.1 13.5± 2.7 14.2± 4.3 13.2± 3.2 11.5± 3.0
NMUs 4.7± 3.6 5.6± 3.5 4.8± 4.7 6.7± 3.5 5.8± 3.9 7.2± 4.0
MFR (Hz) 11.4± 3.0 13.1± 2.8 11.1± 2.8 15.0± 3.5 14.1± 3.7 13.4± 2.3
MFR increase (Hz) 12.9± 3.4 15.0± 3.1 12.0± 3.0 14.6± 3.5 15.6± 4.2 13.8± 4.4

RING

MFR decrease (Hz) 9.7± 2.9 11.6± 2.6 10.5± 3.0 15.1± 3.9 13.0± 3.7 12.8± 2.7

observed that the PC1 extracted from motor units of
intrinsic muscles explained a percent of variance (of
the set of spike trains of intrinsicmuscles only) similar
to that explained when pooling extrinsic muscles
only. Accordingly, PC1 from intrinsic muscles correl-
ated with force similarly than from extrinsic muscles
(table 3). This result indicates that force can be pre-
dicted by only a subset of the investigated muscles,
in agreement with the concept that a common drive
underlies the activity of all involved muscles. Thus,
it is possible to find all the common neural inform-
ation from extrinsic muscles only, without recording
intrinsic muscles, which is an important outcome for
applications of myoelectric control for amputees.

The contribution of the analysed motor units in
the common synaptic input, i.e. PC1, is represented in
figure 5. The negative loads ofmotor units of FDI and
ADM during tasks involving the main fingers they
actuate, respectively index and little, may indicate a
difference in motor control for those fingers when
they are activated in a grip. However, figure 5 and
these findings have a descriptive purpose only.

The little-finger pinch accounts for few of the
hand motions in daily living activities (Santello et al
1998). Therefore, correlations between PC1 and force
for the little finger-thumb pinch are functionally less
relevant than for the whole-hand grasp or of the
middle-index-thumb pinch. In future work, it will be

relevant to compare the postural synergies found by
Santello et al (1998) with synergies found from pools
of motor neurons, also in relation to differences in
functional relevance of the types of grasps.

With respect to an analysis based on amplitude of
the EMG, rather than motor units, EMG decompos-
ition separates the neural information of the efferent
activity of motor neurons from the waveforms of the
action potentials (represented in figure 3). The latter
are influenced by many factors other than the neural
drive to the muscles. Moreover, decomposition com-
pletely removes EMG crosstalk (Muceli et al 2014)
from the analysis, which is a major factor of error in
inferring neural connectivity from EMG amplitude
(Farina et al 2004, 2014a, 2014b, Farina and Negro
2015).

The number of extracted motor units largely
changed for different tasks (table 2), while MFR
was less variable across tasks. The task involving the
little finger presented for all muscles, except for the
ADM, the lowest number of identified motor units.
The number of motor units identified with HD-
sEMG decomposition is only a relatively small per-
centage of the total number of active motor units.
For example, anatomical studies indicate that the FDI
has approximately 120 motor units (Enoka 1995)
and the ADM more than 300 motor units (Santo
Neto et al 1985). Moreover, the number of channels
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over each muscle was different. For instance, 64 elec-
trodes recorded the ADM while the same number
of channels was used to record from three interossei
muscles. Nonetheless, despite the absolute number
of identified motor units does not represent the
actual recruitment, the relative number of motor
units extracted in each task was consistent with the
performed function. For example, the greatest num-
ber of motor units for the ADM was found for tasks
involving the little finger (five-digits, index-little task,
little only). The number of motor units for the FDI
was greater for the tasks involving the index finger and
the tasks with the higher number of motor units for
the interossei were those involving the index and the
middle finger. In general, we could identify a smal-
ler number of units for the extrinsic with respect to
the intrinsic muscles, which is likely due to the dif-
ferent properties of the volume conductor at the fore-
arm and in the hand. The different properties of the
volume conductor for the muscles investigated are
indeed evident when inspecting the action potential
waveforms extracted by STA (figure 3). These have
largely different durations, which is mostly associated
to the low-pass filtering effect of the tissues inter-
posed between the muscle fibres and the electrodes
(Farina et al 2004). table 2 shows a higher average
value of mean firing-rate discharge, during pushing
on the load cell (force increasing) instead of during
releasing the grip, which agrees with a vast literature
of motor unit data showing smaller discharge rates
at derecruitment than at recruitment (Heckman and
Enoka 2012).

The STA to extract single unit action poten-
tials across the grids provided the approximate
localization of the motor units over the skin plane
under the electrode grids (figure 3). In this way, it was
possible, for example, to identify the three muscles
composing the thenar group by the localization of
their motor units.

The combination of specific directives formount-
ing the electrode grids and processing of the EMG
signals to enable the study of neural control of the
hand, in ways different than in the past, constitute
the framework we present in this paper. Although
it comprises technologies that have been previous
described, their combination enables simultaneous
observations of motor units from hand muscles,
both extrinsic and intrinsic, in a way that has never
been attempted before. With this work, we recom-
mend and encourage to consider EMG decomposi-
tion of multiple muscles to observe common beha-
viour among a vast pool of motor neurons innerv-
ating muscles actuating several degrees of freedom,
such as in the hand. Moreover, in rehabilitation tech-
nologies, such as for stroke therapy, this framework
can be translated into a neural interface to provide
control signals for hand exoskeletons or virtual real-
ity. It can also be used to extract biomarkers of
recovery or for monitoring the effect of therapy.

The control signal provided by PC1 and the associ-
ated weights of motor neurons in PC1 may be used
for functional electrical stimulation (FES) in stroke
rehabilitation.

5. Conclusions

Wepropose the presented framework for applications
in non-invasive neurophysiological studies on neural
control of hand muscles in healthy and pathological
conditions as well as for man-machine interfacing
purposes. For example, the identified common drive
to motor neurons may be used for controlling hand
exoskeletons or FES devices for stroke rehabilitation.
The proposed framework can easily be adapted to a
wearable version with ease of application.
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