
Enhancing Temporal Logic
Falsification of
Cyber-Physical Systems
using multiple objective functions and a new optimization method

ZAHRA RAMEZANI

DEPARTMENT OF ELECTRICAL ENGINEERING

CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2020
www.chalmers.se

ZA
H

R
A

R
A

M
E

ZA
N

I
•

E
nhancing

Tem
poralLogic

Falsification
ofC

yber-P
hysicalS

ystem
s

•
2020

1

thesis for the degree of licentiate of engineering

Enhancing Temporal Logic Falsification of
Cyber-Physical Systems

Zahra Ramezani

Department of Electrical Engineering
Chalmers University of Technology

Gothenburg, Sweden, 2020

Enhancing Temporal Logic Falsification of Cyber-Physical Systems

Zahra Ramezani

Copyright c© 2020 Zahra Ramezani
All rights reserved.

Department of Electrical Engineering

Chalmers University of Technology
SE-412 96 Gothenburg, Sweden
Phone: +46 (0)31 772 1000
www.chalmers.se

Printed by Chalmers Reproservice
Gothenburg, Sweden, November 2020

To my parents

Abstract
Cyber-physical systems (CPSs) are engineering systems that bridge the cyber-
world of communications and computing with the physical world. These sys-
tems are usually safety-critical and exhibit both discrete and continuous dy-
namics that may have complex behavior. Typically, these systems have to
satisfy given specifications, i.e., properties that define the valid behavior. One
commonly used approach to evaluate the correctness of CPSs is testing. The
main aim of testing is to detect if there are situations that may falsify the
specifications.
For many industrial applications, it is only possible to simulate the system

under test because mathematical models do not exist, thus formal verification
is not a viable option. Falsification is a strategy that can be used for testing
CPSs as long as the system can be simulated and formal specifications exist.
Falsification attempts to find counterexamples, in the form of input signals
and parameters, that violate the specifications of the system. Random search
or optimization can be used for the falsification process. In the case of an
optimization-based approach, a quantitative semantics is needed to associate
a simulation with a measure of the distance to a specification being falsified.
This measure is used to guide the search in a direction that is more likely to
falsify a specification, if possible.
The measure can be defined in different ways. In this thesis, we evaluate

different quantitative semantics that can be used to define this measure. The
efficiency of the falsification can be affected by both the quantitative seman-
tics used and the choice of the optimization method. The presented work
attempts to improve the efficiency of the falsification process by suggesting to
use multiple quantitative semantics, as well as a new optimization method.
The use of different quantitative semantics and the new optimization method
have been evaluated on standard benchmark problems. We show that the
proposed methods improve the efficiency of the falsification process.

Keywords: Cyber-Physical Systems, Testing, Falsification

i

ii

List of Publications
This thesis is based on the following publications:

[A] Zahra Ramezani, Nicholas Smallbone, Martin Fabian, Knut Åkesson,
“Evaluating Two Semantics for Falsification using an Autonomous Driving
Example”. Proceedings of 2019 IEEE 17th International Conference on In-
dustrial Informatics (INDIN), Helsinki-Espoo, Finland.

[B] Zahra Ramezani, Johan Lidén Eddeland, Koen Claessen, Martin Fabian,
Knut Åkesson, “Multiple Objective Functions for Falsification of Cyber-Physi-
cal Systems”. To appear in Proceedings 15th Workshop on Discrete Event
Systems (WODES), Rio, Brazil, November 2020.

[C] Zahra Ramezani, Koen Claessen, Martin Fabian, Knut Åkesson, “En-
hancing Temporal Logic Falsification with Line Optimization”. To be submit-
ted to possible journal publication.

Other publications by the author, not included in this thesis, are:

[D] Zahra Ramezani, Jonas Krook, Zhennan Fei, Martin Fabian, Knut
Åkesson, “Comparative Case Studies of Reactive Synthesis and Supervisory
Control”. Proceedings 18th European Control Conference (ECC), pp. 1752-
1759, Naples, Italy, June. 2019.

[E] Johan Lidén Eddeland, Koen Claessen, Nicholas Smallbone, Zahra Ram-
ezani, Sajed Miremadi, Knut Åkesson, “Enhancing Temporal Logic Falsifica-
tion with Specification Transformation and Valued Booleans”. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems, 2020.

[F] Koen Claessen, Nicholas Smallbone, Johan Lidén Eddeland, Zahra Ram-
ezani, Sajed Miremadi, Knut Åkesson, “Using Valued Booleans to Find Sim-
pler Counterexamples in Random Testing of Cyber-Physical Systems”. 14th
IFAC Workshop on Discrete Event Systems (WODES), 2018.

[G] Koen Claessen, Nicholas Smallbone, Johan Lidén Eddeland, Zahra
Ramezani, Knut Åkesson, Sajed Miremadi, “Applying valued booleans in
testing of cyber-physical systems”. Proceedings 3rd Workshop on Monitoring
and Testing of Cyber-Physical Systems (MT-CPS), Porto, Portugal, April,
2018.

iii

iv

Acknowledgments

First and foremost I would like to express my sincere gratitude to my su-
pervisor Prof. Knut Åkesson for his unique support and patience since the
beginning of my PhD studies. Without his trust and meticulous approach, it
was impossible to proceed and make progress throughout this important and
interesting period of someone’s life. He continuously has been motivating me
to feed my curiosity and will to learn, to try, and to investigate deeply various
concepts. Secondly, my sincere gratitude is for my second supervisor Prof.
Martin Fabian, his presence provides me an incredible opportunity to discuss
and interpret different scientific aspects. The fact is that without any hard
discussion and knowledge exchange it is impossible to finish a milestone. I
always received wise, while challenging comments, that force me to respond
creatively.
I also want to thank everyone who I have worked with. I would like to

dedicate a special thanks to Prof. Koen Claessen for nice collaboration, dis-
cussions, and support. I also would like to thank my colleagues in the SyTec
project: Dr. Nicholas Smallbone, Prof. John Hughes, Prof. Mary Sheeran,
and Johan Lidén Eddeland. My biggest thanks to Dr. Alexandre Donzé, for
his support, help, and guidance. I would like to express my sincere thanks to
all my colleagues and friends in Automation groups and also at the Electrical
Engineering Department.

Now it is the turn to dedicate my words to a person who gave me love of
life. My role model in every moment of life, my Mom. Being robust, resilient,
while keeping her warm, kind, and precious smile towards all her children.
The words can not express my feelings and sensations for a real angel that
has been with me unconditionally. Love you Mom. An incredible honor to
my father, the man who has been dedicating his entire life to provide us with
the prosperous, peaceful, and independent conditions. I really do not know
how to describe and how to be thankful.

Life without friendship is vague and meaningless. My dearest sisters Parisa
and Sepideh that their emotional supports provided me togetherness. Since
childhood so far, playing together, being together in happiness and sadness,
studying together, and many other things together. There are always some
secrets among close friends that no one knows, these are only some portions
of love that my sweetheart sisters gave me. At last but not least thanks to
the new member of my family, Hesam, my brother in law, for his support.

v

This work was supported by the Swedish Research Council (VR) project-
SyTeC VR 2016-06204 and by the Swedish Agency for Innovation Systems
(VINNOVA) under project TESTRON 2015-04893.
The simulation results for all benchmark problems in this thesis can be

performed on resources at Chalmers Centre for Computational Science and
Engineering (C3SE) provided by the Swedish National Infrastructure for Com-
puting (SNIC).

vi

Acronyms

AD: Autonomous Driving

Additive: Additive semantics

CPS: Cyber-Physical System

MARV: Mean Alternative Robustness Value semantics

Max: Max semantics

MBD: Model-Based Development

NM: Nelder-Mead

SNOBFIT: Stable Noisy Optimization by Branch and Fit

STL: Signal Temporal Logic

SUT: System Under Test

VBool: Valued Boolean

vii

Contents

Abstract i

List of Papers iii

Acknowledgements v

Acronyms vii

I Overview 1

1 Introduction 3
1.1 Research Questions . 6
1.2 Method . 8
1.3 Outline . 9

2 Falsification of Cyber-Physical Systems 11
2.1 Cyber-Physical Systems . 11
2.2 Testing of Cyber-Physical Systems 12

Tools for Testing of CPSs . 13
2.3 Falsification of Temporal Logic Specifications 14

Falsification in Breach . 14

ix

2.4 An Autonomous Driving Example 16
2.5 Large-Scale Testing . 18

3 Quantitative Semantics 19
3.1 Specification Formalisms . 19
3.2 Signal Temporal Logic . 20
3.3 Valued Booleans . 21

Max Semantics . 22
Additive Semantics . 23

3.4 Mean Alternative Robustness Value Semantics 24
3.5 Discussion . 25

4 Optimization Methods 27
4.1 The Optimization Problem . 27
4.2 The Nelder-Mead Optimization Method 28
4.3 Stable Noisy Optimization by Branch and Fit 29

5 Contributions and Summary of Papers 33
5.1 Contributions . 33
5.2 Summary of Papers . 45
5.3 Paper A . 45
5.4 Paper B . 46
5.5 Paper C . 47

6 Concluding Remarks and Future Work 49
6.1 Future Work . 51

References 53

II Papers 59

A Evaluating Two Semantics for Falsification using an Autonomous
Driving Example A1
1 INTRODUCTION . A4
2 Falsification . A5

2.1 Signal Temporal Logic A6
2.2 Valued Booleans and MAX semantics A6

x

2.3 Mean Alternative Robustness Value (MARV) semantics A7
3 Use-Case . A8

3.1 Specification of Safe Longitudinal Distance A9
4 Evaluation Results . A10
5 Conclusion . A15
References . A16

B Multiple Objective Functions for Falsification of Cyber-Physical
Systems B1
1 INTRODUCTION . B3

1.1 Quantitative Semantics and Objective Functions B6
1.2 Quantitative Semantics B7

2 Falsification Using Multiple Objective Functions B7
3 Benchmark Problems . B9

3.1 Automatic Transmission (AT) Benchmark B11
3.2 Third Order Modulator B11
3.3 Static Switched (SS) System B11

4 Experimental Setup and Results B12
4.1 Results . B14

5 Conclusion . B15
References . B16

C Enhancing Temporal Logic Falsification with Line Optimization C1
1 Introduction . C3
2 Quantitative Semantics and Objective Functions C7

2.1 Quantitative Semantics C8
3 Optimization Methods . C9

3.1 Hybrid Corners-Random Method C10
3.2 Line Optimization . C11

4 Benchmark Problems . C18
4.1 ARCH Benchmark Problems C18
4.2 Additional Benchmark Problems C21

5 Experimental Setup and Results C22
5.1 Hybrid Corners-Random vs. Corners and Random . . . C29
5.2 Line Optimization vs. Nelder-Mead and SNOBFIT . . . C31
5.3 Comparison of all optimization methods C33

6 Conclusions . C35

xi

References . C35

xii

Part I

Overview

1

CHAPTER 1

Introduction

Computational and physical resources are closely interconnected in many real-
world systems. These systems are commonly defined as cyber-physical systems
(CPSs). CPSs have applications in communications, robotics, healthcare,
energy [1].
CPSs are often developed in a model-based development (MBD) paradigm.

MBD involves the different kinds of models that constitute the closed-loop
system: plant and control [2]. The plant model contains the dynamical
characteristics of the physical components of the system like mechanical, elec-
trical, chemical components. The dynamical characteristics are represented
based on differential and algebraic equations. The control model contains the
embedded software components of the system that regulates the behavior of
the physical system.
CPSs usually safety-critical and typically are hybrid systems, i.e., a com-

bination of discrete and continuous dynamics which may have the complex
behavior. These systems must fulfill their expected behavior. To guarantee
their correctness two common methods are used: testing, and verification.
Testing and verifying the correctness of CPSs are a big challenge. Since it
is necessary to do hardware and software testing, communication and com-

3

Chapter 1 Introduction

putation testing, extra-functional testing for each component [3]. This thesis
tackles the problem of testing CPSs.
To test the developed models, what needs to be defined is the expected

behavior of the system. The term specification is used to describe this behav-
ior. The specification can be expressed in natural language or mathematical
language.
One motivating example in this thesis is an adaptive cruise control system

for autonomous driving (AD). In this example, the autonomous car represents
the plant, the adaptive cruise control is the control method implemented on
the autonomous car. There are other cars and pedestrians around the au-
tonomous car that affect the behavior of the autonomous car. Of course, like
any car, an autonomous car must always drive safely. So, to avoid collisions,
for instance, we can formulate the following specification in natural language:
“the relative distance between the autonomous car and a car in front of it,
must always be greater than ten meters”. In mathematical terms, this can be
expressed as “drelative > 10”.
Testing is an essential part in engineering that is widely considered in in-

dustry to guarantee the quality of a system under test (SUT). Testing can be
done in different parts and component of a CPS application like [3]:

• Hardware Testing: This consists of the hardware testing including
the testing of the functionality of each component.

• Structure and Computation Testing: This focuses on the compu-
tational part of the software part of a system.

• Extra-Functional Properties Testing: This is related to the inher-
ent interaction with the system environment.

• Network Testing: Checks and verifies the used communication proto-
cols.

• Integration Testing: This is the combination of the individual soft-
ware modules in a group and testing the grouped module.

• System Testing: Hardware or software testing to test a complete inte-
grated system when all units are integrated to fulfill the overall require-
ments of the system.

4

Requirements

Control Design

Model

Specification

Model

Systems

Platrorm

Hardware

Code

Figure 1.1: The model-based development design [4].

Figure 1.1 represents the MBD process and how different levels of testing
can be related to the model. The requirements, or models, on the design
part, define the behaviors that should be exhibited by the corresponding sys-
tems on the verification part. A control design including the implementation
details is created based on the requirements. This control results in a spec-
ification model. The code is generated automatically or manually based on
the specification model. The code is compiled and executed on the hardware
platform.

In early development, simulation-based approaches are used for testing [4].
Simulations provide a model of the system that numerically approximates the
system behavior. Simulations are used for debugging the embedded control
system designs; validating the functional behavior; obtaining initial calibration
parameter values; obtaining estimates of system performance, and serving as
the basis for the functional and software specifications.
Simulation can be applied to large systems, such as industrial systems, at

any scale. Also, for many industrial applications, analyzing the mathemat-
ical models is not possible and it is thus necessary to rely on simulations
of the SUT. Falsification of temporal logic specifications can be used as a
testing method as long as the system can be simulated. Falsification tries

5

Chapter 1 Introduction

to find counterexamples of given specifications. Random search or optimiza-
tion can be used for the falsification process. The falsification process uses
quantitative semantics associated with the specifications in the optimization-
based approach. A quantitative semantics defines an objective function that
can be evaluated for given inputs and gives a measure of the distance to the
specification being falsified. The problem of finding new test cases in the
optimization-based approach uses the objective function values from previous
simulations, and modifying the test cases such that the new test case is likely
to have a lower objective value as defined by the quantitative semantics.
The possible input signals are typically parameterized, for example, a si-

nusoidal signal can be defined by two parameters, the amplitude, and the
frequency. Other examples are constant signals that take different values at
different times, this can be parametrized using the values and the times at
which the signals change.
The input parameters are chosen within their defined ranges. The objective

function, which is based on a temporal logic formula, is later evaluated based
on a simulation of the system with the chosen parameters. In this thesis, we
refer to a vector of input parameters as a point in the parameter space.
There are limitations for the simulation of large-scale CPSs. Simulations are

costly and the simulation time is the most limiting factor, not the evaluation
of the quantitative semantics. Thus, it is important to enhance the capability
of falsification by trying to reduce the number of needed simulations. This
thesis tackles the problem of enhancing the falsification process for CPSs.

1.1 Research Questions
The goal of this thesis can be summarized in three research questions con-
nected to model-based testing of CPSs. These questions are presented below.

RQ1. What are the strengths and weaknesses of the different semantics for
the falsification of cyber-physical systems?

For the falsification of temporal logic, it is required to estimate the distance
to falsify the specification, i.e., quantitative semantics. The efficiency of the
falsification is affected by the used quantitative semantics. Different quanti-
tative semantics have been proposed in the literature to guide the test case

6

1.1 Research Questions

generation to falsify the specification. These semantics have different proper-
ties and behavior. Thus, this is important to understand the strengths and
weaknesses of different semantics.

RQ2. How does the combination of different semantics affect and improve
the falsification of cyber-physical systems?

The main purpose of calculating an objective function value in terms of
quantitative semantics in falsification is to guide the testing process towards
the falsification point. This is done by choosing the next set of parameters for
the input signals to the system being simulated, such that the likelihood of
falsifying the specification is increased, if possible. According to the evaluation
results on the falsification of CPSs, it is not possible to have a clear and certain
answer to the question of which semantics performs better than others. There
is a clear tendency that a specific semantics outperforms for some examples
while might not work as well for other examples.

Using a single semantics may cause the optimization to get the wrong or
even no information to guide the falsification process for some examples. On
the other hand, the used semantics might work well for other examples. Hence,
a combination of different objective functions might help to be more efficient
and use the advantages of different semantics.

The purpose of this research question is to understand how different seman-
tics can be used to improve the falsification process.

RQ3 How do different optimization methods affect the falsification process?

Falsification of temporal logic is a testing method they may formulate the
problem of generating test cases as an optimization problem. The optimization
generates new input parameters that aim at finding a lower objective value.
The used optimization method may thus affect the efficiency of the falsification
process.

Different optimization methods are used for falsification in testing tool-
boxes, and these methods affect the falsification performance. The purpose of
this research question is to evaluate the performance of different optimization
methods, to know how they work and how they can generate new input points
such that the system goes closer to falsifying the specification.

7

Chapter 1 Introduction

1.2 Method

The main purpose of the falsification methods for CPSs is to find bugs and
faults of the system without much additional manual work for the engineers.
The purpose of the research presented in this thesis is to improve the un-
derstanding of the falsification problem and enhance the capabilities of the
falsification methods.
To support answering RQ1 we have developed an example of an adaptive

cruise controller for an autonomous driving. This example is easy to under-
stand, only having two input parameters, but still having complex dynamics.
With this example it is possible to, in detail, analyze how different quantitative
semantics affect the falsification performance.
RQ2 was formulated after working on answering RQ1 where it became un-

clear which quantitative semantics to use, and we wanted to evaluate if it
could be beneficial to use a hybrid strategy that uses multiple quantitative
semantics during the falsification process. The decision to focus on combina-
tions of different semantics was that it cannot be analytically decided which
semantics outperforms the others, as this depends on the specification and the
system. The use of multiple quantitative semantics is suggested and evaluated
on benchmark problems in Paper B. The benchmark problems are a collection
of various problems collected from different publications.
RQ3 is defined since it became clear that the choice of optimization methods

affect the falsification process. Since we in this thesis assume that we can only
simulate the system and do not have access to the internals of the system, we
cannot use a gradient-based optimization method, instead, we have to use
a gradient-free optimization method. In Paper C, the benchmark problems
came from the ARCH19 workshop [5] plus variants of those problems, and
additional problems from Paper B.
Evaluation results on the benchmark problems gave us the feedback that

some of them can be falsified by using the corners as input parameters, i.e the
extreme input points that are generated from the given ranges of inputs to
the SUT, or considering random input points. These results led to suggest a
combination of the corners and random method in Paper C as another base-
line to compare optimization-based falsification against. Still there are some
specifications in the benchmark problems where optimization-based methods
is needed. In [6] it is shown that one of the best optimization method, Nelder-
Mead (NM) [7], is good at finding a local optima but have no built-in support

8

1.3 Outline

for getting out from local optima. While another optimization method is
Stable Noisy Optimization by Branch and Fit (SNOBFIT) [8], outperformed
NM also when a constant quantitative semantics is used. A constant seman-
tics that has a constant positive value if the specification is fulfilled and a
constant negative value if the specification is falsified. In Paper C, a new
optimization method, line optimization, is presented that when evaluated on
the benchmark problems is as good as or better than SNOBFIT, but having
a much simpler implementation.

1.3 Outline
This thesis consists of two parts. Part I is a general introduction and overview
of the field and gives the readers the understanding needed for the appended
papers. Part II contains the appended papers. Part I is organized as follows:
Chapter 2 gives an overview of cyber-physical systems and testing methods for
CPSs. This chapter also introduces the testing frameworks including details
about Breach [9], the testing tool used in this thesis. The concept of falsifica-
tion of temporal logic is also presented in this chapter. Chapter 3 introduces
the Signal Temporal Logic (STL), the concept of Valued Booleans (VBools),
and the three different semantics used in this thesis. In Chapter 4, two op-
timization methods, the Nelder-Mead method, and SNOBFIT are presented.
Chapter 5 presents the contributions in the appended papers. The thesis ends
with conclusions and future work.

9

CHAPTER 2

Falsification of Cyber-Physical Systems

This chapter starts with a presentation of cyber-physical systems in general
and continues with testing methods for CPSs. This chapter presents, Breach,
the tool that is used for testing in this thesis. We also introduce the falsifi-
cation of temporal logic specifications, the main method used in this thesis.
The chapter ends with large-scale testing where it discusses the benefits of
running a large number of simulations on computing clusters.

2.1 Cyber-Physical Systems
The term cyber-physical systems refers to systems that are connected with
other systems in the environment by integrating physical components and
communication. They have the ability to collect and evaluate data, and com-
municate with other systems in their environment [10].
CPSs contain both cyber and physical elements with various sensors and

actuators. CPSs typically contain a mix of continuous and discrete dynamics,
and are thus hybrid systems. Therefore, the methods and tools of CPS en-
gineering incorporate both continuous-valued formalisms of physical systems,
like mechanical, electrical, electronic engineering, and discrete models of the

11

Chapter 2 Falsification of Cyber-Physical Systems

computing hardware and software [11]. CPS applications are found in a wide
range of application domains, like factory automation, medical systems, power
grids, aerospace, and transportation.
CPSs are often developed using a model-based development (MBD) parad-

igm [12]. The first step of the MBD process contains the plant model. The
model of the plant captures the dynamic characteristics of the system’s physi-
cal parts as described by differential, logic, and algebraic equations. Designing
a controller is the next step of MBD. A controller is designed to regulate the
behavior of the physical system by obeying control laws. The closed-loop
model refers to the composition of the plant and the controller.
The integration of the cyber and physical makes CPSs complex and difficult

to analyze. CPSs are often safety-critical, for example, autonomous cars and
medical devices. Thus, verification and testing of CPSs are two important
methods for the validation and correctness of these systems. Testing is the
most commonly used method in industry. This thesis considers the problem of
testing. In the next section a review of testing methods of CPSs is presented.

2.2 Testing of Cyber-Physical Systems

CPSs are often tested at different levels: Model-in-the-loop (MIL), Software-
in-the-loop (SIL), and Hardware-in-the-loop (HIL). Testing functional require-
ments are done at the MIL and SIL level, while at the HIL level functional as
well as non-functional requirements are tested by performing real-time simu-
lations [13]. Testing of CPSs is costly because of: many variants to test; long
test cases; simulation of the physical layer. Therefore, selecting suitable test
cases is important. CPSs have large and complex sub-systems and multiple
variants. Thus, simulations are gaining importance for testing, debugging,
and estimation of the performance of CPSs.
For many industrial applications, it is not possible to analyze the math-

ematical model analytically, it is only possible to simulate the SUT. Thus
formal verification is not a viable option. The falsification of temporal logic
specifications, as a testing method, can be used as long as the model can be
simulated and a formal specification exists. Tools that can be used for testing
will be introduced in the next section.

12

2.2 Testing of Cyber-Physical Systems

Tools for Testing of CPSs

As was mentioned in previous sections, large industrial systems are a mix of
continuous models and discrete models, this feature may make them complex.
We assume that only a black-box model of the SUT is available to analyze.
Thus, there is no internal information about the model and the controller of
the system, and only the input-output behavior of the SUT can be observed.
Different tools and methods are used for testing CPSs: TestWeaver [14], FAL-
STAR [15], falsify [16], S-TaLiRo [17], and Breach [9].
TestWeaver is a commercial testing software that can automatically gener-

ate thousands of test vectors. This is efficient because testing of the system
needs to consider a large number of test vectors. The testing inputs are gen-
erated to maximize a certain notion of coverage, and the discretization of the
continuous state space of the hybrid system [14].

FALSTAR is an experimental falsification tool that explores the idea to
construct the inputs incrementally in time. In FALSTAR, different proba-
bilistic algorithms are implemented, like a two-layered framework combining
Monte-Carlo tree search [18], and a probabilistic algorithm [15].

falsify is an experimental falsification program that uses reinforcement learn-
ing algorithms to solve the falsification problem. falsify implements a deep
reinforcement learning algorithm Asynchronous Advantage Actor-Critic [19].
falsify uses a grey-box method where it learns the behavior of the system by
observing the system output during the simulation [16].
S-TaLiRo is a MATLAB toolbox used to perform falsification using Metric

Temporal Logic (MTL). This tool searches for counterexamples to properties
for nonlinear hybrid systems using a quantitative semantics metric in Simulink
and Stateflow. The optimization uses stochastic optimization techniques that
perform a random walk over the initial states, controls, and disturbances of
the system [17].

Breach is another MATLAB/Simulink toolbox used for testing and falsifica-
tion of specifications in Signal Temporal Logic (STL). The falsification process
is guided by an optimization procedure. Breach is the tool used in this thesis.
In the next section, the falsification method will be introduced and discussed
then its implementation in Breach will be discussed.

13

Chapter 2 Falsification of Cyber-Physical Systems

Generator

Parameter initial

 guess
Simulator

Input u[k]

Quantitative

semantics

Parameter

optimizer

Function

evaluation
Stop

Input signal

parameters

Output S[k]

Requirement φ

Objective

function value ρ

Not

falsified

Falsified

Figure 2.1: A flowchart describing the optimization-based falsification procedure in
Breach [20].

2.3 Falsification of Temporal Logic Specifications
The falsification process is a strategy that performs over quantitative seman-
tics of the specification in the optimization-based approach. A quantitative
semantics defines an objective function to measure the distance to the speci-
fication being falsified and guide the process towards the falsification process
by choosing the next set of input points. The objective function is determined
by the definition of quantitative semantics for the temporal logic formalisms.
The falsification problem is formulated as:

• Given: a system model S, input domain Pu to the system, and a spec-
ification ϕ.

• Results for falsification: a counterexample input x ∈ Pu such that
its corresponding output S(x) violates the specification ϕ, if such input
exists, i.e., S(x) 2 ϕ.

Falsification in Breach
This section reviews how the falsification procedure is implemented in Breach.
The main falsification procedure in Breach is shown in Figure 2.1. This pro-
cedure works as follows.

Input generators

To generate the input trace u[k] at a time k to SUT, the Generator needs to
take some input parameters (points). The space of permissible input signals

14

2.3 Falsification of Temporal Logic Specifications

is parametrized by m input parameters a = (a1, . . . , am) that take values from
a set Pu. The actual input u[k] is created using a generator function g such
that u[k] = g(v(a))[k], where v(a) ∈ Pu is a valuation of the parameter vector
a. The output signal is calculated by system S. The optimization problem is
formulated as

min
(v(a)∈Pu)

ρ
(
ϕ,S(g(v(a)))

)
, (2.1)

where ρ is a quantitative semantics that defines the objective function.
The input parameters are chosen within their defined ranges. To interact

with the system we can use different parameterized input generators. For
instance, the parameters can represent the control point, and the input gen-
erated by some interpolation between these points. Also, it is possible to have
variable step inputs and also different numbers of control points and interpo-
lation methods, like spline or liner. Piece-wise constant signals take different
values at different times, this can be parametrized using the values and the
times at which the signals change. Sinusoidal signal is another example that
can be defined by two parameters, the amplitude, and the frequency.

Simulation

When the SUT is available in Simulink and the input u[k] generated by the
Generator, the Simulator can generate a simulation trace. The trace and the
requirement ϕ are used together to evaluate the quantitative semantics, ρ.

Quantitative semantics

The quantitative semantics ρ is evaluated to see whether the specification
is falsified or not. Quantitative semantics defines an objective function. A
negative objective function value means the specification is falsified and a
positive value shows it is not falsified. The falsification procedure will stop
when ρ is negative. Different quantitative semantics are defined in the litera-
ture as Max [21], Additive [20], Mean Alternative Robustness Value (MARV),
Root Mean Square Alternative Robustness Value [22], and averaged STL
(avSTL) [23]. Max, Additive, and MARV used in the appended papers of
this thesis is introduced in detail in Chapter 3. The performance of the se-
mantics depends on the system and the specification. Papers A and B evaluate
the effect of different semantics.

15

Chapter 2 Falsification of Cyber-Physical Systems

Parameter optimization

If the objective function value ρ is positive, this means that the specification
is not falsified, it leads to new parameters being sampled and the process is re-
peated. This is done in the parameter optimizer procedure in Figure 2.1. The
Parameter optimizer tries to generate new parameter values k within given
ranges to optimize the objective function ρ to find lower objective function
values.
Much research has been devoted to parameter optimization for falsification.

In [24], the gradients are used to guide the optimization. On the other hand,
the gradient-free optimization approaches for testing include Ant Colony Op-
timization [25] and Local Stochastic Tabu search [26].
In [6] different optimization methods were evaluated on some CPSs bench-

mark problems to evaluate the effect of optimization on falsification. They
are SNOBFIT [8]; NM [7], an optimization implemented in Breach; Simulated
Annealing [27], was included in S-TaLiRo and is now implemented in Breach;
Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [28]. The effect
of the optimization method is considered in Paper C where a new gradient-
free optimization is suggested. NM and SNOBFIT, that are considered in this
thesis, are presented in Chapter 4.

2.4 An Autonomous Driving Example
In this section, an example of autonomous driving, AD, is presented to give
more details about how the input generators and quantitative semantics work
in Breach implementation. Autonomous driving applications aim to take the
driving responsibility away from human drivers, thus, safety of these systems
is paramount.
In this example, two cars are assumed on a road: ego car refers to the

autonomous car and a lead car that is a normal car in front of the ego. The
ACC is designed to automate the task of choosing the right acceleration, aego,
for the ego car to maintain a safe distance from other cars.
The lead car can change its acceleration, alead. The acceleration of the lead

car in front of the autonomous car can be assumed as the input to the system
in Breach. Before a simulation of the closed-loop system starts, the values of
this input must be selected. Then, it is needed to know what are the suitable
ranges to consider for the acceleration of a non-autonomous car.

16

2.4 An Autonomous Driving Example

0 5 10 15 20 25 30

Time (sec)

0

20

40

60

80

100

120
D

is
ta

n
c
e
 (

m
)

Relative Distance

Safe Distance = 10

Figure 2.2: The relative and safe distance between two cars.

To avoid collision, the relative distance drelative between the ego and the
lead car must always be greater than the safe distance. The safe distance is
assuemd equal to a constant value 10. The specification is formulated as:

ϕ : �[0,30](drelative > 10).

Then ρ is defined as to minimize the difference (drelative−10). Assume that
the lead car can accelerate in the range [0, 3] and brake in [−3, 0]. The input
point is generated from Breach using two control points, alead0 and alead1.
The simulation time is T = 30 sec. The simulation starts with alead0 chosen
by Breach in the range [0, 3]. At time 7.5 sec, Breach chooses a new value
alead1 in the range [−3, 0].
By giving the input points in the given ranges to the system, we would like

to see how the ego car can react and the safety specification formula can be
satisfied or not. Also, in which input point the specification is falsified. The
relative and safe distance between the two cars is shown in Figure. 2.2, where
alead0 = 1.5 and alead0 = −1.5. This figure is generated when the lead car
accelerates and after some time decelerates, and results in the safety formula
being violated at time 22 sec, where drelative < 10 and a crash happens.
As was shown by the AD example, falsification finds counterexamples where

a system does not satisfy the given specification. It can help to find bugs and
faults on the systems.

17

Chapter 2 Falsification of Cyber-Physical Systems

2.5 Large-Scale Testing
A key strength of using a model-based development methods is that the models
can be used for various purposes including testing.
When both the control logic, the physical parts, and the environment have

models that support high-fidelity simulation, the closed-loop behavior can be
evaluated.
Testing benefits from running a large number of simulations. If only soft-

ware models are needed to run the simulations, testing can take advantage of
computing clusters to run the models, in parallel, using thousands of comput-
ing nodes.
To support the evaluation of the different strategies used in this thesis we

have set up a system such that all benchmark problems in this thesis can
be executed on resources at the Chalmers Centre for Computational Science
and Engineering (C3SE) provided by the Swedish National Infrastructure for
Computing (SNIC)1.

1https://www.c3se.chalmers.se/

18

CHAPTER 3

Quantitative Semantics

In this chapter, the specification formalisms are reviewed and the concept of
Signal Temporal Logic is defined with details. The concept of Valued Booleans
(VBools) and different semantics are presented, in this chapter.

3.1 Specification Formalisms

To test CPSs, the expected behavior of the system, i.e., the desired properties
of the system must satisfy, needs to be defined, and expressed in a mathe-
matically precise way. The term specification is used to describe the desired
behavior.
There are different mathematical formalisms to model the specifications like

Metric Temporal Logic (MTL), Metric Interval Temporal Logic (MITL) [29],
and Signal Temporal Logic (STL) [30]. STL is an extension of MTL with real-
valued signals and dense time, while MTL is an extension of Linear Temporal
Logic (LTL) [31].
STL, that is is used to model the specifications in this thesis, is introduced

below.

19

Chapter 3 Quantitative Semantics

3.2 Signal Temporal Logic

The syntax of STL is defined below:

ϕ ::= µ | ¬µ |ϕ ∧ ψ |ϕ ∨ ψ |�[a,b]ψ |♦[a,b]ψ |ϕU[a,b]ψ,

where the predicate µ is µ ≡ µ(s) > 0 and s is a signal; ϕ and ψ are STL
formulas; �[a,b] denotes the globally operator between times a and b (with
a < b); ♦[a,b] denotes the finally operator between a and b; and U[a,b] denotes
the until operator between a and b.

The satisfaction of the formula ϕ for the discrete signal s at the discrete-time
instant k is defined as [32]:

(s, k) |= µ ⇔ µ(s[k])
(s, k) |= ¬µ ⇔ ¬((s, k) |= µ)
(s, k) |= ϕ ∧ ψ ⇔ (s, k) |= ϕ ∧ (s, k) |= ψ

(s, k) |= ϕ ∨ ψ ⇔ (s, k) |= ϕ ∨ (s, k) |= ψ

(s, k) |= �[a,b]ϕ ⇔ ∀k′ ∈ [k + a, k + b], (s, k′) |= ϕ

(s, k) |= ♦[a,b]ϕ ⇔ ∃k′ ∈ [k + a, k + b], (s, k′) |= ϕ

(s, k) |= ϕ U[a,b]ψ ⇔ ∃k′ ∈ [k + a, k + b] (s, k′) |= ψ

∧ ∀k′′ ∈ [k, k′], (x, k′′) |= ϕ

A modified version of STL, called averaged STL (avSTL) [23] where two
time-averaged temporal operators (� and ♦) are introduced and have a dif-
ferent robustness value than the standard robust semantics. STL* is a logic
formalism that includes an additional freezing operator that specifies damped
oscillations in a signal [33]. Time-Frequency Logic (TFL) [34] is a specifica-
tion formalism for real-valued signals that combines temporal logic properties
in the time domain with frequency-domain properties.
Instead of only checking the boolean satisfaction of an STL formula, the

notion of a quantitative value, i.e., an objective value also known as the ro-
bustness value, will be defined to measure how far away a specification is from
being falsified. Therefore, the concept of VBools first will be defined in the
next section.

20

3.3 Valued Booleans

3.3 Valued Booleans

A VBool [20] (v, x) is a combination of a Boolean value v together with a
real number x that is a measure of how true or false the specification is.
This value will be used as a measure of how convincingly a test passed, or
how severely it failed, respectively. VBools is a logical framework that allows
choosing between several possible semantics for each connective. In the VBool
definition, the value is defined to always be non-negative, possibly infinitely
large

V = B× R≥0

The VBool comparison operator is defined as

≤v : R× R→ V

x ≤v y =
{

(>, y − x) if x ≤ y
(⊥, x− y) otherwise,

where > and ⊥ denote true and false, respectively.
The other comparison operators are defined in terms of ≤v, except for =v

which is defined as

x =v y =
{

(>,K) if x = y

(⊥,K) otherwise,

where K is an arbitrary constant. Truth values and negation are defined as

>v = (>,∞),
⊥v = (⊥,∞),

¬v(b, x) = (¬b, x).

The semantics of VBools is in terms of discrete-time signals. VBool includes
two quantitative semantics: Max and Additive. The purpose of using Max
semantics for VBools instead of STL quantitative is so that the tester can
freely change between different semantics of VBools, even within a single

21

Chapter 3 Quantitative Semantics

formula. We present these two quantitative semantics below.

Max Semantics

The operators of Max-and (∧Max) , Max-or (∨Max), Max-always (�Max,[a,b]),
and Max-eventually (♦Max,[a,b]) will be introduced here.
Using VBools, the Max-and operator is defined as:

(>, x)∧Max(>, y) =
(
>,min(x, y)

)
,

(>, x)∧Max(⊥, y) = (⊥, y), (3.1)
(⊥, x)∧Max(>, y) = (⊥, x),

(⊥, x)∧Max(⊥, y) =
(
⊥,max(x, y)

)
.

The first clause expresses the case where both VBools are true and they
are combined with a conjunction. In this case, the value of the VBools is
determined by which of x or y has the lowest value. The second clause ex-
presses a conjunction of two VBools where one is true and one is false. This
conjunction is false and the value is given by the false VBool, x. Similarly
in the third clause, the value of the false VBool, y is considered. The fourth
clause expresses a case where both VBools are false. This conjunction is false
and the value of the VBools is determined by whichever of x or y has the
highest value.
The Max-or operator is defined in terms of Max-and as:

(bx, x)∨Max(by, y) = ¬v(¬v(bx, x)∧Max ¬v(by, y)).
The Max-always operator over the interval [a, b] is defined in terms of the

Max-and operator as:

�Max,[a,b] ϕ =
b∧

Max
k=a

ϕ[k], (3.2)

where ϕ is a finite sequence of VBools defined for all the discrete time
instants in [a, b].
The timed Max-eventually operator is defined in terms of Max-always as:

♦Max,[a,b]ϕ = ¬(�Max,[a,b](¬v ϕ)).
Finally, the Max until-operator as:

22

3.3 Valued Booleans

ϕ UMax,[a,b] ψ

=
b∨

Max
k=a

(
ψ[k] ∧Max

(
b−1∧

Max
k′=a

ϕ[k′]
))

.

.

Additive Semantics
The second semantics expressed in terms of VBools is Additive. The operators
of Additive-and, Additive-or , Additive-always, and Additive-eventually will
be introduced in this section.
The Additive-and operator is defined as

(>, x)∧Additive(>, y) =
(
>, 1

1
x + 1

y

)
,

(>, x)∧Additive(⊥, y) = (⊥, y), (3.3)
(⊥, x)∧Additive(>, y) = (⊥, x),

(⊥, x)∧Additive(⊥, y) =
(
⊥, (x+ y)

)
.

The first clause expresses the case where both VBools are true and they
are combined with a conjunction. In this case the value of the VBools is
determined as 1

1
x + 1

y

. This formula is inspired by the formula for parallel
resistance that gives a value that is less than the maximum of x and y. The
second clause expresses a conjunction of two VBools where one is true and one
is false. This conjunction is false and the value is given by the false VBool, x.
Similarly in the third clause, the value of the false VBool, y is considered. The
fourth clause expresses a case where both VBools are false. This conjunction
is false and the value of the VBools is defined as x + y. In this formula, we
consider the values of both x and y, not just whichever of them has the highest
value.
The Additive-or operator is defined as:

(bx, x)∨Additive(by, y) = ¬v(¬v(bx, x)∧Additive ¬v(by, y)).
The Additive-always operator over the interval [a, b] is defined in terms of

the Additive-and operator as,

23

Chapter 3 Quantitative Semantics

�Additive,[a,b] ϕ =
b∧

Additive
k=a

ϕ[k] #′ δt, (3.4)

where ϕ is a finite sequence of VBools defined for all the discrete-time
instants in [a, b]. δt is the simulation step size, that makes the quantitative
value independent of the simulation time and #′ is:

(⊥, x) #′ δt = (⊥, x · δt)
(>, x) #′ δt = (>, x/δt).

The timed Additive-eventually operator is defined in terms of always as
♦Additive,[a,b]ϕ = ¬(�Additive,[a,b](¬v ϕ)).

The Additive until-operator is defined as

ϕ UAdditive,[a,b] ψ

=
b∨

Additive
k=a

(
(ψ[k]#′δt) ∧Additive

(
b−1∧

Additive
k′=a

(ϕ[k′]#′δt)
))

.

The implication is defined slightly differently than in classical logic:

φ→Additive ψ = ¬(φ#k) ∨ ψ.

Here k is an arbitrary constant, and # scales the robustness of its argument:

(⊥, x)#k = (⊥, x · k)
(>, x)#k = (>, x · k).

VBool includes two semantics that was introduced above. There is seman-
tics that is not expressed in terms of VBool. One of these semantics is MARV ,
which is used in Paper A, will be introduced in the next section.

3.4 Mean Alternative Robustness Value Semantics
MARV , as defined in [22], is a semantics where only the timed always operator
is defined. The discrete-time always operator is described by the following

24

3.5 Discussion

formula.

�MARV,[a,b]ϕ =
{

1
b−a

∑M−1
i=0 ρ(ϕ, ti) (ti+1 − ti) ρ ≥ 0

ρ(ϕ, ti) ρ < 0
(3.5)

where ρ(ϕ, ti) is a real-valued function that gives the objective value at each
time instant, ti, and M is the number of sampling times over the interval [a,
b].
For positive objective values, which represent the case when �MARV,[a,b]ϕ

is satisfied, MARV calculates the mean over the interval.
This semantics has different properties compared to Max and Additive that

will be discussed in the next section.

3.5 Discussion
Each semantics has specific features and behaviors compared to others. The
and-operator is the essential operator in VBool since the or-operator, al-
ways-operator and eventually-operator, can be expressed in terms of the and-
operator for bothMax and Additive, assuming negation is defined. There is no
difference between the Max and Additive if one of VBools is false, in clauses 2
and 3 of equations 3.1 and 3.3. The differences appear in the first and fourth
clauses.
In the and-operator of Max, if x ∧ y is true only the semantics is sensitive

to whichever of x or y has the lowest value. On the other hand, Additive is
sensitive to both values of x and y, if x∧y is true. If x∧y is false in the fourth
clause and-operator of both semantics, the Max is sensitive to whichever of x
or y has the highest value. Contrary to Max, in the Additive, the semantics
is sensitive to values of both x and y.
For the always-operator of MARV , it can be seen that for a positive ρ

in equation 3.5, all signal values affect the value of MARV . It is similar to
Additive, but opposite to Max.
Compared to Additive, MARV may result in larger objective values that

lead to having bigger differences between objective function values of evaluated
input points. This feature of MARV will be discussed further in Paper A and
Chapter 5.

25

CHAPTER 4

Optimization Methods

Two main optimization methods are considered, in this thesis, are Nelder-
Mead (NM) [7] and SNOBFIT [8]. This section introduces and compares
these two optimization methods.

4.1 The Optimization Problem
The optimization problem is as follows.

min f(x) (4.1)

s.t. x ∈ [u, v],

where f(x) is the objective value of the used quantitative semantics; all
input parameters are in an interval,

[u, v] := {x ∈ Rn |ui ≤ xi ≤ vi, i = 1, . . . , n},

where u, v ∈ Rn and ui < vi for i = 1, . . . , n. [u, v] is bounded with
nonempty interior, n is the number of dimensions in the optimization problem.

27

Chapter 4 Optimization Methods

For falsification, the optimization aims to get a falsified point with a nega-
tive objective function value, i.e., f < 0, if possible. All input points are in a
box with a lower and upper value. The SUT is simulated at each given input
point and the corresponding objective function values will be calculated. The
specification is evaluated according to the sign of the objective function value
f(x). f(x) < 0 means the specification is falsified; Otherwise, it means the
specification is not falsified.

4.2 The Nelder-Mead Optimization Method
NM is an optimization method that is easy to implement and can deal with
functions with many variables. Moreover, NM needs only function evalua-
tions that lead to it being suitable in the minimization of non-differentiable
functions. This method uses function values at n+1 vertices in n dimensions.
NM belongs to the general class of direct search methods [35], [36]. The NM
algorithm is briefly presented in Algorithm 1.
NM is a simplex-based direct search method that begins with a set of n+ 1

points denote x1, . . . , xn+1 ∈ Rn. This method aims to decrease the func-
tion values at its vertices. The SUT needs to be simulated at each of n + 1
points and calculate the objective function values, f(x1), . . . , f(xn+1) using a
quantitative semantics. If the specification is falsified at any of these points,
the algorithm terminates with the falsified point. Otherwise, these points are
ordered and labeled from the lowest to the highest objective function value.
In each iteration of this algorithm, one or more test points are evaluated

with their objective function values and the worst point n + 1 i.e., the point
that has the highest objective function value, will be replaced with a new point.
A new point is calculated according to which cases of reflection, expansion,
or contraction happen, steps 11-33 of Algorithm 1. If shrink happens, n new
points are generated in step 34 of algorithm 1.
This method will generate n+1 new points if one of the following conditions

is fulfilled.

• The maximum number of iterations, Max_Iter is reached. The default
is 200× n.

• The maximum number of the cost function evaluation, Max_Fun_Iter,
is reached. It is a constant value.

28

4.3 Stable Noisy Optimization by Branch and Fit

• f(xn+1)− f(x1) < ε, where ε > 0 is a small predetermined tolerance.

This algorithm works until the specification is falsified or the maximum
number of the simulations, max_nbr_simulations is reached in the falsification
process.

4.3 Stable Noisy Optimization by Branch and Fit
SNOBFIT is a MATLAB package designed for selecting continuous parame-
ters for simulations or experiments. SNOBFIT solves the optimization prob-
lem as defined in eq. 4.1 and evaluates f at or near a given number of points.
This method returns NaN to signal that a requested function value does not
exist.
SNOBFIT builds internally, around each point, local models of the func-

tion to minimize and return, in each step, several points whose evaluation
is expected to give better function values. For the global search, SNOBFIT
searches simultaneously in several promising sub-regions. It also predicts their
quality by producing cheaper models based on fitting the function values at
safeguarded nearest neighbors.

In this method, an initial call with an empty list of points and function
values is made. The same number of points is generated by each call to
SNOBFIT, and the function is evaluated at the suggested points.

In one call to SNOBFIT, a set of points, X, and corresponding function
values are considered. The algorithm then generates the requested number,
nreq, of new evaluation points, if possible. These points and their function
values should preferably be used as input for SNOBFIT. A box [u′, v′] ∈ Rn

denotes the interval that the points generated by SNOBFIT are in.
The suggested evaluation points belong to five classes. These classes in-

dicate how a point has been generated by a local or a global aspect of the
algorithm. The points of classes 1 to 3 represent the local aspect of the al-
gorithm. The points belonging to these classes are generated with the aid of
local linear or quadratic models at positions where good function values are
expected. The points of classes 4 and 5 represent more global aspects of the
optimization, where they are generated in large unexplored regions. These
points are reported together with a model function value computed from the
appropriate local model.

SNOBFIT can be done in steps that are briefly described below. It should

29

Chapter 4 Optimization Methods

Algorithm 1 Nelder-Mead Algorithm for Falsification
1: n+1 points. Consider n+1 points, xi, denote the list of vertices in the current simplex,
i = 1, . . . , n+ 1.

2: while (nbr_of_simulations ≤ max_nbr_simulations) do
3: if f(xn+1) − f(x1) < ε OR the number of iterations > Max_Iter OR the number of

function evaluation > Max_Fun_Evals then
4: Consider n+ 1 new points.
5: end if
6: Simulate the system at each n+ 1 and calculate their objective function values using

the used semantics.
7: if the spec is falsified at the current evaluated point then
8: Terminates the algorithm with the falsified point.
9: else
10: Order. Order and re-label the n+ 1 points from lowest objective function value

to highest like: f(x1) ≤ f(x2) ≤ ... ≤ f(xn+1).
11: Reflection: Compute the reflected point xr = x̄+ ρ (x̄− x(n+1)), where x̄ is the

centroid of the n points with lowest objective function values, x̄ =
∑

xi
n
, i =

1, . . . , n.
12: if f(x1) < f(xr) < f(xn) then
13: Replace: xn+1 with the point xr.
14: end if
15: Expansion:
16: if f(xr) < f(x1) then
17: Compute the expanded point xe by xe = x̄+ χ (xr − x̄).
18: if f(xe) < f(x1) then
19: Replace xn+1 with xe.
20: else
21: Replace xn+1 with xr.
22: end if
23: end if
24: Contraction:
25: if f(xr) ≥ f(xn) then
26: Perform a contraction between x̄ and the best among xn+1 and xr.
27: if f(xn) ≤ f(xr) < f(xn+1) then
28: Calculate xoc = x̄+ τ (xr − x̄) Outside contract.
29: if f(xoc) ≤ f(xr) then
30: Replace xn+1 with xoc.
31: end if
32: end if
33: end if
34: Shrink: Evaluate the n new vertices x′ = x1 + φ (xi − x1), i = 2, . . . , n+ 1.

Replace the vertices x2, ..., xn+1 with the new vertices x′2, ..., x′n+1.
35: end if
36: end while

30

4.3 Stable Noisy Optimization by Branch and Fit

be mentioned here that SNOBFIT is a complex method where five different
classes are not described with any more details here.

1. Searching box. This method needs to start with a search box [u, v].
The vectors u and v are defined such that [u, v] is the smallest box.

2. Duplication. Duplicates the new and in a continuation call also the old
points, if we are not in the first iteration, from the previous iterations
and the corresponding function value f and uncertainty ∆f .

3. Splitting all current boxes. All current boxes containing more than
one point are split according to the algorithm described in section 5
of [8].

4. For the current point set X:
if (|X| < n+ ∆n+ 1) || (f 6= NaN)
Go to step 11.
else
For each new point x, a vector pointing to n+ ∆n safeguarded nearest
neighbors is computed.
end if

5. Fictitious function f and uncertainties ∆f . For any new input
point x with function value NaN, i.e., a requested function value does not
exist, and for all old points marked infeasible whose nearest neighbors
have changed, fictitious values f and ∆f are calculated.

6. Local fits. Local fits around all new points and all old points with
changed nearest neighbors are computed. Also, the potential points of
class 2 and 3, and their estimated function values are determined.

7. Best point and function value. The current best point xbest is
in [u′, v′] and fbest refers to the current best function value. A local
quadratic fit around the xbest is computed as described in Section 3
of [8] and a point belongs to class 1 is generated.
if (the objective function has not been evaluated in [u′, v′])
Go to step 8.
end if

8. Generating points. Generate the remaining evaluation points.

31

Chapter 4 Optimization Methods

9. Ordering.
if (X contains any local points)
Take some points that are chosen in the order of ascending model func-
tion values.
else
For each new point x a vector pointing to n + ∆n safeguarded nearest
neighbors is computed.
end if

10. Assigning the model function values. The function values obtained
from the local models are assigned to the points of class 4 (See step 10
in [8] for further details.)

11. if (The number of suggested evaluation points is still less than nreq)
The set of evaluation points is filled up with points of class 5.
end if
if (Local models are already available)
The model function values for the points of class 5 are determined as
the ones for the points of class 4.
else
They are set to NaN.
end if

12. Stop criteria. The search continues as long as an outside agent, i.e.,
a program or human that oversees the optimization, finds it reasonable
to continue.

In the evaluation of this optimization method for falsification, the algorithm
works until the maximum number of simulations, max_nbr_simulations is
reached, or the specification is falsified.

32

CHAPTER 5

Contributions and Summary of Papers

This chapter aims to give details about how the idea of the multiple objective
functions was created and how the combination of the different semantics can
work. Also, this chapter presents more details about the new optimization
methods. The chapter ends with a summary of the papers.

5.1 Contributions
The purpose of falsification is to find counterexamples where a given speci-
fication is not satisfied. Falsification needs to estimate the distance to the
falsification of the specification. Different measures in form of quantitative
semantics have been proposed in the literature to improve the falsification
process. It is not analytically possible to decide which semantics is the best
because it depends on the SUT and the specification. Thus, it is needed
to evaluate and analyze the different quantitative semantics on examples to
understand their strengths and weaknesses.
The evaluation of large-scale systems is hard because of having many pa-

rameters. Simple systems are useful for gaining insight to evaluate and better
understand the performance of different approaches. To evaluate different se-

33

Chapter 5 Contributions and Summary of Papers

mantics, a simple example of an adaptive cruise controller (ACC) from an
autonomous driving example is considered in Paper A. In this example, there
are two cars, the ego car refers to an autonomous car, and the lead car is in
front of this car. The ACC is designed with two modes; speed mode, where
there is a desired speed i.e., cruise control speed; and safety mode where a
safe distance between the cars must be maintained. The Relative distance
(drel) between two cars must always be greater than the safe distance (dsafe)
to avoid collision. This property can be expressed by the following formula.

�[0,T](drel > dsafe), (5.1)

where (dsafe) is taken from paper [37]. In the evaluation of the results, the
optimization method is not considered. The objective function values of the
different quantitative semantics are calculated in the next section.
It should be mentioned here that the aim of the evaluation result in the AD

example is not to evaluate the system and find the counterexamples where
the safety formula of equation 5.1 is violated but to understand how objec-
tive values change for different parts of the parameter space and for different
quantitative semantics.

Evaluation of Different Semantics on the AD Example

The model takes the acceleration of the lead car alead as an input and simulates
the AD example. Before a simulation of the closed-loop system starts, the
values of input parameters are selected by the falsification algorithm. The
input is generated from Breach using two control points, alead0 and alead1.
The simulation time is T = 30 sec and the simulation starts with alead0 chosen
by Breach in the range [0; 3]. At time 7.5 sec, the acceleration changes and
takes a value alead1 in the range [−3; 0]. The objective value will be calculated
for different combinations of the parameters alead0 and alead1 where these two
acceleration points are divided into 20 equidistant points, resulting in 400
simulations.
The objective function values and the gradient vector are calculated for

each of the 400 simulations using Max, MARV , and Additive are shown in
Fig. 5.1-Fig. 5.6.
As can be seen in Figure 5.1, in the upper right corner (where 2.5 < alead0 <

3 and −1 < alead1 < 0 approximately), the objective function values are the

34

5.1 Contributions

Figure 5.1: The objective values for combinations of the accelerations (alead0, alead1) for
the Max semantics. Positive values (◦) mean that the specification is satisfied,
while negative values (∗) mean that it is falsified.

0 0.5 1 1.5 2 2.5 3
a

lead0

-3

-2.5

-2

-1.5

-1

-0.5

0

a
le

a
d

1

Gradient of Max

Figure 5.2: The gradient direction using Max. The red curve shows the edge of negative
objective function values, i.e., falsification area.

35

Chapter 5 Contributions and Summary of Papers

Figure 5.3: The objective values for combinations of the accelerations (alead0, alead1)
for the MARV semantics. Positive values (◦) mean that the specification is
satisfied, while negative values (∗) mean that it is falsified.

0 0.5 1 1.5 2 2.5 3
a

lead0

-3

-2.5

-2

-1.5

-1

-0.5

0

a
le

a
d

1

Gradient of MARV

Figure 5.4: The gradient direction using MARV . The red curve shows the edge of negative
objective function values, i.e., falsification area.

36

5.1 Contributions

same for each point using the Max semantics. This condition happens because
when the lead car continuously accelerates, the ego car also increases its speed.
But the ego car has a driver-set velocity limit 30 m/s so that the relative
distance between the vehicles increases and the minimum objective function
value occurs at the beginning of the simulation t = 0 where the relative and
safe distances are closest to each other. For this reason, as it can be seen in
Figure 5.2, for the points close to 2.5 < alead0 < 3 and −1 < alead1=0 < 0,
there is no useful gradient, or sense of direction, to go in in order to get closer
to a falsification point. On the other hand, for other points except points
close to 2.5 < alead0 < 3 and −1 < alead1=0 < 0, there are different objective
values. Therefore, those points can guide towards a falsification point, i.e.,
the red points, where the specification is falsified.
As a result, Max semantics considers the different simulations to be equally

good/bad for parameters that are close to 2.5 < alead0 < 3 and −1 < alead1 <

0, resulting in no information that can be used by the optimization algorithm
and there is not any direction for these points.
On the other hand, by looking at Figure 5.3, we can see that the points

close to 2.5 < alead0 < 3 and −1 < alead1 < 0 have different values under
MARV semantics. Also, we can see that in figure 5.4, the gradient for the
points close to 2.5 < alead0 < 3 and −1 < alead1 < 0 is decreasing. But here
the situation is opposite for Max. For the points close to 0 < alead0 < 1 and
−3 < alead1 < 0 the gradients do not point towards the falsification area.
The objective function values using Additive and its gradients are shown

in Figures 5.5 and 5.6. One important note that should be mentioned here,
although it seems that the gradient arrows do not exist in areas (0 < alead0 < 1
and −3 < alead1 < 0) and (2.5 < alead0 < 3 and −1 < alead1 < 0), it is not
the case. Because of very small difference between the objective function
values in these areas, the arrows, representing the gradients, do not appear
in Figure 5.6. For this reason and for a better perspective, the magnitude
gradient plots for these areas are shown in Figure 5.7. As can be seen, for the
points in the range (0 < alead0 < 1 and −3 < alead1 < 0), there is a different
direction. On the other hand, there is a clear direction for the points in ranges
0 < alead0 < 1 and −3 < alead1 < 0.
The behavior of Max and MARV are discussed in Paper A of this thesis,

but the discussion about the Additive semantics was new here.

37

Chapter 5 Contributions and Summary of Papers

Figure 5.5: The objective values for combinations of the accelerations (alead0, alead1) for
the Additive semantics. Positive values (◦) mean that the specification is
satisfied, while negative values (∗) mean that it is falsified.

0 0.5 1 1.5 2 2.5 3
a

lead0

-3

-2.5

-2

-1.5

-1

-0.5

0

a
le

a
d

1

Gradient of Additive

Figure 5.6: The gradient direction using Additive. The red curve shows the edge of nega-
tive objective function values, i.e., falsification area.

38

5.1 Contributions

Gradient of Max (0 < a
lead0

< 1)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
a

lead0

-3

-2.5

-2

-1.5

-1

-0.5

0
a

le
a
d

1

Gradient of Additive (2.5 < a
lead0

<3, -1 < a
lead0

<0)

2.45 2.5 2.55 2.6 2.65 2.7 2.75 2.8 2.85 2.9
a

lead0

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

a
le

a
d

1

Figure 5.7: The gradient direction using Additive, special part of Fig. 5.6. In the left
graph, the gradient is shown where 0 < alead0 < 1 and in the right graph,
2.5 < alead0 < 3.

Discussion About Using an Optimization Method for the AD Example

The results presented for the AD example in the previous section were gener-
ated without using any optimization method. But, it is important to evaluate
each semantics when an optimization method is used. The Nelder-Mead opti-
mization method, used in Breach, was introduced in Chapter 4. This method
needs n+1, where n is the number of dimensions in the optimization problem,
points to start the optimization.
Let’s assume three initial points for the NM algorithm to be chosen in

different areas of autonomous acceleration in figures 5.1, 5.3, and 5.5 for each
semantics. Before analyzing, it should be mentioned that NM is a gradient-
free optimization method and the aim of using gradients here is to show the
objective values of each semantics change in the falsification method.

• The first area is where 0 < alead0 < 1 and −3 < alead1 < 0. If Max is
used, NM can towards the falsification area. Contrary, using MARV ,
it cannot find the right direction and it searches in the wrong direction
where the specification is not falsified. Using Additive may need more
simulations because there are two different directions and depending on
how the new points are chosen by the NM method, it might go to the
falsification area or not.

• The second area is where (2.5 < alead0 < 3 and −1 < alead1 < 0).
Because there is no information about the direction in these areas using

39

Chapter 5 Contributions and Summary of Papers

Max, therefore NM gets stuck after some iterations, NM stops working
without finding the falsification point. On the other hand, both Additive
and MARV can continue towards a falsification of the specification.

According to the results and discussions in the previous section, it can
be concluded that when only one quantitative semantics is used there is no
semantics that always guides the optimization in a direction towards a point
where the specification is falsified. Moreover, for some areas, if a semantics
results in constant objective value for an area, it cannot guide the optimization
algorithm in any direction. Thus, using a combination of different quantitative
semantics can be a good idea to avoid using the semantics that does not have
a clear direction to be used by the optimizer to get closer to a falsification
point.

Multiple Objective Functions

As was discussed in the previous section, Max semantics in a specific situation
gave the same constant values that result in no information that can be used
by the optimization method. This behavior causes, when NM optimization is
used, that we get stuck in the area where no direction information is available
or a local minimum point is found. This causes the next point to be generated
by the NM algorithm to be close to the previous point. As a result, by multiple
objective functions, we try to force the algorithm to choose the semantics that
has a clear direction. The NM was explained in Algorithm 1 in Chapter 4.
This algorithm needs to be modified to use multiple objective functions.
With the purpose of not choosing the semantics that does not have the

suitable information for the optimization, different strategies for switching
between objective functions can be used as described below.

Strategy 1 :

n+1∑
i=1

(fk
i − µ)2

n+ 1 , (5.2)

Strategy 2 : fk
max − fk

min

||xk
max − xk

min||
, (5.3)

where fk
i refers to the objective function value of each n + 1 evaluated

points that have the lowest value for each semantics (k). µ is the mean of the

40

5.1 Contributions

n + 1 points; fk
max and fk

min refer to the maximum and minimum objective
function values of the n + 1 points that have the lowest objective value for
each semantics, xk

max and xk
min refer to these points.

The first strategy calculates the variance of the n+1 points. The second one
calculates the distance between the points that have the largest and lowest
objective function values. For each of these strategies, Eq. 5.2 - Eq. 5.3, the
NM algorithm will choose a semantics that has the largest value according to
the strategy used.

Properties of Strategies

Each strategy has different features. One common feature of the strategies
is that if the objective values of one semantics for all available n + 1 points,
needed for the NM algorithm, are equal then the numerator of all strategies
is equal to zero. The semantics that has this feature, will not be chosen by
the NM algorithm.
In the first strategy where the variance of points is considered, the effect of

all n+ 1 evaluated points is considered. In the second strategy only the effect
of the points with the largest and lowest objective function values, in terms
of the distance, is considered. If a point has the lowest objective value for a
semantics, it does not mean that it has to be the minimum point for other
semantics. Thus, by calculating the distance between these two best (largest
objective value) and worst (lowest objective value), the semantics that has
the larger distance can be chosen. In this strategy, it will avoid picking the
semantics that its best and worst points close together. It might help to pick
the right semantics to be able to be successful in the falsification.
One weakness of the multiple objective functions approach is if each used

semantics is not successful in falsification, we cannot expect that multiple
objective functions can find the falsified point.

Modified Nelder-Mead Method

This section discusses how multiple objective functions are implemented as an
extension to the NM. It does not matter which strategy that is used, they can
all be used by the extension to the NM algorithm that is presented in Paper
A.

In the implementation of NM in Breach, two bunch of points are being

41

Chapter 5 Contributions and Summary of Papers

considered. First, before the algorithm starts to search for a new point, p
random sample points are generated. The second points are n+ 1 points that
NM needs to start its process.
When one point of p is generated, the SUT is simulated at the generated

point. The objective function value of the evaluated point is calculated. If the
given specification is violated, the algorithm terminates with violated input
point. Otherwise, a new point is generated and the same evaluation will be
done. It will continue until the p points are generated and evaluated. Since
that objective value might be different for each used quantitative semantics,
there will be one ordering for each semantics. This first step aims to find a
minimum point that will be used to generate the n+ 1 points needed for the
NM process. All the p random points are sorted from the lowest to highest
according to the objective values for each semantics. Here is the first time
that a strategy is needed to be used. The semantics that has larger values of
used strategy, wins the competition. In the rest of the method, the objective
value of the winner semantics will be considered for the NM process. The
minimum point of winning semantics is taken here to generate n new points
before starting the optimization method. After generating these points, NM
starts searching to find a new point (or new points if Shrink happens).
Four different cases can happen in the NM process: Reflection, Expansion,

Contraction, or Shrink. The new point (or n new points if Shrink happens)
can be a good point (with lower objective value) or a bad point (with higher
objective value) for each semantics. Hence, we save all the new and old points
in each iteration. Again, all saved points must be sorted from lowest to highest
according to the objective values for each semantics. Since NM needs n+ 1 in
each iteration, we take the n+1 points for each semantics that have the lowest
objective values. Now its time to reuse again a strategy to pick a semantics.
This process continues until the stop condition is reached.
It is hard to compare the strategies in equations 5.2 and 5.2 and give a clear

answer to the question that which of the suggested strategies performs better
than others. Because it depends on the SUT and the specifications. According
to the results of Paper B, it can just be said that for the benchmark set
when using multiple objective functions and NM optimization, using multiple
objective functions works better than using a single objective function.

42

5.1 Contributions

Line Optimization Method

The optimization method may affect falsification performance. Evaluation
results on benchmark problems in Paper C showed that some specifications
and examples can be falsified using the corners points or by using only random
points. It means that, for these types of problems, it is not necessary to use any
optimization method at all. A combination of corners and random methods
can be used. This method can work for falsification of the specifications that
at least one of the corners or random method performs well. On the other
hand, there are specifications and examples where neither corners, random,
and even their combination is successful in falsifying the specifications. Thus,
in these situations using optimization methods might be an interesting option.
There are different optimization methods in the literature used for falsifi-

cation. Two main optimization methods are considered in Paper C are NM
and SNOBFIT.

NM is an optimization for finding at local optima, while SNOBFIT is a com-
plex method that can do both local and global search. A simple optimization,
line optimization, the method will be introduced here.

To start the process of the line optimization method, three initial input
points are needed. These three points are taken from a line, in n dimensions,
that passes from a middle point and cut off at the edges of the upper and lower
of input ranges. The first point is called middle point x∗ = lb+ub

2 , where lb
and ub are the vectors that refer to the minimum and maximum of the input
ranges, respectively. This optimization method aims to modify this point in
each iteration, i.e., find a better point that has a lower objective value than x∗.
In falsification, it means, we try to find the new points that a point falsifies
the specification. Two other points are generated from the line that passes
from x∗ and cut off at the edges of the upper and lower of input ranges. These
two points are called xL and xR.

According to the objective value calculated of the used semantics by simu-
lating the system at each three points, f(x∗), fL, fR, these points can have
different cases. Irrespectively, of which case that occurs, in each iteration of
the optimization process, we work with one of the new points x1 = xL+x∗

2
or x2 = xR+x∗

2 . Then, one of the new points, x1 with the objective function
value f(x1) or x2 with the objective function value f(x2), can be used instead
of one of old points according to the following rules.

1. If fL is the smallest objective value, then

43

Chapter 5 Contributions and Summary of Papers

Simulate the system at point x1 = xL+x∗

2 and calculate f(x1). let
(xL, x

∗, xR) be (xL, x1, x
∗).

2. If fR is the smallest objective value, then
Simulate the system at point x2 = xR+x∗

2 and calculate f(x2). let
(xL, x

∗, xR) be (x∗, x2, xR).

3. If f(x∗) is the smallest objective value:

• If ||x∗ − xL|| ≥ ||xR − x∗||
Simulate the system at point x1 = xL+x∗

2 and calculate f(x1).
a) If f(x1) < f(x∗)

let (xL, x
∗, xR) be (xL, x1, x

∗).
b) Otherwise

let (xL, x
∗, xR) be (x1, x

∗, xR).
• Otherwise
Simulate the system at point x2 = xR+x∗

2 and calculate f(x2).
a) if f(x2) < f(x∗)

let (xL, x
∗, xR) be (x∗, x2, xR).

b) Otherwise
let (xL, x

∗, xR) be (xL, x
∗, x2).

One important question that can be asked here is how long we should stay
on a line. Because we have a maximum number of simulations, we need to
get out from the picked line and pick a new line if the point is not improved
more. Hence, a maximum number of iterations is used before trying a new
line. In the implementation of this method, a counter is used to count how
many iterations, to be in a line. In each iteration, if we can find a new point
that has a lower objective value than the point that we want to improve, x∗,
then counter resets to zero. On the other hand, if in one iteration the point
does not improve, then, the counter is increased by 1. Finally, when this
counter is reached to its maximum number of iterations, we get out from the
loop and pick a new line.
When we want to pick a new line we need to consider some conditions to

be able to enhance the falsification. For picking a new line, again a random
line that passes from x∗ needs to be considered. If the point that should be
improved, x∗, was changed during the optimization process, then we again

44

5.2 Summary of Papers

similar to the beginning of this optimization, a random line is selected that
causes new xL and xR to be generated. But, if the improving point was
not changed when the counter reaches to the maximum number of iterations,
we try to take x∗ to be equal to the second-best point that is found. This
assumption leads to not waste the simulations with a bad point that never can
guide us to the falsification process. Then, the new xL and xR are generated
from the line that passes from the new x∗.
One important property of this method is that is inspired by the crawling

procedure in NM for local optimization, but also the ability to get out of local
optima and continue the optimization from a new but related point. This
method has a simpler implementation than SNOBFIT.

5.2 Summary of Papers
This section provides a summary of the included papers. In Paper A, the
performance of two semantics, Max and MARV , are evaluated on a simple
autonomous driving example. The main purpose of this evaluation was to
understand the strengths and weaknesses of different semantics. Only, the
objective function of the semantics is evaluated without considering any op-
timization method in Paper A. This paper leads that Paper B suggests the
use of the combination of different semantics and produces multiple objective
functions using a specific optimization method, in this case, NM.
Evaluation results on some benchmark examples showed that many specifi-

cations can be falsified quickly by evaluating combinations of the min and max
values in the allowed parameter ranges or by evaluating random parameter
combinations. We define a hybrid method that combines using corner param-
eter values with a random strategy for selecting parameter values within the
allowed parameter ranges. On the other hand, some specifications need opti-
mization methods to be falsified. Paper C suggests a new simple gradient-free
optimization method for this purpose that is as efficient as SNOBFIT but is
having a much simpler implementation.

5.3 Paper A
Zahra Ramezani, Nicholas Smallbone, Martin Fabian, Knut Åkesson
Evaluating Two Semantics for Falsification using an Autonomous Driv-

45

Chapter 5 Contributions and Summary of Papers

ing Example
Proceedings of 2019 IEEE 17th International Conference on Industrial
Informatics (INDIN), pp. 386-391, July. 2018.
c©2019 IEEE DOI: 10.1109/INDIN41052.2019.8972229 .

The falsification process is an optimization procedure where the optimiza-
tion is performed using a quantitative semantics. Different semantics that has
different behavior are introduced in the literature. It is important to under-
stand the strengths and weaknesses of the different semantics. This paper
evaluates two Max and MARV semantics on an adaptive cruise controller of
an autonomous car. In the evaluation of it is shown that the Max semantics
results in constant objective value for some specific parts of the evaluated
parameter space, while MARV results in a non-constant objective value, i.e.,
it has a direction that can be exploited by an optimization algorithm. This
paper shows the importance of choosing a suitable semantics for the problem
at hand.

5.4 Paper B

Zahra Ramezani, Johan Lidén Eddeland, Koen Claessen, Martin Fabian,
Knut Åkesson
Multiple Objective Functions for Falsification of Cyber-Physical Systems
To appear in Proceedings 15th Workshop on Discrete Event Systems
(WODES), November 2020.

According to the results achieved in Paper A, it was shown that the effi-
ciency of the falsification is affected by the quantitative semantics used. This
paper suggests the use of multiple quantitative semantics during the falsifica-
tion process. The combination of Max and Additive semantics is evaluated on
a set of benchmark problems. The evaluation shows that using multiple quan-
titative semantics can reduce the number of simulations necessary to falsify
a specification compared to when a single quantitative semantics is used. We
show how the Nelder-mead algorithm can be extended to support the multiple
objective functions as defined by the different quantitative semantics.

46

5.5 Paper C

5.5 Paper C
Zahra Ramezani, Koen Claessen, Martin Fabian, Knut Åkesson
Enhancing Temporal Logic Falsification with Line Optimization
To be submitted to the possible journal publication .

Falsification of specifications for cyber-physical systems can be done using
random search methods or by exploring the parameter space in a more struc-
tured way, for example, by using optimization. In this work, we explore how
a simple strategy, based on combining random parameters together with con-
sidering extreme combinations of parameter values, performs. The evaluation
is done on benchmark problems and the evaluation shows that this simple
strategy performs surprisingly well on many of the benchmark problems. We
thus consider using this approach as another base-line method when evalu-
ating falsification methods. The second part of this paper discusses a simple
gradient-free optimization method, named line optimization, that does the
optimization in falsification over a line. This method is compared to the
Nelder-Mead and SNOBFIT methods for falsification. The evaluation results
show that line optimization enhances the performance of the falsification while
having a simple implementation.

47

CHAPTER 6

Concluding Remarks and Future Work

This thesis has been focused on improving the falsification of cyber-physical
systems by making it more efficient. This can be done by considering different
aspects. We have enhanced the falsification by using new quantitative seman-
tics and developing a new optimization method. The proposed methods are
evaluated on benchmark problems.
The appended papers to this thesis are included in the order they were

written. Initially the aim was to evaluate how different semantics might effect
the falsification performance. There is no clear answer which semantics works
the best for each SUT and given specifications. We show that this depends
on the model and the specification. To gain better understanding of the per-
formance of the quantitative semantics, a example of an autonomous driving
model is analyzed. The evaluation results shows that for a specific quanti-
tative semantics the objective function values do not change in a large part
of the parameter space, but by using another semantics the objective value
given by a quantitative semantics did change, thus giving a sense of direction
to the optimization algorithm to exploit. This result from Paper A leads to
the idea of Paper B where the use of multiple objective functions during the
optimization procedure is evaluated.

49

Chapter 6 Concluding Remarks and Future Work

Not only, the quantitative semantics affect the falsification performance, but
also the optimizations affect the efficiency of falsification. Evaluation results
on some benchmark problems showed that for some models and the given
specifications, it is easy to be falsified on the corners or by just doing some
random tests. Hence, a base-line optimization method is suggested in Paper
C. In this method, a combination of two corners and random methods is used.
On the other hand, optimization methods still are needed for the systems
and the specifications that corners and random methods do not perform well.
Hence, a new gradient-free optimization method is suggested in Paper C.
Now, we can give answers to the research questions that were formulated

in Chapter 1:

RQ1. What are the strengths and weaknesses of the different semantics for
the falsification of cyber-physical systems?

Different semantics have been introduced in the literature that have specific
features, strengths and weaknesses.
Paper A answers this question by evaluation of a simple adaptive cruise con-

troller from an autonomous driving example. Evaluation results were done
for two semantics, Max and MARV . In Paper A it is shown that for Max
semantics results in constant objective values for some specific parts of the
parameter space. It means that there is no useful information for an opti-
mization algorithm to use. On the other hand, MARV has a clear direction
to the falsification area for the same parameter space.

RQ2. How do the combination of different semantics affect and improve the
falsification of cyber-physical systems?

Evaluation results from Paper A showed that using a single objective func-
tion may cause the optimization to search in the wrong direction or even
having no clear direction to follow during the falsification process. Thus, a
combination of using multiple objective functions during the optimization is
suggested in Paper B. Multiple objective functions are used in an extended
version of the Nelder-Mead optimization method. This is done in such a way
that the optimizer avoids using the semantics that does not have a clear di-
rection, to be used by the optimizer, to get closer to a falsification point.

50

6.1 Future Work

It is shown that for the benchmark problems the use of multiple semantics
improves the falsification performance.

RQ3 How can different optimization methods effect the falsification process?

Falsification, as used in this thesis, is done by using an optimization-based
approach. However, many specifications can be falsified quickly by evaluating
combinations of the min and max values in the allowed parameter ranges or
by evaluating random parameter combinations. To get a base-line to com-
pare optimization-based approaches with, we define a hybrid method that
combines using extreme parameter values with a pure random strategy for
selecting parameter values within the allowed parameter ranges. Our eval-
uation of standard benchmark examples shows that this approach performs
surprisingly well. This approach and the evaluation is presented in Paper
C. On the other hand, there are the specifications that needs optimization
methods to be falsified. In Paper C we suggest a new simple gradient-free
optimization method. The optimization is done on random lines in this new
method. Evaluation of benchmark examples shows that this method enhance
the falsification process while still having a simple implementation.

6.1 Future Work
For future work, we plan to continue the work on enhancing the falsification
of CPSs. One interesting approach is to exploit the model more by estimating
the gradients directly from the model. Another possible direction is to build
analytical surrogate models from simulations and use those for the optimiza-
tion phase. We also plan to develop the autonomous driving example further
to handle more complex scenarios and control strategies.

51

References

[1] J. Shi, J. Wan, H. Yan, and H. Suo, “A survey of cyber-physical sys-
tems”, in 2011 international conference on wireless communications and
signal processing (WCSP), IEEE, pp. 1–6, 2011.

[2] G. Nicolescu and P. J. Mosterman, Model-based design for embedded
systems. CRC Press, 2009.

[3] S. Abbaspour Asadollah, R. Inam, and H. Hansson, “A survey on test-
ing for cyber physical system”, in Testing Software and Systems, K.
El-Fakih, G. Barlas, and N. Yevtushenko, Eds., Cham: Springer Inter-
national Publishing, 2015, pp. 194–207.

[4] J. Kapinski, J. V. Deshmukh, X. Jin, H. Ito, and K. Butts, “Simulation-
based approaches for verification of embedded control systems: An over-
view of traditional and advanced modeling, testing, and verification
techniques”, IEEE Control Systems Magazine, vol. 36, no. 6, pp. 45–
64, 2016.

[5] G. Ernst, P. Arcaini, A. Donzé, G. Fainekos, L. Mathesen, G. Pedrielli,
S. Yaghoubi, Y. Yamagata, and Z. Zhang, “ARCH-COMP 2019 Cate-
gory Report: Falsification”, in ARCH19. 6th International Workshop on
Applied Verification of Continuous and Hybrid Systems, vol. 61, pp. 129–
140, 2019.

[6] J. L. Eddeland, S. Miremadi, and K. Åkesson, “Evaluating optimiza-
tion solvers and robust semantics for simulation-based falsification”, in

53

References

ARCH20. 7th International Workshop on Applied Verification of Con-
tinuous and Hybrid Systems, 2020.

[7] J. A. Nelder and R. Mead, “A Simplex Method for Function Minimiza-
tion”, The Computer Journal, vol. 7, no. 4, pp. 308–313, Jan. 1965, issn:
0010-4620.

[8] W. Huyer and A. Neumaier, “Snobfit–stable noisy optimization by branch
and fit”, ACM Transactions on Mathematical Software (TOMS), vol. 35,
no. 2, pp. 1–25, 2008.

[9] A. Donzé, “Breach, a toolbox for verification and parameter synthesis
of hybrid systems”, in Computer Aided Verification, T. Touili, B. Cook,
and P. Jackson, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg,
2010, pp. 167–170.

[10] E. A. Lee, “Cyber physical systems: Design challenges”, in 2008 11th
IEEE International Symposium on Object and Component-Oriented Real-
Time Distributed Computing (ISORC), IEEE, pp. 363–369, 2008.

[11] J. Fitzgerald, C. Gamble, P. G. Larsen, K. Pierce, and J. Woodcock,
“Cyber-physical systems design: Formal foundations, methods and inte-
grated tool chains”, in 2015 IEEE/ACM 3rd FME Workshop on Formal
Methods in Software Engineering, 2015, pp. 40–46.

[12] T. Schattkowsky and W. Muller, “Model-based design of embedded sys-
tems”, in Seventh IEEE International Symposium on Object-Oriented
Real-Time Distributed Computing, 2004. Proceedings., IEEE, pp. 113–
128, 2004.

[13] H. Shokry and M. Hinchey, “Model-based verification of embedded soft-
ware”, Computer, vol. 42, no. 4, pp. 53–59, 2009.

[14] A. Junghanns, J. Mauss, and M. Tatar, Testweaver-a tool for simulation-
based test of mechatronic designs-in: Proceedings of the 6th international
modelica conference, 3.-4.3. 2008.

[15] G. Ernst, S. Sedwards, Z. Zhang, and I. Hasuo, “Fast falsification of
hybrid systems using probabilistically adaptive input”, in International
Conference on Quantitative Evaluation of Systems, Springer, pp. 165–
181, 2019.

54

References

[16] T. Akazaki, S. Liu, Y. Yamagata, Y. Duan, and J. Hao, “Falsification
of cyber-physical systems using deep reinforcement learning”, in Formal
Methods, K. Havelund, J. Peleska, B. Roscoe, and E. de Vink, Eds.,
Cham: Springer International Publishing, 2018, pp. 456–465.

[17] Y. Annpureddy, C. Liu, G. Fainekos, and S. Sankaranarayanan, “S-
TaLiRo: A tool for temporal logic falsification for hybrid systems”, in
Tools and Algorithms for the Construction and Analysis of Systems,
P. A. Abdulla and K. R. M. Leino, Eds., Berlin, Heidelberg: Springer
Berlin Heidelberg, 2011, pp. 254–257.

[18] Z. Zhang, G. Ernst, S. Sedwards, P. Arcaini, and I. Hasuo, “Two-layered
falsification of hybrid systems guided by monte carlo tree search”, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems, vol. 37, no. 11, pp. 2894–2905, 2018.

[19] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D.
Silver, and K. Kavukcuoglu, “Asynchronous methods for deep reinforce-
ment learning”, in Proceedings of The 33rd International Conference on
Machine Learning, M. F. Balcan and K. Q. Weinberger, Eds., ser. Pro-
ceedings of Machine Learning Research, vol. 48, New York, New York,
USA: PMLR, 2016, pp. 1928–1937.

[20] K. Claessen, N. Smallbone, J. Eddeland, Z. Ramezani, and K. Åkesson,
“Using valued booleans to find simpler counterexamples in random test-
ing of cyber-physical systems”, IFAC-PapersOnLine, vol. 51, no. 7, 408
–415, 2018, 14th IFAC Workshop on Discrete Event Systems WODES
2018.

[21] A. Donzé and O. Maler, “Robust satisfaction of temporal logic over real-
valued signals”, in Formal Modeling and Analysis of Timed Systems,
K. Chatterjee and T. A. Henzinger, Eds., Berlin, Heidelberg: Springer,
2010, pp. 92–106.

[22] J. Eddeland, S. Miremadi, M. Fabian, and K. Åkesson, “Objective func-
tions for falsification of signal temporal logic properties in cyber-physical
systems”, in 2017 13th IEEE Conference on Automation Science and
Engineering (CASE), 2017, pp. 1326–1331.

55

References

[23] T. Akazaki and I. Hasuo, “Time robustness in mtl and expressivity in
hybrid system falsification”, in Computer Aided Verification, D. Kroen-
ing and C. S. Păsăreanu, Eds., Cham: Springer International Publishing,
2015, pp. 356–374.

[24] H. Abbas, A. Winn, G. Fainekos, and A. A. Julius, “Functional gradi-
ent descent method for metric temporal logic specifications”, in 2014
American Control Conference, 2014, pp. 2312–2317.

[25] Y. S. R. Annapureddy and G. E. Fainekos, “Ant colonies for temporal
logic falsification of hybrid systems”, in IECON 2010 - 36th Annual
Conference on IEEE Industrial Electronics Society, 2010, pp. 91–96.

[26] J. Deshmukh, X. Jin, J. Kapinski, and O. Maler, “Stochastic local search
for falsification of hybrid systems”, in Automated Technology for Verifi-
cation and Analysis, B. Finkbeiner, G. Pu, and L. Zhang, Eds., Cham:
Springer International Publishing, 2015, pp. 500–517.

[27] R. Smith and H. Romeijn, “Simulated annealing for constrained global
optimization”, Journal of Global Optimization, vol. 5, Sep. 1994.

[28] N. Hansen, “The CMA evolution strategy: A comparing review”, in
Towards a new evolutionary computation, Springer, pp. 75–102, 2006.

[29] R. Koymans, “Specifying real-time properties with metric temporal l-
ogic”, Real-Time Systems, vol. 2, no. 4, pp. 255–299, 1990.

[30] O. Maler and D. Nickovic, “Monitoring temporal properties of contin-
uous signals”, in Formal Techniques, Modelling and Analysis of Timed
and Fault-Tolerant Systems, Y. Lakhnech and S. Yovine, Eds., Berlin,
Heidelberg: Springer Berlin Heidelberg, 2004, pp. 152–166.

[31] A. Pnueli, “The temporal logic of programs”, in 18th Annual Symposium
on Foundations of Computer Science (sfcs 1977), 1977, pp. 46–57.

[32] V. Raman, A. Donzé, M. Maasoumy, R. M. Murray, A. Sangiovanni-
Vincentelli, and S. A. Seshia, “Model predictive control with signal
temporal logic specifications”, in 53rd IEEE Conference on Decision
and Control, 2014, pp. 81–87.

[33] L. Brim, P. Dluhoš, D. Šafránek, and T. Vejpustek, “STL∗: Extending
signal temporal logic with signal-value freezing operator”, Information
and computation, vol. 236, pp. 52–67, 2014.

56

References

[34] A. Donzé, O. Maler, E. Bartocci, D. Nickovic, R. Grosu, and S. Smolka,
“On temporal logic and signal processing”, in Automated Technology for
Verification and Analysis, S. Chakraborty and M. Mukund, Eds., Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 92–106.

[35] M. Wright, “Direct search methods: Once scorned, now respectable”,
English (US), in Numerical analysis, D. Griffiths and G. Watson, Eds.
Addison-Wesley, 1996, pp. 191–208.

[36] T. G. Kolda, R. M. Lewis, and V. Torczon, “Optimization by direct
search: New perspectives on some classical and modern methods”, SIAM
Review, vol. 45, pp. 385–482, 2003.

[37] S. Shalev-Shwartz, S. Shammah, and A. Shashua, “On a formal model
of safe and scalable self-driving cars”, CoRR, vol. abs/1708.06374, 2017.

57

Part II

Papers

59

PAPERA
Evaluating Two Semantics for Falsification using an Autonomous

Driving Example

Zahra Ramezani, Nicholas Smallbone, Martin Fabian, Knut Åkesson

Proceedings of 2019 IEEE 17th International Conference on Industrial
Informatics (INDIN), pp. 386-391, July. 2018.

c©2019 IEEE DOI: 10.1109/INDIN41052.2019.8972229

The layout has been revised.

Abstract

We consider the falsification of temporal logic properties as
a method to test complex systems, such as autonomous sys-
tems. Since these systems are often safety-critical, it is impor-
tant to assess whether they fulfill given specifications or not.
An adaptive cruise controller for an autonomous car is con-
sidered where the closed-loop model has unknown parameters
and an important problem is to find parameter combinations
for which given specification are broken. We assume that the
closed-loop system can be simulated with the known given
parameters, no other information is available to the testing
framework. The specification, such as, the ability to avoid
collisions, is expressed using Signal Temporal Logic (STL). In
general, systems consist of a large number of parameters, and
it is not possible or feasible to explicitly enumerate all com-
binations of the parameters. Thus, an optimization-based ap-
proach is used to guide the search for parameters that might
falsify the specification. However, a key challenge is how to
select the objective function such that the falsification of the
specification, if it can be falsified, can be falsified using as few
simulations as possible. For falsification using optimization
it is required to have a measure representing the distance to
the falsification of the specification. The way the measure is
defined results in different objective functions used during op-
timization. Different measures have been proposed in the lit-
erature and in this paper the properties of the Max Semantics
(MAX) and the Mean Alternative Robustness Value (MARV)
semantics are discussed. After evaluating these two seman-
tics on an adaptive cruise control example, we discuss their
strengths and weaknesses to better understand the properties
of the two semantics.

A3

Paper A

1 INTRODUCTION

For autonomous systems in general and autonomous vehicles in particular, it
is critical to use rigorous testing methods so that such vehicles will be sig-
nificantly safer than they are with humans in the loop. Autonomous systems
consist of perception, sensor-fusion, decision and control modules implemented
in software that interact with the physical sensors and actuators of the system.
As remarked in [1], the biggest challenge for autonomous vehicles is in creat-
ing an end-to-end design and deployment process that integrates the safety
concerns. Formal verification and correct by construction techniques should
certainly be used for those sub-systems where they can be applied. However,
it is known [2] that for hybrid systems, i.e., systems consisting of both digital
and analog components, the problem of deciding if a state is reachable or not,
is undecidable in general. Thus, for any autonomous systems of reasonable
complexity, testing will be an important part of the design process.
Model-based design is often used for the design of autonomous systems, and

building high fidelity models of both software and hardware is a part of the
design process. Since testing on physical hardware is both time-consuming
and limited by the available physical hardware, it is an advantage to do as
much testing as possible using only the models. One approach [3] is to use
formal specifications of properties that the closed-loop system should satisfy
combined with the use of simulation of the models to evaluate whether the
desired properties are fulfilled or not. This can be combined with falsifica-
tion techniques that search for counterexamples to given specifications of the
closed-loop system.
Metric Interval Temporal Logic (MITL) [4] and Signal Temporal Logic

(STL) [5] can be used to describe real-time properties of systems. Several
quantitative semantics for these logics have been proposed to not only allow
reasoning about the correctness of a signal with respect to a model but also
give a real value that indicates how far a signal is from satisfying or violating
a specification. During falsification, these values are used by an optimizer
to find new input signals with a higher likelihood of violating the specifica-
tion. The quantitative semantics chosen will influence the efficiency of the
falsification procedure, and the efficiency of different quantitative semantics
is problem-dependent.
To facilitate different quantitative semantics the concept of Valued Booleans

(VBools) was introduced in [6]. Multiple quantitative semantics can be ex-

A4

2 Falsification

pressed using VBool, for example the MAX semantics, that is a widely used
semantics for optimization based falsification. Also [7] introduced and investi-
gated several alternative robustness measures, of which the Mean Alternative
Robustness Value (MARV) will be considered here.

In this paper, we evaluate the feasibility of automated falsification tech-
niques for one sub-system, an adaptive cruise controller, of an autonomous
vehicle. The purpose of this paper is not to evaluate how automated falsifica-
tion techniques can be used for fully autonomous vehicles but to improve our
understanding of how different semantics can be used to facilitate the falsifi-
cation process. Given formal specification and simulation traces, the semantic
will result in a scalar that not only expresses if the specification is fulfilled
or not but also to what extent. This additional information is used by an
optimizer to adjust the input signals and parameters to the next simulation
with the intent of finding a new set of input signals and parameters that are
more likely to falsify the specification.

We aim with this paper to show how a rigorous method based on optimiza-
tion can be used in the design process of autonomous vehicles and to give the
reader an insight into how the quantitative semantics works for this particular
problem.

The rest of the paper is organized as follows. Section 2 introduces the
falsification of temporal properties. Section 3 introduces the adaptive cruise
controller example. Section 4 evaluates the performance of the optimization
algorithm when using MAX and MARV . Finally, Section 5 summarizes the
contributions.

2 Falsification

Falsification of temporal logical properties is based on an optimization proce-
dure where the objective function is determined by the definition of a robust-
ness semantics for the temporal logic formalism. Breach [8] and S-TaLiRo [9]
are two tools implemented on top of Matlab/Simulink that can do falsifica-
tion assuming that the closed-loop system can be simulated. In this work,
Breach is used for the simulation and hence STL [10] is used to model the
specifications, but the discussion in this paper can be applied to MITL used
in S-TaLiRo as well.

A5

Paper A

2.1 Signal Temporal Logic

The syntax of STL is defined as follows [11]:

ϕ ::= µ | ¬µ |ϕ ∧ ψ |ϕ ∨ ψ |�[a,b]ψ |♦[a,b]ψ |ϕU[a,b]ψ,

where the predicate µ is µ ≡ µ(x) > 0; ϕ and ψ are STL formulas; �[a,b]
denotes the globally operator between a and b; ♦[a,b] denotes the finally oper-
ator between a and b; and U[a,b] denotes the until operator between a and b.
The semantics of STL are defined by considering the discrete signal x at time
instant k [11]:

(x, k) |= µ ⇔ µ(x[k])
(x, k) |= ¬µ ⇔ ¬((x, k) |= µ)
(x, k) |= ϕ ∧ ψ ⇔ (x, k) |= ϕ ∧ (x, k) |= ψ

(x, k) |= ϕ ∨ ψ ⇔ (x, k) |= ϕ ∨ (x, k) |= ψ

(x, k) |= �[a,b]ϕ ⇔ ∀k′ ∈ [k + a, k + b], (x, k′) |= ϕ

(x, k) |= ♦[a,b]ϕ ⇔ ∃k′ ∈ [k + a, k + b], (x, k′) |= ϕ

(x, k) |= ϕ U[a,b]ψ ⇔ ∃k′ ∈ [k + a, k + b] (x, k′) |= ψ

∧ ∀k′′ ∈ [k, k′], (x, k′′) |= ϕ

Instead of just checking the Boolean satisfaction of an STL formula, the
notion of a robust semantics is defined to measure how far away a specifica-
tion is from being satisfied. In the next part, these robust semantics will be
introduced.

2.2 Valued Booleans and MAX semantics

A VBool is a combination of a Boolean value together with a robustness value,
a non-negative real number that indicates how true or false the VBool is. In [6],
VBools are used to define two semantics aimed at measuring the robustness
of STL formulas in a testing setting; MAX evaluated in this paper, and the
Additive.
In this work, the robustness value will be used as a measure of how con-

vincingly a test passed, or how severely it failed, respectively. The comparison
operator ≤v corresponds to ≤ and takes the difference between its arguments

A6

2 Falsification

as its robustness. This is because, in order for the value of x ≤ y to change,
one of the arguments has to change by at least |x− y|.

≤v : R× R→ V

x≤v y =
{

(>, y − x) if x ≤ y
(⊥, x− y) otherwise,

where > and ⊥ denote true and false, respectively.
MAX is defined by the MAX-and, MAX-or , MAX-always, and MAX-

eventually operators.
The MAX-and operator ∧MAX is defined as:

(>, x)∧MAX(>, y) = (>,min(x, y)) (A.1)
(>, x)∧MAX(⊥, y) = (⊥, y)
(⊥, x)∧MAX(>, y) = (⊥, x)
(⊥, x)∧MAX(⊥, y) = (⊥,max(x, y)).

The MAX-always operator is defined over [a, b] as:

�MAX,[a,b] ϕ =
b∧

MAX
k=a

ϕ[k], (A.2)

where ϕ is a finite sequence of VBools defined for all the discrete time instants
in the interval [a, b].
Other operators, like MAX-or , MAX-eventually and MAX-until can be

expressed in terms of the above operators. These operators are not used in
this paper. For implementation of MAX in Breach, a VBool is represented
as a single real value, where a negative value represents that the VBool is ⊥,
and a positive value represents that it is >. In both cases, the magnitude of
the real value is the robustness value.

2.3 Mean Alternative Robustness Value (MARV) semantics
In this paper we restrict the comparison to timed always operators since this
is a common temporal operator. For MARV [7] the discrete-time always
operator is described by the following formula.

A7

Paper A

�MARV,[a,b]ϕ =
{

1
b−a

∑M−1
i=0 ρ(ϕ, ti) (ti+1 − ti) ρ ≥ 0

ρ(ϕ, ti) ρ < 0
(A.3)

where ρ(ϕ, ti) is a real-valued function that gives the objective value at each
time instant, ti, and M is the number of sampling times over the interval [a,
b].
For positive robustness values, which represent the case when �MARV,[a,b]ϕ

is satisfied MARV calculates the mean over the interval.

3 Use-Case
This study of the two semantics uses a simple example1 involving two vehicles,
an autonomous vehicle, called the ego vehicle, and a lead vehicle. The two
vehicles travel on a road in the same direction (Fig. 1).

Ego vehicle Lead vehicle

Vego Vlead

Safe distance

Relative longitudinal distance

Figure 1: Definition of the distances between the ego vehicle and the lead vehicle.

The ego vehicle is equipped with adaptive cruise control (ACC). It has a
sensor that measures the relative distance to, and the relative velocity of,
the lead car. The ACC system operates in two modes: speed mode and
safety mode. In the speed mode, the ego vehicle travels at a driver-set speed,
and in the safety mode, the ego car maintains a safe distance from the lead
car. The ACC system decides which mode to use based on real-time radar
measurements; either it needs to keep a safe distance, or if the relative distance
is safe, it can increase its speed to the driver-set speed.

1A demo example from the MatlabR©/SimulinkR© toolbox.

A8

3 Use-Case

3.1 Specification of Safe Longitudinal Distance

As mentioned earlier, safety guarantees are important in autonomous driving.
However, the safe distance between two vehicles depends on many parameters,
including road friction, braking force, and response time. These parameters
are largely unknown: while some of these parameters might be estimated by
the ego vehicles, less is known about, for example the maximal braking force
of the lead vehicle. Various studies, [12], [13], have addressed the issue of the
minimum safe longitudinal distance between two vehicles. In our experimental
setup the controller in the ACC system is designed to keep the safe distance
dsafe between the two vehicles by calculating the set-point distance using the
following formula:

dsafe = ddefault + tgap vego, (A.4)

where ddefault is the standstill default spacing, in this case set to 10m, and tgap
denotes the time gap between the vehicles which is set to 1.4 s. The distance
dsafe is used as a reference value for the ACC controller, but it cannot be
used as a specification because when the ego car is in the safe mode, any
deceleration by the lead car will make the longitudinal distance less than
dsafe.
Note, the formula above is used to generate the set-point distance between

the two vehicles, but it is not suitable as a specification because having a
shorter distance between the vehicles does not necessarily imply that a collision
will occur. It is certainly possible to formulate a specification that models
that the two vehicles do not collide by specifying that the distance between
the two vehicles should be positive. However, falsification may be easier if we
strengthen the specification by exploiting physical insight. In our example,
we will calculate the minimal distance dmin between two vehicles using the
approach in [13] based on physical properties, such that if the vehicles are
never closer than dmin to each other, collisions are guaranteed to be avoidable
when the lead car brakes:

dmin =
[
vego tr + 1

2amax,acc t
2
r

+ (vego + amax,acc tr)2

2 amin,brake
− v2

lead

2 amax,brake

]
+

,

(A.5)

A9

Paper A

where [x]+ means the maximum of x and 0, and where the parameters are
described in Table 1.
The specification used for falsification now expresses that at all times the

relative distance between the cars must be greater than the safe distance dmin.
With T as the simulation time, this is formulated as:

�[0,T]
(
relative longitudinal distance > dmin

)
. (A.6)

The falsification process is significantly easier when we specify that the
relative distance between the vehicles must be at least dmin, rather than just
positive. This strengthening of the specification is justified by, as soon as, the
relative distance between the vehicles is less than dmin, immediate braking by
the lead vehicle might result in a collision. Thus the specification amounts to
assuming worst-case behavior from the lead vehicle.

4 Evaluation Results
To evaluate the performance of the MAX and MARV semantics, falsifica-
tion of the AD example is studied. The vehicle parameters used during the
simulations of the closed-loop behavior are presented in Table 1.

Table 1: Parameters used in the example.
Parameters Notations and Values

Velocity of lead car (m/s) vlead
Velocity of ego car (m/s) vego

The driver-set velocity (m/s) vset = 30
Max acceleration of ego car (m/s2) amax,acc = 3

Min acceleration of ego car to full stop (m/s2) amin,brake = -2.5
Max acceleration of lead car to full stop (m/s2) amax,brake = -3

Response time (sec) tr = 0.1

The simulation takes the acceleration of the lead vehicle alead as input and
simulates the behavior of the closed-loop system. Before a simulation of the
closed-loop system starts, the values of input parameters are selected by the
falsification algorithm; in this example, the parameters are alead0 and alead1.
The simulation time is T = 30 s and the simulation starts with alead0 chosen
in the range [0, 3] and alead1 in the range [−3, 0]. For both the MAX and

A10

4 Evaluation Results

a
lead1

MAX

a
lead0

-80
0

-60

-40

3

-20

O
b

je
c
ti

v
e
 f

u
n

c
ti

o
n

 v
a
lu

e
s

-1 2.5

0

2

20

1.5

40

-2
1

0.5
-3 0

O
b

je
c
ti

v
e
 f

u
n

c
ti

o
n

 v
a
lu

e
s

MARV

a
lead0

a
lead1

-100
0

-50

0

3
-1

50

2.5

100

2
1.5

150

-2
1

0.5
-3 0

Figure 2: The objective values for combinations of the accelerations (alead0, alead1) for the
two semantics MAX and MARV . Positive values (◦) mean that the specification
is satisfied, while negative values (∗) mean that it is falsified. Note that the signs
of the values should be the same for both semantics while the absolute values
might be different.

MARV semantics the specification is given by formula (A.6). To illustrate
the similarities and differences between the MAX and MARV semantics the
objective value is calculated for different combinations of the parameters alead0
and alead1. In this case alead0 and alead1 are divided into 20 equidistant points
resulting in 400 parameter combinations, each requiring its own simulation.
The objective function values calculated for each of the 400 simulations for

both MAX and MARV semantics are shown in Fig. 2. The main purpose of
calculating an objective value is to guide the falsification process in the right
direction by choosing the next set of parameters to be simulated such that the
likelihood of falsifying the specification is increased. Note that in this work
we do not assume that gradients can be derived analytically; instead, they
have to be estimated by evaluating multiple parameter combinations. Ideally,
a semantic should be such that when a parameter change brings the system
closer to falsifying a specification, then the objective value of the specification
should decrease.
By comparing the left and right graphs in Fig. 2 we notice that they have

the same sign for every parameter combination. This is expected, since the
sign indicates if the specification is fulfilled, which does not depend on which
semantics is used. However, we observe that in the upper right corner (where
close to alead0 = 3 and alead1 = 0) the two semantics result in different
estimates of the gradients. In this region, for MAX the objective function
values are the same for each point (the upper triangular side of the left graph).

A11

Paper A

In order to illustrate why, Fig. 3 presents for each choice of alead0 and alead1
the first time at which the objective value reaches its minimum when using
MAX . We observe that for parameters close to alead0 = 3 and alead1 = 0, the
simulation time at which the minimal objective value is reached is time 0. The
reason for this can be seen in Fig. 4, which shows the relative and safe distance,
and the velocities of the lead and ego vehicles, when alead0 = 3 and alead1 = 0.
According to this figure, when the lead car continuously accelerates, the ego
car increases its speed, too. But the ego car has a driver-set velocity limit
(30 m/s) so that the relative distance between the vehicles always increases
and the minimum objective function value occurs at the beginning of the
simulation where the relative and safe distances are the closest. Thus, the
MAX semantics consider the different simulations to be equally good/bad
for parameters that are close to alead0 = 3 and alead1 = 0, resulting in no
information that can be used by the optimization algorithm. On the other
hand, as can been seen in the right graph of Fig. 2, these points have different
values under MARV .

a
lead0 a

lead1

0

0

00.5
-0.5

1
-1

1.5

10

-1.5
2

-2
2.5 -2.5

T
im

e
 (

s
e
c
)

3 -3

20

30

Figure 3: The simulation time when the minimum objective function value is reached for
the first time for MAX . Note that alead1 is here to the right.

In Fig. 2, where acceleration of the lead vehicle alead0 is in the range [0, 1.2],

A12

4 Evaluation Results

0 5 10 15 20 25 30
Time (sec)

0

50

100

150

V
e
lo

c
it

y
 (

m
/s

)

v
ego

v
lead

0 5 10 15 20 25 30
Time (sec)

0

500

1000

D
is

ta
n

c
e
 (

m
)

relative longitudinal distance

d
min

Figure 4: The relative and safe distance, and the vehicle velocities for alead0 = 3 and
alead1 = 0. The minimum objective function value occurs at time zero, where
the relative and safe distances are the closest.

and alead1 in the range [−3, 0], for all parameter combinations in these ranges,
the ego vehicle behaves safely and keeps the safe distance from the lead vehicle.
In order to show the behaviour of both vehicles in these ranges, the relative
and safe distances and the velocities of the ego car vego and the lead car vlead

are shown for alead0 = 0 and alead1 = −3 in Fig. 5. As can be seen, the relative
distance is greater than dmin for the whole of the simulation, it means when
the lead car brakes the ego car starts braking too, and it can stop within safe
distance from the lead car.
In Fig. 2, the safety formula (A.6) is violated where the objective values are

negative. The relative and safe distances, and the velocities of both cars for
the point alead0 = 3 and alead1 = −3, are shown in Fig. 6. As can be seen,
when the lead car accelerates, the ego car increases its velocity to reach the
driver-set velocity. Then, when the lead car brakes, because their distance is
larger than dsafe (A.4), the controller is in speed mode and only after a delay
does the ego car switch to safety mode and adjust its speed to maintain a safe
distance from the lead car. As a result, not only does the relative distance
between the vehicles become less than dmin, but the cars even crash. Note
that while the cars crash at around 22 s in this scenario, in Fig. 6 the ego car
does not stop until around 26 s. This is due to the simple model used in the
example that does not model the actual collision.

A13

Paper A

0 5 10 15 20 25 30

Time (sec)

0

20

40

60
D

is
ta

n
c

e
 (

m
)

relative longitudinal distance

d
min

0 5 10 15 20 25 30
Time (sec)

0

10

20

30

40

V
e

lo
c

it
y

 (
m

/s
) v

ego

v
lead

Figure 5: The relative and safe distance, and the vehicle velocities for alead0 = 0 and
alead1 = −3.

0 5 10 15 20 25 30
Time (sec)

0

50

100

150

200

250

D
is

ta
n

c
e

 (
m

)

relative longitudinal distance

d
min

0 5 10 15 20 25 30
Time (sec)

0

20

40

60

V
e

lo
c

it
y

 (
m

/s
)

v
ego

v
lead

Figure 6: The relative and safe distance, and the vehicle velocities for alead0 = 3 and
alead1 = −3. At around 14 s the relative distance between the vehicles becomes
less than dmin, and a collision occurs at around 22 s.

A14

5 Conclusion

By comparing the objective values from the two semanticsMAX andMARV ,
we observe that since the MAX-always only considers the minimal value of
the objective function it is possible to end up with objective values that do
not differ between different simulations. Thus, the optimizer has no infor-
mation in which direction to further explore the search. In this example we
observed that in this case it might be beneficial to consider MARV since this
semantic will result in higher objective values when the vehicles move fur-
ther away from each other, thus providing information to the optimization
algorithm that might guide the optimizer in the right direction to falsify the
specification.
In this work, we have only considered the objective functions used by the

optimization algorithm but not the optimization algorithms themselves. How-
ever, gradient-free optimization algorithms like Nelder-Mead or simulated an-
nealing are typically used in the falsification process, and it is clear that the
performance of these algorithms depends on having objective values that are
not constant and that direct the search in a direction where the objective
values decrease, increasing the chances of falsifying the specification.

5 Conclusion
In this paper, we showed how the efficiency of falsification might be affected by
the semantics used to evaluate the specification. An adaptive cruise controller
is used as an example and the objective is to test if the certain parameter
combinations result in the possibility for two vehicles to collide. Using the
example, we showed a situation where the MAX semantics will result in the
same objective value for closely related parameter values, while MARV re-
sults in a non-constant objective value, which might guide the optimization
algorithm in a direction that increases the chances of falsifying the specifica-
tion. The objective of this paper was not to compare the efficiency of MAX
and MARV , but rather to illustrate with an example of the importance of
choosing a suitable semantics for the problem at hand. From our experience
with industrial-scale systems we have observed that the simulation time is the
most limiting factor, not the evaluation of the simulation results using differ-
ent semantics. Thus, a future strategy might be to evaluate the simulation
using multiple objective functions and use a high-level algorithm that during
the optimization will take into account multiple objective values computed

A15

Paper A

using several different semantics.

Acknowledgements
This work was supported by the Swedish Research Council (VR) project
SyTeC VR 2016-06204 and from the Swedish Governmental Agency for Inno-
vation Systems (VINNOVA) under project TESTRON 2015-04893.

References
[1] P. Koopman and M. Wagner, “Autonomous vehicle safety: An interdisci-

plinary challenge”, IEEE Intelligent Transportation Systems Magazine,
vol. 9, no. 1, pp. 90–96, 2017, issn: 1939-1390.

[2] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya, “What’s decid-
able about hybrid automata?”, Journal of Computer and System Sci-
ences, vol. 57, no. 1, pp. 94–124, 1998, issn: 0022-0000.

[3] E. Bartocci, J. Deshmukh, A. Donzé, G. Fainekos, O. Maler, D. Nickovic,
and S. Sankaranarayanan, “Specification-based monitoring of cyber-
physical systems: A survey on theory, tools and applications”, in Lec-
tures on Runtime Verification, ser. Lecture Notes in Computer Science,
vol. 10457, 2018, pp. 135–175.

[4] R. Koymans, “Specifying real-time properties with metric temporal l-
ogic”, Real-Time Systems, vol. 2, no. 4, pp. 255–299, 1990.

[5] O. Maler and D. Nickovic, “Monitoring temporal properties of contin-
uous signals”, in Formal Techniques, Modelling and Analysis of Timed
and Fault-Tolerant Systems, Y. Lakhnech and S. Yovine, Eds., Berlin,
Heidelberg: Springer Berlin Heidelberg, 2004, pp. 152–166.

[6] K. Claessen, N. Smallbone, J. Eddeland, Z. Ramezani, and K. Åkesson,
“Using valued booleans to find simpler counterexamples in random test-
ing of cyber-physical systems”, IFAC-PapersOnLine, vol. 51, no. 7, 408
–415, 2018, 14th IFAC Workshop on Discrete Event Systems WODES
2018.

A16

References

[7] J. Eddeland, S. Miremadi, M. Fabian, and K. Åkesson, “Objective func-
tions for falsification of signal temporal logic properties in cyber-physical
systems”, in 2017 13th IEEE Conference on Automation Science and
Engineering (CASE), 2017, pp. 1326–1331.

[8] A. Donzé, “Breach, a toolbox for verification and parameter synthesis
of hybrid systems”, in Computer Aided Verification, T. Touili, B. Cook,
and P. Jackson, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg,
2010, pp. 167–170.

[9] Y. Annpureddy, C. Liu, G. Fainekos, and S. Sankaranarayanan, “S-
TaLiRo: A tool for temporal logic falsification for hybrid systems”, in
Tools and Algorithms for the Construction and Analysis of Systems,
P. A. Abdulla and K. R. M. Leino, Eds., Berlin, Heidelberg: Springer
Berlin Heidelberg, 2011, pp. 254–257.

[10] A. Donzé and O. Maler, “Robust satisfaction of temporal logic over real-
valued signals”, in Formal Modeling and Analysis of Timed Systems,
K. Chatterjee and T. A. Henzinger, Eds., Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010, pp. 92–106.

[11] V. Raman, A. Donzé, M. Maasoumy, R. M. Murray, A. Sangiovanni-
Vincentelli, and S. A. Seshia, “Model predictive control with signal
temporal logic specifications”, in 53rd IEEE Conference on Decision
and Control, 2014, pp. 81–87.

[12] G. Feng, W. Wang, J. Feng, H. Tan, and F. Li, “Modelling and sim-
ulation for safe following distance based on vehicle braking process”,
in 2010 IEEE 7th International Conference on E-Business Engineering,
2010, pp. 385–388.

[13] S. Shalev-Shwartz, S. Shammah, and A. Shashua, “On a formal model
of safe and scalable self-driving cars”, CoRR, vol. abs/1708.06374, 2017.

A17

Paper A

18

PAPERB
Multiple Objective Functions for Falsification of Cyber-Physical

Systems

Zahra Ramezani, Johan Lidén Eddeland, Koen Claessen, Martin Fabian,
Knut Åkesson

To appear in Proceedings 15th Workshop on Discrete Event Systems
(WODES), November 2020

The layout has been revised.

1 INTRODUCTION

Abstract

Cyber-physical systems are typically safety-critical, thus it
is crucial to guarantee that they conform to given specifi-
cations, that are the properties that the system must ful-
fill. Optimization-based falsification is a model-based testing
method to find counterexamples of the specifications. The
main idea is to measure how far away a specification is from
being broken, and to use an optimization procedure to guide
the testing towards falsification. The efficiency of the falsifi-
cation is affected by the objective function used to evaluate
the test results; different objective functions are differently ef-
ficient for different types of problems. However, the efficiency
of various objective functions is not easily determined before-
hand. This paper evaluates the efficiency of using multiple
objective functions in the falsification process. The hypothesis
is that this will, in general, be more efficient, meaning that
it falsifies a system in fewer iterations, than just applying a
single objective function to a specific problem. Two objective
functions are evaluated, Max, Additive, on a set of benchmark
problems. The evaluation shows that using multiple objec-
tive functions can reduce the number of iterations necessary
to falsify a property.

1 INTRODUCTION
Cyber-Physical Systems (CPSs) consist of computational parts described by
state models, communicating with a physical environment described by dif-
ferential equations. Using high fidelity models is typical in model-based design
of CPSs. Testing and verifying the correctness of all physical and cyber com-
ponents of CPSs are important and a big challenge [1]. An autonomous car
is an example of a CPS where it is necessary with rigorous methods to assure
the correctness of the system. Typically, formal verification and/or testing
are used for this purpose.
For complex systems, testing is a necessary part of the design process since

formal verification of systems with a combination of discrete and continuous

B3

Paper B

dynamics is an undecidable problem [2]. However, for both formal verification
and testing, formal specifications of the properties that should be fulfilled are
required in order to enable an automated approach. One approach, surveyed
by [3], that can be used is formal specification of properties that the closed-
loop system should satisfy, combined with simulation of models and where
the given specifications are monitored and it is evaluated whether they are
satisfied or not. This can be combined with falsification techniques that search
for counterexamples to given specifications of the closed-loop system.
The falsification process can be based on an optimization procedure where

the optimization is performed over an input parametrization expressing pos-
sible input signals. The aim is to find counterexamples, if possible, to speci-
fications of the system under test. This is done in an iterative manner where
an objective function measures the distance to the specification being falsi-
fied. The objective function is determined by the definition of quantitative
semantics for temporal logic formalisms [4]. Metric Interval Temporal Logic
(MITL) [5] and Signal Temporal Logic (STL) [6], are two variants of for-
malisms for which quantitative semantics can be defined. The main purpose
of calculating an objective function value is to guide the testing process to-
wards falsification by choosing the next set of parameters for the input signals
to the system being simulated, such that the likelihood of falsifying the spec-
ification is increased.
For industrial systems typically only a black-box of the system under test

is available, meaning that only input-output behavior of the system can be
observed. In general, these systems are a mix of continuous dynamics, discrete
event dynamics, and algorithms implemented using general-purpose program-
ming languages. Parts of the system might also be implemented using phys-
ical hardware. Breach [7] and S-TaLiRo [8] are two Matlab/Simulink based
toolboxes used for test monitoring and falsification. Both tools search for tra-
jectories of minimal quantitative value to find counterexamples to MITL/STL
specifications. [9] show how STL specifications can be automatically derived
from Simulink blocks expressing the specifications, this is of practical value
to engineers that are working with testing and falsification since it is not
necessary to work with temporal logic specifications directly.
For both Breach and S-TaLiRo, the falsification process is guided by an

optimization procedure. Due the system being a black-box, gradient-free op-
timization methods have to be used. Nelder-Mead [10] is a common gradient-

B4

1 INTRODUCTION

free optimization method that can be used by Breach to guide the falsification
process. Although the optimization method does not use explicit gradients,
the method will attempt to search in a direction that results in a smaller objec-
tive value, where the quantitative semantics are defined in such a way that a
negative objective value means that the specification is falsified. In this work,
we evaluate three quantitative semantics, Max and Additive to define the ob-
jective function for the falsification processes. In previous work, [11], Valued
Booleans (VBools) were introduced as a way to express different quantitative
semantics in a coherent way.
In [12], the Max and MARV semantics for defining objective functions were

evaluated for an autonomous driving example. It was shown that, for cer-
tain areas of the parameter space, Max results in constant objective values,
while MARV results in non-constant objective values. If the Nelder-Mead
(NM) solver starts in an area where the objective values are constant (like
for Max), it might eventually finish the optimization procedure without find-
ing any falsifying point. This happens because there is no useful information
for the optimization algorithm to guide the search to areas with parameters
where the objective function has a lower value. As the simulation time is the
most limiting factor; the more simulations that have to be run, the longer the
falsification process takes.

The contribution of this paper is the introduction of a modified optimization
approach that takes advantage of multiple objective functions for the purpose
of falsifying specifications. The objective functions have in common that if the
specification is satisfied the value of the objective function is positive and if
the specification is falsified the value is negative. The motivation for this work
is that evaluating multiple objective functions is often significantly less time-
consuming than simulating or executing the system, and the objective values of
multiple quantitative semantics can be computed using a single simulation of
the system under test. The modified optimization approach then heuristically
chooses which one of the parameter configurations to simulate next based
on the variance (distance) of the respective objective function values. That
is, for each iteration of the NM solver, the heuristic picks the point given
by the quantitative semantic that has the largest variance (distance). This
avoids using the semantic that has close to constant objective values. The
approach is evaluated on a set of benchmark examples. The results show that
using multiple objective functions can indeed falsify system properties in fewer

B5

Paper B

simulation runs, compared to using only a single objective function.
In the following, Section 1.1 introduces the quantitative semantics and dif-

ferent ways to define the objective functions used for the falsification process.
Section 2 proposes the suggested multiple objective functions in this paper.
Section 3 introduces the three benchmark examples. Section 4 evaluates the
performance of the suggested optimization on benchmark examples. Finally,
Section 5 summarizes the contributions.

1.1 Quantitative Semantics and Objective Functions
In this paper, Breach is used for falsification, hence STL is used to model the
specifications. The syntax of STL is defined as follows [13]

ϕ ::= µ | ¬µ |ϕ ∧ ψ |ϕ ∨ ψ |�[a,b]ψ |♦[a,b]ψ

where the predicate µ is µ ≡ µ(s) > 0 and s is a signal; ϕ and ψ are STL
formulas; �[a,b] denotes the globally operator between times a and b (with
a < b); ♦[a,b] denotes the finally operator between a and b.
The satisfaction of the formula ϕ with respect to the discrete signal s at

the discrete time instant k is defined as:

(s, k) |= µ ⇔ µ(s[k])
(s, k) |= ¬µ ⇔ ¬((s, k) |= µ)
(s, k) |= ϕ ∧ ψ ⇔ (s, k) |= ϕ ∧ (s, k) |= ψ

(s, k) |= ϕ ∨ ψ ⇔ (s, k) |= ϕ ∨ (s, k) |= ψ

(s, k) |= �[a,b]ϕ ⇔ ∀k′ ∈ [k + a, k + b], (s, k′) |= ϕ

(s, k) |= ♦[a,b]ϕ ⇔ ∃k′ ∈ [k + a, k + b], (s, k′) |= ϕ

Instead of only checking the boolean satisfaction of an STL formula, the notion
of a quantitative value, i.e. an objective value, will be defined in order to
measure how far away a specification is from being falsified. A Valued Boolean
(VBool) [11] (v, x) is a combination of a Boolean value v (true >, or false ⊥)
together with a real number x that is a measure of how true or false the
specification is. This value will be used as a measure of how convincingly
a test passed, or how severely it failed, respectively. In the original VBool

B6

2 Falsification Using Multiple Objective Functions

definition, x is defined to always be non-negative. However, in this paper we
use the convention that x is negative when v is false, and positive otherwise.

1.2 Quantitative Semantics
Using VBools, we define three quantitative semantics: Max, which is essen-
tially the same as standard STL quantitative semantics; Additive; For these
semantics we define the respective and, or, always, and eventually operators.
For conjunction, the semantics differ only in the two cases where the truth

values are the same:
Max Additive

(>, x) ∧ (>, y) = (>,min(x, y))
(
>, 1

1
x + 1

y

)
(>, x) ∧ (⊥, y) = (⊥, y)
(⊥, x) ∧ (>, y) = (⊥, x)
(⊥, x) ∧ (⊥, y) = (⊥,max(x, y)) (⊥, x+ y)

Using the de Morgan laws, the or operator can be defined in terms of and, as
(vx, x) ∨ (vy, y) = ¬v(¬v(vx, x) ∧ ¬v(vy, y)), where VBool negation is defined
as ¬v(vx, x) = (¬vx,−x).
For theMax semantics, the always operator over an interval [a, b] is straight-

forwardly defined in terms of and, as �[a,b]ϕ =
b∧

k=a

ϕ [k], where ϕ is a finite

sequence of VBools defined for all the discrete time instants in [a, b].
For theAdditive semantics, though, always is a bit more elaborate: �[a,b]ϕ =

b∧
k=a

ϕ [k] # δt, where δt is the simulation step size that makes the quantitative

value independent of the simulation time, and # is (⊥, x) # δt = (⊥, x · δt)
and (>, x) # δt = (>, x/δt). Furthermore, the eventually operator is for all
three semantics defined over an interval [a, b] in terms of always, as ♦[a,b]ϕ =
¬(�[a,b](¬v ϕ)).

2 Falsification Using Multiple Objective Functions
This section presents the multiple objective functions for falsification of CPSs.
Different combinations of objective functions and different strategies for switch-
ing between objective functions is discussed in this paper. The main optimiza-
tion algorithm considered in this paper is an implementation of Nelder-Mead

B7

Paper B

which is also included in Breach. This algorithm is implemented as fmin-
search [14] in Matlab. We propose a modified optimization algorithm, based
on Nelder-Mead, that exploits multiple objective functions. The new algo-
rithm is presented in Algorithm 1 and works in the following way. The pre-
sentation of the algorithms is based on two objective functions, in this case
using the Max and Additive semantics, however the approach is generic and
can be applied to an arbitrary number of objective functions.

1. The algorithms starts with p sample points. For each example, p is
different and it refers to the number of inputs of each example multiple
by 10. All these points are sorted from lowest to highest according to the
values of different objective functions. Note, that objective values will
be different for each used quantitative semantic, thus there will be one
ordering for each semantic. By using a heuristic algorithm to choose
which quantitative semantic, the minimum point is considered and it
will generate n new points surround the first point before starting the
optimization.

2. The first n + 1 points in the parameter space are needed by the NM
style optimization algorithm to start the optimization process. Again,
all these points must be sorted from lowest to highest according to the
values of the different objective functions.

3. For each ordering of the objective values, the algorithm will suggest a
new point in the parameter space for evaluation. For each quantitative
semantic there will be an ordering of the points in the parameter space
that is based on the objective value used for the specific semantic. By
using a heuristic algorithm to choose which quantitative semantic, one
new point will be selected for further evaluation, i.e. being simulated.

4. Now, one iteration in the optimization can execute, i.e. the execution
of Step 4 to 7 in Algorithm 1.

5. When reaching to Step 8, once again calculate the objective values for
all of the considered quantitative semantics and saved points, and create
one ordering for each of the considered quantitative semantic. Choose
n + 1 points with lowest objective value function of the semantic that
wins the heuristic strategy.

B8

3 Benchmark Problems

Note, a new quantitative semantic can be selected in each iteration of the
algorithm. In this paper, we have implemented two heuristic algorithms that
are based on the variance of the n+1 lowest objective values and the distance
of largest and lowest objective functions.
Strategy 1 (Variance). For each ordering of objective values, i.e. one

ordering for each quantitative semantic, consider the n+ 1 points with lowest
objective value, i.e. the points that according to the semantics that are closest
to falsifying the specification. For these points, calculate the variance among
the n+ 1 points using

σ2
k =

n+1∑
i=1

(fk
i − µ)2

n+ 1 ,

where fk
i refers to the objective function value of each n + 1 points that

have lowest value for each semantic. µ is the mean of n+ 1 points.
Strategy 2 (Distance). The distance can be calculated using

Disk = fk
max − fk

min

||xk
max − xk

min||
,

where fk
max and fk

min refer to the maximum and minimum objective function
values of the n+1 points that have the lowest objective value of each semantic.
xk

max and xk
min refers to their points, respectively.

The heuristic will choose the point given by the quantitative semantic that
corresponds to the largest variance in strategy 1; largest distance in strategy
2. These heuristics are thus selecting the quantitative semantic that has a
clear sense of direction and avoids using semantic that has close to constant
objective values resulting in small variance and distance. However, other
heuristics could be used as well, but a more thorough evaluation of possible
heuristics is future research.

3 Benchmark Problems

Three examples are considered here to show the performance of the multi-
ple objective functions approach, that are also used in [9], below is a brief
description of the examples.

B9

Paper B

Algorithm 2 Modified NM Using Multiple Objective Functions
1. Choose p random points. Start with p random points and order and re-label the
vertices from lowest function value to highest function value:
fMax(x1

1) ≤ fMax(x1
2) ≤ · · · ≤ fMax(x1

p),
fAdd(x2

1) ≤ fAdd(x2
2) ≤ · · · ≤ fAdd(x2

p),
Use a heuristic algorithm to choose which quantitative semantic to follow in this itera-
tion of the optimization. Take the minimum point of semantic that wins the heuristic
algorithm.
2. Let xi denote the list of vertices in the current simplex, i = 1, . . . , n+ 1. These points
are generated from the minimum point of Step 1.
3. Order. For each objective function i = 1, . . . , j, order and re-label the n+ 1 vertices
from lowest function value to highest function value:
fMax(x1

1) ≤ fMax(x1
2) ≤ · · · ≤ fMax(x1

n+1),
fAdd(x2

1) ≤ fAdd(x2
2) ≤ · · · ≤ fAdd(x2

n+1),
Use a heuristic algorithm to choose which quantitative semantic to follow in this iteration
of the optimization, see Strategy 1 and 2 for examples.
4. Reflection. Compute the reflected point xr = x̄ + ρ (x̄ − x(n+1)), where x̄ is the
centroid of the n points with lowest objective function values, x̄ =

∑
xi
n
, i = 1, . . . , n.

The rest of the optimization will be executed with the chosen semantic, f refers to the
objective function value of that semantic.
if f(x1) < f(xr) < f(xn) then

Replace xn+1 with the point xr and go to Step 8.
end if
5. Expansion.
if f(xr) < f(x1) then

Compute the expanded point xe by xe = x̄+ χ (xr − x̄).
if f(xe) < f(x1) then

Replace xn+1 with xe and go to Step 8.
else

Replace xn+1 with xr and go to Step 8.
end if

end if
6. Contraction.
if f(xr) ≥ f(xn) then

Perform a contraction between x̄ and the best among xn+1 and xr.
if f(xn) ≤ f(xr) < f(xn+1) then

Calculate xoc = x̄+ τ (xr − x̄) Outside contract.
if f(xoc) ≤ f(xr) then

Replace xn+1 with xoc and go to Step 8.
else

Go to Step 7.
end if

end if
end if

B10

3 Benchmark Problems

if f(xr) ≥ f(xn+1) then
Calculate xic = x̄+ τ (xn+1 − x̄) Inside contract.
if f(xic) ≥ f(x(n+1)) then

Replace xn+1 with xic and go to Step 8.
end if

end if
7. Shrink. Evaluate the n new vertices x′ = x1 + φ (xi − x1), i = 2, . . . , n+ 1.
Replace the vertices x2, ..., xn+1 with the new vertices x′2, ..., x′n+1.
8. Re-Order. Calculate the objective values for the new point for all the quantitative
semantics and for each quantitative semantic and save it or them (If "Shrink" happens).
Order and re-label the vertices of all m calculated points from lowest function value to
highest function:
fMax(x1

1) ≤ fMax(x1
2) ≤ · · · ≤ fMax(x1

m),
fAdd(x2

1) ≤ fAdd(x2
2) ≤ · · · ≤ fAdd(x2

m),
where k refers to the number of n + 1 of Step 2 and plus the number of points that are
reached at each the iterations (Steps 4-7).
9. Selecting semantics. Take n+1 of each semantic that has lowest objective function
values from Step 8. Select the semantic according to the heuristic algorithm and continue
with the chosen semantic, f refers to the objective function value of the chosen semantic.
While the stopping condition is not reached go to Step 4, thus
if f(xn+1) − f(x1) < ε then

Stop, where ε > 0 is a small predetermined tolerance.
else

Go to Step 4.
end if

3.1 Automatic Transmission (AT) Benchmark
The inputs to the model are the throttle and brake of a vehicle. The outputs
of the model are the vehicle speed v, the engine speed ω, and the gear, see [15]
for details.

3.2 Third Order Modulator
The third order ∆ − Σ modulator is a model of a technique for analog to
digital conversion. It has one input U , three states x1, x2, x3, and three initial
conditions xinit

1 , xinit
2 , xinit

3 , see [16] for details.

3.3 Static Switched (SS) System
The static switched system is a model without any dynamics that is included as
a simple case make falsification worse than only using single boolean objective
function. The model has been inspired by [17].

B11

Paper B

Table 1: Specifications to falsify for the three benchmark models AT, (∆ − Σ), and SS.
Spec. Formula
ϕAT1 ♦[0,T](ω ≥ 2000)
ϕAT2 �♦[0,T](ω ≤ 3500 ∨ ω ≥ 4500)
ϕAT3 �[0,T](¬(gear == 4))
ϕAT4 ♦(�[0,T](gear == 3))
ϕAT5

∧
i=1,...,4 �((¬(gear == i) ∧ ♦[0,ε](gear == i)

=⇒ (�[ε,T+ε](gear == i)))
ϕAT6 �[0,T](v ≤ 85) ∨ ♦(ω ≥ 4500)
ϕAT7 ¬

(
(�[0,1]gear == 1) ∧ (�[2,4]gear == 2)

∧(�[5,7]gear == 3) ∧ (�[8,10]gear == 3)
∧(�[12,15]gear == 2)

)
ϕAT8 �[0,20]

(
(gear == 4 ∧ throttle > 45

∧throttle < 50) =⇒ ω < ω̄
)

ϕ∆−Σ �
(∧3

i=1(−1 ≤ xi ∧ xi ≤ 1)
)
.

ϕSS �(y ≥ 0)

4 Experimental Setup and Results

The experimental setup is described in more detail in [9]. The implementation
starts by evaluating 100 random points for the AT example, 40 for third order
∆−Σ modulator example and 20 for the SS example before starting the opti-
mization. After doing that if the falsified point is not found, the optimization
solver starts from the point with lowest objective value. In Table 1, the STL
specifications that should be falsified for all the models, and the benchmark
models are presented.
The results of running Algorithm 1 on the benchmark problems are shown

in Tables 2, 3, and 4, and the aggregated results are shown in Fig. 1. The
tables are formatted as follows. The first column denotes the specification fal-
sified. Each specification has one to three parameter values, these parameter
values are shown in the second columns. The remaining columns show the
different semantics including the Max, Additive, and their combination with
two difference strategies. For each parameter value and semantic, two values
are presented. The first value is the relative success rate of falsification, in
percent. There are a total of 20 falsification run for each parameter value and
objective functions, meaning that the success rate will be a multiple of 5%.
The second value, inside parentheses, is the average number of needed simula-
tions per successful falsification. Each falsification is set to have a maximum

B12

4 Experimental Setup and Results

Table 2: Results for the automatic transmission benchmark. For each parameter value
and quantitative semantics, the first number indicates relative success ratio of
falsification (%). The second number, in parentheses, indicates average number
of simulations per successful falsification.

Spec. Parameters
Semantics Max Add Mul Max-Add (Variance) Mul Max-Add (Distance)

ϕAT1

T = 20 100 (138) 100 (156) 100 (93) 100 (134)
T = 30 85 (264) 95 (364) 95 (375) 100 (309)
T = 40 35 (315) 65 (556) 55 (561) 50 (483)

ϕAT2 T = 10 100 (33) 100 (14) 100 (20) 100 (11)

ϕAT3
T = 4.5 100 (141) 90 (323) 100 (223) 100 (272)
T = 5 100 (65) 100 (95) 100 (44) 100 (67)

ϕAT4
T = 1 60 (505) 35 (357) 40 (367) 65 (402)
T = 2 100 (21) 100 (19) 100 (19) 100 (14)

ϕAT5
T = 1 95 (406) 75 (516) 95 (333) 100 (330)
T = 2 100 (5) 100 (4) 100 (4) 100 (6)

ϕAT6
T = 10 50 (722) 45 (482) 55 (534) 55 (526)
T = 12 100 (236) 100 (215) 100 (186) 100 (198)

ϕAT7 20 (766) 75 (382) 65 (483) 90 (421)

ϕAT8
ω̄ = 3000 100 (13) 100 (11) 100 (7) 100 (10)
ω̄ = 3500 30 (439) 90 (375) 60 (372) 15 (323)

Table 3: Results for the Third Order ∆ − Σ modulator. For each parameter value and
quantitative semantics, the first number indicates relative success ratio of falsi-
fication (%). The second number, in parentheses, indicates average number of
simulations per successful falsification.

Spec. Parameters
Semantics Max Add Mul Max-Add (Variance) Mul Max-Add (Distance)

ϕ∆−Σ
U ∈ [−0.35, 0.35] 55 (331) 20 (515) 85 (361) 65 (445)
U ∈ [−0.40, 0.40] 100 (271) 75 (279) 100 (228) 100 (255)
U ∈ [−0.45, 0.45] 100 (73) 95 (314) 100 (136) 100 (141)

of 1000 simulations performed.
In addition, for each parameter value, the semantic with the highest (or

tied highest) success rate has the success rate displayed in bold characters.
For each parameter value if there are semantics with same success rate, the
semantic with the lowest average number of simulations per successful simu-
lation has that number displayed in bold characters (inside the parentheses).

B13

Paper B

Table 4: Results for the Static Switched System. For each parameter value and quanti-
tative semantics, the first number indicates relative success ratio of falsification
(%). The second number, in parentheses, indicates average number of simulations
per successful falsification.

Spec.
Parameters

Semantics Max Add Mul Max-Add (Variance) Mul Max-Add (Distance)

ϕSS
thresh = 0.7 100 (120) 100 (248) 100 (43) 100 (89)
thresh = 0.8 90 (201) 100 (219) 100 (114) 85 (356)
thresh = 0.9 55 (511) 45 (519) 80 (334) 40 (365)

4.1 Results

As can be seen from Fig 1, the top two approaches are Multiple semantics. All
two strategies of the multiple objective functions, perform better than when
we only have a single objective function. They are more successful in falsifying
with fewer simulations.
By looking at three tables of results, it can been seen that for automatic

transmission, ϕAT
1 (T = 20), ϕAT

3 (T = 5), ϕAT
5 (T = 2), ϕAT

6 (T = 12),
ϕAT

8 (ω̄ = 3000), the Multi-Max-Add using variance strategy works better.
While, for ϕAT

1 (T = 30), ϕAT
2 , ϕAT

4 , ϕAT
5 (T = 1), ϕAT

6 (T = 12), ϕAT
7 , the

Multi-Max-Add using distance works better. Only, for ϕAT
3 (T = 4.5), Max

is better. Additive works for ϕAT
1 (T = 40), ϕAT

8 (ω̄ = 3500).
For ϕ∆−Σ Benchmark, except U ∈ [−0.45, 0.45] that Max performs better

for that, multiple objective function using variance perform well. For all
specifications of the Static Switched system, multiple objective function using
variance give better results. One conclusion that can be given here is that the
Max-Additive multiple objective function using both strategies work better
than others, and for only a few of specifications, the single semantics works
better. Only for the specifications ϕAT

8 (ω̄ = 3500) and ϕAT
5 (T = 30) of

the automatic transmission example, the Additive was successful in finding
more falsification. For other semantics that Max or Additive work better
still the single and multiple objective functions have same success ratio of
falsification, only the number of simulations is different. As a result, the
multiple objective functions using both strategies can guide the testing process
towards falsification better than only single semantic is used, on the given
benchmark set.

B14

5 Conclusion

0 50 100 150 200 250 300 350 400

Number of successful falsifications

0

100

200

300

400

500

600

700

800

900

1000

N
um

be
r

of
 s

im
ul

at
io

ns

Uniform Random
NM Max
NM Additive
NM Multi Max-Additive Distance
NM Multi Max-Additive Variance

Figure 1: A cactus plot showing performance of using optimization based on multiple
objective functions compared to using a single objective function. The plotted
values tell how many successful falsifications (x-axis) were completed in less than
a specific number of simulations (y-axis). The maximum number of simulations
per falsification is 1000. Note that we also include the cactus plot for Uniform
Random sampling, as a baseline approach.

5 Conclusion
In this paper, the use of multiple objective functions for falsification of CPSs
was proposed. With a single objective function, the optimization may get the
wrong or even no information for it to be able to guide the falsification process
towards falsifying the specification. Since for CPSs, the simulation time is the
most limiting factor, not the evaluation of the simulation results, multiple
objective functions were suggested. Combinations of two different semantics
Max and Additive were evaluated. A variance and distance based strategy
were used to switch between the objective functions, such that the objective
function with highest variance (distance) was picked for each iteration of the
falsification. Three benchmark CPSs examples were considered to show the
performance of the multiple objective functions.
The main conclusion drawn from the data gathered is that the proposed op-

timization algorithm perform better than when only a single objective function
is used on the used benchmark examples. Also multiple objective functions
are more successful in finding counterexamples in less number of simulation

B15

Paper B

runs. This so, since multiple objective functions can better guide the opti-
mization algorithm towards falsification, increasing the chance of falsifying
the specification.
For future work, it would be interesting to explore different heuristics for

choosing between multiple objective functions as well as extending the number
of benchmark problems to further evaluate the performance of the proposed
approach.

Acknowledgements
This work was supported by the Swedish Research Council (VR) projectSyTeC
VR 2016-06204 and from the Swedish Governmental Agency forInnovation
Systems (VINNOVA) under project TESTRON 2015-04893.

References
[1] S. Abbaspour Asadollah, R. Inam, and H. Hansson, “A survey on test-

ing for cyber physical system”, in Testing Software and Systems, K.
El-Fakih, G. Barlas, and N. Yevtushenko, Eds., Cham: Springer Inter-
national Publishing, 2015, pp. 194–207.

[2] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya, “What’s de-
cidable about hybrid automata?”, in Proceedings of the Twenty-seventh
Annual ACM Symposium on Theory of Computing, ser. STOC ’95, Las
Vegas, Nevada, USA: ACM, 1995, pp. 373–382.

[3] E. Bartocci, J. Deshmukh, A. Donzé, G. Fainekos, O. Maler, D. Nickovic,
and S. Sankaranarayanan, “Specification-based monitoring of cyber-
physical systems: A survey on theory, tools and applications”, in Lec-
tures on Runtime Verification, ser. Lecture Notes in Computer Science,
vol. 10457, 2018, pp. 135–175.

[4] G. E. Fainekos and G. J. Pappas, “Robustness of temporal logic spec-
ifications for continuous-time signals”, Theoretical Computer Science,
vol. 410, no. 42, pp. 4262–4291, 2009, issn: 0304-3975.

[5] R. Koymans, “Specifying real-time properties with metric temporal l-
ogic”, Real-Time Systems, vol. 2, no. 4, pp. 255–299, 1990.

B16

References

[6] O. Maler and D. Nickovic, “Monitoring temporal properties of contin-
uous signals”, in Formal Techniques, Modelling and Analysis of Timed
and Fault-Tolerant Systems, Y. Lakhnech and S. Yovine, Eds., Berlin,
Heidelberg: Springer Berlin Heidelberg, 2004, pp. 152–166.

[7] A. Donzé, “Breach, a toolbox for verification and parameter synthesis
of hybrid systems”, in Computer Aided Verification, T. Touili, B. Cook,
and P. Jackson, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg,
2010, pp. 167–170.

[8] Y. Annpureddy, C. Liu, G. Fainekos, and S. Sankaranarayanan, “S-
TaLiRo: A tool for temporal logic falsification for hybrid systems”, in
Tools and Algorithms for the Construction and Analysis of Systems,
P. A. Abdulla and K. R. M. Leino, Eds., Berlin, Heidelberg: Springer
Berlin Heidelberg, 2011, pp. 254–257.

[9] J. L. Eddeland, K. Claessen, N. Smallbone, Z. Ramezani, S. Miremadi,
and K. Åkesson, “Enhancing temporal logic falsification with speci-
fication transformation and valued booleans”, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and System, 2020, early
access.

[10] J. A. Nelder and R. Mead, “A Simplex Method for Function Minimiza-
tion”, The Computer Journal, vol. 7, no. 4, pp. 308–313, Jan. 1965, issn:
0010-4620.

[11] K. Claessen, N. Smallbone, J. Eddeland, Z. Ramezani, and K. Åkesson,
“Using valued booleans to find simpler counterexamples in random test-
ing of cyber-physical systems”, IFAC-PapersOnLine, vol. 51, no. 7, 408
–415, 2018, 14th IFAC Workshop on Discrete Event Systems WODES
2018.

[12] Z. Ramezani, N. Smallbone, M. Fabian, and K. Åkesson, “Evaluating
two semantics for falsification using an autonomous driving example”,
in 2019 IEEE 17th International Conf. on Industrial Informatics, vol. 1,
2019, pp. 386–391.

[13] V. Raman, A. Donzé, M. Maasoumy, R. M. Murray, A. Sangiovanni-
Vincentelli, and S. A. Seshia, “Model predictive control with signal
temporal logic specifications”, in 53rd IEEE Conference on Decision
and Control, 2014, pp. 81–87.

B17

Paper B

[14] J. Lagarias, J. Reeds, M. Wright, and P. Wright, “Convergence proper-
ties of the Nelder–Mead simplex method in low dimensions”, SIAM J.
on Optimization, vol. 9, pp. 112–147, Dec. 1998.

[15] B. Hoxha, H. Abbas, and G. Fainekos, “Benchmarks for temporal logic
requirements for automotive systems”, Proc. of Applied Verification for
Continuous and Hybrid Systems, 2014.

[16] T. Dang, A. Donzé, and O. Maler, “Verification of analog and mixed-
signal circuits using hybrid system techniques”, in International Con-
ference on Formal Methods in Computer-Aided Design, Springer, 2004,
pp. 21–36.

[17] A. Dokhanchi, A. Zutshi, R. T. Sriniva, S. Sankaranarayanan, and G.
Fainekos, “Requirements driven falsification with coverage metrics”, in
Proceedings of the 12th International Conference on Embedded Software,
2015, pp. 31–40.

B18

PAPERC
Enhancing Temporal Logic Falsification with Line Optimization

Zahra Ramezani, Koen Claessen, Martin Fabian, Knut Åkesson

To be submitted to the possible journal publication

The layout has been revised.

1 Introduction

Abstract

Because cyber-physical systems (CPS)s are complex and ex-
hibit both continuous and discrete dynamics, it is difficult to
guarantee that they satisfy given specifications, i.e., the prop-
erties that must be fulfilled by the system. Falsification of
temporal logic properties is a testing approach that searches
for counterexamples of given specification. Falsification can
be done using random search methods or optimization meth-
ods. In this paper, a method based on combining random pa-
rameters together with considering extreme combinations of
parameter values is suggested as another base-line. The eval-
uation result on benchmark problems shows that this method
performs well on many of the benchmark problems. Opti-
mization methods are needed for the examples that base-line
methods do not perform well. The efficiency of the falsification
is affected by the optimization methods used to search for in-
puts that might falsify the specifications. This paper suggests
a new optimization method for falsification, line optimization,
where optimization is done over a line. The evaluation results
on benchmark problems show that using this method improves
the falsification performance by reducing the number of simu-
lations necessary to falsify a property.

1 Introduction
Cyber-physical systems (CPSs) bridge the cyber-world of communications and
computing with the physical world. CPSs are widely adopted in many areas
such as autonomous systems and smart grids. These systems exhibit both
continuous and discrete dynamics. CPSs are often safety-critical systems, for
example, autonomous cars and medical devices. It is difficult to verify that
they satisfy the given specification must be fulfilled by the system. Verifica-
tion and testing on models of CPSs are two common methods used for the
validation and correctness of these systems. Testing is a necessary part of
the design process of complex systems since formal verification of systems
with a combination of discrete and continuous dynamics is an undecidable

C3

Paper C

problem [1].
CPSs are often developed in a model-based development (MBD) paradigm-

[2]. For many industrial applications, there are no mathematical models to
analyze, and it is only possible to simulate the system under test. thus formal
verification is not a viable option. There are simulation-based approaches [3],
[4] for testing of CPSs, like the falsification of temporal logic specifications.
Falsification of temporal logic properties is an approach to find the coun-

terexamples to given specifications of CPSs. The falsification process is per-
formed over the quantitative semantics of the specification. Quantitative se-
mantics uses an objective function that models the distance to falsifying the
specification. An objective function value is calculated to guide the falsifi-
cation process towards a specification to be falsified. It can be done in this
way that the next set of parameters, for the input signals to the system being
simulated, be chosen such that the likelihood of falsifying the specification is
increased, if it is possible. The objective function is determined by the defi-
nition of quantitative semantics for temporal logic formalisms [5] that Metric
Interval Temporal Logic (MITL) [6] and Signal Temporal Logic (STL) [7] are
commonly used.
Large industrial systems are a mix of continuous models, discrete event

models, and source code, therefore only a black-box of the system under test is
available. It means that only the input-output behavior of the system under
test can be observed and there is no other information about the system
available. S-TaLiRo [8] and Breach [9] are two MATLAB/Simulink toolboxes
used for testing and falsification. One feature of these two simulation-based
toolboxes is to facilitate the computation and the property investigation of
large sets of trajectories that rely on an efficient numerical solver of ordinary
differential equations. S-TaLiRo finds the counterexamples using of MITL
properties, while Breach performs the falsification with using STL. In this
paper, Breach is used since it is an open-source tool that can be easily extended
and implemented.
In [10], the concept of valued booleans (VBools) was introduced as a way

to express different quantitative semantics. Two quantitative semantics, Max
and Additive were expressed in term of VBools to define the objective function
for the falsification processes. In Additive semantics, the robustness of each
clause in a conjunction can affect the final robustness of the full formula. The
robustness is a value that assigned in the VBools. Disjunction and temporal

C4

1 Introduction

operators are defined in terms of conjunction for the Additive semantics.
Not only the different objective functions affect the outcome of falsifica-

tion, but also the different optimization methods affect the falsification per-
formance. Since the simulation-based approaches are used for falsification,
hence the gradient-free optimization methods are needed. In the paper [11],
different gradient-free optimizations were reviewed by a systematic compari-
son and evaluation of some problems. The computational results showed that
there is no single optimization method whose performance dominates that of
all others. Moreover, all the evaluated optimization methods in that paper
provided the best solution possible for at least some of the test problems.
Paper [12] evaluated the different semantics and optimization methods for
falsification on some examples of ARCH benchmark problems [13]. The pa-
per [13], is a friendly competition in the ARCH19 workshop for the falsification
of temporal logic specifications over CPSs.

Two optimization methods were top in the paper [12] were Nelder-Mead
(NM) [7] and SNOBFIT [14]. Both NM and SNOBFIT are gradient-free
optimization methods [11], but, they have different properties. SNOBFIT [14]
was one of the top optimization methods evaluated in that paper.

NM is an optimization method that is easy to implement and it can deal with
functions with many variables. Moreover, NM needs only function evaluation
that leads to being suitable in the minimization of non-differentiable functions.
It is good method at finding the local optima. The NM starts with a simplex
set of points. In each iteration, the objective function values are sorted from
the lowest to highest objective value. This method attempts to replace the
worst point, the point with the highest objective function value, by introducing
a new vertex in a way that results in a new simplex, reflection, expansion,
contractions. If shrink happens, n new points are generated by NM.

SNOBFIT is a method that can have the fast local search. It contains a
parameter that controls the balance between local and global search of the
optimization. The minimization in this method is done in stages, i.e., rather
than only one point where the algorithm samples a specified number of points
at a time. On the other hand, SNOBFIT is a complex method with a lot of
MATLAB implemented codes. Hence, analyzing and understanding what is
going on in a different situation by this method is hard.

Three evaluated semantics in the paper [12] were Max, Additive, and con-
stant quantitative semantics. The later semantic works in this way that if the

C5

Paper C

specification is not falsified, a constant positive value, on the other hand, if
it is falsified, a constant negative value is calculated. Therefore, the constant
objective value does not indicate any information to optimization methods for
falsification, i.e., no information about being far away from or close to falsify
the specification. But, SNOBFIT using this constant objective value could
perform even better than using NM with Max and Additive semantics. It was
interesting and unexpected results that lead to end up with this question that
how could SNOBFIT perform better than other optimizations? The answer
to this question is that it seems when SNOBFIT does not get any informa-
tion from the constant semantic, it tends to drive the new parameter values
towards the extreme points. It was an inspiration for us to suggest a new
optimization method that features the benefits of SNOBFIT but have low
complexity and a small implementation in this paper.
Evaluation results on ARCH benchmark problems gave us this feedback

that for some specifications and systems, it is easy to be falsified on the cor-
ners, i.e., the combination of extreme values of the allowed parameter ranges
of the system under test. A similar condition can happen if we only consider
some uniform random points for falsification. These two cases mean that the
falsification process can be done without any optimization method. Since, to
be able to use the advantage of both corners and random methods, a com-
bination of the corner and random is suggested in this paper, called Hybrid
Corners-Random. This method can work well for the specifications that if at
least one of the corners or random points in the parameter space can be suc-
cessful in the falsification process. This leads us to introduce three base-line
algorithms. (i) Corners (ii) Uniform-Random, (iii) Hybrid Corners-Random.
In our evaluation, the latter method surprisingly outperforms NM-based al-
gorithms, irrespectively of the semantics used on the used benchmark set.
For specifications and examples that the Hybrid Corners-Random does not

work, i.e., it is not successful in falsification process, it is reasonable to use
an optimization-based method for falsification. In this paper, we propose a
simple new optimization algorithm, called line optimization, for falsification
that has a performance on par with, or better than, SNOBFIT but having
a much simpler implementation. The algorithm is inspired by the crawling
procedure in NM for local optimization, but also the ability to get out of
local optima and continue the optimization from a new but related point.
Evaluation results on the benchmark examples in this paper also will show

C6

2 Quantitative Semantics and Objective Functions

that the line optimization method performs better than NM and SNOBFIT
for the falsification process.
The main contributions of this paper are:

• A Hybrid Corners-Random method that uses the combination of the
corner and random methods is suggested.

• A new gradient-free optimization method is suggested, line optimization.

• The suggested methods in this paper are evaluated on ARCH benchmark
problems and additional benchmark problems.

The paper is organized as follows: Section 2 introduces the quantitative
semantics and different ways to define the objective functions used for the fal-
sification process. Section 3 proposes the suggested Hybrid Corners-Random
and line optimization methods. Section 4 introduces the evaluated benchmark
problems in this paper. Section 5 evaluates the performance of the suggested
optimization methods on benchmark problems. Finally, Section 6 summarizes
the contributions.

2 Quantitative Semantics and Objective Functions

In this paper, STL is used to model the specifications. The syntax of STL is
defined as follows [15]:

ϕ ::= µ | ¬µ |ϕ ∧ ψ |ϕ ∨ ψ |�[a,b]ψ |♦[a,b]ψ

where the predicate µ is µ ≡ µ(s) > 0 and s is a signal; ϕ and ψ are STL
formulas; �[a,b] denotes the globally operator between times a and b (with
a < b); ♦[a,b] denotes the finally operator between a and b.
The satisfaction of the formula ϕ with respect to the discrete signal s at

C7

Paper C

the discrete time instant k is defined as:

(s, k) |= µ ⇔ µ(s[k])
(s, k) |= ¬µ ⇔ ¬((s, k) |= µ)
(s, k) |= ϕ ∧ ψ ⇔ (s, k) |= ϕ ∧ (s, k) |= ψ

(s, k) |= ϕ ∨ ψ ⇔ (s, k) |= ϕ ∨ (s, k) |= ψ

(s, k) |= �[a,b]ϕ ⇔ ∀k′ ∈ [k + a, k + b], (s, k′) |= ϕ

(s, k) |= ♦[a,b]ϕ ⇔ ∃k′ ∈ [k + a, k + b], (s, k′) |= ϕ

Instead of only checking the boolean satisfaction of an STL formula, the notion
of quantitative value, i.e., an objective value, will be defined to measure how
far away a specification is from being falsified. A Valued Boolean (VBool) [10]
(v, x) is a combination of a Boolean value v (true >, or false ⊥) together with
a real number x that is a measure of how true or false the specification is.
This value will be used as a measure of how convincingly a test passed, or how
severely it failed, respectively. In the original VBool definition, x is defined to
always be non-negative. However, in this paper, we use the convention that
x is negative when v is false, and positive otherwise.

2.1 Quantitative Semantics
Using VBools, we define two quantitative semantics: Max, which is essen-
tially the same as standard STL quantitative semantics; Additive; For these
semantics we define the respective and, or, always, and eventually operators.
For conjunction, the semantics differ only in the two cases where the truth

values are the same:
Max Additive

(>, x) ∧ (>, y) = (>,min(x, y))
(
>, 1

1
x + 1

y

)
(>, x) ∧ (⊥, y) = (⊥, y)
(⊥, x) ∧ (>, y) = (⊥, x)
(⊥, x) ∧ (⊥, y) = (⊥,max(x, y)) (⊥, x+ y)

Using the de Morgan laws, the or operator can be defined in terms of and, as:

(vx, x) ∨ (vy, y) = ¬v(¬v(vx, x) ∧ ¬v(vy, y)),

C8

3 Optimization Methods

where VBool negation is defined as ¬v(vx, x) = (¬vx,−x).
For theMax semantics, the always operator over an interval [a, b] is straight-

forwardly defined in terms of and, as

�[a,b]ϕ =
b∧

k=a

ϕ [k] ,

where ϕ is a finite sequence of VBools defined for all the discrete time instants
in [a, b].
For the Additive semantics, though, always is a bit more elaborate:

�[a,b]ϕ =
b∧

k=a

ϕ [k] # δt,

where δt is the simulation step size that makes the quantitative value inde-
pendent of the simulation time, and # is:

(⊥, x) # δt = (⊥, x · δt)
(>, x) # δt = (>, x/δt).

Furthermore, the eventually operator is for all three semantics defined over
an interval [a, b] in terms of always, as:

♦[a,b]ϕ = ¬(�[a,b](¬v ϕ)).

3 Optimization Methods

Falsification can be done with our without using an optimization method. In
this paper, we introduce two optimization methods for falsification, one based
on only using corner points and random points (Hybrid Corners-Random Fal-
sification); and another one based on a gradient-free optimization algorithm
(Line optimization) that combines the local search with the ability to explore
new areas of the parameter space in case local optimization is unable to falsify
the specification.

C9

Paper C

3.1 Hybrid Corners-Random Method

If any optimization method is not be used, two possible methods can be
considered. First one is the corner points, i.e., the extreme points of the
given input ranges of the system under test; second is a random approach. In
this paper the uniform-random-based approach is considered.
We have observed from the corners points, that a successful strategy is

to focus on these points, i.e., if the low simulation budget then we should
start with the corners points. However, if a large simulation budget then
random will eventually beat the corners cases. These cases can happen for
the specifications that at least one of the corners or random methods are
successful in the falsification process. Thus, to be able to use the advantages
of both corners and random methods, a combination of these two methods can
be used; Hybrid Corners-Random. This method is presented in Algorithm 1.

Algorithm 1 Hybrid Corners-Random Method for Falsification
1: nbr_of_simulations = 0.
2: Pick a corner point, x.
3: while nbr_of_simulations < max_nbr_simulations do
4: Simulate system at x.
5: nbr_of_simulations++;
6: Evaluate spec at x.
7: if the spec if is falsified then
8: return x.
9: else
10: if nbr_of_simulations mod 2 = 0 OR corners exhausted then
11: Pick a random point x.
12: else
13: Pick a corner point x.
14: end if
15: end if
16: end while

In this algorithm, it does not matter which semantic is used. It just eval-
uates the chosen point that it is falsified or not. This algorithm works in
this way that in each iteration, a corner (random) point x is picked. Then,
simulate the system at the chosen point x to evaluate the specification is fal-
sified or not. If the specification is not falsified, then for the next iteration a
random (corner) point x will be picked. This algorithm keeps working until

C10

3 Optimization Methods

a maximum number of simulations, max_nbr_simulations is reached or the
specification is falsified.
It should be mentioned here that the number of corners is different and

each system has a specific maximum number of corners. Hence, if after some
iterations the number of corners is finished, then the algorithm will continue
with only the random points.

Although this method beats both corners and random methods, it is just a
good method for the examples that at least one of the corners or random or
both methods are successful in falsification. Hence, for the examples that they
are not successful, an optimization method is needed. In the next section, the
new line optimization method will be introduced.

3.2 Line Optimization
As was discussed in the previous section, always there are the examples that
are not able to be falsified with a Hybrid Corners-Random method.

Two gradient-free optimization methods, NM and SNOBFIT are optimiza-
tion methods that can be used for falsification. NM is an easy method that is
good at finding a local optimum. On the other hand, SNOBFIT is a complex
method that contains a parameter that controls the balance between local and
global search components of the optimization. If SNOBFIT cannot find any
information form the objective value, as was discussed for constant quantita-
tive semantic, still it is successful in falsification. In this situation, SNOBFIT
tries to guide the falsification search towards the extreme points. This was a
primary motivation for us to introduce the line optimization method.

All optimization methods in this paper, aim to find the falsification pro-
cess, i.e., the point has a negative objective value. This section introduces a
gradient-free optimization method that aimed to guide the search towards the
extreme points but also can go inside the input parameter ranges if that will
be indicated by the objective functions.

This optimization method is presented in Algorithm 2, implemented for the
falsification of CPSs in Breach.

Requirements

This method needs a system to be tested; the quantitative semantics that
needed to assign the objective function values.

C11

Paper C

Algorithm 2 Line Optimization Algorithm
1: Initial point. Calculate x∗ = (lb+ub)

2 and simulate the system at point, x∗ and
calculate the objective function value of the used semantic f(x∗).

2: Pick a line. Pick a line and calculate two points xL, xR, if the spec is not
falsified at x∗.

3: Alghorithm’s loop:
4: while (nbr_of_simulations ≤ max_nbr_simulations) do
5: if if the spec is falsified then
6: Terminate the algorithm with the current evaluated point.
7: else if (counter > max_nbr_iterations) then
8: Return the x∗ and pick a new line.
9: Generate two points xR and xL and simulate the system at these points.
10: if the spec is falsified at any of xR and xL then
11: Terminate the algorithm with the point that is falsified.
12: end if
13: else
14: if The point x∗ has the lowest objective value then
15: if ||x∗ − xL|| ≥ ||xR − x∗|| then
16: Simulate the system at point x1 = (xL + x∗)/2, and calculate f(x1):
17: if f(x1) < f(x∗) then
18: Let (xL, x∗, xR) be (xL, x1, x

∗).
19: else
20: Let (xL, x∗, xR) be (x1, x

∗, xR).
21: end if
22: else
23: Simulate the system at point x2 = (x∗ + xR)/2, and calculate f(x2):
24: if f(x2) < f(x∗) then
25: Let (xL, x∗, xR) be (x∗, x2, xR).
26: else
27: Let (xL, x∗, xR) be (xL, x∗, x2).
28: end if
29: end if
30: else if The point x∗ does not have the lowest objective value: then
31: if fL is smallest objective value then
32: Simulate the system at point x1 = (xL + x∗)/2, and calculate f(x1).
33: Let (xL, x∗, xR) be (xL, x1, x

∗).
34: else if fR is smallest objective value then
35: Simulate the system at point x2 = (xR + x∗)/2, and calculate f(x2).
36: Let (xL, x∗, xR) be (x∗, x2, xR).
37: end if
38: end if
39: end if
40: end while

C12

3 Optimization Methods

Output

The output of this algorithm is a point x, in n dimension, such as that:

• If the the falsification occurred, it returns f(x) < 0.

• If the maximum number of simulation is reached and the falsification
does not occur, it returns the point that has the minimum objective
value, but it is positive f(x) ≥ 0.

Optimization Process

This method needs three points at the beginning and during the algorithm
process as well, where these points will be updated and one new point in each
iteration will be produced. For the falsification process of a system under
test, each input parameter has a lower and upper bound i.e., the inputs are
in Rn. Thus, all three needed points are in or on a lower the lb and upper
ub the vectors that refer to the minimum and maximum of the input ranges
in Rn dimension. The objective value function is the function used where
f : Rn → R.
The optimization process is started in step 1 of Algorithm 2 where it takes

the middle point x∗ = lb+ub

2 , the point that aimed to be improved, i.e., find
a point with negative objective value. The objective function value f(x∗) of
this point needs to be calculated. If f(x∗) < 0, then the algorithm terminates
which means that the falsification process happens. Otherwise, a random line
is needed to be picked.
Pick a random line that passes through x∗. Two new points are now defined,

where they are generated from this line that cut the boundary of input ranges
at least on one dimension. These two points are called xL and xR that at
least one of the input parameters in on the upper (lower) and lower (upper)
bound. More details about how the line can be chosen will be discussed later
in this section. After calculating the objective function values for all these
two points, if fL or fR is negative, then the algorithm terminates with its
corresponding point. Otherwise, the optimization loop will be started from in
step 3 of Algorithm 2, where we search for a new point to be able to improve
x∗, if it is possible.

In this algorithm, we work with a chosen line in some iterations. Hence, a
counter is used. The algorithm stays in the while loop with the chosen line

C13

Paper C

until the counter is reached to the max_nbr_iterations. In each iteration,
if we can improve the point x∗ and find a better point with lower objective
function value, this counter resets to zero. Otherwise, it must be increased by
1. When this counter is reached to max_nbr_iterations, we get out from the
current line and a new line is needed to be picked, (steps 7-12)
Three points x∗, xL, and xR can have different cases:

1. The point x∗ has the lowest objective value: Two cases can happen
in while loop of Algorithm 2 that depends on which interval (xL, x

∗) or
(x∗, xR) is larger, steps 15-29.

2. The point x∗ does not have the lowest objective value: Compute
a fourth new point, depending on which (fL) or (fR) has the lowest
objective value, presented in while loop in steps 30-37 of Algorithm 2.

As was mentioned, only we allow being in one line until the counter is not
reached to its maximum value. When the counter is reached to the maximum
number of iterations, max_nbr_iterations, then we need to pick a new line
i.e., considering the new points of xL and xR with their objective values. Here
two different assumptions can be considered to choose x∗. We can force the
algorithm to never returns the same x∗ as was given as to the algorithm. This
helps the algorithm to work better because it does not get stuck in a local
minimum.
While the counter is greater than the max_nbr_iterations and we could

not improve the x∗, then just instead of considering the same x∗ to pick a
new line, we will select the second-best point that has the lowest objective
value generated in the while loop as x∗. This assumption can help to increase
the chance to pick the better line and not wasting the iterations with working
with an unsuitable point. On the other hand, if x∗ is improved and a better
point with less objective value is found during the optimization process, thus
we work with the improved current x∗ and a new line will be picked.
This algorithm works until the max_nbr_simulations is reached or a falsi-

fied point is found, i.e., a point with negative objective function value.
Note: The line can be a line that passes from x∗ or it can be two lines that

connect x∗ to xL and x∗ to xR. It depends on the chosen line that will be
discussed in the next part.

C14

3 Optimization Methods

How to choose a line?

There are different ways to pick a line. For example: considering a slope in a
specific range, for instance between [−1, 1], and try to randomly pick a slope
and add this to x∗ and continue from each side to at least cut one limitation
inputs in the n dimension. Another way used in this paper will be discussed
below.
One random point is considered inside the [lb, ub] and only in one dimension

this point on is on its corner point i.e., lb(i) or ub(i), where i = 1, · · · , or n.
This assumption allows us to be able to work with points that are at least on
one border of the input ranges. Lets call this point xR, now according to the
distance between this point and x∗, the third point, xL, will be generated. If
the point xR cuts at lb(i), then xL will cut at ub(i). On the other hand, if the
point xR cut at ub(i), then xL will cut at lb(i). By having these three points
x∗, xR and xL, a line is generated. Therefore, according to the chosen line
discussed above, three situations can occur:

• Case 1: The length of the line is fully in the box. One of xL and xR

that is fully in the box such that we allow for an extra piece of the line
length to stick out on either side of the box.

• Case 2: The line leaves the box [lb, ub], i.e., at least one of the dimen-
sions is not in the box anymore. We try to force the line to be on the
close boundary.

• Case 3: The line leaves the box [lb, ub], i.e., all dimensions are not in
the box anymore. We force the point to be on the closet corner point.

To better understanding how we choose the line according to the above
three situations, examples in Fig. 1 are given. In this figure, we assume that
xR is on the upper bound of its range and now we want to decide about
the point xL. It should be mentioned here that similar assumptions can be
considered for xR, too. For illustrative purposes, we will show the examples
in two dimensions i.e., we have two input parameters that they have a lower
and upper boundary in each dimension. We are allowed to take points within
the grey input parameter ranges box.

C15

Paper C

 Example 1

a) b)

 Example 2

c) d)

 Example 3

e) f)

xR

x*

()

()

1

2

b

b

l

u

()

()

1

2

b

b

l

l

()

()

1

2

b

b

u

u

()

()

1

2

b

b

u

l

()

()

1

2

b

b

l

u

()

()

1

2

b

b

l

l

()

()

1

2

b

b

u

u

()

()

1

2

b

b

u

l

xR

x*

xL

()

()

1

2

b

b

l

u

()

()

1

2

b

b

l

l

()

()

1

2

b

b

u

u

()

()

1

2

b

b

u

l

xR

x*

xL

()

()

1

2

b

b

l

u

()

()

1

2

b

b

l

l

()

()

1

2

b

b

u

u

()

()

1

2

b

b

u

l

xR

x*

xL

()

()

1

2

b

b

l

u

()

()

1

2

b

b

l

l

()

()

1

2

b

b

u

u

()

()

1

2

b

b

u

l

xR

x*

xL

()

()

1

2

b

b

l

u

()

()

1

2

b

b

l

l

()

()

1

2

b

b

u

u

()

()

1

2

b

b

u

l

xR

x*

xL

Figure 1: Examples in two dimension: Example 1 where xL is inside the [lb, ub]; Example
2 where xL outside the [lb, ub] in one dimension; Example 3 where xL is outside
the [lb, ub] in both dimensions.

C16

3 Optimization Methods

Example for Case 1:

First, the line ends up inside the working ranges, i.e., in [lb, ub]. Example 1 in
Fig. 1 shows this situation where the line ends up at point x′L (graph a). Since
that xR is on the upper bound of the first dimension, then we will continue
this line until to cut the lower bound of the first dimension. Thus, the xL

will be produced (graph b). In this situation, we work with only one line that
passes from x∗ and ends at two other points xR and xL.

Example for Case 2:

In example 2 of Fig. 1, the line ends up outside the working box, point x′L,
where only the second dimension is outside (graph c). Therefore, we force the
point xL to be on the border for the second dimension that results in the xL

in graph d. Similarly, if this situation happens for the first dimension, we will
force it to be on the the closet boundary. In this situation, we have two lines:
one the blue one that connects x∗ to xR; second, the red line that connects
x∗ to xL.

Example for Case 3:

The third situation, in both dimension the line is outside the working box, x′L
in graph e of Fig. 1. Thus, we force the xL to be equal to the extreme point(
lb(1)
lb(2)

)
(graph f). In this situation, we have two lines: one the blue one that

connects x∗ to xR; second the red line that connects x∗ to xL.
The assumptions are considered in the Case 2 and Case 3 where the line

leaves the working input box helps to be able to towards the extreme points
and also leads to being able to work with the points that at least in some
dimensions we are on the border of the working input ranges box.

In the line optimization method, if point x∗ is on a corner or close to that,
we can point towards the middle of the box and not just be in a small area.
Admittedly, there are many ways to pick the random lines and possible

different assumptions can be considered for the situations above in cases 1-3.
We make no claim that the presented choosing line is the “best” way to use.
How to choose a best line is one open question for future research.

In the next section, to evaluate the suggested method, some benchmark
problems are considered will be explained in the next section.

C17

Paper C

4 Benchmark Problems
In this paper, we consider the simulation-based falsification for all benchmarks
examples of ARCH workshop [13] and additional benchmark problems [16].
The additional benchmark problems are considered in this paper because there
is a lot of specifications and examples in the ARCH examples that can be fal-
sified easily. Although still, the additional benchmarks are easy to falsify,
they are considered because we can have more examples to show the perfor-
mance of the suggested optimization methods better. Table 1 demonstrates
the STL specifications that should be falsified for all the example models.
These examples briefly are introduced in the following.

4.1 ARCH Benchmark Problems
For some ARCH Benchmark problems, two input options are considered,
called instance 1 and 2.

• Instance 1: Arbitrary piece-wise continuous input signals. This option
considers the entire set of piecewise continuous input signals where the
values for each individual dimensions are from a given range. Additional
constraints are considered are the finite-number of discontinuity and
finite variability for all continuous parts of inputs.

• Instance 2: Constrained input signals. This option fixes the format of
the input signal precisely. An example input signal would be piece-
wise constant with k equally spaced control points, with ranges for each
dimension of the input.

For more details about these two instances see paper [13].

Automatic Transmission (AT)

The controller of this model selects a gear 1 to 4 that depends on two inputs:
throttle, brake; rotations per minute (ω); and car speed (v) [17]. Two different
control inputs are considered for this example:

• Instance 1: 0 ≤ throttle ≤ 100 and 0 ≤ brake ≤ 325, where both can be
active at the same time.

C18

4 Benchmark Problems

Table 1: Specifications to falsify for all benchmark examples
Spec. Formula
ϕAT1 �[0,20](v < 120)
ϕAT2 �[0,10](ω < 4750)
ϕAT3 �[0,30]

((
¬g1 ∧ ◦ g1

)
=⇒ ◦ �[0,2.5]g1

)
ϕAT4 �[0,30]

((
¬g2 ∧ ◦ g2

)
=⇒ ◦ �[0,2.5]g2

)
ϕAT5 �[0,30]

((
¬g3 ∧ ◦ g3

)
=⇒ ◦ �[0,2.5]g3

)
ϕAT6 �[0,30]

((
¬g4 ∧ ◦ g4

)
=⇒ ◦ �[0,2.5]g4

)
ϕAT7

(
�[0,30]ω < 3000

)
=⇒

(
�[0,4]v < 35

)
ϕAT8

(
�[0,30]ω < 3000

)
=⇒

(
�[0,8]v < 50

)
ϕAT9

(
�[0,30]ω < 3000

)
=⇒

(
�[0,20]v < 65

)
ϕAFC1 �[11,50]

(
((θ < 8.8) ∧ (♦[0,0.05](θ > 40))

∨(θ > 40) ∧ (♦[0,0.05](θ < 8.8)) =⇒ (�[1,5]|µ| < 0.008)
)

ϕAFC2 �[11,50]|µ| < 0.007

ϕNN1 �[1,37]

(
|Pos−Ref | > 0.005 + 0.03|Ref |

=⇒ ♦[0,2]�[0,1]
(
¬0.005 + 0.03|Ref | ≤ |Pos−Ref |

))
ϕNN2 �[1,37]

(
|Pos−Ref | > 0.005 + 0.04|Ref |

=⇒ ♦[0,2]�[0,1]
(
¬0.005 + 0.04|Ref | ≤ |Pos−Ref |

))
ϕWT

1 �[30,630]θ ≤ 14.2
ϕWT

2 �[30,630]21000 ≤Mg,d ≤ 47500
ϕWT

3 �[30,630]Ω ≤ 14.3
ϕWT

4 �[30,630]♦[0,5]|θ − θd| ≤ 1.6
ϕCC1 �[0,100]y5 − y4 ≤ 40
ϕCC2 �[0,100]♦[0,30]y5 − y4 ≥ 15
ϕCC3 �[0,80]

(
(�[0,20]y2 − y1 ≤ 20) ∨ (♦[0,20]y5 − y4 ≥ 40)

)
ϕCC4 �[0,65]♦[0,30]�[0,20]y5 − y4 ≥ 8
ϕCC5 �[0,72]♦[0,8]

(
(�[0,5]y2 − y1 ≥ 9) =⇒ (�[5,20]y5 − y4 ≥ 9)

)
ϕF16 �[0,15]altitude > 0

ϕSC �[30,35]

(
87 ≤ pressure ∧ pressure ≤ 87.5

)
ϕAT

′
1 ♦[0,T](ω ≥ 2000)

ϕAT
′

2 �♦[0,T](ω ≤ 3500 ∨ ω ≥ 4500)
ϕAT

′
3 �[0,T](¬(gear == 4))

ϕAT
′

4 ♦(�[0,T](gear == 3))
ϕAT

′
5

∧
i=1,...,4 �((¬(gear == i) ∧ ♦[0,ε](gear == i)

=⇒ (�[ε,T+ε](gear == i)))
ϕAT

′
6 �[0,T](v ≤ 85) ∨ ♦(ω ≥ 4500)

ϕAT
′

7 ¬
(

(�[0,1]gear == 1) ∧ (�[2,4]gear == 2)
∧(�[5,7]gear == 3) ∧ (�[8,10]gear == 3)

∧(�[12,15]gear == 2)
)

ϕAT
′

8 �[0,20]
(
(gear == 4 ∧ throttle > 45

∧throttle < 50) =⇒ ω < ω̄
)

ϕ∆−Σ �
(∧3

i=1(−1 ≤ xi ∧ xi ≤ 1)
)
.

ϕSS �(y ≥ 0)

C19

Paper C

• Instance 2: Constrained input signals permit discontinuities at most
every 5 time units.

Fuel Control of an Automotive Power Train (AFC)

This system is modeled in [18]–[20]. The constrained input signal fixes that
throttle θ to be piecewise constant with 10 uniform segments over a time
horizon of 0 with two modes. The engine speed ω to be constant with 900 ≤
ω < 1100.

Neural-Network Controller (NN)

This benchmark is based on the neural network of the MathWorks 1 controller.
It is designed for a system that levitates a magnet above an electromagnet at
a reference position. A reference value Ref for the position, where 1 ≤ Ref
and Ref ≤ 3, is the only input of this model. The current position of the
levitating magnet Pos is the output. Two different control inputs considered
for this model are:

• Instance 1: The input specification requires discontinuities to be at least
3 time-units.

• Instance 2: An input signal with exactly three constant segments is
required.

Wind Turbine (WT)

A simplified wind turbine model of paper [21] is considered. The input is: wind
speed v; the outputs are: blade pitch angle θ, generator torque Mg,d, rotor
speed Ω and demanded blade pitch angle θd. The wind speed is constrained
by 8.0 ≤ v ≤ 16.0.

Chasing Cars (CC)

The model is a simple model of an automatic chasing car [22]. CC model
consists of five cars, where the first car is driven by inputs (throttle and brake),

1https://au.mathworks.com/help/deeplearning/ug/design-narma-l2-neural-controller-in-
simulink.html

C20

4 Benchmark Problems

and the other four cars are driven by Hu et al.’s algorithm. The location of
five cars y1, y2, y3, y4, y5 is the system output. The inputs are:

• Instance 1: The input specifications allow any piecewise continuous sig-
nals.

• Instance 2: The input specifications constraints inputs to piecewise con-
stant signals with control points for every 5 seconds, 20 segments.

Aircraft Ground Collision Avoidance System (F16)

The F16 aircraft and its inner-loop controller are modeled for Ground Colli-
sion. 16 continuous variables with piece-wise nonlinear differential equations
are modeled [23]. The system is required to always avoid hitting the ground
during its maneuver starting from all the initial conditions for roll, pitch, and
yaw in the range [0.2π, 0.2833π]× [−0.5π,−0.54π]× [0.25π, 0.375π].

Steam Condenser with Recurrent Neural Network Controller (SC)

It is a dynamic model of a steam condenser based on energy balance and
cooling water mass balance controlled with a Recurrent Neural network in
feedback [24]. The input can vary in the range [3.99, 4.01], and the input
signal should be piecewise constant with 20 evenly spaced segments.

4.2 Additional Benchmark Problems
Automatic Transmission (AT ′) Benchmark

The inputs to the model are the throttle and brake of a vehicle. The outputs
of the model are the vehicle speed v, the engine speed ω, and the gear, see
[25] for details. It should be mentioned here that this example has different
specifications from the ARCH example presented in 4.1.

Third Order ∆− Σ Modulator

The third order ∆ − Σ modulator is a model of a technique for analog to
digital conversion. It has one input U , three states x1, x2, x3, and three initial
conditions xinit

1 , xinit
2 , xinit

3 , see [26] for details.

C21

Paper C

Static Switched (SS) System

The static switched system is a model without any dynamics that is included
as a simple case. The model has been inspired by [27].

5 Experimental Setup and Results
The two semanticsMax and Additive are considered in this paper. The line op-
timization method will be compared with Nelder-Mead and SNOBFIT. More-
over, the corners and uniform-random-based methods are given to compare
with the hybrid-corners-random. The results are shown in tables 2 to 14.
Each falsification is set to have a maximum of 1000 simulations performed.
There are a total of 20 falsifications run for each optimization method and
objectives functions to account for the stochastic nature of most algorithms.
Using corners, random and hybrid-corners-random, it does not matter which

semantic be used, thus they are evaluated by only one semantics.

Corners Implementation Setup

Each specification and example has a different number of corners. Thus, for
some examples, the number of corners can be less than 1000, the maximum
number of simulations, or more than 1000. Therefore, for those examples that
it is less than 1000 search, the corners terminates after the maximum number
of corners is reached.

Uniform-Random Implementation Setup

For each of 20 falsifications run, the uniform random points are generated
from different seeds, i.e., 20 different seeds are considered.

Hybrid Corners-Random Implementation Setup

The Hybrid Corners-Random method starts with the corners point and the
next point is the uniform-random point. It switches between the corners
and uniform-random until the maximum number of simulations, 1000 here,
is reached or a falsified point is found. The number of corners is limited, it
depends on how many parameters the corner system under test has. If the

C22

5 Experimental Setup and Results

maximum number of corners is reached, the Hybrid Corners-Random contin-
ues the algorithm using only uniform-random points.

NM Implementation Setup

This algorithm is implemented as fminsearch [28] in Matlab. The implemen-
tation of all semantics for NM starts from 100 random sampling points for all
examples. After evaluation of 100 random sampling points, if falsification does
not happen, i.e., the point with negative objective value, then the NM method
starts. This method uses a simplex of n+ 1 points for n-dimensional vectors.
These points are generated from the minimum point, the point with the low-
est objective value, of 100 random points. This algorithm is implemented as
fminsearch [28] in Matlab. There are the options input argument in the imple-
mentation of NM which affects the algorithm used by fminsearch. The options
input argument is a data structure that drives the behavior of fminsearch. It
allows handling several options in a consistent and simple interface, without
the problem of managing many input arguments.
The fminsearch function is sensitive to some options. We just describe some

of them here to mention what assumption is considered in the implementation
of NM.

First is the maximum number of iterations, Max-Iter. The default is 200×n,
where n is the number of variables. Thus, it is different for each example.
Second isMax-Fun-Evals, the maximum number of evaluations of the function.
The default is 150 in this paper.
Therefore, NM gets out of its loop, while the point with negative objective

value is not found, if one of the following condition happens.

• The maximum iteration of Max-Iter is reached.

• The maximum of Max-Fun-Evals is reached.

• f(xn+1)− f(x1) < ε, where ε > 0 is a small predetermined tolerance.

Then, if one of the above conditions are fulfilled leads that NM starts 100
new random points and find a new point with the lowest objective value that
leads to generating new n+ 1 new points.

C23

Paper C

Line Optimization Implementation Setup

The maximum fixed number of counter is a fixed number that can be chosen.
This value in the algorithm 2 is considered be equal to 2 in this paper.

Results Tables Setups

The result tables are formatted as: the first column denotes the optimization
method; the columns show the different semantics including the Max, Addi-
tive. For each optimization method and semantics, two values are presented.
The first value is the relative success rate of falsification, in percent. There
are a total of 20 falsifications runs for each parameter value and objectives
functions, thus the success rate will be a multiple of 5%. The second value,
inside parentheses, is the average number of needed simulations per successful
falsification.

Table 2: Results for the Automatic Transmission (Instance 1).
Optimization Method Semantics

ϕAT1 ϕAT2 ϕAT3
Max Add Max Add Max Add

Nelder-Mead 100 (213) 100 (227) 100 (17) 100 (8) 100 (24) 100 (19)
Line Optimization 100 (34) 100 (40) 100 (9) 100 (10) 100 (37) 100 (34)

SNOBFIT 100 (40) 100 (38) 100 (6) 100 (6) 100 (8) 100 (8)
Uniform-Random 0 (-) 100 (10) 100 (13)

Corners 100 (3) 100 (2) 0 (-)
Hybrid Corners-Random 100 (5) 100 (3) 100 (27)

ϕAT4 ϕAT5 ϕAT6
Max Add Max Add Max Add

Nelder-Mead 100 (14) 100 (15) 100 (13) 100 (15) 100 (57) 100 (73)
Line Optimization 100 (31) 100 (36) 100 (21) 100 (17) 100 (63) 100 (112)

SNOBFIT 100 (14) 100 (30) 100 (11) 100 (9) 100 (106) 100 (87)
Uniform-Random 100 (13) 100 (11) 100 (59)

Corners 0 (-) 0 (-) 0 (-)
Hybrid Corners-Random 100 (25) 100 (23) 100 (117)

ϕAT7 ϕAT8 ϕAT9
Max Add Max Add Max Add

Nelder-Mead 100 (43) 100 (48) 100 (57) 100 (103) 100 (43) 100 (29)
Line Optimization 100 (13) 100 (24) 100 (26) 100 (28) 100 (22) 100 (12)

SNOBFIT 100 (54) 100 (38) 100 (91) 100 (70) 100 (52) 100 (47)
Uniform-Random 100 (65) 100 (96) 100 (31)

Corners 0 (-) 0 (-) 0 (-)
Hybrid Corners-Random 100 (130) 100 (178) 100 (61)

C24

5 Experimental Setup and Results

Table 3: Results for the Automatic Transmission (Instance 2).
Optimization Method Semantics

ϕAT1 ϕAT2 ϕAT3
Max Add Max Add Max Add

Nelder-Mead 0 (-) 0 (-) 80 (263) 90 (234) 100 (5) 100 (5)
Line Optimization 0 (-) 0 (-) 100 (187) 100 (96) 100 (10) 100 (13)

SNOBFIT 0 (-) 0 (-) 100 (76) 100 (59) 100 (7) 100 (5)
Uniform-Random 0 (-) 100 (288) 100 (5)

Corners 0 (-) 100 (2) 100 (5)
Hybrid Corners-Random 0 (-) 100 (3) 100 (7)

ϕAT4 ϕAT5 ϕAT6
Max Add Max Add Max Add

Nelder-Mead 100 (1) 100 (1) 100 (1) 100 (1) 100 (2) 100 (2)
Line Optimization 100 (3) 100 (3) 100 (2) 100 (2) 100 (6) 100 (6)

SNOBFIT 100 (2) 100 (1) 100 (1) 100 (1) 100 (2) 100 (2)
Uniform-Random 100 (2) 100 (1) 100 (2)

Corners 100 (3) 100 (3) 100 (3)
Hybrid Corners-Random 100 (3) 100 (2) 100 (3)

ϕAT7 ϕAT8 ϕAT9
Max Add Max Add Max Add

Nelder-Mead 0 (-) 5 (597) 0 (-) 0 (-) 0 (-) 0 (-)
Line Optimization 100 (121) 100 (122) 100 (127) 100 (214) 100 (75) 100 (41)

SNOBFIT 45 (357) 45 (304) 15 (621) 30 (369) 75 (194) 65 (243)
Uniform-Random 0 (-) 0 (-) 0 (-)

Corners 0 (-) 0 (-) 0 (-)
Hybrid Corners-Random 0 (-) 0 (-) 0 (-)

Table 4: Results for the Fuel Control of an Automotive Power Train.
Optimization Method Semantics

ϕAFC1 ϕAFC2
Max Add Max Add

Nelder-Mead 100 (148) 95 (318) 100 (17) 100 (13)
Line Optimization 100 (6) 100 (9) 100 (2) 100 (3)

SNOBFIT 100 (33) 100 (27) 100 (8) 100 (7)
Uniform-Random 100 (364) 100 (16)

Corners 100 (3) 100 (3)
Hybrid Corners-Random 100 (5) 100 (5)

Table 5: Results for the Neural Network (Instance 1).
Optimization Method Semantics

ϕNN1 ϕNN2
Max Add Max Add

Nelder-Mead 100 (71) 100 (81) 15 (487) 10 (434)
Line Optimization 100 (65) 100 (62) 45 (400) 25 (289)

SNOBFIT 100 (77) 100 (87) 35 (379) 20 (440)
Uniform-Random 100 (117) 0 (-)

Corners 0 (-) 0 (-)
Hybrid Corners-Random 100 (125) 0 (-)

C25

Paper C

Table 6: Results for the Neural Network (Instance 2).
Optimization Method Semantics

ϕNN1 ϕNN2
Max Add Max Add

Nelder-Mead 100 (28) 100 (19) 0 (-) 5 (164)
Line Optimization 100 (25) 100 (18) 80 (253) 90 (354)

SNOBFIT 100 (18) 100 (20) 75 (342) 85 (361)
Uniform-Random 100 (29) 5 (506)

Corners 100 (36) 100 (42)
Hybrid Corners-Random 100 (39) 100 (83)

Table 7: Results for the Wind Turbine.
Optimization Method Semantics

ϕWT
1 ϕWT

2 ϕWT
3

Max Add Max Add Max Add
Nelder-Mead 100 (1) 100 (1) 100 (1) 100 (1) 100 (1) 100 (1)

Line Optimization 100 (3) 100 (3) 100 (2) 100 (2) 100 (2) 100 (2)
SNOBFIT 100 (1) 100 (1) 100 (1) 100 (1) 100 (1) 100 (1)
Random 100 (2) 100 (1) 100 (1)
Corners 100 (3) 100 (3) 100 (3)

Hybrid Corners-Random 100 (3) 100 (2) 100 (2)
ϕWT

4
Max Add

Nelder-Mead 100 (109) 100 (79)
Line Optimization 100 (66) 100 (62)

SNOBFIT 100 (62) 100 (65)
Random 100 (115)
Corners 100 (16)

Hybrid Corners-Random 100 (30)

Table 8: Results for the Chasing Car (Instance 1).
Optimization Method Semantics

ϕCC1 ϕCC2 ϕCC3
Max Add Max Add Max Add

Nelder-Mead 100 (6) 100 (11) 100 (5) 100 (5) 100 (22) 100 (21)
Line Optimization 100 (8) 100 (9) 100 (8) 100 (10) 100 (14) 100 (19)

SNOBFIT 100 (4) 100 (5) 100 (5) 100 (3) 100 (5) 100 (5)
Uniform-Random 100 (8) 100 (5) 100 (17)

Corners 100 (3) 100 (1) 100 (3)
Hybrid Corners-Random 100 (5) 100 (1) 100 (5)

ϕCC4 ϕCC5
Max Add Max Add

Nelder-Mead 0 (-) 0 (-) 100 (45) 100 (23)
Line Optimization 40 (381) 30 (604) 100 (19) 100 (37)

SNOBFIT 55 (382) 65 (375) 100 (17) 100 (16)
Uniform-Random 0 (-) 100 (18)

Corners 0 (-) 0 (-)
Hybrid Corners-Random 0 (-) 100 (36)

C26

5 Experimental Setup and Results

Table 9: Results for the Chasing Car (Instance 2).
Optimization Method Semantics

ϕCC1 ϕCC2 ϕCC3
Max Add Max Add Max Add

Nelder-Mead 100 (131) 100 (142) 90 (245) 100 (96) 100 (22) 100 (37)
Line Optimization 100 (32) 100 (26) 90 (304) 100 (218) 100 (13) 100 (11)

SNOBFIT 100 (32) 100 (29) 90 (129) 100 (125) 100 (8) 100 (12)
Uniform-Random 100 (67) 100 (157) 100 (24)

Corners 100 (3) 100 (1) 100 (3)
Hybrid Corners-Random 100 (5) 100 (1) 100 (5)

ϕCC4 ϕCC5
Max Add Max Add

Nelder-Mead 0 (-) 0 (-) 100 (152) 100 (55)
Line Optimization 5 (320) 5 (540) 100 (67) 100 (93)

SNOBFIT 0 (-) 0 (-) 100 (48) 100 (38)
Uniform-Random 0 (-) 100 (96)

Corners 0 (-) 100 (21)
Hybrid Corners-Random 0 (-) 100 (38)

Table 10: Results for Aircraft Ground Collision Avoidance system.
Optimization Method Semantics

ϕF16

Max Add
Nelder-Mead 25 (343) 20 (319)

Line Optimization 65 (530) 60 (399)
SNOBFIT 80 (217) 85 (271)

Uniform-Random 5 (759)
Corners 0 (-)

Hybrid Corners-Uniform-Random 5 (767)

Table 11: Results for the Steam Condenser with Recurrent Neural Network Controller.
Optimization Method Semantics

ϕSC

Max Add
Nelder-Mead 0 (-) 0 (-)

Line Optimization 0 (-) 0 (-)
SNOBFIT 0 (-) 0 (-)

Uniform-Random 0 (-)
Corners 0 (-)

Hybrid Corners-Uniform-Random 0 (-)

C27

Paper C

Table 12: Results for the Automatic Transmission (AT ′).
Optimization Method Semantics

ϕAT
′

1 (T = 20) ϕAT
′

1 (T = 30) ϕAT
′

1 (T = 40)
Max Add Max Add Max Add

Nelder-Mead 100 (138) 100 (156) 85 (264) 95 (365) 35 (315) 65 (557)
Line Optimization 100 (63) 100 (56) 100 (172) 100 (104) 100 (241) 100 (219)

SNOBFIT 100 (27) 100 (16) 100 (44) 100 (34) 100 (80) 100 (53)
Uniform-Random 100 (168) 60 (396) 25 (267)

Corners 100 (1) 100 (1) 100 (1)
Hybrid Corners-Uniform-Random 100 (1) 100 (1) 100 (1)

ϕAT
′

2 (T = 10)
Max Add

Nelder-Mead 100 (33) 100 (14)
Line Optimization 100 (18) 100 (20)

SNOBFIT 100 (11) 100 (10)
Uniform-Random 100 (20)

Corners 100 (2)
Hybrid Corners-Uniform-Random 100 (3)

ϕAT
′

3 (T = 4.5) ϕAT
′

3 (T = 5)
Max Add Max Add

Nelder-Mead 100 (141) 90 (323) 100 (65) 100 (96)
Line Optimization 100 (173) 100 (151) 100 (81) 100 (61)

SNOBFIT 100 (89) 100 (46) 100 (41) 100 (24)
Uniform-Random 100 (183) 100 (79)

Corners 100 (11) 100 (11)
Hybrid Corners-Uniform-Random 100 (21) 100 (21)

ϕAT
′

4 (T = 1) ϕAT
′

4 (T = 2)
Max Add Max Add

Nelder-Mead 60 (505) 35 (358) 100 (21) 100 (20)
Line Optimization 60 (376) 85 (307) 100 (30) 100 (24)

SNOBFIT 100 (170) 60 (328) 100 (17) 100 (18)
Uniform-Random 70 (407) 100 (24)

Corners 100 (1) 100 (1)
Hybrid Corners-Uniform-Random 100 (1) 100 (1)

ϕAT
′

5 (T = 1) ϕAT
′

5 (T = 2)
Max Add Max Add

Nelder-Mead 95 (407) 75 (516) 100 (5) 100 (4)
Line Optimization 100 (37) 100 (127) 100 (6) 100 (7)

SNOBFIT 100 (54) 100 (59) 100 (3) 100 (4)
Uniform-Random 95 (212) 100 (5)

Corners 100 (71) 100 (22)
Hybrid Corners-Uniform-Random 100 (120) 100 (10)

ϕAT
′

6 (T = 10) ϕAT
′

6 (T = 12)
Max Add Max Add

Nelder-Mead 50 (722) 45 (483) 100 (236) 100 (215)
Line Optimization 30 (543) 25 (317) 95 (173) 100 (265)

SNOBFIT 0 (-) 0 (-) 80 (481) 90 (344)
Uniform-Random 0 (-) 90 (328)

Corners 0 (-) 0 (-)
Hybrid Corners-Uniform-Random 0 (-) 60 (297)

ϕAT
′

7
Max Add

Nelder-Mead 20 (766) 75 (383)
Line Optimization 25 (568) 75 (345)

SNOBFIT 65 (546) 95 (295)
Uniform-Random 45 (421)

Corners 0 (-)
Hybrid Corners-Uniform-Random 30 (621)

ϕAT
′

8 (ω̄ = 3000) ϕAT
′

8 (ω̄ = 3500)
Max Add Max Add

Nelder-Mead 100 (13) 100 (12) 30 (439) 90 (375)
Line Optimization 100 (11) 100 (9) 55 (324) 100 (178)

SNOBFIT 100 (7) 100 (9) 25 (462) 85 (341)
Uniform-Random 100 (9) 30 (389)

Corners 100 (3) 100 (3)
Hybrid Corners-Uniform-Random 100 (5) 100 (5)

C28

5 Experimental Setup and Results

Table 13: Results for the Third Order ∆ − Σ Modulator.
Optimization Method Semantics

ϕ∆−Σ
1 (U ∈ [−0.35, 0.35]) ϕ∆−Σ

1 (U ∈ [−0.40, 0.40]) ϕ∆−Σ
1 (U ∈ [−0.45, 0.45])

Max Add Max Add Max Add
Nelder-Mead 65 (459) 25 (320) 100 (301) 90 (399) 100 (196) 100 (140)

Line Optimization 100 (249) 100 (254) 100 (52) 100 (48) 100 (39) 100 (50)
SNOBFIT 100 (180) 95 (160) 100 (38) 100 (47) 100 (21) 100 (28)

Uniform-Random 0 (-) 95 (313) 100 (262)
Corners 0 (-) 100 (3) 100 (6)

Hybrid Corners-Uniform-Random 0 (-) 100 (5) 100 (11)

Table 14: Results for the Static Switched System.
Optimization Method Semantics

ϕSS1 (thresh = 0.7) ϕSS1 (thresh = 0.8) ϕSS1 (thresh = 0.9)
Max Add Max Add Max Add

Nelder-Mead 100 (62) 100 (68) 100 (80) 100 (130) 80 (437) 95 (295)
Line Optimization 100 (66) 100 (47) 100 (60) 100 (119) 100 (121) 100 (192)

SNOBFIT 100 (22) 100 (22) 100 (128) 100 (63) 80 (304) 75 (208)
Uniform-Random 100 (42) 100 (84) 85 (261)

Corners 100 (2) 100 (2) 100 (2)
Hybrid Corners-Uniform-Random 100 (3) 100 (3) 100 (3)

5.1 Hybrid Corners-Random vs. Corners and Random

First, the comparison among the corners, uniform-random-based, and the
Hybrid Corners-Random methods are given. According to the tables 2-14 it
can be seen that for many of the specifications, at least one of the corners
and random can work well. Now, we go through all examples with details for
better evaluation.
AT example instance 1, in Table 2, is one of the examples that for all of

the specifications, one of the corners and random, or even both can falsify the
specification with rate 100%. The specification ϕAT

1 is only the specification
that can be falsified with the corners. On the other hand, all specifications
ϕAT

3 , ϕAT
4 , ϕAT

5 , ϕAT
6 , ϕAT

7 , ϕAT
8 , ϕAT

9 , the uniform-random works well. Only,
both methods can work well for ϕAT

2 . Thus, if we only have only one corners
or uniform-random, then we cannot get a falsified point for all specifications,
thus the Hybrid Corners-Random methods can help to be a full success (100
%) in the falsification of all specifications in this example.
As can be seen in Table. 3 for instance 2 of AT example, the specifications

ϕAT
1 , ϕAT

7 , ϕAT
8 , ϕAT

9 are the hard examples that none of the corners and
uniform-random are successful in falsification. Thus, the Hybrid Corners-
Random method does not help for these specifications to be falsified. This is

C29

Paper C

the situation that optimization methods are needed that will be discussed in
the optimization part. On the other hand, the specifications ϕAT

2 , ϕAT
3 , ϕAT

4 ,
ϕAT

5 and ϕAT
6 are falsified by both the corners and uniform-random. Thus,

the Hybrid Corners-Random is also good for these specifications.
In the AFC example, the corners method is the best method for both speci-

fications of this example especially in less simulation compare to the uniform-
random, Table 4. The Hybrid Corners-Random helps here to improve the
uniform-random and beats the uniform-random, then falsification is improved.
In the NN example, instance 1 for specification ϕNN

1 , Hybrid Corners-
Random improves the falsification and beats the corners method. In instance
2 of this specification both the corners and uniform-random work well, then
Hybrid Corners-Random is well, too. On the other hand, for ϕNN

2 , for instance
1, it is hard to be falsified with these methods, and optimization methods are
needed. For instance 2 of this specification, the corners are successful thus
the Hybrid Corners-Random works well in this example.
WT example is an example that is falsified easily by both the corners and

uniform-random. Compare to the first three specifications, a little ϕW T
4

is hardest and needed more simulations, but still, all three methods cor-
ners, uniform-random, and Hybrid Corners-Random are successfully falsify
the specification .
In the CC example for both instances, all specifications (except ϕCC

4 where
an optimization method is needed) are possible to falsify easily. Also, ϕCC

5
of instance 1, is the one example that the uniform-random beats the corners,
thus the Hybrid Corners-Random improves the corners.
F16 example needs an optimization method. Although the uniform-random

finds only one out of 20 times of testing, still it is not a good method and
does not help the Hybrid Corners-Random to be more efficient. It should
be motioned this note here that in this example, the number of corners is 8
and the most iterations of the Hybrid Corners-Random are done by picking
random points.
SC is one example that it does not matter which semantic or optimization

method is used because it is not possible to find falsification with none of them.
In the paper [21], they tried to use Simulated Annealing (SA) global search
in combination with an optimal control based local search on the infinite-
dimensional input space to successfully falsify the specification.
In the AT ′, for all specifications of ϕAT ′

1 , ϕAT ′

2 , ϕAT ′

3 , ϕAT ′

4 , ϕAT ′

5 , and ϕAT ′

8

C30

5 Experimental Setup and Results

it is possible to be falsified on the corners better than the uniform-random. As
a result, the Hybrid Corners-Random is successful here. On the other hand,
the uniform-random performs better than the corners in ϕAT ′

6 (T = 12) and
ϕAT ′

7 . Hybrid Corners-Random beats the corners here. Only the ϕAT ′

6 (T =
10) needs an optimization method.

For modulator example, both corners and uniform-random methods work
well for the specification ϕ∆−Σ

1 (U ∈ [−0.40, 0.40]) and (U ∈ [−0.45, 0.45])
(corners is much better). Hence, Hybrid Corners-Random is fully successful
for them. On the other hand, for the specification ϕ∆−Σ

1 (U ∈ [−0.35, 0.35]),
an optimization method is needed.
SS system is one of the examples that is falsified on the corners, thus the

Hybrid Corners-Random approach performs well.

Conclusion

To be able to have a better comparison among these three methods a cactus
plot of the results is shown in Fig 2. As it can be seen in this figure, while
random is more successful in falsification, the corners method finds the fal-
sified point for those examples that is falsified on the corners so fast in the
less simulation. Thus, the Hybrid Corners-Random beats both methods and
enhances the number of falsification.

It should be mentioned here that most of the available benchmark problems
in this paper are so easy to be falsified using the corners or random methods. It
is only for a subset of the specifications and models that optimization methods
are needed compared to using corners or a random approach. This subset is
discussed in the next part.

5.2 Line Optimization vs. Nelder-Mead and SNOBFIT
This part compares the results of the new line optimization method with the
NM and the SNOBFIT for those specifications and examples that are not
possible to be falsified by the corners and uniform-random. We have the
specifications 7, 8, 9 of AT example in instance 2; the second specification of
the NN example in instance 1; the fourth specification of both instance 1 and
2 of CC example; F16 example; the specifications 6 for both T = 10, T = 12
and 7 of AT ′ and the first specification of the Modulator example.
For some specifications and systems, there is a clear tendency that a specific

C31

Paper C

0 100 200 300 400 500 600 700 800 900 1000

Number of successful falsifications

10
0

101

102

10
3

N
u
m

b
e
r

o
f
s
im

u
la

ti
o
n
s

Corners

Uniform-Random

Hybrid Corners-Random

Figure 2: A cactus plot showing performance of corners, uniform-random and Hybrid
Corners-Random. The plotted values show how many successful falsifications
(x-axis) were completed in less than a specific number of simulations (y-axis).
The maximum number of simulations per falsification is 1000.

optimization and semantics performs better.
As can be seen in Table. 3 AT example instance 2 is a good example to show

the performance of the line optimization, where a significant enhancing in
falsification success rate happens. It can be seen that an improvement from 0
in the NM to 100 percent in the line optimization happens for the specifications
ϕAT

7 , ϕAT
8 and ϕAT

9 . A huge difference between the line optimization and
SNOBFIT methods can be seen in this example, too. The line optimization
is falsified in 100% and it performs significantly better than the SNOBFIT.
In the NN example, for instances 1, specification ϕNN

2 , enhancing falsifi-
cation happens for both semantics, where the line optimization performers
better than the NM and the SNOBFIT.
In the CC example instance 1, enhancing the falsification happens in speci-

fication ϕCC
4 while NM is not successful in the falsification process, the SNOB-

FIT and the line optimization are successful in some runs where the SNOBFIT
works slightly better. In instance 2 of the CC example, although only 5% im-
provement happens in CC, instance 2 using the line optimization, it gives this
result that it is possible to falsify this specification.
In the F16 example, good improvement and performance of the line opti-

C32

5 Experimental Setup and Results

mization can be seen compared to the NM, but slightly the SNOBFIT gives
better results.
In the AT ′, only in both specifications ϕAT ′

6 (T = 10), (T = 12), this is the
NM performs well totally better than two others. Compare to the SNOBFIT
that is not successful in falsification, the line optimization performs better
and it finds the falsification in some falsification run. ϕAT ′

7 is the only specifi-
cation of this example that the SNOBFIT works slightly better than the line
optimization.
In ∆−Σ Modulator example, the good performance of the line optimization

can be seen in Table 13 where the falsification in specification ϕ∆−Σ
1 (U ∈

[−0.35, 0.35]) is enhanced to 100% using the line optimization compare to
NM and SNOBFIT for both semantics.
To better compare the optimization methods, aggregated results are shown

in Figure 3. As can be seen in this figure and also according to the discus-
sion above, the line optimization works better than NM. Since simulations are
costly, the line optimization can find the falsified points fast and towards the
falsification area using fewer simulations. Also, the line optimization works
better than the SNOBFIT while line optimization has the simpler implemen-
tation. Compared to the semantics, the Additive works slightly better than
Max.

5.3 Comparison of all optimization methods
The overall comparison of all algorithms is presented in Figure 4. The Hybrid
Corners-Random beats not only the corners and uniform-random, but also
beats both the NM using Max and Additive. It can be seen that the line
optimization is more successful in falsification compared to the other evaluated
optimization methods. It should be mentioned that this conclusion is made
by evaluation on the available benchmark problems in this paper.
Usually in the industrial, there is this possibility to run the different op-

timization methods parallel on a computing cluster. It helps to identify the
examples that are falsified on the corners or randomly fast. As a result, it is
not need to consider and run any optimization method for those examples. It
can be more efficient to get the falsifications results so fast.

Still, for better evaluation of the optimization methods specially the sug-
gested line optimization in this paper, more examples and specifications are
needed, where not be falsified easily using the corners and random points.

C33

Paper C

0 50 100 150

Number of successful falsifications

10
0

101

102

10
3

N
u
m

b
e
r

o
f
s
im

u
la

ti
o
n
s

NM Max

NM Additive

SNOBFIT Max

SNOBFIT Additive

Line Optimization Max

Line Optimization Additive

Figure 3: A cactus plot showing performance of each combination of quantitative seman-
tics and optimization methods. The plotted values tell how many successful
falsifications (x-axis) were completed in less than a specific number of simula-
tions (y-axis). The maximum number of simulations per falsification is 1000.

0 200 400 600 800 1000 1200

Number of successful falsifications

100

101

102

103

N
u
m

b
e
r

o
f
s
im

u
la

ti
o
n
s

Corners

Uniform-Random

Hybrid Corners-Random

NM Max

NM Additive

SNOBFIT Max

SNOBFIT Additive

Line Optimization Max

Line Optimization Additive

Figure 4: A cactus plot showing performance of each combination of quantitative semantics
and all base-line and optimization methods. The plotted values tell how many
successful falsifications (x-axis) were completed in less than a specific number
of simulations (y-axis). The maximum number of simulations per falsification is
1000.

C34

6 Conclusions

6 Conclusions
In this paper, two optimization methods were suggested to enhance the fal-
sification of CPSs. The first method is the combination of the corners and
uniform-random method, Hybrid Corners-Random. This method could help
to get the falsification point so fast for those examples that can be falsified
easily in few simulations on the corners or randomly. On the other hand, there
are specifications and examples that none of the corners and uniform-random
were efficient to be used, thus optimization methods that can falsify efficiently
is needed.
The second proposed method is a gradient-free optimization method, called

line optimization, that do the optimization over a line. This method is
compared to the Nelder-Mead and the SNOBFIT methods. The proposed
method is evaluated on standard benchmark problems and the line optimiza-
tion method is able to, in general, reduce the number of simulations needed
to falsify specifications.

A future work is to evaluate the suggested line optimization method on
industrial applications.

References
[1] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya, “What’s de-

cidable about hybrid automata?”, in Proceedings of the Twenty-seventh
Annual ACM Symposium on Theory of Computing, ser. STOC ’95, Las
Vegas, Nevada, USA: ACM, 1995, pp. 373–382.

[2] P. Mosterman, “Model-based design of embedded systems”, in 2007
IEEE International Conference on Microelectronic Systems Education
(MSE’07), 2007, pp. 3–3.

[3] E. Bartocci, J. Deshmukh, A. Donzé, G. Fainekos, O. Maler, D. Nickovic,
and S. Sankaranarayanan, “Specification-based monitoring of cyber-
physical systems: A survey on theory, tools and applications”, in Lec-
tures on Runtime Verification, ser. Lecture Notes in Computer Science,
vol. 10457, 2018, pp. 135–175.

[4] J. Kapinski, J. V. Deshmukh, X. Jin, H. Ito, and K. Butts, “Simulation-
based approaches for verification of embedded control systems: An over-
view of traditional and advanced modeling, testing, and verification

C35

Paper C

techniques”, IEEE Control Systems Magazine, vol. 36, no. 6, pp. 45–
64, 2016.

[5] G. E. Fainekos and G. J. Pappas, “Robustness of temporal logic spec-
ifications for continuous-time signals”, Theoretical Computer Science,
vol. 410, no. 42, pp. 4262–4291, 2009, issn: 0304-3975.

[6] R. Koymans, “Specifying real-time properties with metric temporal l-
ogic”, Real-Time Systems, vol. 2, no. 4, pp. 255–299, 1990.

[7] O. Maler and D. Nickovic, “Monitoring temporal properties of contin-
uous signals”, in Formal Techniques, Modelling and Analysis of Timed
and Fault-Tolerant Systems, Y. Lakhnech and S. Yovine, Eds., Berlin,
Heidelberg: Springer Berlin Heidelberg, 2004, pp. 152–166.

[8] Y. Annpureddy, C. Liu, G. Fainekos, and S. Sankaranarayanan, “S-
TaLiRo: A tool for temporal logic falsification for hybrid systems”, in
Tools and Algorithms for the Construction and Analysis of Systems,
P. A. Abdulla and K. R. M. Leino, Eds., Berlin, Heidelberg: Springer
Berlin Heidelberg, 2011, pp. 254–257.

[9] A. Donzé, “Breach, a toolbox for verification and parameter synthesis
of hybrid systems”, in Computer Aided Verification, T. Touili, B. Cook,
and P. Jackson, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg,
2010, pp. 167–170.

[10] K. Claessen, N. Smallbone, J. Eddeland, Z. Ramezani, and K. Åkesson,
“Using valued booleans to find simpler counterexamples in random test-
ing of cyber-physical systems”, IFAC-PapersOnLine, vol. 51, no. 7, 408
–415, 2018, 14th IFAC Workshop on Discrete Event Systems WODES
2018.

[11] L. Rios and N. Sahinidis, “Derivative-free optimization: A review of
algorithms and comparison of software implementations”, Journal of
Global Optimization, vol. 56, no. 3, pp. 1247–1293, 2013.

[12] J. L. Eddeland, S. Miremadi, and K. Åkesson, “Evaluating optimiza-
tion solvers and robust semantics for simulation-based falsification”, in
ARCH20. 7th International Workshop on Applied Verification of Con-
tinuous and Hybrid Systems, 2020.

C36

References

[13] G. Ernst, P. Arcaini, A. Donzé, G. Fainekos, L. Mathesen, G. Pedrielli,
S. Yaghoubi, Y. Yamagata, and Z. Zhang, “ARCH-COMP 2019 Cate-
gory Report: Falsification”, in ARCH19. 6th International Workshop on
Applied Verification of Continuous and Hybrid Systems, vol. 61, pp. 129–
140, 2019.

[14] W. Huyer and A. Neumaier, “Snobfit–stable noisy optimization by branch
and fit”, ACM Transactions on Mathematical Software (TOMS), vol. 35,
no. 2, pp. 1–25, 2008.

[15] V. Raman, A. Donzé, M. Maasoumy, R. M. Murray, A. Sangiovanni-
Vincentelli, and S. A. Seshia, “Model predictive control with signal
temporal logic specifications”, in 53rd IEEE Conference on Decision
and Control, 2014, pp. 81–87.

[16] Z. Ramezani, J. L. Eddeland, K. Claessen, M. Fabian, and K. Åkesson,
“Multiple objective functions for falsification of cyber-physical systems”,
in Accepted to 2020 Workshop on Discrete Event Systems, 2020.

[17] B. Hoxha, H. Abbas, and G. Fainekos, “Benchmarks for temporal logic
requirements for automotive systems”, in ARCH@CPSWeek, 2014.

[18] X. Jin, J. V. Deshmukh, J. Kapinski, K. Ueda, and K. Butts, “Pow-
ertrain control verification benchmark”, in Proceedings of the 17th In-
ternational Conference on Hybrid Systems: Computation and Control,
ser. HSCC ’14, Berlin, Germany: Association for Computing Machinery,
2014, pp. 253–262.

[19] A. Dokhanchi, S. Yaghoubi, B. Hoxha, and G. Fainekos, “Arch-comp17
category report: Preliminary results on the falsification benchmarks”, in
ARCH@CPSWeek, 2017.

[20] A. Dokhanchi, S. Yaghoubi, B. Hoxha, G. Fainekos, G. Ernst, Z. Zhang,
P. Arcaini, I. Hasuo, and S. Sedwards, “Arch-comp18 category report:
Results on the falsification benchmarks”, in ARCH@ADHS, 2018.

[21] S. Schuler, F. D. Adegas, and A. Anta, “Hybrid modelling of a wind tur-
bine”, in ARCH16. 3rd International Workshop on Applied Verification
for Continuous and Hybrid Systems, G. Frehse and M. Althoff, Eds.,
ser. EPiC Series in Computing, vol. 43, EasyChair, 2017, pp. 18–26.

C37

Paper C

[22] J. Hu, J. Lygeros, and S. Sastry, “Towards a theory of stochastic hybrid
systems”, in Hybrid Systems: Computation and Control, N. Lynch and
B. H. Krogh, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2000,
pp. 160–173.

[23] G. Frehse, A. Abate, D. Adzkiya, L. Bu, M. Giacobbe, M. S. Mufid,
and E. Zaffanella, “Arch-comp18 category report: Hybrid systems with
piecewise constant dynamics”, in ARCH18. 5th International Workshop
on Applied Verification of Continuous and Hybrid Systems, G. Frehse,
Ed., ser. EPiC Series in Computing, vol. 54, EasyChair, 2018, pp. 1–13.

[24] S. Yaghoubi and G. Fainekos, “Gray-box adversarial testing for control
systems with machine learning component”, CoRR, vol. abs/1812.11958,
2018.

[25] B. Hoxha, H. Abbas, and G. Fainekos, “Benchmarks for temporal logic
requirements for automotive systems”, Proc. of Applied Verification for
Continuous and Hybrid Systems, 2014.

[26] T. Dang, A. Donzé, and O. Maler, “Verification of analog and mixed-
signal circuits using hybrid system techniques”, in International Con-
ference on Formal Methods in Computer-Aided Design, Springer, 2004,
pp. 21–36.

[27] A. Dokhanchi, A. Zutshi, R. T. Sriniva, S. Sankaranarayanan, and G.
Fainekos, “Requirements driven falsification with coverage metrics”, in
Proceedings of the 12th International Conference on Embedded Software,
2015, pp. 31–40.

[28] J. Lagarias, J. Reeds, M. Wright, and P. Wright, “Convergence proper-
ties of the Nelder–Mead simplex method in low dimensions”, SIAM J.
on Optimization, vol. 9, pp. 112–147, Dec. 1998.

C38

	Abstract
	List of Papers
	Acknowledgements
	Acronyms
	I Overview
	1 Introduction
	1.1 Research Questions
	1.2 Method
	1.3 Outline

	2 Falsification of Cyber-Physical Systems
	2.1 Cyber-Physical Systems
	2.2 Testing of Cyber-Physical Systems
	Tools for Testing of CPSs

	2.3 Falsification of Temporal Logic Specifications
	Falsification in Breach

	2.4 An Autonomous Driving Example
	2.5 Large-Scale Testing

	3 Quantitative Semantics
	3.1 Specification Formalisms
	3.2 Signal Temporal Logic
	3.3 Valued Booleans
	Max Semantics
	Additive Semantics

	3.4 Mean Alternative Robustness Value Semantics
	3.5 Discussion

	4 Optimization Methods
	4.1 The Optimization Problem
	4.2 The Nelder-Mead Optimization Method
	4.3 Stable Noisy Optimization by Branch and Fit

	5 Contributions and Summary of Papers
	5.1 Contributions
	5.2 Summary of Papers
	5.3 Paper A
	5.4 Paper B
	5.5 Paper C

	6 Concluding Remarks and Future Work
	6.1 Future Work

	References

	II Papers
	A Evaluating Two Semantics for Falsification using an Autonomous Driving Example
	1 INTRODUCTION
	2 Falsification
	2.1 Signal Temporal Logic
	2.2 Valued Booleans and MAX semantics
	2.3 Mean Alternative Robustness Value (MARV) semantics

	3 Use-Case
	3.1 Specification of Safe Longitudinal Distance

	4 Evaluation Results
	5 Conclusion
	References

	B Multiple Objective Functions for Falsification of Cyber-Physical Systems
	1 INTRODUCTION
	1.1 Quantitative Semantics and Objective Functions
	1.2 Quantitative Semantics

	2 Falsification Using Multiple Objective Functions
	3 Benchmark Problems
	3.1 Automatic Transmission (AT) Benchmark
	3.2 Third Order Modulator
	3.3 Static Switched (SS) System

	4 Experimental Setup and Results
	4.1 Results

	5 Conclusion
	References

	C Enhancing Temporal Logic Falsification with Line Optimization
	1 Introduction
	2 Quantitative Semantics and Objective Functions
	2.1 Quantitative Semantics

	3 Optimization Methods
	3.1 Hybrid Corners-Random Method
	3.2 Line Optimization

	4 Benchmark Problems
	4.1 ARCH Benchmark Problems
	4.2 Additional Benchmark Problems

	5 Experimental Setup and Results
	5.1 Hybrid Corners-Random vs. Corners and Random
	5.2 Line Optimization vs. Nelder-Mead and SNOBFIT
	5.3 Comparison of all optimization methods

	6 Conclusions
	References

