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ABSTRACT: The first bioinspired microporous metal−organic framework
(MOF) synthesized using ellagic acid, a common natural antioxidant and
polyphenol building unit, is presented. Bi2O(H2O)2(C14H2O8)·nH2O (SU-101)
was inspired by bismuth phenolate metallodrugs, and could be synthesized entirely
from nonhazardous or edible reagents under ambient aqueous conditions, enabling
simple scale-up. Reagent-grade and affordable dietary supplement-grade ellagic acid
was sourced from tree bark and pomegranate hulls, respectively. Biocompatibility
and colloidal stability were confirmed by in vitro assays. The material exhibits
remarkable chemical stability for a bioinspired MOF (pH = 2−14, hydrothermal
conditions, heated organic solvents, biological media, SO2 and H2S), attributed to
the strongly chelating phenolates. A total H2S uptake of 15.95 mmol g−1 was
recorded, representing one of the highest H2S capacities for a MOF, where
polysulfides are formed inside the pores of the material. Phenolic phytochemicals remain largely unexplored as linkers for MOF
synthesis, opening new avenues to design stable, eco-friendly, scalable, and low-cost MOFs for diverse applications, including drug
delivery.

■ INTRODUCTION

Tannins are natural polyphenols which can be found in a
substantial part of the plant kingdom and are the second most
abundant source of natural aromatic molecules after lignin.1

They have traditionally been used for tanning leather, yet show
great promise as a rich supply of precursors for green
chemistry. Considering the general structure of tannin
derivatives, having multiple aromatic rings with phenol
functionalities, they stand out as a renewable source of rigid
molecules.1,2

Rigid organic molecules capable of bridging metal cations
are a principal component in the crystal chemistry of metal−
organic frameworks (MOFs)a class of porous hybrid
materials which has shown an immense growth of
compositions and topologies for over two decades, the main
allure being the possibility of designing framework materials
through a direct assembly of selected building units.3,4

Considering the great variety of MOFs, the number of
structures bridged only through phenolate ligands are few
(representing <0.0008% of MOF reports), and existing
examples involve synthetic linkers such as tetrahydroxyben-
zoate,5 dihydroxybenzoquinone,6−8 and hexahydroxytripheny-
late ligands.9−11 Numerous phenolate-based MOFs have been
associated with higher chemical stability (especially in aqueous
media) than carboxylate based MOFsa consequence of the

higher pKa of the phenolate groups, leading to strong
chelation.12,13

Inspired by the potential stability of phenolate-based MOFs,
together with the growing global demand to broaden the use of
renewable resources, we have turned to tannins for the
synthesis of green MOFsspecifically, gallotannins and
ellagitannins, which contain gallic acid or ellagic acid subunits,
respectively. While gallic acid, which consists of both
carboxylic acid and phenol functional groups, has been utilized
as a linker for the synthesis of a handful of MOFs,14−19

surprisingly ellagic acid (Figure 1) has seemingly never been
used for MOF synthesis. Currently, the only entry in the
Cambridge Structural Database (CSD) containing an ellagate
anion together with a metal cation is a metal complex
composed of two ruthenium cations linked by ellagate and
capped by acetylacetonate.20 Additionally, iron, manganese,
and zinc ellagate materials have been developed for
applications in phototherapy or as templates for porous

Received: July 13, 2020
Published: September 7, 2020

Articlepubs.acs.org/JACS

© 2020 American Chemical Society
16795

https://dx.doi.org/10.1021/jacs.0c07525
J. Am. Chem. Soc. 2020, 142, 16795−16804

This is an open access article published under a Creative Commons Attribution (CC-BY)
License, which permits unrestricted use, distribution and reproduction in any medium,
provided the author and source are cited.

D
ow

nl
oa

de
d 

vi
a 

C
H

A
L

M
E

R
S 

U
N

IV
 O

F 
T

E
C

H
N

O
L

O
G

Y
 o

n 
O

ct
ob

er
 2

3,
 2

02
0 

at
 0

2:
49

:1
2 

(U
T

C
).

Se
e 

ht
tp

s:
//p

ub
s.

ac
s.

or
g/

sh
ar

in
gg

ui
de

lin
es

 f
or

 o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Erik+Svensson+Grape"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="J.+Gabriel+Flores"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Tania+Hidalgo"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Eva+Marti%CC%81nez-Ahumada"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ai%CC%81da+Gutie%CC%81rrez-Alejandre"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Audrey+Hautier"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Audrey+Hautier"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Daryl+R.+Williams"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Michael+O%E2%80%99Keeffe"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Lars+O%CC%88hrstro%CC%88m"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Tom+Willhammar"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Patricia+Horcajada"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Patricia+Horcajada"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ilich+A.+Ibarra"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="A.+Ken+Inge"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/jacs.0c07525&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.0c07525?ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.0c07525?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.0c07525?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.0c07525?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.0c07525?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/jacsat/142/39?ref=pdf
https://pubs.acs.org/toc/jacsat/142/39?ref=pdf
https://pubs.acs.org/toc/jacsat/142/39?ref=pdf
https://pubs.acs.org/toc/jacsat/142/39?ref=pdf
pubs.acs.org/JACS?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://dx.doi.org/10.1021/jacs.0c07525?ref=pdf
https://pubs.acs.org/JACS?ref=pdf
https://pubs.acs.org/JACS?ref=pdf
http://pubs.acs.org/page/policy/authorchoice/index.html
http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html


carbons, yet no crystal structures nor porosities were
reported.21,22

Naturally high contents of ellagic acid are found in foods
such as strawberries, raspberries, grapes, walnuts, pecans, and
pomegranates, as well as in beverages such as wine, whiskey,
and other spirits.23−25 While the general benefit of consuming
antioxidants, such as ellagic acid, remains up for debate due to
challenges in maintaining oxidation homeostasis in healthy
individuals,26,27 their protective properties in oxidation-related
chronic diseases, as well as their antimicrobial, antiviral, anti-
inflammatory, and anticancer activities have been estab-
lished.28,29 In light of the scarcity with which phenolic
bioderived molecules have been utilized for MOF synthesis,
we find ellagic acid to be an appealing yet previously
unexplored linker for the synthesis of bioinspired MOFs
(BioMOFs) since (1) it is edible, biocompatible, bioactive, and
has been consumed throughout human history (recommended
intake ∼5 mg day−1 in adults,30 reaching half-maximal
inhibitory concentration (IC50) values of 23.5 μg mL−1 in
diverse tumor cell lines or when administrating ∼60 mg kg−1

body weight for preclinical doses); (2) it is extracted from
plant-based materials often considered as waste, such as tree
bark and fruit peels; (3) can act as a rigid spacer between
cations, contributing to the porosity of the resulting frame-
work; (4) it has a centrosymmetric molecular structure,
increasing the likelihood of it taking the role as a bridging
linker; (5) it can chelate to metal cations, giving rise to strong
five-membered rings; and (6) it has a low production cost.
Other polycomplexant biomolecules have previously been

proposed as good candidates for the synthesis of Bio-
MOFs,31,32 and the resulting materials could potentially serve
as delivery vehicles for active pharmaceutical ingredients
(APIs) or as imaging agents.33 However, many of the
previously described BioMOFs are synthesized also using
auxiliary nonbiological linker molecules and/or hazardous
organic solvents. Despite the large appeal of using bioderived
molecules for the synthesis of MOFs, examples are few and
chemical stability is seldom thoroughly demonstrated, nor is
biocompatibility.34−38 To the best of our knowledge, only two
microporous BioMOFs have been synthesized in water without
auxiliary ligands: a magnesium gallate and an aluminum
fumarate.17,39 However, these MOFs demonstrate poor overall
chemical stability, particularly in aqueous solutions.
In order to develop stable and biocompatible BioMOFs, the

choice of metal cation is equally important. One nontoxic
metal cation which has established biomedical applications is
Bi3+.35,40,41 As the second heaviest member of group 15 in the
periodic table, bismuth is surrounded by notoriously toxic
elements, yet bismuth itself has been found to have very low
toxicity. With median lethal doses (LD50) of about 5 g kg−1 in
rat models, the toxicity of bismuth and many of its compounds
are comparable to or less than that of sodium chloride.42

Furthermore, bismuth compounds have a two-century-long
track record as APIs due to their inherent bioactivity and

antimicrobial properties.43 Bismuth subsalicylate (Pepto-
Bismol) and bismuth subgallate are APIs made with the
ligands salicylic acid and gallic acid, respectively.44 Similar to
ellagic acid, these are naturally occurring therapeutic phenolic
molecules, making ellagic acid an appropriate choice of ligand
to combine with Bi3+ for the development of a potentially
biocompatible and bioactive MOF. So far, the use of bismuth
in the synthesis of MOFs has been fairly limited, with only
seven Bi(III)-MOFs that have been reported to demonstrate
porosity to nitrogen.40,41,45−49 As all seven are exclusively
based on synthetic carboxylate ligands, this begs the question,
what new MOF structures can be acquired using Bi3+ and
phenol-based linkers such as ellagic acid? The resulting
material could potentially combine the biocompatible and
bioactive features of both the metal cation and the organic
linker, and would ideally be synthesized using green aqueous
conditions.
In short, we report the synthesis, crystal structure, and

physicochemical properties of a biocompatible and micro-
porous bismuth ellagate framework (denoted SU-101)the
first MOF based on the bioactive phytochemical ellagic acid.
For a bioinspired MOF, the material exhibits remarkable
chemical stability and thermal stability under vacuum and in
nitrogen, which led to investigations on its use as an adsorbent
of the highly acidic gases SO2 and H2S, both of which are well-
known air-pollutants associated with severe environmental and
health issues.50,51 Additionally, the environmentally friendly
synthesis procedure, using a plant-derived linker molecule in
water under ambient conditions, facilitates an easy scale-up
process.

■ RESULTS AND DISCUSSION
Synthesis of SU-101. Bismuth ellagate (SU-101) was

prepared from an aqueous suspension of bismuth acetate and
ellagic acid stirred under ambient conditions (i.e., room
temperature and atmospheric pressure in air) for 48 h. Phase
purity and synthesis reproducibility were improved through the
introduction of acetic acid as a modulator (6% by volume,
from either glacial acetic acid or a distilled white vinegar stock
solution, pH ≈ 2.3; see the Supporting Information, SI, for
details). Such a concentration of acetic acid is well within the
range of what is found in common household vinegar (5−12
vol % of acetic acid in distilled white vinegar).52

Two different sources of ellagic acid were utilized for the
synthesis of SU-101: (1) 97% chemical reagent-grade ellagic
acid isolated from chestnut tree bark and (2) inexpensive 90%
dietary supplement-grade ellagic isolated from pomegranate
hulls, marketed as an edible antioxidant. Both starting materials
resulted in high quality and phase-pure SU-101 based on
powder X-ray diffraction (PXRD) and sorption data (Figures
2, S11, and S12). In both cases, the mixtures remained as
suspensions throughout the reaction but nonetheless resulted
in phase-pure SU-101. High percent yields of SU-101 were
obtained at a small 30 mL reaction scale (76% yield; 0.28 g).
Through a linear scale-up, a 600 mL large-scale synthesis
resulted in a similar percent yield (74%, 5.6 g) of material in a
single batch. Although the estimated space-time-yield using
these conditions (approximately 5 kg m−3 day−1) is lower than
values obtained for highly scalable MOFs (>1000 kg m−3

day−1),38,53 one should note the simplicity and cost-efficiency
of the synthesis procedure, carried out at atmospheric pressure
without heating or using any other forms of external energy
input.

Figure 1. Ellagic acidthe phenolic building unit of ellagitannins.
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Structure of SU-101. Due to the small crystallite size, the
structure of SU-101 could not be solved using single-crystal X-
ray diffraction (SCXRD). Instead, the crystal structure was
determined using 3D electron diffraction (3DED), a method
previously used to solve the structure of the microcrystalline
metallodrug bismuth subgallate, as well as several Bi(III)-
MOFs.41,44,45 For structure determination, 3DED data were
acquired from larger 3 μm long bladed crystals (Figure 3,

Table S1) which were synthesized using an alternative
synthesis method under hydrothermal conditions (see SI for
details). The structure was solved from the collected 3DED
data and further refined against high-resolution powder X-ray
diffraction (HR-PXRD) data in the tetragonal space group
P42/n (a = 18.62 Å, c = 5.55 Å).
The framework of SU-101 consists of rod-shaped inorganic

building units (IBUs) which run parallel to the c-axis and are
linked together by ellagate anions in the ab-plane (Figure 4a,c),
forming one-dimensional pores roughly 6−7 Å in diameter,
taking into account the van der Waals radii of the framework

atoms. The asymmetric unit of SU-101 contains half of an
ellagate anion and one Bi3+ cation, as well as three individual
oxygen atoms interpreted as (1) a coordinated water molecule,
(2) a guest water molecule within the one-dimensional
channels, and last, (3) a single μ4-oxygen, resulting in an
overall charge neutral framework with the formula Bi2O-
(H2O)2(C14H2O8)·nH2O (n = 2, Figure S5). The coordination
number of Bi3+ is six, of which three bonds form with
coordinating phenolates, two μ4-oxygens, and a terminally
coordinated water molecule (Figure 4b). The phenolate
groups chelate to Bi3+ cations, and all four phenolate groups
of the ellagate are presumed to be deprotonated based on the
short Bi−O bonds, between 2.1 and 2.3 Å. These short
distances are indicative of strongly chelating phenolates as
longer Bi−O distances are found in the previously published
Bi(III)-carboxylate MOFs (typically in the range of 2.4−2.8 Å).
On each end of the ellagate linker, one of the phenolates
coordinates to a single Bi3+, while the other bridges two Bi3+

along the rod-shaped IBU (Figure 4d). The shortest
intermolecular carbon−carbon distance between neighboring
ellagates is 3.51 Å indicating π−π stacking between the ellagate
linkers down the c-axis, further stabilizing the structure. The
non-coordinated water molecules occupying the one-dimen-
sional channels form hydrogen bonds to neighboring water
molecules as well as the carbonyl oxygens of the lactone rings
pointing into the channels, with oxygen−oxygen distances in
the range of 2.7−2.9 Å (Figure S6).
To simplify the description of SU-101, and to classify the

structure, a topological analysis was performed. The choice of
nodes when deconstructing the rod-shaped inorganic building
unit was carried out as described by O’Keeffe and Yaghi,54

where the point of extension of the linker, in this case, the
midpoint between each pair of phenolates in the ellagate
anions, ortho to one another, was selected as a node (Figure
4g,h). These nodes were then linked to neighboring vertices
outlining the rod, resulting in a 6-c node, which, upon
considering the linkage of rods by ellagate anions, gives the
uninodal 7-coordinated net svd (Figure 4e,f).

Physicochemical Characterization. Thermogravimetric
analysis (TGA) of SU-101 is in agreement with the proposed
sum formula of Bi2O(H2O)2(C14H2O8)·nH2O (n = 1, Figure
S7). The lower water content compared to that determined
from HR-PXRD (n = 2) in a sealed capillary, and the
immediate loss of water observed in the TGA data indicates
that some of the water molecules in the pores are readily lost
from the material at conditions close to room temperature.
The thermal stability of SU-101 was assessed by variable

temperature powder X-ray diffraction (VT-PXRD), revealing
that the framework remains crystalline under vacuum or in a
nitrogen atmosphere at temperatures of up to 500 °C (Figures
S8 and S9). While VT-PXRD tests are not always employed to
study the thermal stability of MOFs, hindering an overall
comparison, an intact and open framework at 500 °C
(independent of atmosphere) has only been shown for a
small handful of MOFs, such as CFA-2 and ZIF-8.55 The
framework remains intact up to 250 °C in air, after which the
ellagate anion likely oxidizes, leading to a loss of crystallinity
(Figure S10). This has also been observed with other MOFs
composed of phenolate linkers and has been attributed to the
relative ease with which phenolates are oxidized.12

The permanent microporosity of SU-101 was confirmed by
N2 sorption experiments at 77 K after activating the material at
150 °C under vacuum for 10 h. Type I N2 isotherms, typical

Figure 2. Powder X-ray diffraction patterns of SU-101 made from
reagent-grade ellagic acid (97% ellagic acid, isolated from chestnut
tree bark) and supplement-grade ellagic acid (90% ellagic acid,
isolated from pomegranate hulls), as well as a simulated powder X-ray
diffraction pattern of SU-101.

Figure 3. Reciprocal space projection of 3DED data collected on SU-
101, viewed along c*, and an image of the crystal studied (larger
crystals were specifically prepared for structure determination using an
alternative hydrothermal synthesis procedure).
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for microporous materials, were observed (Figures S11 and
S12), with a Brunauer−Emmett−Teller surface area (SBET) of
412 m2g−1 when using reagent-grade ellagic acid for synthesis
and 350 m2 g−1 for a washed large-scale batch produced from
supplement-grade ellagic acid. These values are within the
range of surface areas previously reported for Bi(III)-MOFs
(70−1100 m2 g−1).40,41,45−49

The average pore size of SU-101 was estimated to be
approximately 6.8 Å (Figure S13), in good agreement with the
crystallographic model (6−7 Å). The pore size distribution was
calculated using the density functional theory (DFT) method
with a N2 slit pore model. The trend toward lower surface
areas obtained by Bi(III)-MOFs in units of m2 g−1 is in part due
to the heavy nature of Bi3+ compared to the significantly lighter
metal cations found in the large majority of other MOFs. The
adsorption of other environmentally and industrially relevant
gases, CO2 and CH4, was also investigated (Figure S14), where
SU-101 displays a higher affinity toward CO2 over N2 and
CH4, due to the lower saturation pressure of CO2. The CO2/
N2 selectivity for a hypothetical flue gas mixture, containing 15
kPa CO2 and 85 kPa N2 was estimated using the equation s =
(q1/q2)/(p1/p2), giving a CO2/N2 selectivity of ∼35, yet
other MOFs and porous materials have shown higher

selectivity and CO2 uptakes under similar conditions.56 Even
so, bismuth-based MOFs are of interest as precursors to
electrocatalysts for CO2 reduction, as demonstrated using
CAU-7.57

The chemical stability of SU-101 was investigated by
mimicking different industrially relevant media (e.g., for
catalysis). Hence, as to cover a large range of chemical
properties, the selected solvents were acetone, acetonitrile,
chlorobenzene, cyclohexane, dichloromethane, 1,4-dioxane,
dimethylformamide, dimethyl sulfoxide, ethanol, ethyl acetate,
methanol, n-pentane, pyrrolidine, tetrahydrofuran, and toluene.
PXRD results indicated that the structure remains intact in all
of these solvents at room temperature (Figure S15), as well as
when heated to 80 °C for 24 h in these solvents, with the
exception of toluene where additional peaks, consistent with
partial degradation, were observed (Figure S16). The high
chemical stability of SU-101 arises from the presence of the
two deprotonated phenolate oxygen atoms, chelating strongly
to the Bi3+. As described for MIL-163,12 the strong metal−
linker interaction leads to a material that is resistant to harsh
chemical conditions.
An ongoing challenge for MOFs is their stability in various

aqueous conditions. As such, the pH-dependent stability of

Figure 4. (a) The structure of SU-101 as viewed down the c-axis. Hydrogen atoms and water molecules in the pores are omitted for clarity. (b) The
coordination environment around Bi3+. The bond to a coordinated water molecule is represented as a dashed line. (c, d) Chelation of ellagate
toward the bismuth oxo rods. (e) The tiling of the svd net. (f) The underlying svd net. (g, h) Choice of nodes for the deconstruction of the infinite
IBU.
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SU-101 was evaluated by exposing the material to aqueous
solutions of HCl or NaOH, showing that the framework
remains intact over a large pH-range, 2 < pH ≤ 14 (Figure
S18). The structure of SU-101 also remained unchanged under
hydrothermal conditions (180 °C for 24 h; Figure S16).
However, at highly acidic conditions (pH ≤ 2), SU-101 is
converted to BiOCl (Figure S18).
Immersion of SU-101 in potentially coordinative carboxylic

acids (propionic acid, acetic acid and oxalic acid) was also
investigated. The material remains intact at room temperature
but decomposes at 80 °C in propionic acid. In acetic acid SU-
101 undergoes partial transformation at room temperature and
full degradation at 80 °C. In a concentrated oxalic acid solution
decomposition occurs at room temperature (Figures S15 and
S16).
As the ability to withstand the presence of coordinative

species is of great importance for both biological as well as
industrial applications, SU-101 was exposed to simulated
physiological conditions such as phosphate-buffered saline
(PBS) solution and cell culture medium (RPMI) at 37 °C. As
seen in Figure 5, the material remains intact despite the

presence of glucose, salts, vitamins, antibiotics, and amino
acids, even for longer periods of time (24 h). Specifically, the
stability of SU-101 was also evaluated in the presence of L-
cysteine and L-cystine, showing that the material remains intact
in solutions with these sulfur-containing biomolecules (Figure
S17). Considering these results, the overall chemical stability
of SU-101 appears to be better or similar to that of hallmark
MOFs such as UiO-66 and ZIF-8, with the added value of
using nontoxic reagents in a water-based synthesis.58

Colloidal Stability and Biocompatibility. In addition to
the structural and chemical stability of a material in biorelevant
conditions, insight into the physicochemical properties such as

charge, surface chemistry, and colloidal stability will affect the
affinity to different biological structures, which in turn governs
the efficacy and biodistribution of the material.59−61 Aqueous
suspensions of SU-101 exhibit a small and monodisperse
particle size of 129 ± 2 nm (PdI ∼ 0.3), a size which is a priori
compatible with intravenous drug administration.62 This
hydrodynamic diameter, obtained by dynamic light scattering
(DLS) measurements, assumes a spherical particle shape in
solution, yet is in fair agreement with the microscopic
observations acquired by TEM (Figures S1 and S2), showing
polydispersed elongated crystals at its dry state (176 ± 88 nm
length and 51 ± 18 nm wide; measured from 200 particles).
This slight particle size difference between methods has been
previously observed.62 In addition, previous intravenous
toxicological studies using elongated MOF nanoparticles did
not show any signs of in vivo toxicity associated with the MOF
morphology.62,63 As such, a biocompatible character of SU-101
is expected (see below). When monitoring the particle size
over time (24 h), SU-101 exhibited suitable colloidal stability
in water (average size ∼137 ± 4 nm; Figure S19) with a
strongly negative ζ-potential (−35 mV), possibly due to the
presence of partially coordinated ellagate anions or hydroxyl
groups completing the coordination sphere of superficial Bi3+.
In turn, the resulting electrostatic repulsions might be
responsible for the observed colloidal stability. In RPMI, the
observed particle size is slightly larger than that in water (180
± 26 nm), while also showing a less negative ζ-potential (−10
mV). This is expected as proteins in the RPMI media
(supplemented with FBS) can adhere to the particle surfaces,
hampering direct interparticle contact through the formation
of a protein corona, leading to lower surface charge values
(from −35 ± 1 to −10 ± 0 mV), in agreement with previous
colloidal MOF behaviors.62,64 Colloidal stability is maintained
over time, with a particle size of 200 ± 11 nm over 24 h,
further indicating properties suitable for biological applications.
To explore the intrinsic qualities and potential applications

of this green material, in vitro cytotoxicity tests were
performed to assess the biocompatibility of SU-101. For
these purposes, a promyelocytic cell line (HL-60) was selected
as a model for differentiated phagocytic cells and granulocytes
involved in the body’s defense. Remarkably, after 24 h of cell
contact, a very low cytotoxicity profile was observed (80%
maximum inhibitory concentration, IC80 = 1000 μgmL−1),
even when exposed to very high concentrations of SU-101 (up
to 1200 μgmL−1; Figure S20). This is in agreement with the
absence of severe toxicity observed for the individual
reagentsellagic acid and bismuth acetate. Therefore, SU-
101 seems to be a promising candidate for environmental and
biological applications, such as depollution and drug delivery,
both being chemically stable and biocompatible.

SO2 and H2S Capture in SU-101. Due to the remarkable
chemical stability demonstrated by SU-101, adsorption of the
acidic gases SO2 and H2S was investigated. Sulfur dioxide
(SO2) is a toxic gas which was classified by the World Health
Organization as one of the most hazardous air pollutants,
associated with increased respiratory problems50,65 and
mortality.66 Similarly, hydrogen sulfide (H2S) is a highly
toxic chemical and exposure to concentrations of over 100
ppm can be fatal as it is rapidly absorbed into the bloodstream,
limiting O2 uptake at a cellular level.51,67,68 However, few
MOFs have demonstrated stability upon exposure to either
SO2 or H2S, principally due to the formation of strong and
irreversible metal−sulfur bonds.69−76

Figure 5. Powder X-ray diffraction patterns of SU-101 before and
after exposure to a variety of aqueous conditions including a wide pH-
range, hydrothermal conditions and simulated biological media. The
limit of stability in acidic solutions can be seen at pH = 2, where a
small peak appears at 2θ = 12°, attributed to the formation of BiOCl.
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To investigate the adsorptive properties of SU-101, SO2
sorption isotherms were acquired at pressures between 0 to 1
bar at 298 K on an activated sample using a Dynamic
Gravimetric Gas/Vapor Sorption Analyzer, DVS vacuum (see
SI). The resulting SO2 isotherm shows a total uptake of 2.2
mmol g−1 (Figure S21). Although this value is considerably
lower than the uptake of other MOFs,70,72,77,78 the stability of
SU-101 upon adsorption−desorption cycling was investigated
and structural integrity after both dry and humid SO2 sorption
was confirmed by PXRD (Figures S25 and S27). Furthermore,
the host−guest interaction between SU-101 and SO2 was
quantified, evaluating the isosteric heat of adsorption (ΔH) for
SO2 at low coverage for SU-101 (estimated by fitting two
adsorption isotherms at 303 and 308 K to a Clausius−
Clapeyron equation, Figures S22 and S23). The low isosteric
heat of adsorption for SO2 (ΔH = −29.6 kJ mol−1) indicates
that no M−SO2 interactions occur (>90 kJ mol−1).79 Since the
heat of adsorption was low, cycling experiments were carried
out, where activation of SU-101 between cycles was achieved
by applying vacuum (1.7 × 10−6 Torr) for only 15 min at 298
K. Using this procedure, it was demonstrated that the SO2
capture capacity (1 bar, 298 K) remains constant during 50
adsorption−desorption cycles (2.200 ± 0.004 mmol g−1,
Figure S24) with the structure remaining intact (Figure S25).
H2S capture by SU-101 was investigated with a series of

breakthrough experiments (4.3 vol % H2S with 95.7 vol % of
N2). Samples were first activated at 120 °C for 6 h under a flow
of dry N2 gas, after which the material was cooled down to 25
°C. The resultant breakthrough H2S experiment led to a gas
uptake of 15.95 mmol g−1, i.e., 542 mg g−1, (Figures 6 and

S28) equivalent to 515 cm3g−1. Surprisingly, considering that
the SBET of SU-101 is 412 m2g−1, this H2S uptake is one of the
highest reported, and is comparable to the top-performing
MOFs, such as Ni-CPO-27 (12.0 mmol g−1, SBET = 1545 m2

g−1),80 MFM-300(Sc) (16.5 mmolg−1, SBET = 1360 m2 g−1)81

or MIL-53(Al)-TDC (18.1 mmol g−1, SBET = 1150 m2g−1).82

After the initial exposure to H2S, the sample was reactivated
and used for a second H2S adsorption cycle. Interestingly, the
capacity initially observed was lost (0.2 mmol g−1, Figure 6)
despite an apparent preservation of the framework, as observed
by PXRD (Figure S29). To further investigate the seemingly
lost porosity, a N2 sorption experiment at 77 K was performed,

showing a specific surface area of 15 m2 g−1. As the framework
remains intact, we hypothesize that H2S is captured by SU-101
via a chemisorption process, leading to the formation of
polysulfides. To test this hypothesis, Raman spectra of SU-101
were acquired before and after H2S adsorption (Figure S30).
After exposure to H2S two additional peaks appear, one at 243
cm−1 corresponding to different Sn

2− species83,84 and another
at 445 cm−1 corresponding to S4

2−.83,85,86 These characteristic
peaks support the hypothesized chemisorption of H2S within
SU-101, resulting in the formation of polysulfides. We have
recently published a similar phenomenon for MFM-300(Sc),81

where the MOF can oxidize H2S, forming low order
polysulfides (n = 2) species. Presumably, the electrochemical
potential of SU-101 should be similar to the one for MFM-
300(Sc) (2.29 V),81 considering that S4

2− species were also
found for MFM-300(Sc). The mechanism of polysulfide
formation from H2S includes the adsorption of H2S,
dissociation, oxidation, and recombination of sulfur spe-
cies.81,87 Diffuse-reflectance Fourier-transform infrared spec-
troscopy experiments (Figure S31) were conducted on SU-101
before and after H2S adsorption to explore the possible
perturbation of the band characteristic of the phenolate
stretching vibration in the ellagate anion (3408 cm−1). This
band was shifted to a lower wavenumber (3100 cm−1) after
H2S sorption, suggesting a relatively strong interaction
between the phenolate group of SU-101 and the polysulfides,
as previously reported for other MOFs.81,82 This polysulfide
formation, paired with the high stability of the material, could
pave the way toward applications such as the construction of a
MOF-based lithium/sulfur battery.

■ CONCLUSIONS

As the first MOF synthesized from ellagic acid, SU-101
exemplifies the use of a renewable phenol-functionalized and
plant-based linker to construct a highly chemically stable and
biocompatible MOF under scalable, green, and ambient
synthesis conditions. Bi3+ was the first cation we combined
with ellagic acid in an attempt to develop a new MOF,
resulting in SU-101. We therefore expect that a plethora of new
crystal structures, including MOFs and coordination polymers,
can be synthesized from ellagic acid as well as other previously
unexplored phenolic phytochemicals. As the synthesis of SU-
101 was carried out at room temperature and atmospheric
pressure, further scale-up is expected to be feasible. Combining
sustainable green solvents, such as water, with renewable and
inexpensive linkers as well as biocompatible inorganic species
in the design and synthesis of new framework materials paves
the way for further development of MOFs as green materials
for environmental and health applications, including, but
certainly not limited to, gas capture and drug delivery.
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Figure 6. Breakthrough curve of H2S adsorption by SU-101 at 25 °C
and 1 bar. The inset shows the comparative H2S adsorption capacities
for each cycle.
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de Superficies (LaFReS), Instituto de Investigaciones en
Materiales, Universidad Nacional Autońoma de Mex́ico, 04510
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Universidad Autońoma Metropolitana-Azcapotzalco, 02120
Ciudad de Mex́ico, Mexico

Tania Hidalgo − Advanced Porous Materials Unit, IMDEA
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Identification and Quantification of Phenolic Compounds in Berries
of Fragaria and Rubus Species (Family Rosaceae). J. Agric. Food Chem.
2004, 52, 6178−6187.
(25) Viriot, C.; Scalbert, A.; Lapierre, C.; Moutounet, M.
Ellagitannins and Lignins in Aging of Spirits in Oak Barrels. J. Agric.
Food Chem. 1993, 41 (11), 1872−1879.
(26) Huang, D. Dietary Antioxidants and Health Promotion.
Antioxidants 2018, 7 (1), 9.
(27) Liu, Z.; Ren, Z.; Zhang, J.; Chuang, C. C.; Kandaswamy, E.;
Zhou, T.; Zuo, L. Role of ROS and Nutritional Antioxidants in
Human Diseases. Front. Physiol. 2018, 9 (MAY), No. 477.
(28) Landete, J. M. Ellagitannins, Ellagic Acid and Their Derived
Metabolites: A Review about Source, Metabolism, Functions and
Health. Food Res. Int. 2011, 44 (5), 1150−1160.
(29) Zhong, C.; Qiu, S.; Li, J.; Shen, J.; Zu, Y.; Shi, J.; Sui, G. Ellagic
Acid Synergistically Potentiates Inhibitory Activities of Chemo-

therapeutic Agents to Human Hepatocellular Carcinoma. Phytomedi-
cine 2019, 59, 152921.
(30) Ceci, C.; Lacal, P. M.; Tentori, L.; De Martino, M. G.; Miano,
R.; Graziani, G. Experimental Evidence of the Antitumor,
Antimetastatic and Antiangiogenic Activity of Ellagic Acid. Nutrients
2018, 10 (11), 1756.
(31) Sivakova, S.; Rowan, S. J. Nucleobases as Supramolecular
Motifs. Chem. Soc. Rev. 2005, 34 (1), 9−21.
(32) Imaz, I.; Rubio-Martínez, M.; An, J.; Sole-́Font, I.; Rosi, N. L.;
Maspoch, D. Metal-Biomolecule Frameworks (MBioFs). Chem.
Commun. 2011, 47, 7287−7302.
(33) McKinlay, A. C.; Morris, R. E.; Horcajada, P.; Feŕey, G.; Gref,
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