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Abstract—1For any distributed system, and especially for the
Internet of Things, recording interactions between devices is
essential. At first glance, blockchains seem to be suitable for
storing these interactions, as they allow multiple parties to share
a distributed ledger. However, at a closer look, blockchains
require heavy computations, large memory capacity, and always-
on communication to the cloud; these are three properties that
are challenging for IoT devices with limited resources.

In this paper, we present IoTLogBlock to address these chal-
lenges. IoTLogBlock connects resource-constrained IoT devices
to the blockchain, and it consists of three building blocks jointly
enabling recording transactions: a lightweight contract signing
protocol, a blockchain network, and a smart contract. The
contract signing protocol allows devices to interact locally to
perform transactions, even if no communication to the cloud
and the blockchain exists at that moment. At a later time, devices
forward the stored transactions to the blockchain, where a smart
contract ultimately verifies the transactions.

We evaluate our design on low-power devices and quantify
the performance in terms of memory, computation, and energy
consumption. Our results show that a constrained device can
create and sign a transaction within 3 s on average. Finally, we
expose the devices to network scenarios with edge connections
ranging from 10 s to over 2 h.

Index Terms—Internet of Things, Blockchain, Smart contracts

I. INTRODUCTION

Blockchains store immutable records of transactions in a so-
called distributed ledger. Transactions are generated by parties
which do not necessarily trust each other. As records in a
blockchain are immutable and can be verified by all parties
involved, a blockchain creates the required trust between the
involved parties whether a particular transaction is part of
the blockchain or not. This makes the blockchain an ideal
candidate for storing records of transactions produced by
the plethora of connected devices in the Internet of Things
(IoT). These devices interact frequently and produce records
of interactions which their applications want to store, while
two IoT devices commonly do not trust each other, as they
are, for example, owned or operated by different entities.

1 2019 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.
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Fig. 1: Motivating scenario: car rentals where (1) a smart-key
and a smart-car perform off-line transactions using a contract
signing protocol over low-power wireless technologies. Later,
the IoT devices independently forward their transactions via
an edge device to the blockchain where (2) a smart contract
validates and then (3) stores the transactions immutably.

We argue that the following key challenges are overlooked
in the context of IoT and blockchains. To perform transactions,
blockchain clients need to be (a) connected to the blockchain,
(b) often store large parts of the blockchain, and (c) perform
heavy cryptographic operations. These are three requirements
that today’s resource-constrained IoT devices can hardly fulfill.

Recent works demonstrate the use of blockchains for data
provenance [12] [16], but there are two significant issues that
existing architectures cannot address. First, the integration of
resource-constrained devices is limited due to the communica-
tion requirements and fixed connection points. For example, in
many designs [18] [2] devices need to seek active communi-
cation with the network for each transaction, which demands
considerable energy consumption. Moreover, in the case of
mobile IoT devices such a design demands for complete
network coverage through, for example, cellular technologies
such as 4G, which in turn further increases cost and energy
consumption. Similarly, LPWAN technologies such as LoRa
and SigFox do not provide the required bandwidth required
by the cryptographic operations of a blockchain. Second, the
proposed architectures cannot ensure non-repudiation of the
transactions given that stakeholders often have conflicting
interests. We argue that it is essential that when two IoT
devices create an off-line transaction, the stakeholders cannot
later deny their participation therein. Data tampering and
device impersonation attacks [1] raise concerns regarding the978-1-5386-5541-2/18/$31.00 ©2018 European Union



secure collection of sensor data.
With this in mind, we propose IoTLogBlock with the

following properties. IoTLogBlock combines an (1) optimistic
contract signing protocol with a (2) smart contract, (3) de-
ployed on a blockchain, as shown in the motivating car rental
scenario in Figure 1. The contract signing protocol allows
two or more nodes to sign an off-line transaction mutually
and achieve non-repudiation [4]. We assume only intermittent
network access (due to power conservation or infrastructure
issues) and the IoT devices can store the off-line transactions in
local memory while waiting for an edge connection. An edge
device forwards the transactions to the blockchain network for
validation using a smart contract. The smart contract is similar
to a stored procedure of regular databases, and it is triggered
upon events sent by the network.

Overall, the combination of a contract signing protocol with
the smart contract achieves non-repudiation and enables the in-
tegration of resource-constrained IoT devices to a cloud-based
blockchain. As a result, IoTLogBlock allows IoT devices,
which are connected to the Internet infrequently, to employ
blockchains. We make the following contributions.

• We design and implement IoTLogBlock, an open-
source architecture2 for recording IoT transactions us-
ing blockchain. IoTLogBlock achieves non-repudiation,
avoids dependence on fixed network infrastructures, and
ensures a low-power radio duty-cycle.

• We propose a practical solution to implement a contract
signing protocol on IoT devices.

• We design and implement a smart contract to act as the
online validator for the off-line transactions.

• We quantify the performance of IoTLogBlock in terms
of computation, delay, memory, and energy consumption.
Notably, we find that low-power devices (TI-CC2538)
can create a transaction in 3 s. We further calculate the
latency of IoTLogBlock in different scenarios, with an
edge connection from 10 s to over 2 h.

• We finally provide a discussion of implementation
challenges and trade-offs regarding the integration
of resource-constrained devices with a cloud-based
blockchain.

Organization. The paper is organized as follows. In Sec-
tion II, we provide the necessary background regarding our
approach. In Section III, we describe a motivating example
and our adversary model. In Section IV, we provide the
system design and highlight security aspects. We evaluate our
results in Section V, which is followed by a discussion and a
description of related work before concluding the paper.

II. OVERVIEW AND BACKGROUND

We provide the background on the building blocks of
IoTLogBlock: contract signing protocols, smart contracts, and
blockchain.

2https://github.com/iot-chalmers/IoTLogBlock.git
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Fig. 2: Signature exchange in the Asokan-Shoup-Waidner
protocol. In the optimistic phase, two nodes agree to sign a
contract. At the end of the protocol, both participants have a
copy of the mutually signed agreement. In the error/recovery
phase, a node tries to abort or resolve a previous round of the
protocol using a Trusted Third Party (TTP).

A. Contract Signing Protocols

Contract signing protocols [19] allow two or more parties
that do not trust each other to sign a pre-agreed text. These
protocols provide fairness, timeliness, and sometimes also
an abuse-free property [21]. Two parties (Alice and Bob)
exchange their signatures in a fair-way [3], where Alice can
obtain Bob’s signature only if Bob can obtain Alice’s signature
and vice-versa. Timeliness [21] means that a participant is not
able to make the other wait for an indefinite amount of time.
Finally, with the abuse-free property [21], a participant cannot
determine the outcome of the protocol.

We can group the contract signing protocols in three
categories: protocols with an online Trusted Third Party
(TTP) [10], protocols without TTP (e.g., time commit-
ments [5]), and protocols with an off-line TTP (e.g., opti-
mistic [3]). As the first two are computationally demanding,
they are not suited for resource-constrained IoT devices.
Hence, we focus on the third group of optimistic contract
signing protocols. Specifically, we build on the Asokan-
Shoup-Waidner (ASW) [3] protocol, which provides fairness
and timeliness, but it is not abuse-free [21]. The ASW protocol
allows two parties to exchange signatures as shown in Figure 2,
without actively invoking the trusted third party. However, an
online TTP is available to resolve issues if one of the parties
does not follow the protocol (crashes or behaves maliciously).
There are three sub-protocols involved in the process. The
first is to complete an optimistic exchange of signatures
(without the involvement of the TTP). The second is to allow a
participant to abort a signature exchange (abort sub-protocol),
and the third is to ask the TTP to resolve an incomplete
signature exchange (resolve sub-protocol).

B. Smart Contracts

A smart contract is a digital representation of an agreement
between two or more parties, written as an event-based pro-
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Fig. 3: The Hyperledger Fabric consists of: 1) the Member-
ship Service Provider (MSP), which issues the access list of
participants, 2) the private network of peer(s) that maintain
the blockchain, and 3) the Fabric client which provides the
application interface.

gram and stored immutably on the blockchain. The blockchain
assigns a public key to each smart contract, and applications
can use these keys to send a transaction to the blockchain,
which triggers the execution of a particular smart contract.
Each smart contract has its internal state to keep events, and
the execution may add a new record to the blockchain. Finally,
as described in [9], a smart contract can act as an escrow to
resolve (dis)agreements between two or even multiple parties.
In IoTLogBlock, we utilize this capability and employ the
smart contract as off-line TTP to resolve issues of the contract
signing protocol. As the code and transactions of the smart
contract can be verified by everyone involved, it inherently
gains trust as a third party.

C. Blockchains and Hyperledger

A blockchain is essentially a distributed ledger: multiple
nodes replicate blocks of records as an append-only data
structure. Each block has multiple records which are linked
together into a chain using the cryptographic hash value of
the previous block. Any change to an older record of a block
inherently invalidates all recent blocks and their records. The
ledger is replicated over multiple nodes in the network to
provide fault tolerance, and the replicas reach a consensus
regarding the order in which they add blocks to the chain.

Conceptually, we can categorize blockchains as public or
private. The former is the initial design of Bitcoin [15], where
any node can join the network and make commits. The latter
enforces access control lists to determine who can participate
in the consensus process and make commits.

An example of a private blockchain is Hyperledger Fab-
ric [2], which is a collaboration between Linux Foundation
and IBM to provide an open-source distributed ledger. The
platform has three main components (see Figure 3). First, a
Membership Service Provider (MSP) manages the identities on
the permission-based blockchain [2]. The MSP authenticates
and authorizes peers that can make changes to the blockchain.
Second, multiple authenticated peers participate in the network
to maintain the ledger and run the smart contracts. Finally,
the Fabric client(s) is an authenticated node that allows the
blockchain network to interact with the outside world.

III. APPLICATION SCENARIO AND ADVERSARY MODEL

This section discusses a motivating example and outlines
our adversary model for IoTLogBlock.

A. Application Scenario

As a motivating scenario, we consider a car rental service
with regular customers [23]. The rental company provides cars
at a service point or distributed throughout the city’s parking
lots. The customer signs up and receives a smart token (key)
that will open a car at any time. The company wants to ensure
that they know what customer used a car during which period,
to charge the customer for the use and also be able to charge
for potential abuse. Customers, on the other hand, want a well-
functioning car, and they are only charged for their specific
use based on their agreement with the company.

In the general case, the stakeholders are known, but they
have conflicting interests. For example, the driver would like
to pay as little as possible while the car rental service would
like the highest fee possible. It is also likely that situations
(accidents) will occur where it is essential to keep an im-
mutable ledger of the transactions between the stakeholders.
The ledger can then be used afterwards to analyze misbehavior
or malicious activities. Finally, we argue that even though a
modern car can afford LTE or 4G connections for recording
its activities, it will still benefit from our design as cellular
coverage is not always available, especially in rural areas.

B. Adversary Model

We assume three potential threats as part of the adversary
model. First, an adversary may try to exploit insufficient data
auditing of a transaction (e.g., an IoT node skips to report
a transaction), where the log does not capture enough data
to determine the event of a transaction. This is a repudiation
threat where, for example, a car or a key may create an off-
line transaction in such a way that there is no proof that an
online validator can verify the event of the off-line transaction.
Second, we consider an adversary that may try to exploit weak
audit mechanisms, including attempts to destroy the audit
mechanism (e.g., blockchain) of the transactions. This is a
scenario where a customer has used a car and tries to remove
the events to claim the money back or not pay in the first place.
Third, an adversary may try to include data from an unknown
source or untrusted device. As a result, the system log may
include data from unknown devices. Here the register entry
leads to an unknown customer, and the log system is unable
to connect a transaction with a real customer.

IV. SYSTEM DESIGN

A. Design Overview

There are three key building blocks to IoTLogBlock (Fig-
ure 1): (1) the interaction between two IoT devices using a
contract signing protocol, (2) the verification of the resulting
transaction between the devices using a smart contract, and
(3) the final immutable storage of the result on the blockchain
for all participants (auditing, finding misbehaving nodes).



To prototype IoTLogBlock, we also used several existing
technologies to tie it together. Below we describe the full
system and mark where our contribution lies with a (*) and
the corresponding number in Figure 1. These steps will then
be further elaborated below.

1) Node discovery and node interaction (1*): When two
low-power wireless devices shall interact, for example, when
the smart key attempts to open the car via wireless commu-
nication, the two devices first have to discover each other. In
our prototype, the nodes are synchronized with an established
local and autonomous communication protocol, TSCH [7], and
they do not depend on any central entity. Next, they have to
perform a wireless transaction, where at the end the car grants
access (or not) to the smart key. Here our contribution lies in
the combination of established low-power wireless protocols,
namely TSCH and 802.15.4 [14], with an optimistic two-
party contract signing protocol, which is further described in
Section IV-C.

2) Interaction between nodes and the cloud: Sporadically,
an IoT node will come into range of an edge device with
cloud connectivity. In this case, the IoT node utilizes the
edge device as a relay to transfer the off-line transactions into
the cloud for verification and storage. We assume that the
edge device has robust capabilities, and it can establish secure
connections (e.g., SSL) with a node of the blockchain network
(see Figure 1). This step builds on established mechanisms and
is not further described in the design of IoTLogBlock.

3) Verification and storage in the cloud (2*, 3*): Through
the edge device, all transactions reach the cloud, where an
authenticated node/peer runs a smart contract to verify each
transaction, detecting misbehaving nodes, and finally to store
each transaction. The smart contract validation is described
in Section IV-D and the final step, permanent storage, is
described in Section IV-E. We conclude in Section IV-F with
the security analysis of potentially misbehaving nodes.

B. Setup: Deploying new Devices

When we add a new device to the system, i.e., we deploy
a new smart key, this device creates a private/public key pair.
Each device will use its private key to sign its transaction. The
public key of each device is stored in the blockchain and is
used to authenticate clients later and verify their transactions.
Moreover, we also employ a smart contract to manage the list
of registered devices.

C. Creating and Signing Transactions

Each device maintains a sequence number that uniquely
identifies each of its transactions, by simply incrementing a
counter for each new transaction. The sequence number is later
used for verification by the smart contract. In IoTLogBlock,
a transaction is created as follows: Once two devices have
discovered each other, they exchange essential information
such as their IDs and the transaction upon which they want to
agree. Next, they sign and exchange a message containing their
IDs, current local sequence numbers, and the transaction itself,
following the optimistic two-party contract signing protocol

Algorithm 1: Smart Contract - Validator
/* Error checking, such as checking for key

revocation, is omitted for brevity. */
Data: Transaction

1 validTransaction = True;
2 forall NodeID in Transaction do
3 Pubkey = RegisteredDevices(NodeID);
4 Status = ECDSA.Verify(NodeID, PubKey, Transaction);
5 if Status is not valid then
6 report NodeID;
7 validTransaction = False ;
8 end
9 end

10 if validTransaction is True then
11 if Pending resolve request then
12 run Resolve-SubProtocol(Transaction);
13 else if Pending abort request then
14 run Abort-SubProtocol(Transaction) ;
15 else
16 record Transaction;
17 end

(see Section II). If the transaction completes, each device
has a transaction signed with the private key of both parties
that states the IDs of the participants, i.e., their public keys,
their respective sequence numbers, and the transaction content
itself. Both IoT nodes individually upload this information into
the smart contract via an edge device once they come within
range. As transactions are signed, manipulations of these, for
example, at the edge device are not possible.

D. Validation with the Smart Contract

IoTLogBlock deploys a smart contract in the blockchain
to act as a validator for the received transactions from IoT
devices. Algorithm 1 shows an abstract pseudo-code version
of the validator. The algorithm starts by checking the validity
of the devices’ signatures and reports any misbehavior. As
a result, transactions will only be committed when signed
by registered devices. Finally, the smart contract resolves
any conflict by using the sub-protocols of the ASW contract
signing protocol [3], as we discuss next.

Abort sub-protocol: If a node crashes, disconnects or mis-
behaves during the execution of the first half of the contract
signing protocol, the abort sub-protocol is invoked. Thus,
if there is a timeout or the signature verification fails, the
participant sends an abort request to the smart contract by
signing a new message which includes the original message1
of the protocol (see Figure 2). If the smart contract has not
received a request to resolve an uncommitted transaction (see
the resolve sub-protocol below), it confirms the request and
registers the abort message to the blockchain.

Resolve sub-protocol: If the two nodes have already ex-
changed the first two messages of the protocol, before one of
the nodes crashes or disconnects, the resolve sub-protocol is
invoked. As the nodes have made some progress, the signature
exchange can be resolved. The node sends a resolve request
containing the first two messages (m1,m2) of the protocol (see



Figure 2) to the smart contract. The resolve sub-protocol is
also invoked when a node tries to abort even if it has already
sent message2.

E. Register Transactions in the Blockchain

After the transactions are validated by the smart contract,
they are appended to the blockchain. By its very nature,
this leads to a distributed ledger open to all stakeholders.
Transactions stored in the blockchain are immutable and
cannot be changed without invalidating previous transactions,
as explained in Section II.

F. Security Analysis

In IoTLogBlock, we focus on the following misbehaviors:
1) Bypass sequence numbers: A node could skip or reuse

sequence numbers to hide its misbehavior. However, when a
node uploads its transactions, the smart contract detects any
duplication or gaps in the sequence numbers. Since the ledger
in IoTLogBlock is available to all stakeholders, it is trivial to
detect this behavior.

2) Hide transactions: A node could execute a transaction
with another node and not report it or even try to delete it.
By using the contract signing protocol, both parties have a
copy of a transaction. If the other node behaves correctly,
it will upload all the transactions, and the smart contract
detects the misbehaving node. Thus, a transaction will only
go unnoticed if both involved parties are misbehaving or both
fail to establish an edge connection. We argue that it is very
uncommon for two parties to collude in this way, as they
commonly would not share the same connection or the same
goals. For example, while the smart key, or more precisely, the
corresponding users might be interested in driving a car for
free, the smart car has precisely the opposite interest. Finally,
the blockchain ensures the immutability of its records, and a
node cannot delete already stored transactions.

3) Unregistered device: An untrusted device can try to
overcome the contract signing protocol, and send unsigned or
invalid transactions to the blockchain. However, this is taken
care of by the protocol itself and the trusted party (here the
smart contract), which accepts transactions only by registered
devices. In case of a transaction violation, a node can then
invoke the sub-protocols to abort or resolve a transaction.
Since a node reports all the abort attempts to the blockchain,
it is trivial to detect a node that abuses the protocol and block
it in the future.

V. EXPERIMENTAL EVALUATION

IoTLogBlock includes low-power IoT devices, edge com-
puting, and a cloud service (Hyperledger). In our evaluation,
we focus on the IoT devices; the edge device plays a secondary
role in our architecture, and Hyperledger Fabric has previously
been evaluated in detail [2].

Goals. With this section, we answer the following questions:
a) is IoTLogBlock technically feasible on low-power IoT
devices? b) what is the overhead in terms of computation,

memory, and energy consumption of the contract signing
protocol? c) what is the overall performance of IoTLogBlock?

Outline. We divide the evaluation into three parts. First, we
discuss our implementation of IoTLogBlock and our choices
in terms of IoT hardware, software stack, edge computing,
and blockchain. Second, we evaluate our implementation of
IoTLogBlock in terms of run-time performance, energy con-
sumption, and memory consumption. Third, we present our
overall system performance including 1) the time it takes for
a sensor node to register a record on the blockchain, and 2)
the reliability and limitations of IoTLogBlock when creating
periodic off-line transactions.

A. Implementation and Experimental Setup

IoT Software Stack. We implement the contract signing
protocol in C as an application for Contiki-NG [11]. Our
implementation employs the Elliptic Curve Digital Signature
Algorithm (ECDSA) using the recommended NIST-P 256-
bit curve. All the ECDSA operations are performed by the
cryptographic hardware support of our target platform. For
communication between IoT nodes and to edge devices, we
use the TSCH protocol [7] readily available in Contiki-NG.
TSCH employs radio duty cycling and provides us with a
robust and energy efficient communication substrate, tailored
to resource-constrained and potentially battery-driven IoT de-
vices. We would like to note, that the design of IoTLogBlock
is not bound to a particular low-power wireless protocol and
would also support, for example, BLE.

IoT Hardware and Platform. We target sensor nodes
equipped with cryptographic hardware support such as the TI-
CC2538 SoC. The SoC contains a 32-bit ARM Cortex M3
CPU at 32 MHz, 32 KB of RAM, and 512 KB of ROM. More-
over, the SoC features a cryptographic engine at 250 MHz
and a 802.15.4 radio transceiver. This SoC is common in the
community for resource-constrained IoT devices and readily
supported by numerous operating systems. In particular, we
use the OpenMote platform [25], which combines this SoC
with further sensors and a battery.

Edge Devices and Blockchain. In IoTLogBlock, the edge
devices receive transactions from the IoT device and upload
them to the smart contract of the Hyperledger instance via the
Fabric API. For these connections, we use Python and Node.js
scripts while we implement our smart contract in GO. Our
edge devices run a standard Linux. For simplicity, we deploy
the edge devices and the Hyperledger Fabric network using
Docker containers on a desktop machine, which features an
Intel Core i5 at 2.3 GHz and 16 GB of RAM.

Source Code. We provide our implementation of IoTLog-
Block as open-source code in a public repository.3

B. Evaluation of IoTLogBlock on the IoT Node

As the first step, we evaluate our contract signing protocol
in terms of memory, computation, and energy consumption.
For the memory footprint we use the tools arm-none-eabi-
readelf and arm-none-eabi-size on the binary files. For the

3https://github.com/iot-chalmers/IoTLogBlock.git



RAM ROM
Component Bytes / Percent Bytes / Percent
Contiki-NG OS 11,394 37% 40,527 10%
Cryptographic library 1,520 4% 10,775 1%
Application 4,201 13% 7,993 1%
Total footprint 17,115 54% 59,295 12%
Available memory 14,885 46% 452,705 88%

TABLE I: Memory Footprint of the IoT application (consid-
ering max size) on CC2538, which facilitates 32KB of RAM
and 512 KB of ROM.

computation and energy performance, we rely on Contiki’s
Energest module with a 30 µs resolution timer to measure the
duration of each task, log the power modes of the system, and
derive the energy consumption. For the values of the electric
current (see Table III) we rely on the CC2538 data sheet [22]
and a previous evaluation [20].

Memory Footprint. Table I presents the static memory
allocation of our implementation, divided into three parts:
(a) the operating system (Contiki-NG) with the network stack,
(b) the cryptographic library for CC2538, and (c) the imple-
mentation of the contract signing protocol (Application). The
operating system has a significant impact and consumes 37%
of the available RAM. The application combined with the
cryptographic library consumes 17% of the available RAM.
In total, we consume 54% of the available memory. This
leaves 46% of the available RAM to be dynamically used at
run-time by the stack and for the temporary storage of off-
line transactions, which we evaluate later. Finally, the whole
program consumes only 12% of the ROM.

Performance. Next, we evaluate the performance of the
cryptographic functions. All cryptographic operations are per-
formed by the cryptographic engine running at 250 MHz, and
in Table II we present the performance of each task. The
average time to complete all cryptographic functions of the
contract signing protocols in IoTLogBlock is 2.1 s. The most
burdensome task – concerning the performance in time – is
the signature verification, which takes 715 ms per node. Our
protocol uses the SHA256 hash-function multiple times during
a single transaction, but the impact is low. The cryptographic
operations combined with the latency of the wireless TSCH
protocol stack (see Figure 4) gives us a total of 3 s per
transaction. We argue that this overhead, while significant, is
feasible for many applications. For the application scenario
of the car rentals, it means a user will need three seconds to
unlock a car, which we consider practical.

Energy Consumption. Focusing on energy efficiency, we
assume that nodes have discovered each other, which is a
functionality provided by the TSCH protocol known as TSCH
synchronization. This discovery happens quickly, and it has
been evaluated previously [7]. In Figure 4, we depict the flow
of the electric current (in mA) during a complete round of the
contract signing protocol, including wireless communication
and the use of the cryptographic engine.

In this example, a node (originator) initiates a transaction
with a second node (responder). The protocol begins with
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(a) Originator: This node starts the
contract signing protocol.
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(b) Responder: This node responds
accordingly.

Fig. 4: The electric current drawn by a complete round of the
contract signing protocol.

the originator and responder exchanging a hello message to
indicate their availability, visible at time 0.5 s in Figure 4.
Next, the originator starts the protocol by signing the first
message, which takes 0.3 s (see Table II). The responder is
waiting in low-power mode for the signature of the originator,
which it receives at time 0.9 s. Immediately, the node starts
the verification and signs the message (in case of a correct
signature). This process takes 1 s, while the originator waits
in low-power mode. At time 2.1 s, the originator receives the
signature from the responder and starts the verification, which
takes 0.7 s. Next, at 2.8 s the originator (in case of a correct
signature) replies with its secret nonce value, followed by a
reply of the responder.

In Table III, we report the total energy consumption (in mJ)
of the protocol, which also includes the wireless protocol
stack. We notice that the cryptographic engine contributes
significantly (58%) to the total energy consumption. The
wireless communication via the TSCH protocol contributes
35%. In total, a transaction consumes 98.5 mJ. We observe that
the cryptographic computations and radio communication are
the two main drivers of energy consumption in IoTLogBlock.

By default, OpenMote is powered by two standard AA
alkaline battery of 2500 mAh. Assuming a self-discharge of
20%, we can utilize 80% of the capacity, i.e., 2000 mAh
[24]. As a result, we can expect 10,000 Joules of energy from
the cells, which allows IoTLogBlock to perform roughly in
the order of 100,000 transactions. While this is merely an
estimate, we argue that this order of magnitude of transactions
is practical for a wide range of application scenarios, including
ours of a battery-powered smart key.

Reflecting on previous work [20] [13], we conclude that,
while the cryptographic module consumes the largest share of
the energy, the design of IoTLogBlock would not be feasible
without it. Implementing the cryptographic functions on the
main CPU and without the module would significantly extend
the computation time. As a result, the cryptographic handshake
would get impractically long and consume even more energy.

C. System Performance of IoTLogBlock.

We evaluate the overall system in terms of a) local storage
capacity b) delay of registering a transaction to the blockchain,
and c) the reliability of nodes when creating off-line transac-
tions. In the experiments, we utilize the remaining available
RAM for storing off-line transactions while waiting for an



Function type Time
ECDSA-Sign on originator 350 ms
ECDSA-Verify on responder 715 ms
ECDSA-Sign on responder 350 ms
ECDSA-Verify on originator 715 ms
SHA256-Hash function 1 ms
Total time 2131 ms

TABLE II: Performance of cryptographic functions using the
CC2538 cryptographic engine running at 250 MHz.

State Time [ms] Current [mA] Energy [mJ]
Cryptographic Engine 1,065 25.9 57.9
TX 32 24 1.6
RX 836 20 35.1
CPU @ 32 MHz 38 13 1.1
CPU @ LPM2 1,029 1.3 2.8
Total 3,000 98.5

TABLE III: Derived energy consumption of running the con-
tract signing protocol on the CC2538 SoC given a supply
voltage of 2.1 V. Note we configure Contiki-NG to use the
low-power mode 2 (LPM2) [22].

edge device to come into range. We collect our results after
sending at least 200 packets, and we report the standard
deviation when it is not negligible.

We provide edge connectivity to the IoT devices within a
period of 1, 10, 100, 1,000, and 10,000 s. These experiments
expose the devices to different types of scenarios, ranging from
a dense topology with access points to a much more sparse
network topology with little edge connectivity. As evaluated
previously, a transaction takes 3 s. Thus, in our evaluation,
two nodes generate transactions every 3, 30, and 300 s (see
Figure 5).

Transaction Storage Capacity. We now present how many
transactions a device can store until it connects again to an
edge device. This is essential, as a device has to drop previous
transactions or refuse new ones once its temporary storage
is full. Figure 5a shows that with edge connections in the
same order of magnitude as the transaction generation rate,
not much memory is used. As the edge connections get more
sparse compared to the transaction generation rate, the devices
start to utilize more of the storage capacity, and they reach full
utilization of their memory when we provide edge connections
in terms of hours (10,000 s). After this point, we need to
start dropping records or refuse new ones, which affects the
reliability (or availability) of the system (see Figure 5c and
discussion below).

Register Delay. In Figure 5b, we present the total number
of seconds (delay) that it takes to create, sign, and register a
transaction to the blockchain. We can see a correlation between
the delay and the periodicity of the edge connection.

System Reliability. We have counted the total amount of
attempts a device tried to create a transaction. We quantify the
reliability IoTLogBlock as the percentage of the successfully
stored transactions on the Hypeledger, which is presented in
Figure 5c. We notice that the reliability highly depends on
two factors: the periodicity of the edge connection, and the

transaction generation rate.

VI. DISCUSSION AND LIMITATIONS

In this section, we discuss the benefits, limitations, and
remaining challenges regarding our approach.

Resource Constraints. The performance of the contract
signing protocol (a full-round) averages 3 s. We argue that
this demonstrates IoTLogBlock to be functional in practice.
Moreover, the protocol utilizes radio and CPU duty cycling for
low-power consumption (see Table III). However, the energy
consumption of the cryptographic engine demonstrates that
security comes with a price. We note that the cryptographic
operations sign and verify are essential to any transaction
flow of the Blockchain. Moreover, they must be performed
on the IoT devices themselves and cannot be delegated to the
potentially untrusted edge or cloud services. Thus, we argue
that this energy cost is fundamental to security and would
also be required in any other design integrating IoT devices
and blockchain.

System Latency. The experiments confirm the feasibility of
connecting resource-constrained IoT devices with blockchain
technologies. Under fair conditions of around 5-30 min tran-
sient connectivity and a fair number of transactions, we show
that the memory of small IoT devices is sufficient to store
the transactions. For further robustness, we can store them
additionally in flash memory. Our result shows that the main
bottleneck in terms of memory consumption and end-to-end
latency lies on the periodicity of the edge connection.

Security Aspects. We use a fair authentication scheme with
a smart contract, which validates each device and transaction.
However, each device will need to use a white-list of authen-
ticated nodes, which will increase the local storage needs. We
recognize a trade-off between the off-line transaction storage
and the number of devices stored in the white-list.

Limitations. A general limitation of our study is the privacy
of stored data in a cloud-based blockchain. A blockchain is
by nature publicly available for all the stakeholders.

VII. RELATED WORK

Fair exchange. Similar to our work, FairSwap [8] also
proposes the use of smart-contracts for fair exchange, avoiding
costly solutions like zero-knowledge proofs. However, the
protocol has not been tested and evaluated on any IoT devices.

Blockchains and IoT. Several architectures [12] [16] have
been proposed to achieve data provenance using blockchain
technology. However, they do not integrate IoT devices,
and they do not apply to resource-constrained environments.
Nonetheless, there are many benefits [6] of integrating IoT
with blockchains. There are approaches to integrate IoT de-
vices with blockchains such as AGasP [9] and Edgechain [18].
The existing architectures are limited in two ways: a) there is a
lack of non-repudiation of the transactions created by the IoT
nodes, and b) they do not take into account the constraints
faced by low-power IoT devices. In contrast, IoTLogBlock
focuses on data provenance, achieving non-repudiation, and
using low-power IoT devices.
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(a) Memory usage for storing off-line trans-
actions in the local memory of CC2538.
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(b) The delay between creating an off-line
transaction from IoT devices and registering it
to the Hyperledger Fabric. The black vertical
line shows the standard deviation.
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(c) We count all the transaction attempts, and we
quantify the system reliability as the percentage of
the successfully created and stored transactions to
Hyperledger. When the device memory is full, the
devices refuse to create further transactions.

Fig. 5: We create transactions every 3, 30, and 300 s. The IoT device offloads its transactions with periodic edge connection
every 1, 10, 100, 1,000, and 10,000 s.

Cryptographic Capabilities on IoT Devices. Previous
studies show the affordability of cryptographic operations on
small sensor devices [17] [13]. IoTLogBlock differs from
previous work in that we use blockchain to record transactions
and a contract signing protocol to achieve non-repudiation.

VIII. CONCLUSION

In this paper, we propose IoTLogBlock, an open-source
architecture allowing low-power devices to use a cloud-based
ledger to record transactions between devices. We argue that
using a blockchain directly is not an option for hardware-
constrained IoT devices, as it implicitly assumes the devices
are capable of heavy computations and having large memory
capacity and always-on communication to the cloud. IoT-
LogBlock combines an optimistic contract signing protocol,
a private-based blockchain, and a smart contract, to cope
with these three challenges. The IoT devices create off-line
transactions, which later are verified by the smart contract. The
blockchain provides to the stakeholders an immutable ledger
of all the collected transactions.

We evaluated IoTLogBlock, especially in regards to the
extent it allows IoT devices with transient connectivity to
create and register transactions in a cloud-based blockchain.
We quantify the cost of IoTLogBlock in terms of compu-
tation, delay, memory, and energy consumption. It takes on
average 3 s for IoT devices to mutual sign and exchange
a transaction. Moreover, IoTLogBlock supports intermittent
connectivity ranging from 10 s to over 2 h.
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