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Diffuse interface modeling and variationally consistent homogenization of 
fluid transport in fractured porous media 

Nele Pollmann a,b,*, Fredrik Larsson a, Kenneth Runesson a, Ralf J€anicke a 

a Division of Material and Computational Mechanics, Department of Industrial and Materials Science, Chalmers University of Technology, S-41296, Gothenburg, Sweden 
b Engineering Geology and Rock Physics, Institute of Geology, Mineralogy and Geophysics, Ruhr-Universit€at Bochum, DE-44801, Bochum, Germany  

A B S T R A C T   

We critically assess diffuse interface models for fluid transport in fractured porous media. Such models, often called fracture phase field models, are commonly used 
to simulate hydraulic stimulation or hydraulic fracturing of fluid-saturated porous rock. In this paper, we focus on the less complex case of fluid transport in sta
tionary fracture networks that is triggered by a hydro-mechanical interaction of the fluid in the fractures with a surrounding poroelastic matrix material. In other 
words, fracture propagation is not taken into account. This allows us to validate the diffuse interface model quantitatively and to benchmark it against solutions 
obtained from sharp interface formulations and analytical solutions. 

We introduce the relevant equations for the sharp and diffuse, i.e. fracture phase field, interface formulations. Moreover, we derive the scale-transition rules for 
upscaling the fluid-transport problem towards a viscoelastic substitute model via Variationally Consistent Computational Homogenization. This allows us to measure 
the attenuation associated with fluid transport on the sub-scale. 

From the numerical investigations we conclude that the conventional diffuse interface formulation fails in predicting the fluid-transport behavior appropriately. 
The results even tend to be non-physical under certain conditions. We, therefore, propose a modification of the interpolation functions used in the diffuse interface 
model that leads to reasonable results and to a good approximation of the reference solutions.   

1. Introduction 

In recent decades, hydraulic stimulation, often called hydraulic 
fracturing in the context of shale gas production, has become a prom
ising technology for the production of deep geothermal energy in a 
carbon neutral economy. In the past, however, stimulation of deep 
geothermal reservoirs induced earthquakes, as observed in e.g. the 
Rhine valley (Charl�ety et al., 2007). For the societal acceptance of this 
technology it is, therefore, of utmost importance to assess the risk of 
hydraulic stimulation in a reliable fashion, in particular for its applica
tion in densely populated regions. 

Recently, manifold approaches have been launched that aim at 
modeling and simulating hydraulic stimulation using computational 
mechanics. Among others, the family of fracture phase field models has 
become most popular. Seminal early contributions are those of Miehe 
et al. (Miehe and Mauthe, 2016; Miehe et al., 2010, 2015) and Mikelic 
et al. (Mikeli�c et al., 2015a, 2015b) who proposed that the damage 
variable interpolates smoothly between the fully disintegrated state at 
the fracture and an undamaged poroelastic background. In practice, the 
fractures contribute to a Darcy-type fluid transport by an additional 

permeability term whilst, in turn, the fluid pressure at the fracture tip 
triggers the fracture propagation. These concepts were extended to
wards fracture propagation in strongly heterogeneous materials (Xia 
et al., 2017) and partially saturated porous media (Cajuhi and Lorenzis, 
2018). Moreover, Stokes-type transport was included (Ehlers and Luo, 
2017; Wilson and Landis, 2016), and the fracture phase field formula
tion was embedded in the Theory of Porous Media (Ehlers and Luo, 
2017; Heider and Markert, 2017). 

In this paper, we aim at investigating how well fluid transport in 
fracture networks embedded in fluid-saturated porous media can be 
predicted using diffuse interface formulations such as the fracture phase 
field model. However, quantitative benchmarks for the problem of hy
draulic stimulation are difficult to assess, if existent at all. We, therefore, 
focus on the sub-problem of hydro-mechanically triggered fluid- 
transport in stationary fracture networks. Hence, fracture propagation 
is not taken into account. This allows us to validate hydro-mechanically 
coupled fluid transport in fracture networks, obtained using a diffuse 
interface formulation, against suitable numerical and analytical bench
mark experiments. 

This scenario of fluid transport in stationary fracture networks is 
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closely related to seismic attenuation which can be observed if seismic 
waves travel through a fluid-saturated fractured rock. If mechanical 
waves, usually at seismic (i.e. very low) frequencies, travel through such 
a medium, the heterogeneity of the fracture network leads to strong fluid 
pressure gradients. The pressure gradients are equilibrated via redistri
bution of fluid in the fracture network. This process is dissipative and 
governed by pressure diffusion along the fractures (O’Connell and 
Budiansky, 1977; Vinci et al., 2014). Hence, part of the wave energy is 
lost and the seismic wave is attenuated. Moreover, it was shown that the 
effect of seismic attenuation correlates with the degree of fracture 
connectivity in the network, i.e. with the amount of fractures that are 
connected and which communicate hydraulically (Quintal et al., 2014, 
2016; Rubino et al., 2013). On the much larger length scale of seismic 
wave propagation, the local fluid redistribution in the fracture network 
can be interpreted as viscoelastic damping. The correlation between 
pressure diffusion in fractures and the properties of an overall visco
elastic medium were investigated in (J€anicke et al., 2019a, 2019b) in 
terms of Variationally consistent Computational Homogenization (VCH) 
together with Numerical Model Reduction (NMR). 

The motivation to focus on the sub-problem of seismic attenuation 
associated with fluid transport in fracture networks is that phenomenon 
is of high relevance in the context of hydraulic stimulation: Fracture 
networks increase the hydraulic conductivity of a rock tremendously 
(Odling, 1992; Snow, 1969). Therefore, the ability to detect, to simulate, 
and to understand seismic attenuation enables practitioners to decide 
whether or not a rock formation is suitable for hydraulic stimulation. 
Alternatively, during hydraulic stimulation, a tool is provided for 
monitoring the fracturing process, i.e. the generation of induced fracture 
networks. Another reason to focus on that particular sub-problem is that 
there are well-established formulations available which treat the frac
tures as sharp interfaces (e.g. using interface elements) and which can be 
used to benchmark the phase field approach quantitatively. Hence, the 
material response associated with diffusive fluid transport in sub-scale 
fracture networks in sharp or diffuse formulation can be directly used 
for FE2 type simulations of the seismic wave propagation experiment. 

The paper is organized as follows: We first recall the sharp interface 
formulation of hydro-mechanically coupled fluid transport in fracture 
networks in Section 2. Next, we introduce the upscaling procedure for 
selective homogenization from a poroelastic Representative Volume 
Element (RVE) with fluid-filled fractures, represented as sharp in
terfaces, towards an apparently viscoelastic substitute model via VCH in 
Section 3. In Sections 4 and 5, we derive the simplified phase field model 
for stationary fractures with poroelasticity and the corresponding se
lective VCH approach. Finally, we investigate the performance of the 
diffuse interface model compared to the sharp interface reference and an 
analytical solution in Section 6 and discuss our findings in Section 7. 

Throughout this manuscript, vector and tensor quantities are written 
as bold types. Taking into account Einstein’s sum convention we write 
out simple and double contractions in terms of the Cartesian compo
nents as a⋅b ¼ ai bi and A : B ¼ Aij Bij. Time derivatives are denoted _⋄. 

2. Sharp interface model for fractured poroelastic media 

2.1. Preliminaries 

In this section, we recall a sharp interface formulation for pressure 
diffusion in a fractured poroelastic medium that was initially presented 
in (J€anicke et al., 2019a). We refer e.g. to (Coussy, 2004; Ehlers et al., 
2002; Verruijt, 2013) for a more detailed overview on the modeling of 
(undamaged) poroelastic media. The fracture opening is assumed to be 
on the length scale of pores and grains building up the poroelastic 
background material. In other words, the typical fracture length is or
ders of magnitude larger than the fracture opening. Thus, the fractures 
can be approximated as lower-dimensional interfaces with the fracture 
opening τ. Moreover, we assume the fractures to be mechanically and 
hydraulically open. Hence, fracture surfaces are not in contact, such that 

pressure diffusion, associated with fluid transport, takes place along the 
fracture. The fracture network is stationary, and we neglect fracture 
propagation. The primary global fields for the domain of the poroelastic 
background medium are the displacement of the solid skeleton u and the 
pore fluid pressure pM. The fluid pressure in the fracture domain is 
denoted pF. 

2.2. Strong and weak form of the fine-scale problem 

The general formulation of the fracture interface model can be stated 
as follows: Restricting to quasi-statics, we seek the displacement field 
uðx; tÞ : ΩM� Rþ→R3, the pore pressure field in the poroelastic domain 
pMðx; tÞ : ΩM � Rþ→R, and the fluid pressure in the fracture domain 
pFðx; tÞ : ΓF � Rþ→R that solve the system 

(1)  

together with the initial conditions 

ΦM ¼Φp
M on ΩM at t ¼ 0; (2a)  

ΦF¼Φp
F on ​ ΓF ​ at ​ t ¼ 0: (2b) 

Here, the fracture network ΓF is assumed to consist of i ¼ 1;2;…; nF 

possibly intersecting fractures such that ΓF ¼ [
nF
i¼1ΓFi . ΓM is the exterior 

boundary of ΩM whilst L Fi is the exterior boundary associated with ΓFi , 
see Fig. 1. We introduce for simplicity the gradient operator rF ¼ ½I �
nF � nF�⋅rthat is tangential to the fracture, where nF represents the 
vector normal to the fracture, contrary to the normal vector of the 
domain n. Further, ΦM and ΦF are storage functions that are defined 
subsequently. ⋄p denotes a prescribed quantity (Dirichlet/Neumann 
boundary condition). (1a) represents static equilibrium whilst (1e) and 
(1i) express mass conservation of the fluid saturating the poroelastic 
material and the fractures. The constitutive relations for the equilibrium 
stress σ and the seepage velocities wM and wF become 

σðε½u�; pMÞ : ¼ E : ε½u� � αpMI; ε½u� : ¼ðu�rÞsym
; (3a)  

wMðζ½pM�Þ : ¼ � KM ⋅ ζ½pM�; ζ½pM� : ¼rpM; (3b)  

wFðζF½pF�Þ : ¼ � KF ⋅ ζF½pF�; ζF½pF� : ¼rFpF¼ ½I � nF� nF�⋅rpF; (3c)  

where ε is the linear symmetric strain, and square brackets �½⋄� refer to 
operational dependency of � on ⋄. E is the fourth order elasticity tensor 
of the undamaged material which is, in the simplest case of isotropy, 
defined by the shear modulus G and the bulk modulus K of the dry solid 
background skeleton. KM and KF are the second order permeability 
tensors of the poroelastic material and the fractures and α is the Biot- 
Willis coefficient. In the simplest case of isotropy, the permeability 
tensors can be expressed as 
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KM :¼
k
η I; KF :¼

τ2
0

12η I (4)  

with the permeability k of the poroelastic material and the viscosity η of 
the saturating fluid. The permeability of the fracture zone is computed 
from the Poiseuille flow rule, i.e. we assume a quadratic velocity profile 
with non-slip conditions in the fractures, which results in the apparent 
fracture permeability τ2

0=12 where τ0 ¼ τðt¼ 0Þ is the given initial 
fracture opening. Here, we used the pressure gradient operator ζ½pM� for 
the background medium and the tangential gradient operator ζF½pF� that 
is evaluated in the plane tangential to the fracture domain with the 
normal vector nF. Furthermore, qL denotes the leak-off of fluid from the 
fracture into the surrounding poroelastic background material whereas 
bqi denotes the fluid exchange between intersecting fractures. 

Moreover, we introduce the storage functions ΦM and ΦF that 
represent the current volume fraction of fluid in the background mate
rial and the fracture as 

ΦMðε½u�; pMÞ : ¼φþαI : ε½u� þ βpM; (5a)  

ΦFðu; pFÞ : ¼ 1þ eF þ
pF

Kf : (5b) 

The Biot coefficients for the poroelastic material are defined as 

α :¼ 1 �
K
Ks; β :¼

φ
Kf þ

α � φ
Ks ; (6a)  

where φ is the porosity of the poroelastic material, Kf the bulk modulus 
of the fluid saturating pore space and fractures, and Ks the bulk modulus 
of the solid grains constituting the poroelastic background material. The 
volume change of the fracture due to deformation of the background 
material is denoted eF. 

We specify the hydro-mechanical coupling between the poroelastic 
background material in ΩM and the fluid-filled fractures ΓFi . We, 
therefore, define the volumetric strain in the fracture due to the defor
mation of the surrounding poroelastic material and the leak-off of fluid 
from the fracture into the poroelastic material as 

eF :¼
kukF⋅nF

τ ; qL :¼ � kwMkF⋅nF; (7)  

where k � kF is the jump of a quantity across the fracture. Finally, we 

assume the pressure field to be continuous such that 

pF continuous on \nF
i¼1ΓFi � ð0;T�; (8a)  

pM ¼ pF continuous ​ at ​ ΓF � ð0; T� (8b)  

Henceforth, we simplify notation and write p instead of pM and pF. 
With these definitions at hand, we introduce the standard space- 

variational format corresponding to (1) as follows: Find uðx; tÞ; pðx; tÞ
in the appropriately defined spaces U� P that solve 
Z

ΩM

½ε½u� : E : ε½δu� � αpI : ε½δu�� dΩþ
X

i¼1

nF Z

ΓFi

p n ⋅ δu dΓ 

¼

Z

ΓðuÞM;N

tp ⋅ δu dΓ 8δu2U0; (9a)  

Z

ΩM

½αI : ε½ _u�δpþ β _pδpþ ζ½p� ⋅ KM ⋅ ζ½δp�� dΩ 

þ
X

i¼1

nF Z

ΓFi

�

_eFδpþ
p

Kf δpþ ζF½p� ⋅ KF ⋅ ζF½δp�
�

τdΓ 

¼ �

Z

ΓðpÞM;N

wpδp dΓ �
X

i¼1

nF Z

L Fi

wpδp τ dL 8δp2P0; (9b)  

where U0;P0 are appropriately defined test spaces. 

3. VCH for the sharp interface model 

In this section, we aim at establishing a scheme for the upscaling 
from the fluid-filled fractured rock towards a viscoelastic substitute 
medium. For the sharp interface model, a similar procedure is described 
in (J€anicke et al., 2019a). Therefore, we first introduce the general 
concept of first-order homogenization. Afterwards, we derive scale 
transition rules that constitute the macro-scale problem and establish 
the RVE problem in a variationally consistent way. 

3.1. First-order homogenization in the spatial domain 

We replace the single-scale problem in Section 2 by a two-scale 
problem upon introducing (i) running averages in the weak format 
and (ii) scale separation via first-order homogenization. The first step is 
to replace the space-variational problem (9) by that of finding ðuðx; tÞ;
pðx; tÞÞ 2 UFE2 � PFE2 that solves 
Z

ΩM

h
aðuÞ□;Mðu; δuÞ � b□;Mðp; δuÞ � b□;Fðp; δuÞ

i
dΩ 

¼

Z

ΓðuÞM;N

tp ⋅ δu dΓ 8δu2VFE2 ; (10a)  

Z

ΩM

�
b□;Mðδp; _uÞþm□;Mð _p; δpÞþ aðpÞ□;Mðp; δpÞ

�
dΩ 

þ

Z

ΓF

½b□;Fðδp; _uÞþm□;Fð _p; δpÞþ a□;Fðp; δpÞ� dΓ 

¼ �

Z

ΓðpÞM;N

wpδp dΓ �
X

i¼1

nF Z

L Fi

wpδpτ dL 8δp2PFE2 ; (10b)  

where the pertinent space-variational forms in (10) are given as 

aðuÞ□;Mðu; vÞ : ¼ 〈ε½u� : E : ε½v�〉□;M; (11a)  

Fig. 1. Fracture network ΓF in a sharp interface representation with fracture 
opening τ. ΩM is the domain filled with the poroelastic background material. ΓM 

is the external surface of ΩM. 
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aðpÞ□;Mðp; qÞ : ¼ 〈ζ½p� ⋅ KM ⋅ ζ½q�〉□;M; (11b)  

a□;Fðp; qÞ : ¼
X

i¼1

nF

〈ζF½p� ⋅ KF ⋅ ζF½q� τ〉□;Fi
; (11c)  

b□;Mðp; vÞ : ¼ 〈α p I : ε½v�〉□;M; (11d)  

b□;Fðp; vÞ : ¼
X

i¼1

nF

〈p k _vk ⋅ nF〉□;Fi
; (11e)  

m□;Mð _p; qÞ : ¼ 〈β _pq〉□;M; (11f)  

m□;Fð _p; qÞ : ¼
X

i¼1

nF

〈
1

Kf _pq τ〉□;Fi
: (11g) 

The volume averaging operators are defined as 

〈 � 〉□;M : ¼
1
jΩ□j

Z

Ω□;M

� dΩ; and 〈 � 〉□;Fi
: ¼

1
jΩ□j

Z

Γ□;Fi

� dΓ: (12) 

These forms represent running averages on square (2D) or cubic (3D) 
domains Ω□ with the side length L□ which are located at each macro- 
scale spatial point x 2 Ω. We note that the introduced averaging re
sults in a change of the original problem. The weak format (10) thus 
serves as the basis for VCH as discussed below. 

Next, we introduce scale separation and first-order homogenization. 
We decompose the sub-scale field u into a macro-scale part uM and a 
micro-scale or fluctuation part us within each RVE such that 

u¼ uM½u� þ us;with ​ uMðx; tÞ : ¼ ε ⋅ ½x � x�; ε : ¼ ε½u�: (13) 

Furthermore, we introduce the simplification that pressure diffusion 
associated with fluid transport in the pores and fractures is a local 
process within the RVE. Hence, we presume the absence of macroscopic 
pressure gradients ζ½p� and consider the RVE to be undrained, i.e. the 
amount of fluid stored in the RVE remains constant. We thus choose 

p ¼ ps: (14) 

This upscaling procedure with undrained conditions for poroelastic 
RVEs, sometimes called “selective homogenization”, has been discussed 
in more detail in (J€anicke et al., 2016, 2019a). 

We define the two-scale trial and test spaces as 

UFE2 : ¼
n

ujΩ□;M;j
¼ uM½u� þ us

j ; u
s
j 2Us

□;j; u2U
o
; (15a)  

VFE2 : ¼
n

δujΩ□;M;j
¼uM½δu� þ δus

j ; δus
j 2Us

□;j; δu2U
0
o
; (15b)  

PFE2 : ¼
n

pjΩ□;M;j
¼ ps

j ; ps
j 2Ps

□;j

o
; (15c)  

where U and Us
□;j are the finite element discretized trial spaces for the 

macro- and microscopic problem on RVE Ω□;j, respectively. Similarly, 

U
0 is the trial space for the macroscopic problem and Ps

□;j is the trial and 
test space for RVE Ω□;j. 

Hence, we introduce the trial and test spaces for the macro-scale 
problem U and U0 and for the micro-scale problem Us

□;j; Ps
□;j, where 

we use the notation 

u2UFE2 �
�

u;
n

us
j

o�
2U�

h
�j Us

□;M;j

i
; (16a)  

p2PFE2 �
n

ps
j

o
2
h
�j Ps

□;j

i
: (16b) 

In other words, there exist components ðus; psÞ and corresponding 
spaces ðUs

□;j;P
s
□;jÞ for each individual RVE Ω□;j. 

We are now in the position to restate the two-scale problem as fol
lows: Find ðu; fus

j g; fps
i gÞ 2 U� ½�j Us

□;j� � ½�j Ps
□;i� that solve 

Z

ΩM

h
aðuÞ□;M

�
u;uM½δu�þδus� � b□;M

�
p;uM½δu�þδus� � b□;F

�
p;uM½δu�þδus�

i
dΩ 

¼

Z

ΓðuÞM;N

tp ⋅
�
uM½δu�þδus�dΓ; (17a)  

Z

ΩM

�
b□;Mðδps; _uÞþm□;Mð _p; δpsÞþ aðpÞ□;Mðp; δpsÞ

�
dΩ 

þ

Z

ΓF

½b□;Fðδps; _uÞþm□;Fð _p; δpsÞþ a□;Fðp; δpsÞ� dΓ 

¼ �

Z

ΓðpÞM;N

wpδps dΓ �
X

i¼1

nF Z

L Fi

wpδps τ dL ; (17b)  

8ðδu; δus; δpsÞ 2 U
0
� ½�jU

s
□;j� � ½�jP

s
□;j� where we used the interpreta

tion δus ¼ δus
j and δps ¼ δps

j inside Ω□;j. 

3.2. Macro-scale problem and stress averaging 

We obtain the homogenized macro-scale problem from (17) upon 
considering only macroscopic contributions to the test functions. Hence, 
δps ¼ 0 and δus ¼ 0. We find that the macro-scale problem reduces to 
Z

Ω

σ : ½δu�r� dΩ¼
Z

ΓðuÞM;n

tp⋅δu dΓ 8δu 2 U
0
; (18)  

where we assume that tp is the suitably homogenized traction vector on 
the Neumann boundary. Moreover, we find the relation 

σ : ¼ 〈σ□〉¼ 〈E : ε½u� � αp I〉□;M �
X

i¼1

nF

〈p I〉□;Fi
: (19)  

With the standard argumentation, the stress averaging rule (19) can be 
expressed as the surface integral 

σ¼ 1
jΩ□j

Z

Γ□;M

ðt� ½x � x�Þsym dΓ �
1
jΩ□j

X

i¼1

nF Z

L □;Fi

ðp n� ½x � x�Þsym dL :

(20)  

3.3. Micro-scale problem on an RVE 

In order to generate a uniquely solvable RVE problem we adopt the 
additional model assumption that us and ps are micro-periodic, i.e. 

kusk□¼ 0 and kpsk□ ¼ 0 8x 2 Γþ□: (21) 

We, therefore, use the difference operator k � k□ðxÞ ¼ �ðxþÞ � �ðx� Þ. 
We call x 2 Γþ□ image points and x 2 Γ�□ the corresponding mirror 
points. We apply micro-periodicity in a variational form such that 

dðuÞ□;MðδλðuÞ;uÞ¼ dðuÞ□;MðδλðuÞ; ε ⋅ xÞ; 8δλðuÞ 2 T
ðuÞ
□ ; (22a) 
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dðpÞ□;MðδλðpÞM ; pÞ¼ 0 8δλðpÞM 2 T
ðpÞ
□;M; (22b)  

d□;FðδλðpÞF ; pÞ¼ 0 8δλðpÞF 2 T
ðpÞ
□;F; (22c)  

where we used the RVE forms 

dðuÞ□;Mðλ
ðuÞ; uÞ : ¼

1
jΩ□j

Z

Γþ□;M

λðuÞ⋅kuk□ dΓ; (23a)  

dðuÞ□;Mðλ
ðuÞ; ε ⋅ xÞ¼

1
jΩ□j

Z

Γþ□;M

λðuÞ � kxk□ dΓ : ε; (23b)  

dðpÞ□;Mðλ
ðpÞ
M ; pÞ : ¼

1
jΩ□j

Z

Γþ□;M

λðpÞM kpk□ dΓ; (23c)  

d□;Fðλ
ðpÞ
F ; pÞ : ¼

X

i¼1

nF 1
jΩ□j

Z

L þ
□;Fi

λðpÞF kpk□ dL : (23d) 

Obviously, λðuÞ represents a field of boundary tractions on Γþ□;M, 

whereas λðpÞM and λðpÞF represent boundary fluxes on Γþ□;M and L þ

□;Fi
. Here, 

we introduce the test spaces for boundary tractions and fluxes as 

T
ðuÞ
□;M¼

h
L2

�
Γþ□;M

�i3
;T
ðpÞ
□;M¼L2

�
Γþ□;M

�
;T
ðpÞ
□;F¼L2

�
L
þ

□;F

�
(24)  

with the space L2 of square integrable functions. 
The space-variational RVE format can now be stated as follows: For a 

given history εðtÞ, find uðx; tÞ 2 U□, pðx; tÞ 2 P□; λðuÞ 2 T
ðuÞ
□ , and λðpÞ ¼

ðλðpÞM ; λðpÞF Þ 2 T
ðpÞ
□;M � T

ðpÞ
□;F ¼: T

ðpÞ
□ that solve 

aðuÞ□ ðu; δuÞ � b□ðp; δuÞ � dðuÞ□ ðλ
ðuÞ; δuÞ¼ 0; 8δu 2 U□; (25a)  

aðpÞ□ ðp; δpÞþ b□ð _u; δpÞþmðpÞ□ ð _p; δpÞþ dðpÞ□ ðλ
ðpÞ; δpÞ¼ 0; 8δp 2 P□;

(25b)  

� dðuÞ□ ðδλðuÞ;uÞ¼ � dðuÞ□ ðδλðuÞ; ε ⋅ xÞ; 8δλðuÞ 2 T
ðuÞ
□ ; (25c)  

dðpÞ□ ðδλðpÞ; pÞ¼ 0; 8δλðpÞ 2 T
p
□: (25d) 

Hereby, we made use of the identities 

aðpÞ□ ðp; qÞ : ¼ aðpÞ□;Mðp; qÞ þ aðpÞ□;Fðp; qÞ; (26a)  

b□ðu; qÞ : ¼ b□;Mðu; qÞ þ b□;Fðu; qÞ; (26b)  

dðpÞ□ ðλ
ðpÞ; pÞ : ¼ dðpÞ□;Mðλ

ðpÞ
M ; pÞ þ d□;Fðλ

ðpÞ
F ; pÞ; (26c)  

m□ð _p; qÞ : ¼m□;Mð _p; qÞ þ m□;Fð _p; qÞ: (26d) 

Finally, we skipped the index ð�ÞM for the RVE formats in (25a) and 
(25c) for simplicity reasons. 

Remark 1. Setting δλðuÞ ¼ δσ⋅n with σ 2 R3�3
sym into (25) and consid

ering the balance of momentum of the fluid phase in the fracture 
network, one can show that 

〈ε〉□¼ ε: (27) 

Hence, the volume averaging rule for the strain tensor ε is built-in the 
problem formulation. 

Remark 2. Setting δu ¼ _u, δp ¼ p, summing up (25a) and (25b) and 
taking into account (20), we are able to derive the Hill-Mandel macro- 
homogeneity condition as 

〈σ : _ε〉□;M � 〈wM ⋅ ζ〉□;Mþ 〈 _ΦMp〉□;M 

þ
X

i¼1

nF

½ � 〈p _eFτ〉□;Fi
� 〈wF ⋅ ζF τ〉□;Fi

þ 〈 _ΦFp τ〉□;Fi
� ¼ σ : _ε: (28)   

4. Diffuse interface model for fractured poroelastic media 

4.1. Preliminaries 

In this section, we develop a model for pressure diffusion in a 
damaged poroelastic medium under geometrically linear and quasi- 
static conditions. The damage field is constructed in a way that it rep
resents networks of fluid-saturated fractures in a diffuse fashion. Hence, 
the fractures are approximated in the spirit of a fracture phase field 
formulation. As stated earlier, the purpose of our study is to investigate 
how well fluid pressure diffusion induced by hydro-mechanical coupling 
in a fractured poroelastic medium can be approximated by a diffuse 
fracture formulation. Therefore, our starting point is an existing fracture 
network whilst fracture propagation is neglected. This simplification 
results in a partly decoupled equation system. The primary global fields 
are the damage variable d, the (continuous) displacement of the solid 
skeleton u, and the pore fluid pressure p. 

4.2. Strong and weak format of the fine-scale problem 

The general formulation of a fracture phase field in poroelastic media 
can be stated as follows: Restricting to quasi-statics, we seek the damage 
field dðx; tÞ : Ω� Rþ→½0;1�, the displacement field uðx; tÞ : Ω� Rþ→R3, 
and the pore pressure pðx; tÞ : Ω� Rþ→R that solve the system 

(29) 

Here, (29e) and (29h) express static equilibrium and the continuity 
equation of the two-phase solid-fluid mixture. In order to study sta
tionary fracture networks, we decouple the damage conservation law 
(29a) from static equilibrium and the continuity equation and introduce 
simplified constitutive relations for the damage flux f, the damage 
source term Θ and the viscous regularization D such that 

fðζ½d�Þ : ¼ � γ2ζ½d�; ζ½d� : ¼rd; (30a)  
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Θðd; ε½u�; pÞ¼ΘðdÞ : ¼ d; Dð _dÞ : ¼ 0: (30b) 

Here, γ is a length scale parameter representing the smoothing length 
of the diffuse fracture representation. It is important to remark that the 
smoothing length γ has no physical meaning but is introduced to regu
larize the problem.1 

ζ½d� is the damage gradient. Obviously, the particular choice in (30) 
leads to a decoupling of (29a) from (29e) and (29h) and to a stationary 
damage field. This stationary solution can be found independently of 
static equilibrium and continuity equation in a pre-computation step. 
The resulting damage distribution dðxÞ can be treated as an input 
parameter to (29e) and (29h). 

The constitutive relations for the equilibrium stress σ and the seepage 
velocity w become 

σðε½u�; pÞ : ¼ aðdÞE : ε � αðdÞpI; ε½u� : ¼ðu�rÞsym
; (31a)  

wðζ½p�Þ : ¼ � KðdÞ ⋅ ζ½p�; ζ½p� : ¼rp: (31b) 

Note that d is now a parameter, not a solution field. The decay of the 
elastic properties associated with the damage field d is built-in via the 
degradation function aðdÞ which will be specified further below. In the 
case of isotropy, the second order permeability tensor KðdÞ can be 
expressed in standard fashion as 

KðdÞ¼
kðdÞ

η I; (32)  

with the permeability kðdÞ and the viscosity η of the saturating fluid. 
Finally, the Biot-Willis coefficient is defined in accordance with (31a) 
using the degradation function aðdÞ such that 

αðdÞ¼ 1 �
aðdÞK

Ks : (33) 

It remains to introduce the storage function ΦðdÞ that represents the 
current volume fraction of fluid in the damaged poroelastic medium as 

Φðd; ε½u�; pÞ¼φðdÞþ αðdÞI : ε½u� þ βðdÞp; (34)  

where φðdÞ is the porosity, and βðdÞ is the intrinsic compression 
compliance of the pore fluid which is, in the case of the diffuse fracture 
model, computed as 

βðdÞ : ¼
φðdÞ
Kf þ

αðdÞ � φðdÞ
Ks : (35) 

Altogether, it is important to remark that the material parameters of 
the fractured poroelastic medium are scaled between the undamaged 
poroelastic state and the fully disintegrated state at the fracture. The 
scaling is built-in via (i) the degradation function aðdÞ applied to the 
overall elastic properties of the solid skeleton ðE;K;GÞ, (ii) the porosity 
φðdÞ, and (iii) the permeability kðdÞ. Those functions will be defined 
further below. 

With these definitions at hand, we introduce the standard space- 
variational format corresponding to (29a) – (29d) as follows: Find dðxÞ
in the appropriately defined space D that solves 
Z

Ω

ζ½d� ⋅ γ2ζ½δd� dΩþ
Z

Ω

d δd dΩ ¼ �
Z

ΓðdÞN

f pδd dΓ 8δd 2 D0: (36)  

And, from (29e) – (29j), find uðx; tÞ; pðx; tÞ in the appropriately defined 
spaces U� P that solve 

Z

Ω

½ε½u� : aðdÞE : ε½δu� � αðdÞ p½δu ⋅r��dΩ¼
Z

ΓðuÞN

tp⋅δu dΓ 8δu 2 U0; (37a)  

Z

Ω

½αðdÞ½ _u⋅r�δpþβðdÞ _pδpþζ½p�⋅KðdÞ⋅ζ½δp��dΩ¼�
Z

ΓðpÞN

wp δpdΓ 8δp2P0;

(37b)  

where D0, U0 and P0 are the appropriately defined test spaces. 

4.3. Degradation function 

It remains to specify the functions aðdÞ, φðdÞ, and kðdÞ that interpo
late between the undamaged poroelastic medium and the fracture zone. 
We follow (Miehe et al., 2010; Mikeli�c et al., 2015a) and introduce the 
degradation function as 

aðdÞ¼ ð1 � κÞð1 � dÞ2þ κ; 0< κ≪1; (38)  

where the small parameter κ is used for numerical stability. Hence, the 
degradation function interpolates between the undamaged state 
aðd¼ 0Þ ¼ 1 and the fully disintegrated stated aðd ¼ 1Þ ¼ κ. This choice 
for aðdðxÞÞ guarantees C1-continuity in x. 

In our numerical studies, we will investigate the degradation func
tion on the basis of an alternative damage parametrization d*. For this 
purpose, we refer to the analytical solution of one single fracture with 
d ¼ 1 at the interface ΓF in an infinite domain Ω∞. Under these cir
cumstances, the solution of the simplified Euler equation (29a) can be 
computed as 

dðξÞ ¼ exp
�

�
jξj
γ

�

with ​ lim
ξ→0
​
dd
dξ
¼ �

1
γ
; (39)  

see Fig. 2. 
We use this analytical result to define a threshold value 

db¼ exp
�
�

γ*

γ

�
(40)  

and the modified damage parametrization 

d*¼

8
><

>:

1; d � db;

d
db
; d < db:

(41) 

As visualized in Fig. 2 b), the alternative damage function d* is 
constant within a band of �γ* along the fracture. This feature will be 
discussed in more detail below. For now, we note that the degradation 
function can be reformulated in terms of d* such that 

aðd*Þ¼ ð1 � κÞð1 � d*Þ
2
þ κ; 0< κ≪1: (42)  

4.4. Interpolation of porosity and permeability 

The porosity φðdÞ represents the volume fraction of fluid stored in the 
pore space of the poroelastic medium as well as in the damage zone. In 
other words, we aim for defining φðdÞ such that, in an integral sense, the 
fractured poroelastic medium in a diffuse interface representation con
tains the same amount of fluid as in a sharp interface representation of 
the fracture network. It is of utmost importance to evaluate the amount 
of fluid stored in the fracture network consistently since, otherwise, the 
storage capacity of the fractures would be substantially overestimated 
by a diffuse interface formulation. Based on the analytical solution (39), 
we compute the apparent fracture porosity b from the relation 

τ φD¼

Z ∞

� ∞
ð1 � aðdÞÞ b dξ: (43) 

1 Note that physical transition zones exist at the interface between fluid do
mains and porous media, cf. (Beavers and Joseph, 1967). Such effects are 
neglected in the present approach assuming that the length of the “true” 
transition zone is much smaller than γ. 
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Here, we use the (true) fracture porosity φD ¼ 1, i.e. the fluid volume 
fraction of the resolved fracture, and the crack opening τ of the corre
sponding sharp interface model. Combining (39) and (43) results in 

b ¼
τ

2γ* þ 3γ
: (44) 

Hence, the apparent porosity of the fracture zone depends on the 
smoothing length ðγ; γ*Þ and represents nothing else than the ratio of the 
true thickness of the fracture and the width of the diffuse damage zone. 
In other words, the larger the smoothing length is chosen the smaller the 
apparent fracture porosity becomes. 

On this basis, we compute the overall porosity φðdÞ via a mixture rule 
from 

φνðdÞ¼ aðdÞðφsÞ
ν
þ ð1 � aðdÞÞbν; ν 2 ½ � 1; 1�; (45a)  

such ​ that φðdÞ¼

8
><

>:

½aðdÞðφsÞ
ν
þ ð1 � aðdÞÞbν�

1
ν; ν 2 ½ � 1; 1�nf0g;

ðφsÞ
aðdÞb1� aðdÞ; ν ¼ 0;

(45b)  

where φs denotes the porosity of the undamaged poroelastic material. 
The exponent ν in (45) allows us to interpolate between the arithmetic 

mean ν ¼ 1 and the harmonic mean ν ¼ � 1. The interpolation function 
is visualized in Fig. 3 for two different porosity ratios φs

b . It can be seen 
that the exponent ν allows to tune the properties of the transition zone. 

Finally, we use the same mixture rule to interpolate the permeability 
kðdÞ between the fully disintegrated fracture zone, where the perme

ability is computed as kF ¼
τ2

0
12 b according to the Poiseuille flow rule 

with the initial fracture aperture τ0, and the undamaged poroelastic 
matrix. Hence, 

kνðdÞ¼ ad
�
ks�ðksÞ

ν
þ 1 � ad

���
kF�ν

; ν 2 ½ � 1; 1�; (46a)  

such ​ that kðdÞ¼

8
><

>:

�
aðdÞðksÞ

ν
þ ð1 � aðdÞÞ

�
kF�ν�1

ν; ν 2 ½ � 1; 1�nf0g;

ðksÞ
aðdÞ� kF�1� aðdÞ

; ν ¼ 0:

(46b)  

5. VCH for the diffuse interface model 

Subsequently, we establish the two-scale formulation that homoge
nizes the fractured rock problem towards a viscoelastic substitute me
dium in analogy to the procedure presented in Section 3. Here, the 

Fig. 2. a) Fracture network ΓF with d ¼ 1. b) Diffusive damage field dðxÞ and modified damage field d*ðxÞ along AB.  

Fig. 3. Interpolated porosity plotted a) versus the degradation function aðdÞ and b) versus the coordinate ξ according to the analytical solution (39).  

N. Pollmann et al.                                                                                                                                                                                                                              



European Journal of Mechanics / A Solids 84 (2020) 104067

8

diffuse interface model is the point of departure. 

5.1. First-order homogenization in the spatial domain 

We replace the single-scale problem in Section 4 by a two-scale 
problem upon introducing (i) running averages in the weak format 
and (ii) scale separation via first-order homogenization. As presented in 
Section 3, the first step is to replace the space-variational problems (36) 
and (37) by that of finding ðdðxÞ;uðx; tÞ; pðx; tÞÞ 2 DFE2 �UFE2 � PFE2 

that solves 
Z

Ω

�
aðdÞ□ ðd; δdÞþmðdÞ□ ðd; δdÞ

�
dΩ¼ �

Z

ΓðdÞN

f p δd dΓ 8δd 2 CFE2 (47a)  

Z

Ω

�
aðuÞ□ ðu; δuÞ � b□ðp; δuÞ

�
dΩ¼

Z

ΓðuÞN

tp ⋅ δu dΓ 8δu 2 VFE2 ; (47b)  

Z

Ω

�
b□ðδp; _uÞþmðpÞ□ ð _p; δpÞþ aðpÞ□ ðp; δpÞ

�
dΩ¼ �

Z

ΓðpÞN

wpδp dΓ 8δp 2 QFE2 ;

(47c)  

where the pertinent space-variational forms in (47) are given as 

aðdÞ□ ðd; qÞ : ¼ 〈ζ½d� ⋅ γ2ζ½q�〉□; (48a)  

aðuÞ□ ðu; vÞ : ¼ 〈ε½u� : aðdÞE : ε½v�〉□; (48b)  

aðpÞ□ ðp; qÞ : ¼ 〈ζ½p� ⋅ KðdÞ ⋅ ζ½q�〉□; (48c)  

b□ðp; vÞ : ¼ 〈αðdÞp I : ε½v�〉□; (48d)  

mðdÞ□ ðd; qÞ : ¼ 〈d q〉□; (48e)  

mðpÞ□ ð _p; qÞ : ¼ 〈βðdÞ _p q〉□: (48f) 

Note again, that (47a) is decoupled from fu; pg whilst d serves as 
parameter in (47b) and (47c) instead of a solution field. 

The forms introduced in (48) represent running averages on square 
(2D) or cubic (3D) domains Ω□ with the side length L□ which are 
located at each macro-scale spatial point x 2 Ω. The weak format (47) 
serves as the basis for variationally consistent homogenization as dis
cussed below. Furthermore, we note that the representation in (47) still 
implies that the stationary damage problem (47a) can be treated inde
pendently from that of solving for ðuðx; tÞ;pðx; tÞÞ. 

Next, we introduce scale separation and first-order homogenization. 
We decompose the sub-scale field u into a macro-scale part uM and a 
fluctuation part us within each RVE such that 

u¼ uM½u� þ us;with uMðx; tÞ : ¼ εðtÞ ⋅ ðx � xÞ; ε : ¼ ε½u�: (49) 

Moreover, we introduce the simplification that the stationary dam
age variable d representing the fracture network is a local property of the 
RVE. Hence, the damage field is not controlled by any macroscopic 
damage d or its gradient ζ½d�, and we impose 

d¼ ds; (50)  

where the fluctuation field ds will be specified later. 
Similarly, we consider pressure diffusion to be a local process within 

the RVE as discussed in Section 3. Hence, we presume the absence of 
macroscopic pressure gradients ζ½p� and consider the RVE to be un
drained, i.e. the amount of fluid stored in the RVE remains constant. We 
write 

p¼ ps: (51) 

We define the two-scale trial and test spaces as 

DFE2 : ¼
n

djΩ□;j
¼ ds

j ; ds
j 2Ds

□;j

o
; (52a)  

CFE2 : ¼
n

δdjΩ□;j
¼ δds

j ; δds
j 2Cs

□;j

o
; (52b)  

UFE2 : ¼
n

ujΩ□;j
¼ uM½u� þus

j ; us
j 2Us

□;j; u2U
o
; (52c)  

VFE2 : ¼
n

δujΩ□;j
¼ uM½δu� þ δus

j ; δus
j 2Us

□;j; δu2U
0
o
; (52d)  

PFE2 : ¼
n

pjΩ□;j
¼ ps

j ; ps
j 2Ps

□;j

o
: (52e) 

Here, we introduced the trial and test spaces for the macro-scale 
problem U and U0and for the micro-scale problem Ds

□;j;U
s
□;j;P

s
□;j and 

Cs
□;j where we used the notation 

d 2DFE2 �
n

ds
j

o
2
h
�j Ds

□;j

i
; (53a)  

u2UFE2 �
�

u;
n

us
j

o�
2U�

h
�j Us

□;j

i
; (53b)  

p2PFE2 �
n

ps
j

o
2
h
�j Ps

□;j

i
: (53c) 

In other words, there exist components ðds; us; psÞ and corresponding 
spaces ðDs

□;j;U
s
□;j;P

s
□;jÞ for each singe RVE Ω□;i. Moreover, Ds

□;j and Cs
□;j 

are constructed in a way that they contain the conditions that d ¼ 1and 
δd ¼ 0 on ΓF. 

We are now in the position to restate the two-scale problem (47) as 
follows: Find ðfds

j g; u; fus
j g; fps

j gÞ 2 ½�j Ds
□;j� �U� ½�j Us

□;j� � ½�j Ps
□;j�

that solve 
Z

Ω

�
aðdÞ□ ðd; δdsÞþmðdÞ□ ðd; δdsÞ

�
dΩ¼ �

Z

ΓðdÞN

f p δds dΓ; (54a)  

Z

Ω

�
aðuÞ□
�
u;uM½δu�þδus� � b□

�
p;uM½δu�þδus��dΩ¼

Z

ΓðuÞN

tp⋅
�
uM½δu�þδus�dΓ;

(54b)  
Z

Ω

�
b□ðδps; _uÞþmðpÞ□ ð _p; δpsÞþ aðpÞ□ ðp; δpsÞ

�
dΩ¼ �

Z

ΓðpÞN

wpδps dΓ (54c)  

8ðfδdsg; δu; fδusg; fδpsgÞ 2 ½�j Cs
□;j� �U

0
� ½�j Us

□;j� � ½�j Ps
□;j� where 

we implicitly used the composition of (d;u;p) from (53). 

5.2. Macro-scale problem and stress averaging 

We obtain the homogenized macro-scale problem from (54) upon 
considering only macroscopic contributions to the test functions. Hence, 
δds ¼ 0, δus ¼ 0, and δps ¼ 0. We find that the macro-scale problem 
reduces to 
Z

Ω

σ : ½δu�r� dΩ¼
Z

ΓðuÞN

tp⋅δu dΓ; 8δu 2 U
0
; (55)  

where we assume that tp is the suitably homogenized traction vector on 
the Neumann boundary. We find the well-established relation 

σ : ¼ 〈σ〉□¼ 〈aðdÞE : ε½u� � αðdÞpI〉□: (56) 

Alternatively, the stress averaging rule (56) can be expressed as the 
surface integral 
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σ¼ 1
jΩ□j

Z

Γ□

ðt� ½x � x�Þsym dΓ: (57)  

5.3. Micro-scale problem on an RVE 

In order to generate a uniquely solvable RVE problem we adopt the 
additional model assumption that ds, us, and ps are periodic, i.e. 

kdsk□ðxÞ¼ 0; kusk□ ¼ 0; kpsk□ ¼ 0 8x 2 Γþ□: (58) 

Here, we use the difference operator k � k□ðxÞ ¼ �ðxþÞ � �ðx� Þ as 
introduced in Section 3. We apply micro-periodicity in a variational 
form such that 

dðdÞ□
�
δλðdÞ; d

�
¼ 0; 8δλðdÞ 2 T

ðdÞ
□ ; (59a)  

dðuÞ□ ðδλðuÞ;uÞ¼ dðuÞ□ ðδλðuÞ; ε ⋅ xÞ; 8δλðuÞ 2 T
ðuÞ
□ ; (59b)  

dðpÞ□ ðδλðpÞ; pÞ¼ 0;8δλðpÞ 2 T
ðpÞ
□ ; (59c)  

where we used the RVE forms 

dðdÞ□
�
λðdÞ; d

�
: ¼

1
jΩ□j

Z

Γþ□

λðdÞkdk□ dΓ; (60a)  

dðuÞ□ ðλ
ðuÞ;uÞ : ¼

1
jΩ□j

Z

Γþ□

λðuÞ⋅kuk□ dΓ; (60b)  

dðuÞ□ ðλ
ðuÞ; ε ⋅ xÞ¼

1
jΩ□j

Z

Γþ□

λðuÞ � kxk□ dΓ : ε; (60c)  

dðpÞ□ ðλ
ðpÞ; pÞ : ¼

1
jΩ□j

Z

Γþ□

λðpÞkpk□ dΓ: (60d) 

The Lagrange multiplier λðuÞ represents a field of boundary tractions 
on Γþ□ whereas λðdÞ and λðpÞrepresent boundary fluxes on Γþ□. Moreover, 
we introduce the test spaces for boundary tractions and fluxes as 

T
ðdÞ
□ ¼L2

�
Γþ□
�
;T
ðuÞ
□ ¼

�
L2
�
Γþ□
��3
;T
ðpÞ
□ ¼L2

�
Γþ□
�

(61)  

with the space L2 of square integrable functions. 
The space-variational RVE problem can now be stated as follows: 

Find d 2 D□ and λðdÞ 2 T
ðdÞ
□ that solve 

aðdÞ□ ðd; δdÞþmðdÞ□ ðd; δdÞþ dðdÞ□
�
λðdÞ; δd

�
¼ 0 8δd 2 C□; (62a)  

dðdÞ□
�
δλðdÞ; d

�
¼ 08δλðdÞ 2 T

ðdÞ
□ : (62b) 

For a given history εðtÞ, use the damage distribution dðxÞ from (62) 
and find uð �; tÞ 2 U□, pð �; tÞ 2 P□, λðuÞð �; tÞ 2 T

ðuÞ
□ and λðpÞð �; tÞ 2 T

ðpÞ
□ 

that solve 

aðuÞ□ ðu; δuÞ � b□ðp; δuÞ � dðuÞ□ ðλ
ðuÞ; δuÞ¼ 0; 8δu 2 U□; (63a)  

aðpÞ□ ðp;δpÞþb□ð _u;δpÞþmðpÞ□ ð _p;δpÞþdðpÞ□ ðλ
ðpÞ;δpÞ¼0; 8δp2P□; (63b)  

� dðuÞ□ ðδλðuÞ;uÞ¼ � dðuÞ□ ðδλðuÞ; ε ⋅ xÞ; 8δλðuÞ 2 T
ðuÞ
□ ; (63c)  

dðpÞ□ ðδλðpÞ; pÞ¼ 0; 8δλðpÞ 2 T
ðpÞ
□ : (63d)  

Remark 1. Setting δλðuÞ ¼ δσ⋅n with σ 2 R3�3
sym into (63) we obtain the 

condition 

〈ε〉□ ¼ ε: (64) 

Hence, the volume averaging rule for the strain tensor ε is built-in the 
problem formulation. 

Remark 2. Setting δu ¼ _u, δp ¼ p, summing up (63a) and (63b) and 
taking into account (57), we are able to derive the Hill-Mandel macro- 
homogeneity condition 

〈σ : _ε〉□ � 〈w ⋅ ζ½p�〉□þ 〈 _Φp〉□ ¼ σ : _ε (65)  

as a property built-in the problem formulation for any damage distri
bution dðxÞ computed from (62). 

6. Numerical examples 

After having completed the fine-scale formulations as well as the 
upscaling principles via VCH, we are now in the position to investigate 
the properties of the diffuse interface model and compare it with the 
sharp interface model as well as with an analytical solution. We inves
tigate two benchmark experiments: (i) Outflux of fluid from a single 
drained fracture under compression and the resulting stress. (ii) Seismic 
attenuation in a prototype RVE problem consisting of two perpendicular 
and intersecting fractures. 

In both cases, we examine how the solution of the hydro- 
mechanically coupled problem depends on the FE discretization of the 
diffuse fracture representation. In a first step, we choose the smoothing 
length γ and keep it constant whilst we vary the ratio γ=he. Here, he is the 
size of the finite elements in the vicinity of the interface. In other words, 
we investigate how many finite elements are at least needed to resolve 
the fracture zone in a mesh-independent fashion. In a second step, we 
study the convergence of the diffuse interface approximation towards 
the reference solution by reducing the smoothing length γ whilst the FE 
resolution in terms of the previously identified ratio γ=he is kept con
stant. To simplify notation, the initial fracture aperture is denoted τ 
instead of τ0 throughout the remainder of the paper. 

For all numerical examples, we employ triangular Finite Elements 
with Lagrange shape functions by means of a Taylor-Hood formulation, 
i.e. quadratic in u, linear in p, quadratic in the (uncoupled) d. 

6.1. Convergence study: single fracture in an impermeable rock matrix 

We use the setup shown in Fig. 4 with L□ ¼ 2 m and τ ¼ 1e-5 m. The 
material properties are specified in Table 1. In this study, we aim at 
investigating the transport properties of the fracture under hydro- 
mechanical stimulation and measure the outflux via the left and right 
boundary and, therefore, suppress the leak-off of fluid, i.e. the drainage 
of fluid from the fracture into the surrounding material. This is achieved 
by choosing the permeability of the poroelastic material much smaller 
than the permeability associated with the fracture. 

We apply displacement boundary conditions via (13) and (49) with 
ε22 ¼ -1e-6 whilst all other strain components are εij ¼ 0. Note that the 
deformation is small enough that the fracture remains open throughout 
the time-dependent simulation. The fluctuation field at the surface is 
suppressed, us ¼ 0. Moreover, we apply drained conditions (p ¼ 0) at 
the left and the right boundary and undrained boundary conditions (w ¼
0) at the bottom and the top boundary of the sample. For illustration 
purposes, we introduce an apparent fracture pressure pF :¼ p ð1 � aÞ by 
incorporating the degradation function. The temporal evolution of the 
apparent fracture pressure in the computational domain is shown in 
Fig. 5 where one observes the successive decay of pore pressure. 

After having solved the transient problem, we evaluate the response 
of the structure via the overall outflux of pore fluid via the drained 
boundary defined as 

w¼wF⋅n; and w ¼ w⋅n
1
b

(66) 
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for the sharp and the diffuse interface model, respectively. Moreover, we 
use the definitions (19) and (56) to compute the overall stress σ22 from 
the sub-scale fields. Finally, we execute all investigations using the 
interpolation functions based on the conventional damage field d as well 
as based on the modified damage field d*. 

FE discretization of the diffuse interface at constant smoothing 
length: 

We choose γ ¼ γ* ¼ 2e � 2 m and vary the size of the finite element 
in the vicinity of the interface. The element size is quantified by the 
element-specific scalar he which is defined as the length of the longest 
edge of the used triangular elements. The outflux via the drained 
boundary and the homogenized stress response over time are plotted in 
Figs. 6 and 7. 

We observe that all solutions tend towards a converged state if he is 
chosen sufficiently small. Henceforth, we consider solutions computed 

with he=γ ¼ 0:1 (conventional model) and he=γ ¼ 1 (modified model) as 
converged. However, we also observe differences in the material 
response of the conventional and the modified model: The convergence 
rate seems to be higher for the modified model. 

Size of the smoothing length: 
We choose now the element size such that he=γ ¼ 0:1 for the con

ventional and he=γ ¼ 1 for the modified model and vary the smoothing 
length γ. For convenience, we set γ* ¼ γ in the model using the modified 
damage field d*. The overall outflux of fluid and the homogenized stress 
response are plotted in Figs. 8 and 9 and compared with the corre

sponding sharp interface solution, denoted as reference. 
Surprisingly, we observe that the conventional formulation does not 

converge towards the correct solution (σ22→0 for t→∞).2 The reason for 
this somewhat intriguing observation is that, e.g. under compression, 
the volumetric strain in the damage zone, which is directly related to the 
fluid pressure in the fracture, is concentrated in one single element layer 
along the fracture zone. In practice that means that the smoothing length 
for the fluid pressure in the fracture zone corresponds to the element size 
he whilst the smoothing length γ of the interpolation function is chosen 
as a material parameter. In other words, the smoothing length of the 

Fig. 4. Single fracture (opening τ ¼ 1e � 5 m) in an impermeable rock matrix (L□ ¼ 2 m). a) Sharp interface representation, b) diffuse interface representation (γ ¼
5e � 2 m). 

Table 1 
Poroelastic material parameters (1 mD ¼ 1e-15 m2).  

ks  [mD] permeability (undamaged) 1e-7 

φs  [-] porosity (undamaged) 0 
G [GPa] shear modulus dry skeleton 34 
K [GPa] bulk modulus dry skeleton 32 
Ks  [GPa] bulk modulus solid grains 32 

Kf  [GPa] bulk modulus of pore fluid 2.4 

η [Pa s] viscosity of pore fluid 0.001  

Fig. 5. Apparent fracture fluid pressure p ð1 � aÞ at three example time steps.  

2 Note that, nominally, σ22 ¼ 0 cannot be achieved in the numerical model 
since we choose 0 < κ≪1 to guarantee solvability of the problem, cf. (38). 
However, κ is chosen very small and is not responsible for the persisting stress e. 
g. observed in Fig. 7 a) and 9 a). 
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Fig. 6. Outflux of fluid via the drained boundary plotted over time at constant smoothing length γ ¼ γ* ¼ 2e � 2 m. Interpolation functions of the diffuse interface 
model are based on a) the conventional damage field d and b) on the modified damage field d*. 

Fig. 7. Homogenized stress over time at constant smoothing length γ ¼ γ* ¼ 2e � 2 m using a) the conventional damage field d and b) the modified damage field d*.  

Fig. 8. Outflux of fluid via the drained boundary plotted over time at constant ratio he=γ with decreasing γ ¼ γ* using a) the conventional damage field d and b) the 
modified damage field d*. 
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pressure and the solid stress are not matching. By contrast, the modified 
formulation results in a very good approximation of the reference so
lution if γ is chosen sufficiently small. This behavior can be explained by 
the fact that d* ¼ 1 ¼ const: over a band of 2 γ*. Hence, the problem is 
not mesh dependent as long as he is chosen small enough. Moreover, the 
smoothing length of the pressure and the solid stress are matching. 
Nevertheless, it is important to note that even the modified formulation 
requires a very high resolution at the interface for a good agreement 
with the reference. This high resolution, however, might limit the 
applicability of the method for more complex problems due to numerical 
costs. 

Validation against an analytical solution: 
Finally, we compare the numerical results with the analytical solu

tion of the so-called Terzaghi problem presented in (Verruijt, 2013). For 
that purpose, we modify the setting in Fig. 4 such that, instead of 
applying a strain ε22, we prescribe a constant initial pressure pðt¼ 0Þ ¼
p0 in the fracture with drained conditions, cf. Fig. 10 a). Hence, the setup 
is converted into an 1D problem of a thin poroelastic layer under ho
mogeneous confining pressure. We can compute the strain rate of the 
poroelastic layer as 

_ε¼ 1
2Gþ λ

ðα _pþ _σÞ (67)  

with λ ¼ K � 2
3 G. Taking into account that, as a loading condition, the 

total stress is kept constant throughout the process, i.e. _σ ¼ 0, we can 

insert the strain rate into the 1D continuity equation of the porous layer 
which yields the uncoupled diffusion equation 
�

βþ
α2

2Gþ λ

�

_p¼ �
k
η

d2p
dx2

1
: (68) 

In our case, the thin layer of a poroelastic medium is representing a 
fluid conduit, i.e. the solid phase is absent and the diffusion equation 
simplifies towards 

_p¼ cv
d2p
dx2

1
; (69)  

where the consolidation coefficient is defined as cv ¼ kF=β. The 
analytical solution of the problem yields 

panalytic

p0
¼

4
π
X

k¼1

∞
ð� 1Þk� 1

2k � 1
exp
�

� cvt
�

π
2L□

�2

ð2k � 1Þ2
�

cos
�

π
2

x1

L□
ð2k � 1Þ

�

:

(70) 

The pressure profiles, observed at different time steps, are plotted in 
Fig. 10 b) for the modified damage field d* (γ ¼ γ* ¼ 4e-3 m, he=γ ¼ 1) 
in comparison with the analytical results. We find an excellent agree
ment between the modified diffuse interface model and the analytical 
solution. 

Fig. 9. Homogenized stress over time at constant ratio he=γ with decreasing γ ¼ γ* using a) the conventional damage field d and b) the modified damage field d*.  

Fig. 10. Comparison of the modified diffuse damage model with the analytical solution. a) Single fracture (opening τ ¼ 1e-5 m) in an impermeable rock matrix 
(L□¼1 m). b) Spatial distribution of the normalized pressure p=p0 at different time instances. 
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Fig. 11. a) Poroelastic RVE with two perpendicular intersecting fractures (opening τ ¼ 1e � 5 m, length LF ¼ 0:75m, RVE size L□ ¼ 1m). b) Discretization of the 
setup with γ ¼ 4e � 3 m. 

Fig. 12. Apparent fracture fluid pressure p ð1 � aÞ at three example time steps.  

Fig. 13. Homogenized stress σ22 over time. Mesh convergence at constant smoothing length γ ¼ γ* ¼ 2e � 2 m using a) the conventional damage field d and b) the 
modified damage field d*. 
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6.2. RVE with two intersecting fractures 

In the second study, we address the case of a simple fracture network 
consisting of two perpendicular intersecting fractures. As discussed in 
(Quintal et al., 2014; Rubino et al., 2013), this setup can be seen as a 
prototype to investigate seismic attenuation in fluid-saturated fracture 
networks. In practice, this setup is prone to seismic attenuation associ
ated with viscous fluid transport from one fracture into the other under 
uniaxial loading where the fracture normal to the loading direction is 
compressed and fluid is squeezed out into the connected second fracture. 

We adopt this setup as shown in Fig. 11 and apply an overall loading 
of the RVE by ε22 ¼ � 1e � 6 in a sense of a stress relaxation experiment 
whilst the remaining strain components are zero. We use periodic 
boundary conditions for u and p as introduced in Sections 3 and 5. Again, 
the sharp interface formulation serves as reference solution. The 
apparent fracture fluid pressure distribution in the RVE is plotted in 
Fig. 12 for three example time steps. 

FE discretization of the diffuse interface at constant smoothing 
length: 

The results are shown in Fig. 13 in terms of the homogenized stress 
over time for the conventional and the modified diffuse interface model. 
We keep γ ¼ γ* ¼ 2e � 2 m constant and vary the ratio he= γ as executed 
in the previous section. We find that (i) the homogenized stress shows 
the behavior of a stress relaxation curve with a transition from instan
taneous response to the relaxed state t→∞ around t ¼ 30 s. 

We find that (ii) the problem based on the modified formulation is 
less sensitive for the finite element discretization and that a ratio he= γ ¼
f0:1;1g gives a reasonably well converged solution for the conventional 
and modified model, respectively. 

Size of the smoothing length: 
In a second step, we fix the ratio he=τ and vary the smoothing length γ 

as shown in Fig. 14. We observe that the conventional model does not 
converge towards the correct result. By contrast, we find for the modi
fied model that the smaller γ ¼ γ* the better the approximation of the 
reference solution. Whilst γ ¼ γ* ¼ 4e � 3 m matches the equilibrated 
state t→∞, the instantaneous plateau is slightly underestimated, and the 
transition zone is shifted to faster times by a factor � 0:5:

Interpolation of the permeability: 
The transition zone in the stress relaxation curve between instanta

neous response for t→0 and equilibrium for t→∞ is mostly dominated by 
how fast the fluid is being transported through the fracture zone. Hence, 
this property depends on the permeability that we assume for the frac
ture zone. We, therefore, use the scaling parameter ν as introduced in 

(45) to interpolate the permeability between the fracture zone and the 
poroelastic domain. The results are shown in Fig. 15, where only the 
modified damage model was used. 

As shown in Fig. 3, the higher permeability of the fracture becomes 
more dominant in the transition zone between fracture and poroelastic 
matrix for the arithmetic mean ν ¼ 1 whilst the transition zone is mostly 
dominated by the lower poroelastic permeability for the harmonic mean 
ν ¼ � 1. The consequence can be found in Fig. 15: The arithmetic mean, 
associated with a higher permeability in the transition zone between 
fracture and poroelastic background, leads to a faster stress relaxation 
whilst the harmonic mean ν ¼ � 1 leads to an overestimation of the 
relaxation time by orders of magnitude. In our case, the choice ν ¼ 0 
seems to give the best approximation of the reference results. In anal
ogous fashion, this observation can also be made for the evaluation in 
frequency domain shown in Fig. 16. These curves are computed via a 
Fast Fourier Transformation of the stress relaxation curves plotted in 
Fig. 15. Here, C2222ðfÞ :¼ σ22ðfÞ=dε22ðfÞ. The inverse quality factor 1=Q 

Fig. 14. Homogenized stress σ22 over time. Varied smoothing length at constant ratio he=γ using a) the conventional damage field d and b) the modified damage 
field d*. 

Fig. 15. Homogenized stress response σ22 for different interpolation exponent ν 
for γ ¼ γ* ¼ 4e � 3 m and he=γ ¼ 1, modified damage model. 
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is used for a quantification of the attenuation, where Q :¼ � R=

IðC2222Þ. 

7. Discussion 

In this paper, we applied a fracture phase field method to model 
diffusive fluid transport in simple stationary fracture networks. Hence, 
fracture propagation was ignored. This scenario can be seen as a sub- 
problem of hydraulic fracturing. The research issue was to explore the 
predictive performance of a fracture phase field method in such a 
simplified scenario, i.e. how well can the method handle the hydro- 
mechanical coupling between fractures and a poroelastic background 
material. There are two major arguments to investigate this particular 
sub-problem. (i) Diffusive fluid-transport in fracture networks associ
ated with attenuation of seismic waves is well understood and a relevant 
mechanism in seismic exploration in the context of hydraulic stimula
tion. (ii) There are sharp interface formulations at hand that can serve as 
reference models at benchmarking the diffuse interface method. 

We found that the method based on the conventional interpolation 
functions established in the literature does not converge towards the 
reference solution if the smoothing length γ→0. Moreover, the method 
might even lead to nonphysical results. The reason is that, e.g. under 
compression, the volumetric strain in the damage zone, which is directly 
related to the fluid pressure in the fracture, was found to be concentrated 
in one single element. In practice that means that the smoothing length 
for the fluid pressure in the fracture zone corresponds to the element size 
he whilst the smoothing length γ of the interpolation function is chosen 
as a material parameter. 

To overcome this inherent mesh dependence of the hydro- 
mechanical coupling, we modified the interpolation by introducing a 
modified damage variable d*. The latter is constructed in a way that d* ¼

1 ¼ constant in a band of 2 γ* along the interface. We showed that, doing 
so, the diffuse interface model converges towards the reference solution. 
However, the smoothing length γ* had to be chosen pretty small, yet still 
orders of magnitude larger than the true interface thickness. Neverthe
less, the high resolution of the transition zone needed for quantitatively 
reasonable solutions obviously leads to high numerical costs if applied to 
more complex setups. 

Altogether, it is important to point out that the ability to predict and 
monitor hydraulic stimulation by numerical simulations is of utmost 
importance to assess the risks of the process, e.g. seismic events, and the 
societal acceptance of this technology. Fracture phase fields methods for 
fracturing of poroelastic media are well-established in literature, and it 
is accepted that such methods are able to predict hydraulic stimulation 

qualitatively. However, having our critical observations for an even 
simpler sub-problem in mind, there is a need (i) to further investigate 
fracture phase field methods in fluid-saturated porous media, and (ii) to 
develop quantitative benchmarks in realistic geophysical scenarios. 
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