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Investigation of Phase-Lagged Boundary Conditions for
Turbulence Resolving Turbomachinery Simulations

Gonzalo Montero Villar∗, Daniel Lindblad† and Niklas Andersson‡

Chalmers University of Technology, Gothenburg, SE-412 96

The present work explores whether phase-lagged boundary conditions can be used to
perform scale resolving simulations of turbomachines. The phase-lagged approach considered
is based on storing the flow signal, both at the pitch-wise boundaries and the rotor-stator
interface, as its temporal Fourier coefficients for a finite number of harmonics. The method
is implemented in an in-house CFD solver, G3D::Flow, which can perform both URANS and
hybrid RANS/LES simulations. In order to evaluate the performance of the phase-lagged
boundary condition, a comparison is made with a sliding mesh simulation on a compressor
cascade. Furthermore, the possibility of breaking an error feedback loop generated in the
sampling process by including multiple blade passages is also investigated. It is found that this
approach greatly improves convergence and accuracy of the sampling.

I. Nomenclature

(*)'�#( = (Unsteady) Reynolds Averaged Navier-Stokes
(�)��( = (Delayed) Detached Eddy Simulation
!�( = Large Eddy Simulation
# = number of blades
Ω = rotational velocity of the blade row
V = phase shift angle
�%� = Blade Passing Frequency
@ = flow state vector
& = flow state vector reconstructed from Fourier coefficients
CB = current simulation time
9 = imaginary unit
ΔC = simulation time step
8C = current iteration number of the simulation
@̂= = =Cℎ temporal Fourier coefficient
@̂=,: = time-azimuthal Fourier coefficient
#CB??8 = number of time steps per period of blade row i
A = radius
#ℎ = number of harmonics to be considered in the truncated Fourier series

Subscripts

1, 2 = blade-row index
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II. Introduction

For the past decades, steady RANS computations with mixing-planes has been the most widely used approach to
model the flow field in turbomachines thanks to its relatively low computational cost. Recently, with the increase in

computational power, hybrid RANS/LES simulations, are however, becoming feasible. These methods are appealing
since they have the potential of simulating complex unsteady flows with higher accuracy than URANS simulations, as
well as help in the understanding of the underlying physics. In spite of technological advances, LES/DNS simulations
are still computationally prohibitive nowadays for most industrial applications.

A commonly used hybrid RANS/LES method is the Detached Eddy Simulation (DES) introduced in [1]. The main
idea behind DES is to simulate the attached boundary layer with an underlaying RANS model, and the rest of the domain
with a LES model, using a unique formulation. This reduces the computational cost of the simulation by decreasing the
grid resolution requirement for computing the flow inside the boundary layer. This method was further improved by the
introduction of Delayed Detached Eddy Simulation (DDES) [2], which aimed at solving some of the issues related to
grid sensitivity found on the original DES method.

In the particular case of turbomachinery simulations, it is often the case that two blade rows which are in relative
motion to each other do not have matching pitches, i.e. the blade count is different. When steady state simulations are to
be performed, this is not an issue, and one blade per row with a mixing-plane interface (where the tangentially averaged
flow state at each radial span is transferred between blade rows) and periodic boundary conditions can be used. On the
other hand, if unsteady simulations are computed, where for instance, the interaction between the wake of the first row
and the second row is of interest (for example, tonal or broadband noise prediction), using a mixing-plane coupled with
periodic boundaries is not adequate anymore, even for a case with equal pitches. To illustrate why this set up is not
valid, Fig. 1 a) shows axial velocity contour of the wake generated by a rotating blade before it has gone through he
mixing-plane interface, and Fig. 1 b) show what is being transferred to the downstream row through the interface. As
can clearly be seen, by performing the circumferential averaging the wake structures are completely lost.

a) b)

Fig. 1 Axial velocity contours of a generic wake; a) wake before the mixing-plane averaging, b) flow transferred
to the downstream blade by the mixing-plane interface.

An obvious solution to overcome the issue of the different pitches, is to simulate the entire 360◦ wheel in both
domains using a sliding grid interface. This would be the ideal scenario since all the flow features are transferred
between both domains without any periodicity assumption. This makes it applicable to both URANS and turbulence
resolving simulations, but unfortunately it is computationally prohibitive in most cases. If the simulation of the entire
turbomachine needs to be avoided, two possible scenarios exist. In the first one, the pitch covered by each blade row
domain is the same, which can be obtained in two different ways; if the blade count is the same only one blade is needed
in each row, and if it is not, a combination of an integer number of blades in each row (usually low) that adds to the
same pitch angle can be used (for instance 1 rotor blade and two stators in a 20 and 40 blade count configuration). The
second scenario is where creating a combination that adds to the same pitch is not possible (or requires of too many
blades). This prevents the possibility of using a combination of sliding grid with periodic boundary conditions.

If the flow only contains deterministic frequencies, an efficient alternative to time accurate, full annulus, simulations
is the harmonic balance method [3, 4]. This method is based on representing the solution as a truncated Fourier series
in time, with spatially varying coefficients. It then employs a discrete Fourier transform in order to either approximate
the time derivative [3], or computes the Fourier coefficients of the nonlinear residual function [4]. This requires that
the solution is stored either at a discrete set of time instances, or in terms of its Fourier coefficients. Although this
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increases the memory requirements of the method, the Fourier representation also enables the use of phase lagged
periodic boundary conditions that can be used to reduce the computational domain to one blade per row. This, together
with the fact that the harmonic balance method seeks directly for the steady state solution, makes it very efficient. Some
notable work on the harmonic balance method can be found in [3–12]. Unfortunately, the harmonic balance method
only works for cases that contain a set of deterministic frequencies. Therefore, it is not suitable for scale resolving
simulation of turbulent flows. For this purpose, other methods needs to be used.

Other type of solutions are based on storing the flow signal at both the periodic boundaries and the blade-row interface
for a whole period in order to be able to apply a phase-lagged condition on the other side of the interface/periodic
boundary. Direct storage of all the flow quantities as proposed by Erdos et al. [13], although theoretically possible,
usually becomes prohibitive due to storage requirements in grids with large number of cells, thus needing of some kind
of data compression. One data compression approach is to sample the flow signal into temporal Fourier coefficients by
making use of the assumption that the solution is periodic in time. One of such methods is based on the work by He
[14] and Gerolymos et al. [15], referred to as the chorochronic method. This method has been successfully applied to
different turbomachinery flow predictions [15–19].

Both the harmonic balance and the chorochronic methods are based on Fourier analysis. For a comprehensive
review of the work done on these types of methods when applied to turbomachinery simulations over the past years, the
reader is referred to the work by He [20].

More recently, Mouret et al. proposed a method where instead of compressing the data by decomposing it into
Fourier coefficients, the data compression is carried out by performing a singular value decomposition of the flow
signal [21]. Then, the singular values containing less energy and their corresponding left and right singular vectors are
discarded, and only the more energy containing ones are stored for reconstructing the flow quantities. Mouret et al.
applied their proposed method to the unsteady RANS simulation of the flow around a single-stage compressor [21].

In the present work, the chorochronic method is implemented in an in-house CFD solver, G3D::Flow. The
implementation is validated and its performance tested in a one stage compressor rotor-stator configuration by
performing both URANS and DDES simulations.

III. Methodology
Here the chorochronic method used, both for the pitch-wise boundaries as well as for the rotor-stator interface is

described. The interested reader is referred to [15] for the complete derivation. The notation adopted here mostly
follows the one used on [22].

A. Chorochronic pitch-wise boundaries
Let #8 and Ω8 be the number of blades and rotational speed of the 8Cℎ blade row respectively. Based on these

quantities, we can define the relative blade passing frequency for the first blade row as

51 =
#2 |Ω1 −Ω2 |

2c
(1)

In order to compute the relative blade passing frequency of the second blade row, 52, indexes 1 and 2 are simply swapped.
This is the frequency at which a blade in a certain row sees the opposite row’s blades, and hence the frequency related to
the periodicity of the flow properties on the former blade row (leaving aside turbulent flow instabilities which might have
their own frequency). Due to the missmatch in pitches between the two blade rows, two adjacent blades see the same
flow field with a phase shift, V, that can be calculated as a function of the blade counts and rotational speeds as [15],

V1 = −
2c(#1 − #2)sign(Ω1 −Ω2)

#1
(2)

Again, in order to calculate the phase shift for the second blade row indexes must be swapped. This phase shift can be
translated into a time shift as

Cshift8 = ±
V8

2c 58
(3)

where the sign in Eq. 3 is changed depending on the tangential direction in which the phase shift is applied.
Due to the periodicity in time of the flow, it can be efficiently stored as a truncated Fourier series in time, where

only #ℎ harmonics are considered. For every cell at the pitch-wise boundary, the =Cℎ temporal Fourier coefficient is
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computed as follows,

@̂= = 51

∫ CB

CB− 1
51

@(C)4−2 9 c=C 513C

@̂= = 52

∫ CB

CB− 1
52

@(C)4−2 9 c=C 523C

(4)

where CB is the current time of the simulation, 9 is the imaginary unit, @(C) are the flow variables at time C in a given cell,
and the first or the second equation in Eq. 4 will be used depending which blade row the cell belongs to. Due to the
discrete nature of CFD methods, Eq. 4 can be rewritten as,

@̂= = 51

8C∑
8=8C−#CB??1

@(8ΔC)4−2 9 c=8ΔC 51ΔC

@̂= = 52

8C∑
8=8C−#CB??2

@(8ΔC)4−2 9 c=8ΔC 52ΔC

(5)

where #CB??8 is the number of time steps per period associated to the frequencies computed for the 8Cℎ blade row with
Eq. 1, ΔC is the simulation time step and 8C is the current iteration of the simulation.

In order to avoid storing the time signal over one full time period before the temporal Fourier coefficients in Eq. 5 can
be computed, a moving average technique is used to update them [15]. This technique updates the Fourier coefficients by
adding the contribution of the current flow solution to all coefficients and subtracting the value one period back in time
obtained using the coefficients. By using this updating technique, one can clearly see that when it has fully converged,
due to the periodicity of the signal, the reconstructed value one period back in time and the current value should be the
same, hence the Fourier coefficients remain unchanged. This moving average based technique can be expressed as,

Δ @̂= =
1

#CB??1

(
@(CB) −&(CB −

1
51
)
)
4−2 9 c=CB 51

Δ @̂= =
1

#CB??2

(
@(CB) −&(CB −

1
52
)
)
4−2 9 c=CB 52

(6)

where Δ @̂= is the update of the =Cℎ temporal Fourier coefficient, and &(C) is the value obtained when reconstructing the
flow properties at time C using the temporal Fourier coefficients computed with Eq. 5. Note that the subtraction in Eq. 6
is only done when the simulation time exceeds one time period associated with the relative blade passing frequency of
the corresponding blade row computed with Eq. 1.

Finally, when values are needed in order to transfer information between both sides of the pitch-wise boundaries, the
temporal Fourier coefficients are used to reconstructed the desired flow properties with the corresponding time shift
computed according to Eq. 3 as,

&(CB + Cshift8 ) =
#ℎ∑

==−#ℎ
@̂=4

2 9 c= 58 (CB+Cshift8 ) (7)

B. Chorochronic blade-row interface
When dealing with a blade-row interface, the interacting spinning modes that occur can be described by the well

known Tyler-Sofrin modes [23],
<=,: = =#1 + :#2 (8)

These modes spin at the following frequencies in the first and second blade row’s frame of reference respectively,

l= = =#2 (Ω1 −Ω2)
l: = :#1 (Ω2 −Ω1)

(9)

Due to the double periodicity in space and time, the flow signal is represented as a truncated double Fourier series,
where only #ℎ harmonics are considered. In order to obtain the time-azimuthal Fourier coefficients, first the temporal
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coefficients are computed using a moving average technique at every cell at the interface. This is done in the same
manner as for the pitch-wise boundaries, as described in Sec. III.A. Then the time-azimuthal coefficients can be
constructed for each radial span from the time Fourier coefficients as,

@̂=,: (A) =
#1

2c

∫ 2c
#1

0
@̂= (\, A)4 9<=,: \3\

@̂=,: (A) =
#2

2c

∫ 2c
#2

0
@̂: (\, A)4 9<=,: \3\

(10)

for each of the blade row respectively. Finally when the reconstructed values are needed in order to transfer information
between blade rows, the necessary flow properties for each of the blade rows respectively can be obtained using the
time-azimuthal Fourier coefficients computed using Eq. 10 as,

&(A, \, C) =
#ℎ∑

==−#ℎ

#ℎ∑
:=−#ℎ

@̂=,: (A)4 9l=C− 9<=,: \

&(A, \, C) =
#ℎ∑

==−#ℎ

#ℎ∑
:=−#ℎ

@̂=,: (A)4 9l: C− 9<=,: \
(11)

C. Periodic boundary decoupling assessment
In order to validate the implementation of the method in the in-house G3D::Flow solver, an initial test case is used, a

straight cascade where a vortical gust is introduced at the inlet. For this simpler case three simulations are run, the first
one with a pitch that matches the tangential wave number of the gust, hence allowing for standard periodic boundary
conditions (this case will be used as the benchmark), and the other two using chorochronic periodic boundary conditions.
The reason why two chorochronic simulations are run, is because different strategies for the periodic set up are used in
each of them. In the first one, only one sector is simulated (Fig 2 a)), whereas on the second one three sectors will be
used (Fig 2 b)). As discussed later, the second strategy aims at improving the stability and convergence of the Fourier
coefficients by breaking an error feedback loop.

a) b)

Fig. 2 Periodic boundary set up strategy. a) single sector with coupled periodic boundaries, b) multiple sectors
with decoupled periodic boundaries. represents the cells where the temporal Fourier coefficients are sampled
and X the ghost cells where the phase shifted values are introduced. The blue arrows show which Fourier
coefficients are used for phase shifting which values.

The strategy shown in Fig. 2 b) is used for two reasons. Firstly, it helps with the stability and convergence of the
temporal Fourier coefficients. This is because in the standard setting (see Fig. 2 a)), there is an underlying feedback
loop between both sides of the periodic interface that delays the convergence of the moving average. By looking at the
standard set up, it can be seen that when the Fourier coefficients are not converged, an error is introduced when they are
used to introduce phase lagged values on the ghost cells of the left side. This introduced error is going to propagate via
the flux calculation to the sampling nodes on the left side, which in turn, introduces an error on the nodes on the right
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side when the left side Fourier coefficients are used to calculate the phase-lagged values on right side. This ongoing
loop deteriorates the convergence and the stability of the moving averaged used to update the Fourier coefficients. By
using the decoupled periodic boundary strategy (Fig. 2 b)) this feedback loop is broken as an error in sampling on one
side does not directly introduce an error on the other side. The second reason why the decoupled boundary strategy is
used, is to allow for some non periodic features of the flow to occur in the middle sector, which is specially interesting
when DDES simulations are performed, as done in [24].

The same decoupling (breaking of the error feedback loop) effect could be achieved by employing only two sectors
(as will be done later on the rotor domain, see Fig. 6, and similar to [18, 25] where a double passage strategy was used
int order to improve the quality of the sampled flow signal and convergence improvements were reported), but due to the
later reason of wanting non-periodic features, three sectors have been chosen. When using this strategy the algorithm for
the chorochronics periodic boundaries does not change. The frequency of the flow features is still computed according
to Eq. 1, and the only change occurs in the phase shift and corresponding time shift defined in Eq. 2 and Eq. 3, which
are now doubled to compensate for the extra sector that the solution needs to be phase shifted.

Figure 3 shows the axial velocity at the same time instance for the three aforementioned cases with the inlet gust;
the standard periodic, the standard chorochonic periodic and the decoupled boundary periodic chorochronic. In the
chorochronic simulations the phase shift applied on the periodic boundaries can be clearly appreciated. But in order to
make a more quantitative comparison, sampling is performed along an horizontal line (at one third of the height of the
domain shown in Fig. 3 a)). The results of this line plot can be seen in Fig. 4 where an excellent agreement can be seen
for both type of periodic configurations.

a)

b)

c)

Fig. 3 Chorochronic periodic validation and periodic decoupling assessment. Axial velocity contours; a)
standard periodic, b) standard chorochronic periodicity and c) decoupled chorochronic periodicity. Same
colorbar in all three contour plots.

6



Fig. 4 Axial velocity comparison along a horizontal line. Note that for visibility enhancement not all the points
have been plotted for standard and decoupled chorochronic, and they have been alternated.

Finally, in order to confirm the hypothesis that decoupling the periodic boundaries when using chorochronic
boundary conditions helps the convergence and stability of the Fourier coefficients update, the convergence of the
moving average along both chorochronic simulations just presented is measured and compared. The convergence of the
error of the moving average is computed as the error when comparing the current flow state with the one predicted one
period back in time using the temporal Fourier coefficients;

n =
@(CB) −&(CB − 1

5
)

@(CB)
(12)

where @(CB) is the flow variable at the simulation physical time, and &(CB − 1/ 5 ) is the value obtained by reconstructing
the same flow variable one period back in time using the temporal Fourier coefficients. In order to be able to compare
both the standard and decoupled chorochronic simulations, the value plotted in Fig. 5 is the maximum n over the entire
interface at each time step. It can clearly be seen how decoupling the periodic boundaries helps and improves the
convergence of the moving average. Note that the two line plots on Fig. 5 do not start at simulation time zero, the reason
for this is that as previously mentioned in Sec. III.A when describing Eq. 6, the subtraction part of the moving average
is not done until the simulation time has reached one time period.

IV. Computational set up
In order to solve the Favre-averaged Navier-Stokes equations, the in-house solver G3D::Flow is used, which is based

on the family of codes developed by Eriksson [26]. G3D::Flow is a finite volume CFD solver for compressible flows
developed and maintained at the division of Fluid Dynamics at Chalmers University of Technology. For advancing
the solution in time a three-stage second order accurate Runge-Kutta algorithm is employed. Convective fluxes are
computed with a third order accurate upwind biased scheme, whereas the diffusive ones are evaluated with second order
accurate centered scheme. Regarding the turbulence modeling, when performing URANS simulations, Spalart-Allmaras
turbulence model is used [27], and for turbulence resolving simulations, DDES with Spalart-Allmaras as underlying
RANS model is used with a shear-layer-adaptive length scale [28, 29].

In the literature, some authors reported a non ideal behaviour of the shielding function in the original DDES model
(usually related to mesh resolution) [30–32]. The shielding function is the function that switches between RANS and
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Fig. 5 Moving average convergence comparison between both chorochronic periodic strategies.

LES modes in the DDES model. In this work the modified shielding function proposed in [32] and implemented in
[31] is used. Since the main purpose of this work is not to asses the performance of the DDES model or how well
its shielding function can transition between the RANS and LES regions, identical meshes (one rotor and one stator
mesh are generated, copied and rotated as many times as necessary) and numerics (except the periodic and rotor-stator
interface boundary conditions) will be used to eliminate ambiguity when evaluating the performance of the phase-lagged
boundary conditions.

In order to asses the performance of the phase-lagged boundary conditions described in Sec. III a sector of a slightly
modified version of the VINK compressor R1S1B will be used [33, 34] (this sector covers approximately 15% of the
span of the blades and is located at mid span). The modifications include having 50 rotor and 90 stator blades instead of
the 51 and 88 of the original design. This change has been made so that a 5 rotor and 9 stator simulation can be run
with standard periodic boundary conditions and sliding mesh as blade-row interface. This set up is the one used as a
benchmark and the one to which the phase-lagged simulations are compared to.

In the phase-lagged simulations, the decoupling of the periodic boundaries explained in Sec. III.C is sought for,
therefore, 2 rotor blades and 3 stator blades will be accounted for. Figure 6 shows a schematic of the set up used for the
phase-lagged simulations. The thick black lines represent the boundaries of each blade’s domain, the arrows show how
the connection between the chorochronic boundaries is set up and what phase shift angle is applied in each of them.
The areas shaded with red vertical lines in Fig. 6 represent the cells that will be used to sample the temporal Fourier
coefficients, and the areas shaded by blue diagonal lines, the ghost cells where the phase shifted values are introduced.
The points marked as %1, %2 and %3 represent the points where flow data is sampled.

V. Results

A. Matching pitches with sliding mesh and standard periodicity
As a benchmark to compare the phase-lagged simulations against, the case where 5 rotor blades and 9 stator blades

are simulated, allowing for the use of a sliding mesh and standard periodic boundary conditions, will be used. Thus, the
first thing to do is to verify that the sliding mesh implemented in G3D::Flow is working as intended. In order to do so,
variables are sampled along a constant radius line right before the interface, in the rotor domain, and right after the
interface, on the stator domain. Figure 7 shows the result obtained for the axial velocity component on the URANS
simulation, where a good agreement can be seen. The same quality of agreement is observed for the DDES simulation
and also for the rest of the variables conforming the flow state, but are not presented here for brevity.
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Fig. 6 Computational set up with corresponding phase shift angles and periodic boundary decoupling
schematic. The points marked %1, %2 and %3 are data sampling points.

Fig. 7 Comparison of axial velocity before and after the sliding mesh interface.

B. Chorochronic URANS
Here the results obtained using chorochronic periodicity and rotor-stator interface are compared with the ones

obtained with the sliding mesh. For this simulation the number of harmonics accounted for was set to 20, which was
considered to be sufficient given the results presented later (Gerolymos, for instance, reported successful results for
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an axial compressor and a fan stage using 10 harmonics [16]). A total of 20 periods ( 5 −1
2 ) were simulated, reaching

converged temporal coefficients both at the rotor-stator interface and the pitch-wise boundaries at around time period
number 13. Figure 8 shows instantaneous entropy contours for both the sliding mesh and chorochronic simulation at the
same time instance, where a qualitatively good agreement can be seen.

a)

b)

Fig. 8 Entropy contours of URANS simulation a) sliding mesh and standard periodicity, and b) chorochronic
periodicity and rotor-stator interface. Same colorbar.

In order to analyze the performance of the phase-lagged boundary conditions in more depth, data is sampled at
three points (see Fig. 6). Figure 9 shows the comparison between the URANS simulations where sliding mesh with
standard periodicity are used and the one where chorochronic interface and periodicity is employed. As can be seen
from the figure, the agreement of the axial velocity profiles sampled at the three points is quite good, as well as the
energy content of those. Table 1 confirms the good agreement by showing the mean, maximum and standard deviation
of the percentage error with respect to the sliding mesh computation at the three sampling points. This is within the
expectations, as most of the energy is contained on frequencies that are multiple integers of the BPF which is exactly
what the chorochronic boundary conditions are sampling and transferring on both the rotor-stator and periodic interfaces
(see right hand side plots on Fig. 9).

C. Chorochronic DDES
In this section a similar analysis as the one presented for the results obtained with URANS simulations is carried

out for the performed DDES computations. In this case, the number of harmonics sampled and transferred by the
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a) b)

c) d)

e) f)

Fig. 9 Comparison of sampled data gathered on points illustrated in Fig. 6 for the URANS simulations. SM
and choro refer to the sliding mesh and chorochronic simulation respectively. Axial velocity and its frequency
content shown for each point. a) and b) point 1, c) and d) point 2 and e) and f) point 3.

chorochronic boundary conditions is increased from 20 to 30. Similarly as for the URANS simulations, a total of 20
periods ( 5 −1

2 ) were simulated, but in this case the convergence of the Fourier coefficients was delayed 2 extra time
periods, needing a total of 15. Figure 10 shows instantaneous entropy contours for the DDES simulations for both the
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Table 1 Percentage error for the URANS chorochronic simulation’s sampled axial velocity.

mean max std

P1 0.28 1.83 0.31
P2 0.67 1.60 0.37
P3 0.72 2.64 0.39

sliding mesh and chorochronic simulations at the same time instance. Even though a qualitatively good agreement can
be seen, there are some features that are worth noticing from these figures. By taking a look the rotor wake impacting
the third stator blade, it can be seen, how on the sliding mesh simulation (Fig. 10 a)), the vortices shedding from the
rotor blade are transferred from the rotor domain into the stator domain across the interface. These vortices have their
own frequency which is not coupled to the BPF. Thus, by looking at the same location on the chorochronic simulation
(Fig. 10 b)) one can clearly see how the Fourier sampling performed at the interface has filter the vortices shedding from
the rotor blades out, and has not been able to transfer them into the stator domain, resulting in a much smoother wake.

a)

b)

Fig. 10 Entropy contours of DDES simulation a) sliding mesh and standard periodicity, and b) chorochronic
periodicity and rotor-stator interface. Same colorbar.

Data is sampled at the same three points as for the URANS case (see Fig. 6). The comparison is performed using
the DDES sliding mesh simulations as a benchmark case. The results for the time evolution of the axial velocity as well
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as its energy content at the sampling points can be seen in Fig. 11. As can be see from the figure, the agreement on
the axial velocity profiles is not quite as good as it was for the case of the URANS simulation. Table 2 verifies this
by showing the mean, maximum and standard deviation of the percentage error, where maximum errors close to 10%
can be found. In order to understand why this mismatch occurs, one can take a look at the spectrums (see plots on the
right hand side of Fig. 11). Here quite a good agreement can be seen for the frequencies directly correlated to the BPF
for the three different sampling points, meaning that the chorochronic boundary conditions were able to sample and
transfer those across the different interfaces. Once higher frequencies are analyzed, it is quite clear the energy on those
frequencies is not retained anymore and both curves start to deviate from one another. This can clearly be seen by taking
a look at the end of the spectrums presented in Fig. 11.

Table 2 Percentage error for the DDES chorochronic simulation’s sampled axial velocity.

mean max std

P1 1.73 9.78 1.44
P2 1.37 9.13 1.38
P3 1.88 5.56 1.08

VI. Conclusions
In the current work the phase-lagged periodic and interface boundary conditions based on the chorochronic approach

are presented and implemented in the in-house compressible CFD code, G3D::Flow. A strategy for decoupling the
periodic boundaries that improves the convergence and stability of the Fourier coefficients is described and tested.

The newly implemented boundary conditions are used to perform both URANS and DDES simulation on a span-wise
sector of a one stage compressor, and their results compared with results obtained running sliding mesh and standard
periodicity on a case where the pitches on both domains match. The URANS simulations show very good agreement,
whereas the DDES simulations, despite of being able to capture the overal trend, are not able to retain the energy
contained in frequencies uncorrelated to the blade passing frequency, thus deteriorating the solution.

The fact that only a span-wise sector is simulated might have given the phase-lagged boundary conditions an unfair
advantage. Some flow features whose frequencies are not related to the blade passing frequency, and therefore might
cause trouble for the chorochronic periodicity and interface, as it occurred in the DDES simulation, are not accounted
for. If the full span was simulated, features like tip clearance effects or end wall effects would appear which might
have a frequency not directly related to the one the chorochronic boundary conditions are sampling, hence presenting
additional challenges. Therefore, the next step is to perform simulations of the full span where all these effects are
accounted for, to be able to asses more thoroughly the validity of the method.
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