Flexible Probabilistic Modeling for Search Based Test Data Generation

Downloaded from: https://research.chalmers.se, 2021-08-30 12:49 UTC

Citation for the original published paper (version of record):
Feldt, R., Yoo, S. (2020)
Flexible Probabilistic Modeling for Search Based Test Data Generation
Proceedings - 2020 IEEE/ACM 42nd International Conference on Software Engineering Workshops,

N.B. When citing this work, cite the original published paper.
Flexible Probabilistic Modeling for Search Based Test Data Generation

Robert Feldt
Chalmers University
Gothenburg, Sweden
robert.feldt@chalmers.se

Shin Yoo
School of Computing, KAIST
Daejon, Republic of Korea
shin.yoo@kaist.ac.kr

ABSTRACT
While Search-Based Software Testing (SBST) has improved significantly in the last decade we propose that more flexible, probabilistic models can be leveraged to improve it further. Rather than searching for an individual, or even sets of, test case(s) or datum(s) that fulfill specific needs the goal can be to learn a generative model tuned to output a useful family of values. Such generative models can naturally be decomposed into a structured generator and a probabilistic model that determines how to make non-deterministic choices during generation. While the former constrains the generation process to produce valid values the latter allows learning and tuning to specific goals. SBST techniques differ in their level of integration of the two but, regardless of how close it is, we argue that the flexibility and power of the probabilistic model will be a main determinant of success. In this short paper, we present how some existing SBST techniques can be viewed from this perspective and then propose additional techniques for flexible generative modelling the community should consider. In particular, Probabilistic Programming languages (PPLs) and Genetic Programming (GP) should be investigated since they allow for very flexible probabilistic modelling. Benefits could range from utilising the multiple program executions that SBST techniques typically require to allowing the encoding of high-level test strategies.

KEYWORDS
Probabilistic Programming, Software Testing

ACM Reference Format:

1 INTRODUCTION
Search Based Software Testing (SBST) has been successful for different types of testing such as structural testing [10, 19, 24] and non-functional property testing (e.g. temporal [26], energy [16]). Recently its maturity has also been shown by the success of the Sapienz [18] tool, which was successfully applied to industrial scale automated testing of Android apps [2].

Search Based Test Data Generation, which is not only an important subject in its own right but also a foundation for many other applications of SBST, is essentially the formulation of automatic generation of test input values1 as an optimization or search problem [19]: a search is conducted in the large space of potential inputs, guided by a fitness function that measures the adequacy of the current candidate input(s), and a (metaheuristic) search algorithm governs the search trajectory. While metaheuristic search [19] is by far the most common type of algorithm many others can, and the argument has been made should [7, 21], be used.

Despite being successful, there are remaining challenges, some of which we focus on. First, the search algorithms used by SBST typically require a large number of concrete program executions, only to produce a single test input. While some efforts have been made to harvest information from the otherwise wasted executions [13] or use multiple executions to update the generator [22], it is not the norm and the area is still, largely unexplored. Second, generating highly structured test inputs purely from the code remains challenging [14]. Structured inputs, e.g. trees and graphs, naturally increase the size of the search space exponentially, and both the shape of the structure as well as the combination of constituent primitive values can be relevant to the test adequacy. Finally, the SBST literature is focused on producing individual test input values with specific properties (e.g., “x = 42 will cover branch p”), or, seldomly, to select sets of such inputs (e.g., “this set of most diverse inputs”) [8], but rarely on finding more complex constraints and test strategies (e.g., “setting the length of string 5 larger than value of the input 1 tends to crash the program”). This seems to be a significant limitation for smarter and more effective testing.

We propose to transform Search Based Software Testing from generating a few and specific test inputs using (mainly) metaheuristic algorithms, to learning generative models (GMs). Once learnt, we can sample, from the generative models, multiple input instances with desirable properties. We aim to address the three aforementioned issues with this approach. First, we argue that our approach will make better use of concrete program executions, as the learnt generative model can be sampled multiple times and also updated based on the effect of the multiple executions. Second, we propose to borrow the generator model used by techniques such as QuickCheck [5] and GődelTest [6] to guide the search towards valid structural shapes, while preserving the capability to produce

1While the same techniques and tools can typically be used both to generate test input data as for generating whole test cases the latter is much less common and we will use the former as an example and focus throughout, for simplicity; what we propose is applicable in both settings though.
a diverse set of test data. While the latter approach [6] already parameterize a test data generator into a structural specification, that describes the valid, syntactic structure of data, and a (probabilistic) choice model that makes the non-deterministic choices within that structure during an actual generation process we argue that there is a continuum of more or less powerful such models that should be further explored.

In the following we describe an overview model of SBST approaches as seen as probabilistic generative models, map some existing techniques into it, and then propose new techniques that cover new and exciting niches of the model. In particular, we argue for the use of Probabilistic Programming Languages and Genetic Programming to be explored in future work since they can provide very powerful as well as flexible modeling, respectively.

2 SBST AS MODEL INFERENCE

This section discusses some of the limitations in existing test data generation techniques using a small, low-level, motivating example. It then presents a simple, overview model for SBST approaches seen as generative models and discusses some novel ideas of how to infer, or learn, such models based on Probabilistic Programming Languages and Genetic Programming.

2.1 Test Data Generators as Generative Models

Although generative models (GMs) have been around for very long, e.g. Jaakkola and Haussler [15] argues for using traditional statistical model such as hidden Markov models as GMs, they have seen a resurgence of interest in recent years with the rise of Probabilistic Programming languages (PPLs) as well as Deep Neural Nets (DNNs). As defined by Foster [9] a “generative model describes how a dataset is generated, in terms of a probabilistic model [and] by sampling from this model, we are able to generate new data.” We propose that this is a very natural way to view software test data generators and that SBST and many automated testing techniques can be seen in this light.

Our proposal is thus that automated testing techniques and SBST, in particular, should infer probabilistic generative models that will produce test input values that are adequate for the given criterion, instead of searching for a single (or small set of) adequate input value(s). As just one example, given a branch predicate \(x > y + 42 \), we would like to be able to produce a generative model that uses, say, two normal distributions, \(x \sim N(84, 4) \) and \(y \sim N(0, 3) \). Sampling \(x \) and \(y \) from these distributions will lead to covering the branch under test with high probability, each time with different values.

Many test data generation techniques do not make a difference between the structure of the data that is allowed and the probabilistic model that determines how to make specific choices. For example, in QuickCheck the tester or developer manually programs data generators; the structure that is allowed is described directly in Haskell code while the probabilistic choices are mainly made by uniform random sampling or have to be explicitly specified right in the generating code itself [5]. Even though the flexibility and

2 Nowadays QuickCheck style of tools are available in a plethora of languages, e.g. Hypothesis for Python [1]
power of the probabilistic model is thus basically unlimited, since it
can be expressed in the Turing complete language that is the host
language of the tool, in practice data generation is basically (uni-
formly) random and the technique itself is described as a random
testing technique.

While the probabilistic model in QuickCheck is thus embed-
ded in and, thus, integrated with the description of the structure
of the generated data, the GödelTest system proposed to clearly
separate the two [6]. This is achieved by allowing the code that
describes how to generate data, and thus its valid structure, to use
a set of primitives to express the type of choices taken while gener-
ating a specific datum. This separation allows different, so called (in
GödelTest parlance), choice models to be used and learned based
on specific and even multi-objective goals [6]. These choice models
are essentially probabilistic models that determines, via some form
of sampling, which specific choice to make.

While Feldt and Poulding, when introducing GödelTest, focused
on using local, univariate probability distributions for choice and
then tuned the parameters of the distributions with a search al-
gorithm they also considered more complex probabilistic (choice)
models. For example, already in the initial study [6], they needed to
use a “depth-dependent” probability distribution which was formed
by multiplying the parameters of the probability distribution each
time a choice was made. Thus the more choices of a specific type
that had been made the more different the probability distribu-
tion could be. This was found to be useful when searching for tree
data structures when the goal was to generate a tree of a certain
size or depth. In a later study [21], they also proposed the use of
Monte-Carlo Tree Search to optimize the choices made in the data
generator; this is thus an example of a more flexible probabilistic
model which can enable complex dependencies between multiple
choices and aspects of the generation process.

2.2 Categorisation of Generative Models for
SBST

Based on the discussion above there are thus at least two main
aspects to be considered in a generative model: (a) to what degree is
its probabilistic model separated from the description of the structure
of the data, (b) how powerful and flexible are the probabilistic
model itself and thus what level of control does it give. Separation
of the model from the structure of the data allow more free ex-
perimentation with different probabilistic models, since the latter
is not explicitly described in, and thus tied to, the former. And a
more powerful and flexible probabilistic model (PM) allows more
fine-grained control of the choices made during the generation
process and can thus, at least in theory, come closer to the choices
that lead to the data that we need during testing.

Figure 1 shows a conceptual overview of this model with flexi-
bility/power of the PM on the X axis and the level of separation
on the Y axis. We can see that the original QuickCheck based on
random choices during data generation integrates the probabilistic
model with the description of the data structure, while the simplest
GödelTest variant uses local, univariate probability distributions.
More flexible is to use the depth-varying probability distribution
or the Monte Carlo Tree Search which allows for more complex
dependencies between choices during data generation.

However, while the GödelTest technique essentially is a search-
based approach to the learning, and thus inference in statistical par-
lance, of generative models we argue that SBST should exploit this
spectrum even more broadly. In the following, we give three specific
proposals of techniques that could provide benefits. For separated
GMs, such as GödelTest, we suggest that the probabilistic model
could be encoded in small programs which can be learnt via search,
i.e. the probabilistic modeling is done via Genetic Programming.
For integrated GMs we discuss how Probabilistic Programming
Languages could automatically infer complex probabilistic models
for test data generation. We also briefly discuss how Genetic Pro-
gramming could be used to directly evolve also the code describing
the structure of the data itself and not only its probabilistic model.

3 FUTURE SBST TECHNIQUES FOR
GENERATIVE MODELING

3.1 Probabilistic Programming

Probabilistic Programming is a programming paradigm that aims
to both describe and automatically train probabilistic models using
dedicated Probabilistic Programming Languages (PPLs) [11]. Many
contemporary PPLs, such as Pyro [3] and Anglican [23], provide
the combined package of the expressiveness of a full programming
language with state-of-the-art model inference techniques. We will
consider these languages as the model inference engine. Since the
final probabilistic model is created automatically and based directly
on the program, expressed in the PPL, this is an example of an
integrated technique that can allow for diverse and very powerful
probabilistic modelling.

As one example, existing search based test data generation tech-
niques can be elegantly abstracted as Bayesian model-based reason-
ing which is used by several PPLs. Let X denote an input value for
the Program Under Test (PUT), and Y denote an arbitrary fitness
value. Searching for a specific value that satisfies a fitness criterion
is in fact searching for a specific point in the joint distribution of
input and fitness values. More generally, searching for an input can
be considered as conditioning of a model on an observable output,
i.e., the characterisation of a conditional distribution between X
and Y, $p(X|Y)$, based on the instrumented PUT as a model. Bayes
rule 1 can be used to approximate the conditional distribution: $p(X)$
is the prior distribution of input X, while $p(X, Y) = p(Y|X)p(X)$
represents the observations of concrete executions based on the
random choices made for X.

$$p(X|Y) = \frac{p(Y|X)p(X)}{p(Y)} = \frac{p(X, Y)}{\int p(X, Y)dX} \quad (1)$$

One of the major benefits of PPLs is that, being Turing complete,
PPLs can be used to construct very sophisticated generative models,
to which the aforementioned conditioning is applied. A widely used
example is the problem of breaking Captcha images. One machine
learning approach to this is to sample many Captcha images and
then train a neural network to decode a string value out of a Captcha
image [4]. Using PPLs, we can instead write a short program that
generates Captcha images from strings, and condition this model
on the image we want to break [25]. From this perspective, test data
generation is an ideal application for PPLs, as the models we want
to condition already exist (the source code and/or executable of the
We propose an extension to SBST that aims to perform generative inference techniques that are being rapidly incorporated into PPLs.

3.2 Genetic Programming for Probabilistic Modeling

While several different probabilistic modeling techniques have been used as choice models in GödelTest they each have their specific limitations and thus limited power and flexibility. The local, univariate probability distributions cannot model dependencies between different choices during generation, the depth-varying models only considered the individual depth per probability distribution not the number of choices made etc.

A potentially very flexible technique would be to evolve small genetic programs that give information about the overall generation process and the choices made so far calculates the next choice to be made during generation. The strength and flexibility of this model could be substantial, e.g. evolving programs that generate choices for bounded exhaustive testing or encode complex test strategies, but the search might also be very hard. Future work should investigate the trade-off between flexibility and feasibility, how to select between individual programs per each choice in a generator or having a single model/program for every choice etc.

3.3 Genetic Programming of Generators

One potential weakness of QuickCheck- and GödelTest-like techniques is that the cost of writing generators can quickly surpass the cost of manual testing. While there are techniques that can exploit existing data format specifications and grammars to generate the code needed for data generators [12] they depend on such specifications being available. This might not be so for new or custom-developed software.

In such scenarios, one of the most flexible as well as automated techniques for generative modeling would be to use automated programming techniques to search for the whole generator itself using e.g. Genetic Programming [17]. We show this as an integrated generative model in Figure 1 since it seems simpler to evolve both the structure-determining data generator code and the probabilistic model at the same time. However, hybrid approaches are possible and future work should explore their respective pros and cons.

While Genetic Programming [17] seems a natural choice here, as well as for the probabilistic models in Section 3.2 above, other forms of automated programming should be investigated, e.g. Inductive Logic Programming [20].

4 CONCLUSION

We propose an extension to SBST that aims to perform generative model inference instead of solution search. This will allow us to search for strategies rather than single instances of solutions as well as to sample many test inputs likely to have desirable attributes. As specific and promising means of this extension, we propose three technical components: the use of Probabilistic Programming Languages, the use of Genetic Programming, or other forms of automated programming, to automate the probabilistic modelling, and to automatically and directly create data generator code.

REFERENCES