
Practical and Provably Secure Distributed Aggregation: Verifiable Additive
Homomorphic Secret Sharing

Downloaded from: https://research.chalmers.se, 2024-03-13 07:09 UTC

Citation for the original published paper (version of record):
Tsaloli, G., Souza Banegas, G., Mitrokotsa, A. (2020). Practical and Provably Secure Distributed
Aggregation: Verifiable Additive Homomorphic Secret
Sharing. Cryptography, 4(3). http://dx.doi.org/10.3390/cryptography4030025

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

cryptography

Article

Practical and Provably Secure Distributed
Aggregation: Verifiable Additive Homomorphic
Secret Sharing †

Georgia Tsaloli * , Gustavo Banegas and Aikaterini Mitrokotsa

Department of Computer Science and Engineering, Chalmers University of Technology,
41296 Gothenburg, Sweden; gustavo@cryptme.in (G.B.); aikaterini.mitrokotsa@chalmers.se (A.M.)
* Correspondence: tsaloli@chalmers.se; Tel.: +46-73-3056904
† Information Security and Cryptology—ICISC 2019 Conference, Seoul, Korea, 4–6 December 2019.

Received: 29 July 2020; Accepted: 16 September 2020; Published: 21 September 2020
����������
�������

Abstract: Often clients (e.g., sensors, organizations) need to outsource joint computations that are
based on some joint inputs to external untrusted servers. These computations often rely on the
aggregation of data collected from multiple clients, while the clients want to guarantee that the results
are correct and, thus, an output that can be publicly verified is required. However, important security
and privacy challenges are raised, since clients may hold sensitive information. In this paper,
we propose an approach, called verifiable additive homomorphic secret sharing (VAHSS), to achieve
practical and provably secure aggregation of data, while allowing for the clients to protect their secret
data and providing public verifiability i.e., everyone should be able to verify the correctness of the
computed result. We propose three VAHSS constructions by combining an additive homomorphic
secret sharing (HSS) scheme, for computing the sum of the clients’ secret inputs, and three different
methods for achieving public verifiability, namely: (i) homomorphic collision-resistant hash functions;
(ii) linear homomorphic signatures; as well as (iii) a threshold RSA signature scheme. In all three
constructions, we provide a detailed correctness, security, and verifiability analysis and detailed
experimental evaluations. Our results demonstrate the efficiency of our proposed constructions,
especially from the client side.

Keywords: function secret sharing; homomorphic secret sharing; verifiable computation; public verifiability

1. Introduction

The rise of communication technologies has formed multiple smart electronic devices
(e.g., cell phones, sensors, wearables) with network connection, which produce a big amount of
data every day. Remote, often untrusted, cloud servers are employed to store and process these
data to be used by third parties, such as research institutions, hospitals, or electricity companies.
Many applications (e.g., environmental monitoring, updating parameters in machine learning,
statistics about electricity consumption) require joint computations on data coming from multiple
clients. For example, using smart metering, data that are collected from sensors/clients can be used to
compute statistics for the electricity consumption, while environmental sensors collect data that can be
used to measure emissions and data collected from mobile phones can be aggregated and processed to
appropriately update parameters in machine learning models for accurate user profiling.

Although decentralization has been a recent trend, we have witnessed a steady rise of massively
distributed but not decentralized systems. When multiple clients outsource a joint computation using
their joint inputs, multiple servers can be employed in order to avoid single points of failure and
perform a reliable joint computations on the clients’ inputs. Although this distributed cloud-assisted

Cryptography 2020, 4, 25; doi:10.3390/cryptography4030025 www.mdpi.com/journal/cryptography

http://www.mdpi.com/journal/cryptography
http://www.mdpi.com
https://orcid.org/ 0000-0002-1552-6852
http://dx.doi.org/10.3390/cryptography4030025
http://www.mdpi.com/journal/cryptography
https://www.mdpi.com/2410-387X/4/3/25?type=check_update&version=2

Cryptography 2020, 4, 25 2 of 22

environment is very appealing and offers exceptional advantages, it is also followed by serious security
and privacy challenges. Thus, in this work, we present the formal and practical analysis of verifiable
additive homomorphic secret sharing (VAHSS), a novel cryptographic primitive introduced [1],
which allows for multiple clients to outsource the joint addition of their inputs to multiple untrusted
servers, providing guarantees that the clients’ inputs remain secret as well as that the computed
result is correct (i.e., verifiability property). More precisely, this paper is an extended version of the
preliminary article [1].

We address the problem of cloud-assisted computing characterized by the following constraints:
(i) multiple servers are recruited to perform joint additions on the inputs of n clients; (ii) the inputs
of the clients need to remain secret; (iii) the servers are untrusted; (iv) no communication between
the clients is possible; and, (v) anyone should be able to confirm that the computed result is correct
(i.e., public verifiability property). More precisely, let us consider n clients (as illustrated in Figure 1),
which hold n individual secret inputs x1, x2, . . . xn, and they want to deploy the joint computation
of the function f (x1, x2, . . . , xn)= x1 + x2 + . . . + xn on their joint inputs by releasing shares of their
inputs to multiple untrusted servers (the latter denoted by sj for j ∈ [m]). We denote the share of
a client ci given to the server sj by xij. Tsaloli et al. [2] addressed the problem of computing the
joint multiplications of n inputs corresponding to n clients and introduced the concept of verifiable
homomorphic secret sharing (VHSS). More precisely, VHSS allows to jointly perform the computation
of a function f (x1, x2, . . . , xn) = y, including no communication between the clients, and allowing
anyone to get a proof π that the computed result is correct, i.e., providing to anyone a pair (y, π) which
confirms the correctness of y (i.e., public verification). However, the possibility to achieve verifiable
homomorphic secret sharing for other functions (e.g., addition) has been left open.

x1

x2

xn

...

π proof of correctness for y

...

Server 1

Server 2

Server m

Client 1

Client 2

Client n

Alice Alice

Alice

Verifiers
y1

y2

ym

...

Compute y,π
x1 + . . .+ xn=f(y1, . . . , ym)=y

x21

x22

x2m

xn1

xn2

xnm

x11

x12

x1m

Figure 1. n clients outsourcing the joint addition of their joint inputs to m servers.

In this paper, we revisit the concept of verifiable homomorphic secret sharing (VHSS) and we
explore the possibility to achieve verifiable additive homomorphic secret sharing. Our research shows
that the latter is possible and we propose three concrete constructions that employ m servers to jointly
compute the additions of n clients’ inputs securely and privately, while, additionally, ensuring public
verifiability. The proposed constructions can be utilized, for example, to compute statistics over
electricity consumption when data are collected from multiple clients, in order to remotely monitor
and determine a diagnosis for multiple patients according to their collected data, as well as to measure
environmental conditions while using multiple sensors’ data that come from environmental sensors
(e.g., temperature, humidity). We have substantially extended the preliminary article [1] and added
a detailed evaluation (both theoretical and experimental) of the three proposed VAHSS constructions.
In the submitted paper, we present a detailed analysis for each of the constructions based on different
conditions, providing both theoretical and experimental results.

Our Contribution. We address the problem of computing joint additions with privacy and
security guarantees as the main requirements. More precisely, we treat the problem of verifiable

Cryptography 2020, 4, 25 3 of 22

multi-client aggregation that involves the following parties: (i) n clients, which hold secret inputs
x1, x2, . . . , xn, respectively; (ii) m untrusted servers to whom the sum computation is outsourced;
and, (iii) any verifier that would like to confirm that the computed sum is correct. We present, for the
first time, three concrete constructions of verifiable additive homomorphic secret sharing (VAHSS).

We employ three different primitives (i.e., homomorphic hash functions, linearly homomorphic
signatures, and threshold signatures) as the baseline for the generation of partial proofs (values that are
used to confirm the correctness of the computed sum). The partial proofs are computed by either the
servers or the clients. These characteristics lead to three different instantiations of VAHSS. Additionally,
we have altered the original VHSS definition to capture the different scenarios on the proofs’ generation;
therefore, allowing for the employment of VHSS in several application settings.

Our constructions rely on casting Shamir’s secret sharing scheme over a finite field F as an n-client,
m-server, and t-perfectly secure additive homomorphic secret sharing (HSS) for the function that
sums n field elements. Firstly, employing homomorphic collision-resistant hash functions [3,4]
and incorporating them to the additive HSS, we design a construction, such that each server produces
a partial proof. Next, a linearly homomorphic signature scheme [5] is combined with the additive HSS,
which results in an instantiation where each client generates a partial proof. Ultimately, the employment
of a threshold RSA signature scheme [6] in additive HSS allows a subset of servers to generate
partial proofs that correspond to each client. In all three proposed constructions, we have provided
detailed correctness, security, and verifiability analysis. Furthermore, we provide an evaluation of
the three proposed constructions, in which we describe the cost of the required operations for each
of the employed algorithms as well as present a detailed experimental evaluation. More precisely,
we evaluate the performance of all three proposed VAHSS constructions and compare and illustrate
how the employed algorithms perform, depending on the amount of the clients that participate during
the computation and the required computation time for the verification process.

Organization. Section 2 gives an overview about the current state-of-the-art in homomorphic
secret sharing and verifiable computation. Later, Section 3 provides the background on verifiable
homomorphic secret sharing and definitions that are necessary for the rest of the paper. We provide our
VHSS constructions in Section 4. Furthermore, in Section 5 we give a theoretical analysis of the costs
for the constructions and provide details of our implementation results. We present a discussion about
the constructions and their costs in Section 6. Finally, we provide our final considerations in Section 7.

2. Related Work
Homomorphic Secret Sharing. The key idea of threshold secret sharing schemes [7] is the ability

to split a secret x into multiple shares (denoted by, for example, x1, x2, . . . , xm) while maintaining
the following properties: (i) any subset greater than the threshold number of shares is enough to
reconstruct the secret x, and (ii) any smaller subset allows no inference of information related to
the secret x. Homomorphic secret sharing (HSS) [8] can be seen as the secret-sharing analog of
homomorphic encryption. In particular, HSS is employed in order to locally evaluate functions on
shares of secret inputs (or just one input), by appropriately combining locally computed values with
the shares of the secret(s) as input. At the same time, an HSS system ensures that the shares of the
output are short. The first instance of additive HSS that is considered in the literature [9] is computed
in some finite Abelian group. Nevertheless, HSS gives no guarantee that the computed result is correct
i.e., no verifiability is provided.

Verifiable Function Secret Sharing. To better realize function secret sharing (FSS) [10], one can
consider it as a natural extension of distributed point functions (DPF). More precisely, FSS is a method
to create shares for a function f , coming from a given function family F , that are additively combined
to give f . To visualize this, consider m functions f1, . . . , fm, as described by the corresponding keys
k1, . . . , km. These functions are the shares of f , such that f (x) = f1(x) + . . . + fm(x), for any input
x. The notion of verifiable FSS (VFSS) [11] is introduced by Boyle et al. In particular, VFSS consists
of interactive protocols that verify the consistency of some function f ∈ F with keys (k∗1, . . . , k∗m),

Cryptography 2020, 4, 25 4 of 22

which are generated by a potentially malicious user. However, VFSS [11] is applicable in the setting
of multiple servers and one client. On the contrary, VHSS can be applied when multiple clients
(multi-input) outsource the joint computation to multiple servers. Moreover, in VFSS, verification
refers to confirming that the shares f1, . . . , fm are consistent with some f ; while, in VHSS, the goal of
the verification is to ensure that the final result is correct.

Publicly Auditable Secure Multi-party Computation. Secure multi-party computation (MPC)
protocols are linked with outsourced computations. In MPC protocols [12–14], non-interactive
zero-knowledge (NIZK) proofs are generally used in order to achieve public verifiability.
Baum et al. [15] introduced the notion of publicly auditable MPC protocols that are applicable when
multiple clients and servers are involved. Given that publicly auditable MPC is based on the SPDZ
protocol [12,13] and NIZK proofs, while it also employs Pedersen commitments (for enhancing each
shared input x), it can be viewed as a generalization of the classic formalization of secure function
evaluation. In the work of Baum et al. [15], anyone that has access to the published (in a bulletin board)
transcript of the protocol can confirm that the computed result is correct (correctness property); while,
the protocol provides privacy guarantees and requires at least one honest party. We should note that
publicly auditable MPC protocols are very expressive regarding the class of functions being computed,
but they often require heavy computations. To formalize auditable MPC, an extra non-corruptible party
is introduced in the standard MPC model, namely the auditor. On the other hand, in VAHSS, we do
not require any additional non-corruptible party as well as we do not employ expensive cryptographic
primitives, such as NIZK proofs.

3. Preliminaries

Our concrete instantiations for the additive VHSS problem are based on the VHSS definition
that was proposed in [2]. However, we propose a slightly modified version of the VHSS definition
to capture cases when partial proofs (used to verify the correctness of the final result) are computed
either from the clients or the servers, which is reflected later in our instantiations. More precisely,
depending on the construction, the execution of the PartialProof algorithm is performed by either
the clients or the servers. We added the Setup algorithm to allow for the generation of keys and we
modified the PartialProof algorithm accordingly to allow the different scenarios.

Definition 1 (Verifiable Homomorphic Secret Sharing (VHSS)). An n-client, m-server, t-secure verifiable
homomorphic secret sharing scheme for a function f : X 7→ Y , is a seven-tuple of PPT algorithms (Setup,
ShareSecret, PartialEval, PartialProof, FinalEval, FinalProof, Verify), which are defined as follows:

• (pp, sk) ← Setup(1λ): On input 1λ, where λ is the security parameter, a secret key sk, to be used by
a client , and some public parameters pp .

• (sharei1, . . . , shareim, τi) ← ShareSecret(1λ, i, xi): The algorithm takes as input 1λ, i ∈ {1, . . . , n}
which is the index for the client ci and xi which denotes a vector of one (i.e., xi ∈ X) or more secret
values that belong to each client and should be split into shares. The algorithm outputs m shares shareij
(denoted also by xij ∈ X when xi = xi) for each server sj, as well as, if necessary, a publicly available
value τi (τi, when computed, can be included in the list of public parameters pp) related to the secret xi.

• yj ← PartialEval(j, (x1j, x2j, . . . , xnj)): On input j ∈ {1, . . . , m}, which denotes the index of the server
sj, and x1j, x2j, . . . , xnj, which are the shares of the n secret inputs x1, . . . , xn that the server sj has,
the algorithm PartialEval outputs yj ∈ Y .

• σk ←PartialProof(sk, pp, secretvalues, k): on input, the secret key sk, public parameters pp, secret values
(based on which the partial proofs are generated), denoted by secretvalues; and, the corresponding index
k (where k is either i or j), a partial proof σk is computed. Note that k is a variable; thus, k = i when
PartialProof generates proofs per client or k = j if it generates proofs per server.

• y←FinalEval(y1, y2, . . . , ym): On input y1, y2, . . . , ym, which are the shares of f (x1, x2, . . . , xn) that
the m servers compute, the algorithm FinalEval outputs y, the final result for f (x1, x2, . . . , xn).

Cryptography 2020, 4, 25 5 of 22

• σ ←FinalProof(pp, σ1, . . . , σ|k|): on input public parameters pp and the partial proofs σ1, σ2, . . . , σ|k|,
the algorithm FinalProof outputs σ, which is the proof that y is the correct value. Note that |k| = n, if the
partial proofs are computed per client or |k| = m, if they are computed per server.

• 0/1←Verify(pp, σ, y): On input the final result y, the proof σ, and, when needed, public parameters pp,
the algorithm Verify outputs either 0 or 1.

Correctness, Security, Verifiability. The algorithms (Setup, ShareSecret, PartialEval,
PartialProof, FinalEval, FinalProof, and Verify) should satisfy the following correctness,
verifiability, and security requirements:

• Correctness: for any secret input x1, . . . , xn, for all m-tuples in the set {(sharei1, . . . , shareim), τi}n
i=1

coming from ShareSecret, for all y1, . . . , ym computed by PartialEval, σ1, . . . , σ|k| computed from
PartialProof, and for y and σ generated by FinalEval and FinalProof, respectively, the scheme
should satisfy the following correctness requirement:

Pr
[

Verify(pp, σ, y) = 1
]
= 1.

• Verifiability: let T be the set of corrupted servers with |T| 6 m (note that, for |T| = m,
the verifiabililty property holds; however, we do not have a secure system). Denote, by A,
any PPT adversary and consider n secret inputs x1, . . . , xn ∈ F. Any PPT adversary A who
controls the shares of the secret inputs for any j, such that sj ∈ T can cause a wrong value to be
accepted as f (x1, x2, . . . , xn) with negligible probability.
We define the following experiment ExpVerif.

VHSS(x1, . . . , xn, T,A) :

1. For all i ∈ {1, . . . , n}, generate (sharei1, . . . , shareim, τi) ← ShareSecret(1λ, i, xi) and
publish τi.

2. For all j, such that sj ∈ T, give

share1j
share2j

...
sharenj

 to the adversary.

3. For the corrupted servers sj ∈ T, the adversary A outputs modified shares yj
′ and σk

′.
Subsequently, for j, such that sj /∈ T, we set yj

′ = Partial- Eval(j, (x1j, . . . , xnj)) and σk
′ =

PartialProof(sk, pp, secretvalues, k). Note that we consider modified σk
′ only when computed

by the servers.
4. Compute the modified final value y′ = FinalEval(y1

′, y2
′, . . . , ym

′) and the modified final
proof σ′ = FinalProof(pp, σ′1, . . . , σ′|k|).

5. If y′ 6= f (x1, x2, . . . , xn) and Verify(pp, σ′, y′) = 1, then output 1 else 0.

We require that for any n secret inputs x1, x2, . . . , xn ∈ F, any set T of corrupted servers and any
PPT adversary A it holds:

Pr[ExpVerif.
VHSS(x1, x2, . . . , xn, T,A) = 1] ≤ ε, for some negligible ε.

• Security: let T be the set of the corrupted servers with |T| < m. Consider the following semantic
security challenge experiment:

1. The adversary A1 gives (i, xi, x′i) ← A1(1λ) to the challenger, where i ∈ [n], xi 6= x′i and
|xi| = |x′i |.

Cryptography 2020, 4, 25 6 of 22

2. The challenger picks a bit b ∈ {0, 1} uniformly at random and computes

(ŝharei1, . . . , ŝhareim, τ̂i)← ShareSecret(1λ, i, x̂i) where the secret input x̂i =
{ xi, if b = 0

x′i, otherwise
.

3. Given the shares from the corrupted servers T and τ̂i, the adversary distinguisher outputs
a guess b′ ← D((ŝhareij)j|sj∈T , τ̂i).

Let Adv(1λ,A, T) := Pr[b = b′]− 1/2 be the advantage of A = {A1,D} in guessing b in the
above experiment, where the probability is taken over the randomness of the challenger and of
A. A VHSS scheme is t-secure if, for all T ⊂ {s1, . . . , sm} with |T| ≤ t, and all PPT adversaries A,
it holds that Adv(1λ,A, T) ≤ ε(λ) for some negligible ε(λ).

In our solution, we employ a simple variant of the (Strong) RSA based signature that was
introduced by Catalano et al. [16], which can be seen as a linearly homomorphic signature scheme
on ZN .

Definition 2 (Linearly Homomorphic Signature [5]). A linearly homomorphic signature scheme is a tuple
of PPT algorithms (HKeyGen, HSign, HVerify, HEval) defined, as follows:

• HKeyGen(1λ, k) takes as input the security parameter λ and an upper bound k for the number of messages
that can be signed in each dataset. It outputs a secret signing key sk and a public key vk. The public key
defines a message space M, a signature space S , and a set F of admissible linear functions, such that any
f :Mn 7→ M is linear.

• HSign(sk, f id, mi, i) algorithm takes as input the secret key sk, a dataset identifier f id, and the i-th
message mi to be signed, and outputs a signature σi.

• HVerify(vk, f id, m, σ, f) algorithm takes as input the verification key vk, a dataset identifier f id, a message
m, a signature σ and a function f . It outputs either 1 if the signature corresponds to the message m or
0 otherwise.

• HEval(vk, f id, f , σ1, . . . , σn) algorithm takes as input the verification key vk, a dataset identifier f id,
a function f ∈ F , and a tuple of signatures σ1, . . . , σn. It outputs a new signature σ.

We use homomorphic hash functions in order to achieve verifiability. Below, we provide the
definition of such a function. More precisely, we employ a homomorphic hash function satisfying
additive homomorphism [4].

Definition 3 (Homomorphic Hash Function [3]). A homomorphic hash function h : FN 7→ Gq, where F is
a finite field and G is a multiplicative group of prime order q, is defined as a collision-resistant hash function
that satisfies the homomorphism in addition to the properties of a universal hash function uh : (0, 1)∗ 7→ (0, 1)l .

1. One-way: it is computationally hard to compute h−1(x).
2. Collision-free: it is computationally hard to find x, y ∈ FN(x 6= y), such that h(x) = h(y).
3. Homomorphism: for any x, y ∈ FN , it holds h(x ◦ y) = h(x) ◦ h(y), where ” ◦ ” is either ” + ” or ” · ”.

For completeness, we also provide the definition of a secure pseudorandom function PRF.

Definition 4 (Pseudorandom Function (PRF)). Let S be a distribution over {0, 1}` and Fs : {0, 1}m →
{0, 1}n be a family of functions indexed by strings s in the support of S. We say that {Fs} is a pseudorandom
function family if, for every PPT adversary D, there exists a negligible function ε, such that:

|Pr[DFs(·) = 1]− Pr[DR(·) = 1]| ≤ ε,

where s is distributed according to S and R is a function sampled uniformly at random from the set of all
functions from {0, 1}m to {0, 1}n.

Cryptography 2020, 4, 25 7 of 22

4. Verifiable Additive Homomorphic Secret Sharing

In this section, we present three different instantiations to achieve verifiable additive
homomorphic secret sharing (VAHSS). More precisely, we consider n clients with their secret values
x1, . . . , xn respectively, and m servers s1, . . . , sm that perform computations on shares of these secret
values. Firstly, the clients split their secret values into shares, which reveal nothing about the secret
value itself and, then, they distribute the shares to each of the m servers. Each server performs some
calculations in order to publish a value, which is related to the final result f (x1, . . . , xn) = x1 + . . . + xn.
Subsequently, partial proofs are generated in a different way, depending on the instantiation proposed.
The partial proofs are values, such that their combination results in a final proof, which confirms the
correctness of the final computed value f (x1, . . . , xn). Note that, for all of the proposed constructions,
the clients do not need to communicate with each other, which often is the case in settings where the
clients are wireless devices spread in different regions and are not in the communication range of
each other (e.g., sensors measuring electricity consumption or environmental conditions). However,
the clients could potentially collude with some of the servers, without compromising the security of
our constructions as long as at least two clients remain honest.

4.1. Construction of VAHSS Using Homomorphic Hash Functions

In this section, we aim to compute the function value y, which corresponds to f (x1, . . . , xn) =

x1 + . . . + xn as well as a proof σ that y is correct. We combine an additive HSS for the algorithms that
are related to the value y and hash functions for the generation of the proof σ. Let c1, . . . , cn denote n
clients and x1, . . . , xn their corresponding secret inputs. Let, for any {i}i=1,...,n, θi1, . . . , θim be distinct
non-zero field elements and λi1, . . . , λim be field elements (“Lagrange coefficients"), such that, for any
univariate polynomial pi of degree t over a finite field F = FN , we have:

pi(0) =
m

∑
j=1

λij pi(θij) (1)

Each client ci generates shares of the secret xi, denoted by xi1, . . . , xim, respectively, and gives
the share xij to each server sj. The servers, in turn, compute a partial sum, denoted by yj,
and publish it. Anyone can then compute y = y1 + . . . + ym, which corresponds to the function value
y = f (x1, . . . , xn) = x1 + . . .+ xn. We suggest that every client ci uses a homomorphic collision-resistant
function H : x 7→ gx proposed by Krohn et al. [4] to generate a public value τi, which reveals nothing
about xi (under the discrete logarithm assumption). Afterwards, the servers compute values σ1, . . . , σm,
which will be appropriately combined so that they give the proof σ that we are interested in. The value
y comes from the combination of partial values yj, which are computed by the m servers. More precisely,
our solution is composed of the following algorithms:

1. ShareSecret(1λ, i, xi): for elements {ai}i∈{1,...,t} ∈ F selected uniformly at random, pick a t-degree
polynomial pi of the form pi(X) = xi + a1X + a2X2 + . . . + atXt. Notice that the free coefficient
of pi is the secret input xi. Let H : x 7→ gx (with g a generator of the multiplicative group of F)
be a collision-resistant homomorphic hash function [3]. Let Ri be the output of a pseudorandom
function (PRF) F : {0, 1}l1 × {0, 1}l2 7→ F where Ri = Fk(i, f ilei) for a key k ∈ {0, 1}l1 given to
the clients and a timestamp f ilei associated with client i such that (i, f ilei) ∈ {0, 1}l2 . For i =

n, we require F 3 Rn = φ(N)d∑n−1
i=1 Ri
φ(N)

e − ∑n−1
i=1 Ri. Subsequently, compute τi = H(xi + Ri),

define xij = λij pi(θij) (given thanks to the Equation (1)) and output (xi1, xi2, . . . , xim, τi) = (λi1 ·
pi(θi1), . . . , λim · pi(θim), H(xi + Ri)).

2. PartialEval (j, (x1j, x2j, . . . , xnj)): given the j-th shares of the secret inputs, compute the sum of all
xij = λij · pi(θij) for the given j and i ∈ [n]. Output yj with yj = λ1j · p1(θ1j) + . . . + λnj · pn(θnj) =

∑n
i=1 λij · pi(θij).

Cryptography 2020, 4, 25 8 of 22

3. PartialProof(j, (x1j, x2j, . . . , xnj)): given the j-th shares of the secret inputs, compute and output

the partial proof σj = g∑n
i=1 xij = gyj = H(yj).

4. FinalEval(y1, y2, . . . , ym): add the partial sums y1, . . . , ym together and output y (where y =

y1 + . . . + ym).
5. FinalProof(σ1, . . . , σm): given the partial proofs σ1, σ2, . . . , σm, compute the final proof σ = ∏m

j=1 σj.
Output σ.

6. Verify(τ1, . . . , τn, σ, y): check whether σ = ∏n
i=1 τi ∧∏n

i=1 τi = H(y) holds. Output 1 if the check
is satisfied or 0 otherwise.

Each client runs the ShareSecret algorithm to compute and distribute the shares of xi to each of
the m servers and a public value τi, which is needed for the verification. Subsequently, each server sj
has the shares given from the n clients and runs the PartialEval algorithm to output the public values
yj related to the final function value. Furthermore, each server runs the PartialProof algorithm and it
produces the value σj. Finally, any user or verifier is able to run the FinalEval algorithm to obtain y
and the FinalProof algorithm to get the proof σ. Lastly, Verify algorithm ensures that y and σ match
and, thus, y = f (x1, . . . , xn) is correct. Table 1 illustrates our construction.

Table 1. Verifiable additive homomorphic secret sharing (VAHSS) using homomorphic hash functions.

Secret Inputs Servers Public

(Held by the Clients) s1 s2 · · · sm Values

x1 x11 x12 · · · x1m τ1
x2 x21 x22 · · · x2m τ2
...

...
...

...
...

...
xn xn1 xn2 · · · xnm τn

Partial sums y1 y2 · · · ym Total Sum: y
Partial proofs σ1 σ2 · · · σm Final Proof: σ

• Correctness: In order to prove the correctness of this construction, we need to prove that
Pr

[
Verify(τ1, . . . , τn, σ, y) = 1

]
= 1. By construction it holds that:

y =
m

∑
j=1

yj =
m

∑
j=1

n

∑
i=1

λij · pi(θij) =
n

∑
i=1

m

∑
j=1

λij · pi(θij) =
n

∑
i=1

pi(0) =
n

∑
i=1

xi (2)

Additionally, by construction, we have:

σ =
m

∏
j=1

σj =
m

∏
j=1

H(yj) =
m

∏
j=1

gyj = g∑m
j=1 yj = gy = H(y)

and
n

∏
i=1

τi =
n

∏
i=1

gxi+Ri = g∑n
i=1 xi g∑n

i=1 Ri = g∑n
i=1 xi g∑n−1

i=1 Ri+Rn

= g∑n
i=1 xi g

φ(N)d
∑n−1

i=1 Ri
φ(N)

e
= g∑n

i=1 xi = gx1+...+xn

see Equation (2)
= gy = H(y)

(3)

Combining the last two results, we get that σ = ∏n
i=1 τi ∧∏n

i=1 τi = H(y) holds. Therefore,
the algorithm Verify outputs 1 with probability 1.

• Security: See [17] for a proof that the selected hash function H of our construction is a secure
collision-resistant hash function under the discrete logarithm assumption.

Cryptography 2020, 4, 25 9 of 22

We will now prove that Adv(1λ,A, T) ≤ ε(λ) for some negligible ε(λ).

Proof. Game 0: consider m− 1 corrupted servers. Subsequently, |T| = m− 1. Without a loss
of generality, let the first m− 1 servers be the corrupted ones. Therefore, the adversary A has
(m− 1)n shares from the corrupted servers and no additional information.

For any fixed i with i ∈ {1, . . . , n}, it holds that ∑m
j=1 ŝhareij = x̂i and, hence:

m−1

∑
j=1

ŝhareij + ŝhareim = x̂i ⇐⇒ ŝhareim = x̂i −
m−1

∑
j=1

ŝhareij

The adversary holds ∑m−1
j=1 ŝhareij. Furthermore, the adversary holds the public value τ̂i = gx̂i+Ri .

Because Ri is the output of a PRF, then τ̂i is also a pseudorandom value.

Game 1: consider that the adversary holds the same shares ∑m−1
j=1 ŝhareij and τ̂i is now a truly

random value.

Firstly, ŝhareim ∈ Y is just a value, which implies nothing to the adversary regarding whether it is
related to xi or xi

′. Moreover, Game 0 and Game 1 are computationally indistinguishable due to
the security of the PRF. Thus, any PPT adversary has the probability 1/2 to decide whether x̂i is
xi or xi

′ and so, Adv(1λ,A, T) ≤ ε(λ) for some negligible ε(λ).

• Verifiability: In this construction, for y = x1 + x2 + . . . + xn, if y′ 6= x1 + . . . + xn and
Verify(τ1, . . . , τn, σ′, y′) = 1, then the verifiability follows:

Verify(τ1, . . . , τn, σ′, y′) = 1⇒ σ′ =
n

∏
i=1

τi ∧
n

∏
i=1

τi = H(y′)

⇒
n

∏
i=1

τi = H(y′) (see Equation (3))⇒ H(y) = H(y′)

which is a contradiction since y 6= y′ and H is collision-resistant. Therefore,

Pr[ExpVerif.
VHSS(x1, . . . , xn, T,A) = 1] ≤ ε, as desired.

4.2. Construction of VAHSS with Linear Homomorphic Signatures

Our goal is always to compute f (x1, . . . , xn) = x1 + . . . + xn = y as well as a proof σ that y is
correct. We compute y while using additive HSS and we employ a linearly homomorphic signature
scheme, presented in [5] as a simple variant of Catalano et al. [16] signature scheme, for the generation
of the proof. All of the clients hold the same signing and verification key. This could be the case if the
clients are sensors of a company collecting information (e.g., temperature, humidity) that is useful for
some calculations. Because the sensors/clients belong to the same company, sharing the same key
might be necessary to facilitate configuration. In applications, scenarios where clients should be set up
with different keys, a multi-key scheme [18] could be used. However, in our construction, the clients
can use the same signing key to sign their own secret value. In fact, they sign xi,R, where xi,R = xi + Ri
with Ri chosen from each client, as described in the Section 4.1. The signatures, which are denoted by
σ1, . . . , σn, are public and, when combined, they form a final signature σ, which verifies the correctness
of y. Our instantiation constitutes of the following algorithms:

1. Setup(1k, N): let N be the product of two safe primes each one of length k′/2. This algorithm
chooses two random (safe) primes p̂, q̂ each one of length k/2, such that gcd(N, φ(N̂)) = 1 with
N̂ = p̂ · q̂. Subsequently, the algorithm chooses g, g1, h1, . . . , hn in Z∗

N̂
at random. Subsequently,

it chooses some (efficiently computable) injective function H : {0, 1}∗ 7→ {0, 1}l with l < k′/2.

Cryptography 2020, 4, 25 10 of 22

It outputs the public key vk = (N, H, N̂, g, g1, h1, . . . , hn) to be used by any verifier; and, the secret
key sk = (p̂, q̂) to be used for signing the secret values.

2. ShareSecret(1λ, i, xi): for elements {ai}i∈{1,...,t} ∈ F selected uniformly at random, pick a t-degree
polynomial pi of the form pi(X) = xi + a1X + a2X2 + . . . + atXt. Notice that the free coefficient of
pi is the secret input xi. Subsequently, define xij = λij pi(θij) (given using the Equation (1)) and
output (xi1, xi2, . . . , xim) = λi1 · pi(θi1), λi2 · pi(θi2), . . . , λim · pi(θim)).

3. PartialEval(j, (x1j, x2j, . . . , xnj)): given the j-th shares of the secret inputs, compute the sum of all
xij = λij · pi(θij) for the given j and i ∈ [n]. Output yj with yj = λ1j · p1(θ1j) + . . . + λnj · pn(θnj) =

∑n
i=1 λij · pi(θij).

4. PartialProof(sk, vk, f id, xi,R, i): Parse the verification key vk to get N, H, N̂, g, g1 and h1, . . . , hn.
For the (efficiently computable) injective function H that is chosen from Setup, map f id to a prime:
H(f id) 7→ e. We denote the i-th vector of the canonical basis on Zn by ei. Choose random

elements si and solve, using the knowledge for p̂ and q̂, the equation: xeN = gsi ∏n
j=1 hj

f j
(i)

gxi,R
1

mod N̂, where f j
(i) denotes the j-th coordinate of the vector f (i). Notice that, for our function ei,

the equation becomes xeN = gsi hig
xi,R
1 mod N̂. Set x̃i = x. Output σi, where σi = (e, si, f id, x̃i) is

the signature for xi w.r.t. the function f (i) = ei.
5. FinalEval(y1, y2, . . . , ym): add the partial sums y1, . . . , ym together and output y (where y =

y1 + . . . + ym).
6. FinalProof(vk, f̂ , σ1, σ2, . . . , σn): given the public verification key vk, the signatures σ1, . . . , σn, let

f̂ = (α1, . . . , αn). Define f ′ = (∑n
i=1 αi f (i) − f)/eN, where f = ∑n

i=1 αi f (i) mod eN. Set s =

∑n
i=1 αisi mod eN, s′ = (∑n

i=1 αisi − s)/eN and x̃ = ∏n
i=1 x̃i

αi

gs′ ∏n
j=1 hj

f ′j
mod N̂. For f̂ = (1, . . . , 1),

compute x̃ = ∏n
i=1 x̃i

gs′ ∏n
j=1 hj

f ′j
mod N̂. Output σ where σ = (e, s, f id, x̃).

7. Verify(vk, f , σ, y): compute e = H(f id). Check that y, s ∈ ZeN and x̃eN = gs ∏n
j=1 hj

f j gy
1 holds.

Output: 1 if all checks are satisfied or 0 otherwise.

All n clients get the secret key sk from Setup and hold their secret value x1, . . . , xn, respectively.
Each client runs ShareSecret to split its secret value xi into m shares and PartialProof in order to
produce the partial signature (for the secret xi) σi. The values σi’s are not generated by the servers,
since, in that case, malicious compromised servers would not be detected. Subsequently, each client
distributes the shares to each of the m servers and publishes σi. Each server sj computes and publishes
the partial function value yj by running PartialEval. Any verifier is able to get the function value
y = f (x1, . . . , xn) from the FinalEval and the proof σ from the FinalProof. The Verify algorithm
outputs 1 if and only if y = x1 + . . . + xn. Table 2 reports an illustration of our solution.

Table 2. VAHSS using linear homomorphic signatures.

Secret Inputs Servers Public Values

(Held by the Clients) s1 s2 · · · sm vk

x1, sk x11 x12 · · · x1m σ1
x2, sk x21 x22 · · · x2m σ2

...
...

...
...

...
...

xn, sk xn1 xn2 · · · xnm σn

Partial sums (public) y1 y2 · · · ym Final proof (public)

Total sum (public) y σ

Cryptography 2020, 4, 25 11 of 22

• Correctness: To prove the correctness of our construction, we need to prove that
Pr

[
Verify(vk, f , σ, y) = 1

]
= 1. It holds that:

x̃eN = (∏n
i=1 x̃i

gs′ ∏n
i=1 hj

f ′j
)

eN
= ∏n

i=1 x̃i
eN

gs′eN ∏n
i=1 hj

f ′j eN =
∏n

i=1 (gsi ∏n
j=1 hj

f j
(i)

g
xi,R
1)

gs′eN ∏n
i=1 hj

f ′j eN

= g∑n
i=1 si

gs′eN ·
∏n

i=1 ∏n
j=1 hj

f j
(i)

∏n
i=1 hj

f ′j eN · g1
∑n

i=1 xi,R

= g∑n
i=1 si

gs′eN ·
∏n

i=1 ∏n
j=1 hj

f j
(i)

∏n
i=1 hj

f ′j eN · g1
∑n

i=1 xi · g1
∑n

i=1 Ri

see Equation (3)
= g∑n

i=1 si−s′eN
n

∏
j=1

hj
∑n

i=1 f j
(i)− f ′j eN g1

∑n
i=1 xi = gs

n

∏
j=1

hj
f j g1

∑n
i=1 xi (4)

Thanks to the Equation (2), it also holds that y = ∑n
i=1 xi. Subsequently, x̃eN = gs ·∏n

j=1 hj
f j · g1

y

and, thus, Verify(vk, σ, y, f) = 1 with probability 1.

• Security: The security of the signatures easily results from the original signature scheme that was
proposed by Catalano et al. [16]. Moreover, Adv(1λ,A, T) ≤ ε(λ) for some negligible ε(λ) as we
have proven in the Section 4.1. We should note that, since in this construction no τi values are
incorporated, the arguments related to the pseudorandomness of τi are not necessary.

• Verifiability: Verifiability is by construction straightforward since the final signature σ ←
FinalProof(vk, f̂ , σ1, . . . , σn) is obtained using the correctly computed (by the clients) σ1, . . . , σn

and, thus, σ′ = σ in this case. Therefore, if y′ 6= x1 + . . . + xn while y = x1 + . . . + xn and
Verify(vk, σ′, y′, f) = 1, then:

Verify(vk, σ′, y′, f) = 1⇒ Verify(vk, σ, y′, f) = 1

⇒x̃eN = gs
n

∏
j=1

hj
f j gy′

1 (see Equation (4))

⇒gs
n

∏
j=1

hj
f j g∑n

i=1 xi
1 = gs

n

∏
j=1

hj
f j gy′

1 ⇒
n

∑
i=1

xi = y′

which is a contradiction!
Therefore, Pr[ExpVerif.

VHSS(x1, . . . , xn, T,A) = 1] ≤ ε.

4.3. Construction of VAHSS with Threshold Signature Sharing

We propose a scheme, where the clients generate and distribute shares of their secret values to
the m servers and the servers mutually produce shares of the final value y similarly to the previous
constructions. However, in order to generate the proof σ that confirms the correctness of y, our scheme
employs the (t, n)-threshold RSA signature scheme proposed in [6], so that a signature σ is successfully
generated, even if t− 1 servers are corrupted. Our proposed scheme (illustrated in the Table 3) acts in
accordance with the following algorithms:

1. Setup (1k, N): Let N = p · q be the RSA modulus, such that p = 2p′+ 1 and q = 2q′+ 1, where p′, q′

are large primes. Choose the public RSA key ei, such that ei � (n
t) and then pick the private RSA

key di, so that eidi ≡ 1 mod (p′q′). Output the public key ei and the private key di.
2. ShareSecret(1λ, i, xi, di,): for elements {ai}i∈{1,...,t} ∈ F selected uniformly at random,

pick a t-degree polynomial pi of the form pi(X) = xi + a1X + a2X2 + . . . + atXt. Notice that
the free coefficient of pi is the secret input xi. Subsequently, define xij = λij pi(θij) (given thanks

Cryptography 2020, 4, 25 12 of 22

to the Equation (1)). Let Ai be an m× t full-rank public matrix with elements from F = Zr
∗ for

a prime r. Let d = (di, r2, . . . , rt)ᵀ be a secret vector from Ft, where di is the private RSA key and
r2, . . . , rt ∈ F are randomly chosen. Let aij be the entry at the i-th row and j-th column of the
matrix Ai. For all j ∈ [m], set ωij = aj1di + aj2r2 + . . . + ajtrt ∈ F to be the share that is generated
from the client ci for the server sj. It is now formed an m× t system Aid = ωi. Let H : xi 7→ gxi

(with g a generator of the multiplicative group of F) be a collision-resistant homomorphic hash
function [3]. Let Ri be randomly selected values, as described in the Section 4.1. Output the
public matrix Ai, the (xi’s) shares (xi1, xi2, . . . , xim) = λi1 · pi(θi1), λi2 · pi(θi2), . . . , λim · pi(θim)),
the shares of the private key ωi = (ωi1, . . . , ωim), and H(xi + Ri).

3. PartialEval(j, (x1j, x2j, . . . , xnj)): given the j-th shares of the secret inputs, compute the sum of all
xij = λij · pi(θij) for the given j and i ∈ [n]. Output yj with yj = λ1j · p1(θ1j) + . . . + λnj · pn(θnj) =

∑n
i=1 λij · pi(θij).

4. PartialProof(ω1, . . . , ωn, H(x1 + R1), . . . , H(xn + Rn),A1, . . . ,An, N): For all i ∈ [n], run the
algorithm PartialProofi(ωi, H(xi + Ri),Ai, i, N), where:

PartialProofi(ωi, H(xi + Ri),Ai, i, N): Let S = {s1, s2, . . . , st} be the coalition of t servers
(t < m) (w.l.o.g. take the first t), forming the system AiSd = ωiS. Let the t× t adjugate
matrix of AiS be:

CiS =

c11 c21 . . . ct1
...

...
. . .

...
c1t c2t . . . ctt

Denote the determinant of AiS by ∆iS. It holds that:

AiSCiS = CiSAiS = ∆iSIt (5)

where It stands for the t× t identity matrix. Compute the partial signature of xi: σij =

H(xi + Ri)
2cj1ωij mod N. Output σi = (σi1, . . . , σit).

PartialProof outputs σ1, . . . , σn.
5. FinalEval(y1, y2, . . . , ym): add the partial sums y1, . . . , ym together and output y (where y =

y1 + . . . + ym).
6. FinalProof(e1, . . . , en, H(x1 + R1), . . . , H(xn + Rn), σ1, . . . , σn, N): for all i ∈ {1, . . . , n} run the

algorithm FinalProofi(ei, H(xi + Ri), σi, N) where:

FinalProofi(ei, H(xi + Ri), σi, N): Combine the partial signatures by computing σi =

∏j∈S σij mod N. Compute σi = σi
αi H(xi + Ri)

βi mod N with αi, βi integers, such that

2∆iSαi + eiβi = 1. (6)

Output σi, i.e., the signature that corresponds to the secret xi.

FinalProof outputs σ = ∏n
i=1 σi

ei .
7. Verify(H(x1 + R1), . . . , H(xn + Rn), σ, y): check whether σ = ∏n

i=1 H(xi + Ri) ∧ H(y) =

∏n
i=1 H(xi + Ri) holds. Output 1 if the check is satisfied or 0 otherwise.

After the initialization with the Setup, each client ci gets its public and private RSA keys, ei and
di, respectively. Subsequently, each ci runs ShareSecret to compute and distribute the shares of xi
to each of the m servers, and form a public matrix Ai, shares of the private key (ωi1, . . . , ωim) and
the hash of the secret input and a randomly chosen value, H(xi + Ri), to be used for the signatures’
generation. H(xi + Ri) is a publicly available value. Subsequently, each server runs PartialEval to
generate public values yj related to the final function value. A set of a coalition of the servers runs
PartialProof and obtains the partial signatures. For instance, σ1 is the vector that contains the partial

Cryptography 2020, 4, 25 13 of 22

signatures of x1, σ2 is the vector that contains the partial signatures of x2 and so on. Anyone is able
to run FinalEval to get y and FinalProof to get σ, which is the final signature that corresponds to the
secret inputs x1, . . . , xn. Finally, the Verify algorithm succeeds if and only if the final value y is correct.

Table 3. VAHSS with threshold signature sharing.

Secret Inputs Public Servers

(Held by the Clients) Values s1 s2 · · · sm {sj1 , . . . , sjt}

x1, d1 H(x1 + R1), e1,A1 x11, ω11 x12, ω12 · · · x1m, ω1m σ1
x2, d2 H(x2 + R2), e2,A2 x21, ω21 x22, ω22 · · · x2m, ω2m σ2

...
...

...
...

...
...

...
xn, dn H(xn + Rn), en,An xn1, ωn1 xn2, ωn2 · · · xnm, ωnm σn

Partial sums (public) y1 y2 · · · ym Final proof (public)

Total sum (public) y σ

• Correctness: to prove the correctness of our construction, we need to prove that
Pr

[
Verify(H(x1 + R1), . . . , H(xn + Rn), σ, y) = 1

]
= 1. For convenience, here, denote H(xi +

Ri) by Hi. By construction:

σ =
n

∏
i=1

σi
ei =

n

∏
i=1

(σi
αi Hβi

i)
ei
=

n

∏
i=1

(∏
j∈S

σij
αi Hβi

i)
ei

=
n

∏
i=1

(Hβi
i ∏

j∈S
H

2cj1ωijαi
i)

ei
=

n

∏
i=1

Hβiei
i H

∑j∈S 2cj1ωijαiei

i

see Equation (5)
=

n

∏
i=1

Hβiei
i H2∆iSdiαiei

i =
n

∏
i=1

H2∆iSαi+βiei
i (mod N)

see Equation (6)
=

n

∏
i=1

Hi =
n

∏
i=1

H(xi + Ri) and also,

n

∏
i=1

H(xi + Ri) =
n

∏
i=1

gxi+Ri
see Equation (3)

= H(y) (7)

Therefore, Verify(H(x1 + R1), . . . , H(xn + Rn), σ, y) = 1 with probability 1, as desired.

• Security: the security of the signatures follows from the fact that the threshold signature scheme,
which is employed in our construction, is secure, for |T| ≤ t− 1, under the static adversary
model given that the standard RSA signature scheme is secure [6]. Additionally, for |T| ≤ m− 1,
Adv(1λ,A, T) ≤ ε(λ) for some negligible ε(λ), as we have proven in Section 4.1. Therefore,
our construction is secure for |T| ≤ min{t− 1, m− 1}.

• Verifiability: for Verify(H(x1 + R1), . . . , H(xn + Rn), σ′, y′) = 1 and y′ 6= y we have:

Verify(H(x1 + R1), . . . , H(xn + Rn)), σ′, y′) = 1

⇒ σ′ =
n

∏
i=1

H(xi + Ri) ∧ H(y′) =
n

∏
i=1

H(xi + Ri)

⇒H(y′) =
n

∏
i=1

H(xi + Ri) (see Equation (7))⇒ H(y′) = H(y)

which is a contradiction! Thus,

Pr[ExpVerif.
VHSS(x1, . . . , xn, T,A) = 1] ≤ ε.

Cryptography 2020, 4, 25 14 of 22

5. Evaluation

In this section, we provide the evaluation of our proposed constructions. First, we perform
a theoretical analysis and present the amount of operations required to implement each construction.
Next, we provide a detailed experimental evaluation; we describe the experimental setup and provide
the required computational time for each of the presented transactions for different conditions,
from both the client and the server side.

5.1. Theoretical Analysis

We now present the basic operations that are required in our constructions. Recall that we denote
the number of clients by n and the number of servers by m. The threshold for generating shares
of the secret clients’ inputs is denoted by t, while the threshold used in the proposed third VAHSS
construction i.e., based on threshold signature sharing, for generating shares of the private RSA key,
is denoted by t. All of the operations are reported per algorithm and, thus, considering the cost for
each client or server, respectively. This means that if, for instance, n− 1 additions correspond to the
PartialEval algorithm in the table, this number represents the amount of operations that are required
from each server that executes the PartialEval algorithm.

In our constructions, in the Sharesecret algorithm, each client generates m shares that are related
to its secret inputs. Below, we present in detail how we calculate the cost for the client to compute these
m shares. Each client needs m polynomial evaluations (denoted by Peval) as well as the computation
of the Lagrange coefficients (denoted by Lcoe f f), as shown in Equation (1). We consider Horner’s
method [19] to calculate Peval , which gives t multiplications and t additions for a polynomial of degree
t, as in our constructions. Furthermore, Lcoe f f requires 2 multiplications, 1 computation of inverse,
and 1 addition (in F) for each factor out of m− 1. One additional multiplication is needed in order
to form the right hand side of Equation (1). Therefore, the cost for generating m secret shares can be
demonstrated, as follows:

Sharescost =mPeval + Lcoe f f + 1mul

=m(tadd + tmul) + (m− 2)(1mul + 1inv + 1add) + 1mul

=mtadd + mtmul + (m− 2)mul + (m− 2)inv + (m− 2)add + 1mul

=(mt + m− 2)add + (mt + m− 1)mul + (m− 2)inv

(8)

This amount of operations is added in the Sharesecret algorithm costs. Let us now present
the tables that summarize the cost of our constructions. In parentheses, we display by whom the
algorithm is executed. Whenever not specified, the algorithm can be run from any verifier. Table 4
illustrates the costs for the VAHSS construction while using homomorphic hash functions (also found
as VAHSS-HSS). Observe that there is no Setup algorithm in this construction. Table 5 shows the
number of operations required in the VAHSS construction while using linear homomorphic signatures
(also found as VAHSS-LHS). Finally, Table 6 gives the costs of the VAHSS construction while using
threshold signature sharing (found also as VAHSS-TSS). Observe that the same variables are used
to show the theoretical results. However, note that t appears in the VAHSS-TSS construction for the
first time, denoting a different number than the threshold t that is used for generating shares of the
secret inputs. Moreover, the algorithms are executed from either a client or server, depending on the
construction presented.

Looking at Tables 4–6, we observe some differences regarding the costs that are expected in each
algorithm. More precisely, we can see that the ShareSecret algorithm is always run by the clients. In this
respect, the VAHSS-HSS and VAHSS-LHS constructions slightly differ, since a client needs to produce
some additional public values in the VAHSS-HSS case. The VAHSS-TSS is more expensive, since the
client also generates shares of its private RSA key. Furthermore, as we have mentioned, VAHSS-HSS
requires no Setup, thus, it is computationally less expensive than the other two constructions from the

Cryptography 2020, 4, 25 15 of 22

client’s side. Subsequently, we can observe that the PartialEval and FinalEval algorithms are always
run by the servers and are expected to have the same computational cost. The PartialProof algorithm
is run either by the servers or the clients. In the VAHSS-HSS construction, the computation is low
and is made by the servers, while, in the VAHSS-LHS, the execution is made by the clients and it is
also low-cost. In the VAHSS-TSS solution, PartialProof is run by a coalition of servers and the cost
depends on the amount of the servers that can be considered in the computation. Next, FinalProof is
quite practical in all cases, but it is not particularly comparable since there are several parameters that
can affect this cost. Finally, the verification process (Verify) has the same computational cost for the
first and third construction, while it is slightly heavier for the VAHSS-LHS construction.

Table 4. Number of operations of the VAHSS based on homomorphic hash functions
(VAHSS-HSS) construction.

Algorithm
Operation Addition Multiplication Exponentiation Random Sampling

ShareSecret (client) mt + m− 1 − mt + m m− 1

PartialEval (server) n− 1 − − −

PartialProof (server) n− 1 − 1 −

FinalEval m− 1 − − −

FinalProof − m− 1 − −

Verify − n− 1 1 −

Table 5. Number of operations of the VAHSS based on linear homomorphic signatures
(VAHSS-LHS) construction.

Algorithm
Operation Addition Multiplication Exponentiation Inverse Computation Random Sampling

Setup (client) − − − − n + 2

ShareSecret (client) mt + m− 2 mt + m− 1 m− 2 − −

PartialEval (server) n− 1 − − − −

PartialProof (client) − 3 4 1 1

FinalEval m− 1 − − − −

FinalProof n n + 1 1 − −

Verify − n + 1 3 − −

Table 6. Number of operations of the VAHSS based on threshold signature sharing
(VAHSS-TSS) construction.

Algorithm
Operation Addition Multiplication Exponentiation Inverse Computation Random Sampling

Setup (client) − − − 1 1

ShareSecret (client) mt + mt− 1 mt + mt+ m− 1 m− 1 − 1

PartialEval (server) n− 1 − − − −

PartialProof (server) − 2t t − −

FinalEval m− 1 − − − −

FinalProof (server) t+ n− 2 n + 2 − −

Verify − n− 1 1 − −

Cryptography 2020, 4, 25 16 of 22

5.2. Prototype Analysis

In this section, we present our results from the experimental analysis regarding the performance
of the three proposed VAHSS constructions. More precisely, we have implemented the following
constructions: VAHSS based on homomorphic hash functions (VAHSS-HSS), VAHSS based on
linear homomorphic signatures (VAHSS-LHS), and VAHSS based on threshold signature sharing
(VAHSS-TSS) and compare them regarding their performance.

In our implementations, we used the programming language “C++” and the GMP Library (https:
//gmplib.org/) for handling big numbers and their arithmetic operations. Furthermore, we ran the
experiments on Arch Linux Kernel 5.7.7 over a Dell Latitude 5300 with processor Intel i5-8365U CPU @
1.60 GHz (micro architecture codename Whisky Lake), with 16 GB RAM, 32KiB L1d cache, 32KiB L1i
cache, 256KiB L2 cache, and 6MiB L3 cache. In order to perform a fair comparison, we have selected
the following common parameters for all of the implementations: group generator, number of clients,
number of servers, and the finite field for the Shamir’s secret sharing.

We have used a benchmarking dataset for the experimental evaluation. More precisely, we have
used the individual household electric power consumption dataset by the UC Irvine machine
learning repository (https://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+
consumption#). The values represent electricity consumption provided by smartmeters. We note that,
since the values in the dataset are float numbers, we need to preprocess them in order to employ
them in our constructions by multiplying all of the input values by 100. Below, we list the required
computation cost (in time) for all different algorithms of the proposed constructions.

We test our constructions for 500 clients, 3 servers, and a 64-bit prime number for forming the
finite field F that is used for the secret inputs’ shares generation. Additionally, the primes that are
used for the VAHSS-LHS and VAHSS-TSS constructions are randomly generated primes of 128 bits.
The timing is measured and shown in microseconds. The Sharesecret, PartialEval, and PartialProof
costs are represented by their median values. For instance, for the Sharesecret algorithm, each client
generates a random polynomial to be used for the shares’ generation and, since we consider 500 clients,
we need to take into account their different costs. Thus, we get all of the timings and sort them
in order to obtain the 250th element of the list. Similarly, we also obtain the median values for
PartialEval and PartialProof. Table 7 illustrates the time in microseconds for 500 clients for the three
different constructions.

Table 7. Timing (in microseconds) for each of our constructions.

Algorithm
Construction VAHSS-HSS VAHSS-LHS VAHSS-TSS

Setup 0 1 2540 310

Sharesecret 300 298 299

PartialEval 58 47 76

PartialProof 49 1072 24,293

FinalEval 2 479 979 882

Final Proof 550 3 537 17,192

Verify 147 9091 294
1 It does not require key generation; 2 Timing in nanoseconds; 3 Timing in nanoseconds.

Our tests were extended to different amounts of clients, ranging between 500 and 1000, while we
fixed the number of servers to 3. Moreover, we should note that we ran our experiments for several
prime numbers of various sizes and no significant change was noticed; therefore, these results are
omitted. Below, we provide the results for the algorithms, which performed noticeably different
for different parameters, as illustrated by figures. Figure 2 shows the timing for executing the
PartialEval and PartialProof algorithms in each of our constructions. More precisely, Figure 2a

https://gmplib.org/
https://gmplib.org/
https://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption#
https://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption#

Cryptography 2020, 4, 25 17 of 22

shows the VAHSS-HSS case, Figure 2b demonstrates the VAHSS-LHS case, while the VAHSS-TSS case
is depicted in Figure 2c. The graphs show how the timing changes depending on the number of clients
participating in the computation. Next, Figure 3 shows the time that is required for computing the
Finalproof in each of the constructions, representing again how the performance varies according to
a different amount of clients. Finally, Figure 4 shows the timing for executing the Verify algorithm
given the outputs from each server and from the clients. We remind the reader that anyone may run
the Verify algorithm in order to check the correctness of the resulted y value and obtain y itself.

For further details, the code is available in a github repository (https://github.com/tsaloligeorgia/
AddVHSS).

500 600 700 800 900
1,000

20

40

60

80

No. of Clients

Time (microseconds)

Time for PartialEval and PartialProof in VAHSS-HSS

PartialProof
PartialEval

(a)

500 600 700 800 900
1,000

200

400

600

800

1,000

1,200

No. of Clients

Time (microseconds)

Time for PartialEval and PartialProof in VAHSS-LHS

PartialProof
PartialEval

(b)

500 600 700 800 900
1,000

1

2

3

4

5
·104

No. of Clients

Time (microseconds)

Time for PartialEval and PartialProof in VAHSS-TSS

PartialProof
PartialEval

(c)

Figure 2. Time for PartialEval and PartialProof in our constructions. (a) Time for PartialEval and
PartialProof in VAHSS-HSS. (b) Time for PartialEval and PartialProof in VAHSS-LHS. (c) Time for
PartialEval and PartialProof in VAHSS-TSS.

500 600 700 800 900
1,000

200

400

600

No. of Clients

Time (microseconds)

Time for FinalProof in VAHSS-HSS

(a)

500 600 700 800 900
1,000

200

400

600

800

1,000

1,200

No. of Clients

Time (microseconds)

Time for FinalProof in VAHSS-LHS

(b)

500 600 700 800 900
1,000

1

2

3

·104

No. of Clients

Time (microseconds)

Time for FinalProof in VAHSS-TSS

(c)

Figure 3. Time for FinalProof in our constructions. (a) Time for the FinalProof algorithm in
VAHSS-HSS. (b) Time for the FinalProof algorithm in VAHSS-LHS. (c) Time for the FinalProof
algorithm in VAHSS-TSS.

174 218 271 326 398 565

100

200

300

400

500

No. of Clients

Time (microseconds)

Time for Verify in VAHSS-HSS

(a)

10113
14367

19970
24821

33222
43047

1

2

3

4

·104

No. of Clients

Time (microseconds)

Time for Verify in VAHSS-LHS

(b)

338 405 527 607 647 706

200

400

600

No. of Clients

Time (microseconds)

Time for Verify in VAHSS-TSS

(c)

Figure 4. Time for running Verify for each of our constructions. (a) Time for the Verify algorithm
in VAHSS-HSS. (b) Time for the Verify algorithm in VAHSS-LHS. (c) Time for the Verify algorithm
in VAHSS-TSS.

https://github.com/tsaloligeorgia/AddVHSS
https://github.com/tsaloligeorgia/AddVHSS

Cryptography 2020, 4, 25 18 of 22

6. Discussion

We have presented three verifiable additive homomorphic secret sharing (VAHSS) constructions
and, then, provided their theoretical evaluation. Furthermore, we developed a prototype and
compared the performance (required computation time) of the proposed constructions for each used
algorithm, given different parameters and conditions, as shown in Section 5.2. To the best of our
knowledge, no existing scheme achieves privacy-preserving distributed verifiable aggregation based
on homomorphic operations.

As mentioned earlier, each construction relies on a different mathematical component and might
be used in different application scenarios. More precisely, the constructions differ on how the partial
evaluations (PartialEval) and the partial proofs (PartialProof) are generated and who performs each
computation. For instance, in the VAHSS-HSS construction, clients are only needed to execute the
Sharesecret algorithm for generating m shares, and the rest of the computations (required to produce
the sum y and the proof σ) are performed by the servers. Nevertheless, the VAHSS-LHS construction
requires that each client deals with the Setup, ShareSecret, and PartialProof algorithms. In fact, in this
case, the clients are the ones that generate the partial proofs instead of the servers, utilizing their
private RSA key. Moreover, in the VAHSS-TSS construction, the client runs the Setup and ShareSecret,
while the servers deal with the execution of the other algorithms. Additionally, the VAHSS-TSS
solution is based on a threshold signature sharing scheme and, as a result, a coalition of servers is
required to perform the PartialProof algorithm; not all of the m servers are needed.

The computation cost required by each construction is different, as demonstrated in Section 5.
However, this does not necessarily imply that one construction is better than another. Actually,
it shows that there is a trade-off to choose from. For example, if the employed devices to function as
clients have power/process constraints, then the best option could be the construction VAHSS-HSS,
since it requires fewer computations and, as a consequence, it is less expensive regarding power
consumption. However, if the employed clients are devices with significant power resources and
the application requires that the clients produce the partial proofs, then the best option would be the
VAHSS-LHS construction.

Furthermore, the metric of the number of operations could be used to establish which flavor of
VAHSS is more appropriate, depending on the application setting and, in this case, the VAHSS-HSS
construction requires fewer operations on the client-side. The prototype implementation and
evaluation reinforces the fact that the VAHSS-HSS construction presents better timing for most of the
required operations. As an additional metric for comparison, we employ the communication overhead
(required bandwidth) for each of the proposed constructions. More precisely, Figures 5–7 show the
required bandwidth usage for each construction. The figures give the number of bytes received and
sent per client and per server. Figure 5 shows that the VAHSS-HSS construction uses fewer bytes
per client than the other constructions, since it only needs to send the shares. In the VAHSS-LHS
construction, the client needs to receive the secret key and verification key, and the clients generate and
share the proofs. In the VAHSS-TSS case, there is a significant reduction in the required transferred data.
However, it is still higher than the required communication overhead in the VAHSS-HSS construction,
since it needs to output a matrix and receive two big prime numbers.

Application scenarios: Mobile phones, wearables, and other Internet-of-Things (IoT) devices are
all connected to distributed network systems. These devices generate a lot of data that often need
to be aggregated to compute statistics, or even employed for user modeling and personalization of
clients/users. For instance, a direct application of our constructions could be the measurement of
electricity consumption (as well as water or gas consumption) in a specific region. More precisely,
if we consider that each household in a specific region has an electricity consumption that is equal to
xi, then, by employing our proposed constructions, the electricity production company could check
what is the required energy consumption (by computing the sum ∑n

i=1 xi, where n denotes the number
of households) in that specific region and adjust the electricity production accordingly. Furthermore,
by employing the verifiability property, the electricity consumption company can detect possible leaks

Cryptography 2020, 4, 25 19 of 22

of faults in how the electrical energy is handled. In our prototype, we use the data on the consumption
of electricity and, more precisely, the UC Irvine machine learning repository. Because this is one of the
most representative settings, all three constructions are suitable to be employed in this application,
depending on the resources of the employed sensors/clients in different households. If we consider
that multiple companies are collaborating in this aggregation process, then the collected data could be
aggregated by multiple servers that collaborate or not.

Another scenario, where our constructions could be suitable are health monitoring settings,
where a health provider may want to measure the average physical activity levels or patient conditions
(e.g., temperature) in specific regions in order to draw conclusions about the health conditions of parts
of the population and accordingly adjust services. For instance, health insurance companies could offer
discounts to families or neighborhoods, depending on their physical activity, while the verifiability
property provides transparency and fairness guarantees regarding the provided services from the
health insurance company (https://www.generaliglobalhealth.com/news/global-insights/insurtech/
digital-technology-transforming-global-healthcare.html). Similarly, the proposed constructions would
facilitate the aggregation process and collaboration between multiple hospitals that store confidential
patient records and need to aggregate data in order to decide on the diagnosis and treatment of patients.

100 150 200 250 300 350 400 450
Clients

10
9

8
7

6
5

4
3

Se
rv
er
s

Per Server Bandwidth

100 150 200 250 300 350 400 450
Clients

10
9

8
7

6
5

4
3

Per Client Bandwidth

1000

1500

2000

2500

3000

3500

30

40

50

60

70

80
VAHSS-HSS Bandwidth (bytes)

Figure 5. Bandwidth per serve and per client in bytes using VAHSS-HSS.

100 150 200 250 300 350 400 450
Clients

10
9

8
7

6
5

4
3

Se
rv

er
s

Per Server Bandwidth

100 150 200 250 300 350 400 450
Clients

10
9

8
7

6
5

4
3

Per Client Bandwidth

1000

1500

2000

2500

3000

3500

1000

1500

2000

2500

3000

3500

VAHSS-LHS Bandwidth (bytes)

Figure 6. Bandwidth per serve and per client in bytes using VAHSS-LHS.

https://www.generaliglobalhealth.com/news/global-insights/insurtech/digital-technology-transforming-global-healthcare.html
https://www.generaliglobalhealth.com/news/global-insights/insurtech/digital-technology-transforming-global-healthcare.html

Cryptography 2020, 4, 25 20 of 22

100 150 200 250 300 350 400 450
Clients

10
9

8
7

6
5

4
3

Se
rv

er
s

Per Server Bandwidth

100 150 200 250 300 350 400 450
Clients

10
9

8
7

6
5

4
3

Per Client Bandwidth

6000

8000

10000

12000

14000

16000

18000

20000

100

120

140

160

180

200

VAHSS-TSS Bandwidth (bytes)

Figure 7. Bandwidth required per server and per client in bytes using VAHSS-TSS.

Besides, an important characteristic of our constructions is that the clients (from where the data are
collected) do not need to communicate with each other. Thus, they could be easily employed in order
to achieve reliable and verifiable environmental monitoring, when environmental sensors collecting
appropriate measurements (e.g., temperature, humidity, CO2, ozone, etc.) are spread in large regions
and the sensors are not in the communication range of each other. More precisely, consider the setting
where monitoring the air quality of specific neighborhoods in a city is needed. By employing sensors
that are spread in large regions, data can be collected and then use the VAHSS-HSS construction to
sum the measurement of CO2. In this case, we do not rely only on one server, but on several servers
to aggregate the measurements, while the verifiability property can be employed to guarantee the
integrity of the aggregation process.

7. Conclusions

Major security and privacy challenges exist in the context of joint computations that are outsourced
to untrusted cloud servers. Sensitive information of individuals might be leaked or malicious cloud
servers might attempt to alter the aggregation results. In this work, we presented three concrete
constructions for the verifiable additive homomorphic secret sharing (VAHSS) problem. We provided
a solution based on homomorphic hash functions, a solution that uses linear homomorphic signatures
and a construction based on a threshold signature sharing scheme. We proved all three constructions
correct, secure, and verifiable. These constructions allow for any verifier to obtain the value y that is
the sum of the clients’ secret inputs and confirm its correctness; without compromising the clients’
privacy or relying on trusted servers and without requiring any communication between the clients.
We demonstrated the theoretical analysis of our work, showing the amount of computational cost that is
required for each construction both from the clients’ and servers’ side. Subsequently, our experimental
results illustrated how the different operations correspond to the required (computation) time with
respect to the algorithms that are executed. Thus, the appropriate construction may be employed,
depending on the available resources, requirements, and assumptions (e.g., communication between
servers or no communication). We believe that our proposed VAHSS constructions can be employed
in various applications that require the secure aggregation of data that were collected from multiple
clients (e.g., smart metering, environmental monitoring, and health databases) and provide a practical
and provably secure distributed solution, while avoiding single point of failures and any leakage of
sensitive information.

Cryptography 2020, 4, 25 21 of 22

Author Contributions: Conceptualization, G.T. and A.M.; implementations, G.B. and G.T.; writing—original
draft preparation, G.T.; writing—review and editing, G.T., G.B. and A.M.; supervision, A.M. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was partially supported by the Wallenberg AI, Autonomous Systems and Software Program
(WASP) funded by the Knut and Alice Wallenberg Foundation. Gustavo Banegas is funded by WASP expedition
project Massive, Secure, and Low-Latency Connectivity for IoT Applications.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Tsaloli, G.; Mitrokotsa, A. Sum It Up: Verifiable Additive Homomorphic Secret Sharing. In Information
Security and Cryptology—ICISC 2019; Seo, J.H., Ed.; Springer International Publishing: Cham, Switzerland,
2020; pp. 115–132.

2. Tsaloli, G.; Liang, B.; Mitrokotsa, A. Verifiable Homomorphic Secret Sharing. In Proceedings of the 12th
International Conference on Provable Security, ProvSec 2018, Jeju, Korea, 25–28 October 2018; pp. 40–55.
[CrossRef]

3. Yao, H.; Wang, C.; Hai, B.; Zhu, S. Homomorphic Hash and Blockchain Based Authentication Key Exchange
Protocol for Strangers. In Proceedings of the International Conference on Advanced Cloud and Big Data
(CBD), Lanzhou, China, 12–15 August 2018; pp. 243–248. [CrossRef]

4. Krohn, M.; Freedman, M.; Mazieres, D. On-the-fly verification of rateless erasure codes for efficient
content distribution. In Proceedings of the IEEE Symposium on Security and Privacy, Berkeley, CA, USA,
12 May 2004; pp. 226–240. [CrossRef]

5. Catalano, D.; Marcedone, A.; Puglisi, O. Authenticating Computation on Groups: New Homomorphic
Primitives and Applications. In Advances in Cryptology—ASIACRYPT 2014; Sarkar, P., Iwata, T., Eds.;
Springer: Berlin/Heidelberg, Germany, 2014; pp. 193–212.

6. Bozkurt, İ.N.; Kaya, K.; Selçuk, A.A. Practical Threshold Signatures with Linear Secret Sharing Schemes.
In Progress in Cryptology—AFRICACRYPT 2009; Preneel, B., Ed.; Springer: Berlin/Heidelberg, Germany, 2009;
pp. 167–178.

7. Shamir, A. How to share a secret. Commun. ACM 1979, 22, 612–613. [CrossRef]
8. Boyle, E.; Gilboa, N.; Ishai, Y. Group-Based Secure Computation: Optimizing Rounds, Communication,

and Computation. In Advances in Cryptology—EUROCRYPT 2017; Springer International Publishing:
Cham, Switzerland, 2017; Volume 10211, pp. 163–193._6. [CrossRef]

9. Benaloh, J.C. Secret sharing homomorphisms: Keeping shares of a secret secret. In Conference on the Theory
and Application of Cryptographic Techniques; Springer: Berlin, Germany, 1987.

10. Boyle, E.; Gilboa, N.; Ishai, Y. Function Secret Sharing. In Advances in Cryptology—EUROCRYPT 2015;
Springer: Berlin, Germany, 2015; Volume 9057, pp. 337–367. [CrossRef]

11. Boyle, E.; Gilboa, N.; Ishai, Y. Function Secret Sharing: Improvements and Extensions. In Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security—CCS’16, Vienna, Austria,
24–28 October 2016; pp. 1292–1303. [CrossRef]

12. Damgård, I.; Pastro, V.; Smart, N.; Zakarias, S. Multiparty Computation from Somewhat Homomorphic
Encryption. In Advances in Cryptology—CRYPTO 2012; Safavi-Naini, R., Canetti, R., Eds.; Springer:
Berlin/Heidelberg, Germany, 2012; pp. 643–662.

13. Damgård, I.; Keller, M.; Larraia, E.; Pastro, V.; Scholl, P.; Smart, N.P. Practical Covertly Secure MPC for
Dishonest Majority—Or: Breaking the SPDZ Limits. In Computer Security—ESORICS 2013; Crampton, J.,
Jajodia, S., Mayes, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 1–18.

14. Boyle, E.; Garg, S.; Jain, A.; Kalai, Y.T.; Sahai, A. Secure Computation against Adaptive Auxiliary Information.
In Advances in Cryptology—CRYPTO 2013; Canetti, R., Garay, J.A., Eds.; Springer: Berlin/Heidelberg,
Germany, 2013; pp. 316–334.

15. Baum, C.; Damgård, I.; Orlandi, C. Publicly Auditable Secure Multi-Party Computation. In Security
and Cryptography for Networks; Abdalla, M., De Prisco, R., Eds.; Springer International Publishing:
Cham, Switzerland, 2014; pp. 175–196.

http://dx.doi.org/10.1007/978-3-030-01446-9_3
http://dx.doi.org/10.1109/CBD.2018.00051
http://dx.doi.org/10.1109/SECPRI.2004.1301326
http://dx.doi.org/10.1145/359168.359176
http://dx.doi.org/10.1007/978-3-319-56614-6_6
http://dx.doi.org/10.1007/978-3-662-46803-6_12
http://dx.doi.org/10.1145/2976749.2978429

Cryptography 2020, 4, 25 22 of 22

16. Catalano, D.; Fiore, D.; Warinschi, B. Efficient Network Coding Signatures in the Standard Model. In Public
Key Cryptography—PKC 2012; Fischlin, M., Buchmann, J., Manulis, M., Eds.; Springer: Berlin/Heidelberg,
Germany, 2012; pp. 680–696.

17. Bellare, M.; Goldreich, O.; Goldwasser, S. Incremental Cryptography: The Case of Hashing and Signing.
In Advances in Cryptology—CRYPTO ’94; Desmedt, Y.G., Ed.; Springer: Berlin/Heidelberg, Germany, 1994;
pp. 216–233.

18. Schabhüser, L.; Butin, D.; Buchmann, J. Context Hiding Multi-key Linearly Homomorphic Authenticators.
In Topics in Cryptology—CT-RSA 2019; Matsui, M., Ed.; Springer International Publishing: Cham, Switzerland,
2019; pp. 493–513.

19. Dorn, W.S. Generalizations of Horner’s rule for polynomial evaluation. IBM J. Res. Dev. 1962, 6, 239–245.
[CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1147/rd.62.0239
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Preliminaries
	Verifiable Additive Homomorphic Secret Sharing
	Construction of VAHSS Using Homomorphic Hash Functions
	Construction of VAHSS with Linear Homomorphic Signatures
	Construction of VAHSS with Threshold Signature Sharing

	Evaluation
	Theoretical Analysis
	Prototype Analysis

	Discussion
	Conclusions
	References

