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Abstract: Bacteria are known to form biofilms on various surfaces. Biofilms are multicellular
aggregates, held together by an extracellular matrix, which is composed of biological polymers.
Three principal components of the biofilm matrix are exopolysaccharides (EPS), proteins, and nucleic
acids. The biofilm matrix is essential for biofilms to remain organized under mechanical stress.
Thanks to their polymeric nature, biofilms exhibit both elastic and viscous mechanical characteristics;
therefore, an accurate mechanical description needs to take into account their viscoelastic nature.
Their viscoelastic properties, including during their growth dynamics, are crucial for biofilm survival
in many environments, particularly during infection processes. How changes in the composition of
the biofilm matrix affect viscoelasticity has not been thoroughly investigated. In this study, we used
interfacial rheology to study the contribution of the EPS component of the matrix to viscoelasticity
of Bacillus subtilis biofilms. Two strategies were used to specifically deplete the EPS component
of the biofilm matrix, namely (i) treatment with sub-lethal doses of vitamin C and (ii) seamless
inactivation of the eps operon responsible for biosynthesis of the EPS. In both cases, the obtained
results suggest that the EPS component of the matrix is essential for maintaining the viscoelastic
properties of bacterial biofilms during their growth. If the EPS component of the matrix is depleted,
the mechanical stability of biofilms is compromised and the biofilms become more susceptible to
eradication by mechanical stress.

Keywords: biofilms; exopolymeric matrix; interfacial rheology; bicone method

1. Introduction

Bacterial biofilms are communities of microbial cells embedded within a matrix of polymers
of their own synthesis [1–3]. These polymers constitute a biofilm matrix, which is a mix of
exopolysaccharides (EPS), proteins, and extracellular DNA [4–7]. Growth of bacterial biofilm
comprises cell division and accumulation of extracellular matrix, leading to the formation of a
complex three-dimensional cell-matrix architecture. Initially, bacterial cells are strongly embedded
within the matrix, which provides them with protection against mechanical stresses, and consequently
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prevents detachment of cells from the community surface [5]. In mature biofilms, cells or clusters
of cells (microcolonies) detach from the biofilm and colonize other available surfaces to form new
biofilms [6]. Biofilm formation is triggered by quorum sensing [8] and other complex regulatory
phenomena that sense nutrient availability [9]. The EPS and protein (TasA, TapA, and BslA) are the
major part of the rigid extracellular matrix of B. subtilis biofilms. The genes involving EPS production
are part of epsA-O operon [10,11]. It is well demonstrated that eps-defective mutants developed flat
colonies and extremely fragile pellicles [11]. These mutant strains are still able to grow in cell chains
and are still embedded with extracellular protein matrix in the biofilms [11]. The proteins TasA and
TapA, which provide structural integrity to the biofilm matrix, are produced by the three gene operon
tapA-sipW-tasA (tapA operon) [12]. A mutant of TasA was also shown to produce thin pellicles with
less complexity in comparison with the wild type, however, the effect on biofilm formation was not
as dramatic as that of the eps-defective mutants [10]. Another protein BslA produced during biofilm
maturation developed a hydrophobic layer on top of the biofilm, where it served as a water-repellent
barrier for the community [13]. In addition, extracellular DNA is reported to interact with EPS for the
modulation of the 3D architecture of B. subtilis biofilm [14].

The complex biofilm microenvironment offers a degree of protection to bacterial cells, allowing
them to survive exposure to different types of environmental stress [15,16]. One type of protection
offered by the biofilm matrix is based on restricting penetration of toxic agents into the biofilm,
ultimately leading to enhanced survival of bacterial cells during infection [17,18]. This protection
has been shown to be effective against biocides, components of the host immune response, and
antimicrobial agents [19].

Another type of protection that the biofilm matrix offers is the resistance to mechanical stress [20,21].
In natural environments, biofilms are often confronted with mechanical challenges, such as water
pressure affecting biofilms in aquatic environments, flow of body fluids or tissue movement affecting
biofilms on indwelling medical devices, and toothbrushing and tongue movement affecting biofilms
in the oral cavity [15]. To persist in such environments, biofilms need to remain organized under
mechanical stress, exhibiting a degree of elasticity, and they also need to be able to adapt in response to
mechanical stress, behaving as a viscous material. In other words, biofilms exhibit viscoelasticity; that is,
they combine both viscous and elastic material characteristics when undergoing deformation [22].
In the case of high molecular weight polymers, such as EPS, elastic or energy storage mechanisms are
owing to macromolecular conformational changes under stress and the ability of polymer chains to
return to a preferential conformation once the stress is removed [23,24]. Entanglements contribute to
the elastic material response by acting as physical crosslinks [25]. The viscous or loss mechanisms
are owing to the ability of polymer chains to escape their conformational confinement by sliding
past neighboring molecules under applied stress [23,25]. Biofilms thus exhibit a complex rheological
behavior, with the viscoelastic response determined by the bacterial cells, the extracellular matrix,
and interactions between the two [15], as well as confinement, both in terms of triggering biofilm
formation [26] as well as influencing chain conformation and EPS entanglement [27].

There is a considerable biodiversity among biofilms formed by different bacterial species,
but B. subtilis strain NCIB 3610 is widely used as a model organism to study the formation and
characteristics of bacterial biofilms [28]. Despite extensive knowledge of biofilm matrix composition [29]
of B. subtilis, the contribution of individual matrix components to the viscoelastic properties of biofilms
is not well understood. Previously, changes in elasticity and surface tension have been monitored
during biofilm formation under various environmental conditions (changes in pH, temperature,
and nutrient availability) using a custom interfacial rheology setup [30]. It has been concluded that the
elastic behavior of biofilms is specific to the type of bacterial strain, availability of nutrient, and other
environmental circumstances [30,31]. In the mentioned study, it was stipulated that the actual physical
stress needed to disrupt a biofilm could be determined by large amplitude oscillatory shear tests
(nonlinear viscoelasticity) [30]. Using this approach, the authors concluded that the presence of
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surfactin, a surfactant protein encoded by the gene sfrA-A, has a positive effect on the formation of
B. subtilis biofilms [30].

In this study, we used interfacial rheology to elucidate the specific contribution of the EPS
component of the biofilm matrix to viscoelastic properties. We used two strategies to deplete the EPS
component and compare the result with the wild type biofilm. In the first approach, B. subtilis was
treated with various concentrations of vitamin C during biofilm formation, as vitamin C has been
previously shown to inhibit the formation of B. subtilis EPS [32]. In the second approach, we disrupted
the promoter region of the eps operon, which is required for the biosynthesis of B. subtilis [11].
In all cases, the changes in viscoelastic properties of biofilms were monitored in real time for 24 h.
The biomass and viability of bacteria were also followed during the experiment. Our results indicate
that a reduction of the EPS component of the matrix leads to a selective alteration of growth dynamics
and ultimately to a dramatic B. subtilis biofilm elasticity. This suggests that, if formation of the
EPS component of the matrix is prevented or inhibited, the mechanical stability of biofilms will be
significantly reduced.

2. Results

2.1. Viscoelastic Properties Changes over Time during B. subtilis Biofilm Formation

To investigate the changes in viscoelastic properties during the biofilm formation, B. subtilis biofilm
was grown directly into the interfacial rheology cell container assembly, as shown in the experimental
setup overview (Figure 1). The progress in biofilm formation was monitored by taking photographs
at 1 h of intervals through a visualization window, Figure 1. We present the development of biofilm
viscoelastic properties during growth using the interfacial shear storage (elastic) modulus, G′, as it is
the dominant contribution to the measurement torque (G′ � G′′ ). The interfacial shear loss (viscous)
modulus, G′′ , is approximately one order of magnitude lower and generally follows the qualitative
behavior of G′. Prior to the formation of a superficial biofilm layer spanning the interfacial gap (R1 −R
in Figure 1), the measurement torque is dominated by the bulk lysogeny broth (LB) contribution to the
torque (phase 1 in Figure 1) and, therefore, the determined (interfacial) dynamic moduli are below the
sensitivity limit of the method. We consider the onset of the biofilm formation from the interfacial
rheology data based on the Boussinesque number, defined as follows:

Bo =
η(

η(1) + η(2)
)
R

(1)

where η is the interfacial shear viscosity, η( j) are the upper and lower phase shear viscosities, and R is
the bicone radius, see Figure 1. Bo is important for interfacial rheological measurements in defining the
measurable limits and the dominant factors determining the interfacial material properties [33]. In the
limit of Bo → 0 , the interfacial flow is dominated by the bulk phases, while in the limit of Bo →∞ ,
the interfacial flow governs the response of the system. For intermediate Bo, the material response
contains both bulk, given by phases 1 and 2, and biofilm contributions to the interfacial flow [33]
(see also the method description ahead). Defining the lower measurable limits, Bomin, of interfacial
rheological techniques is not a trivial matter and depends, among others, on the measuring geometry,
measurement instrument, and so on, as highlighted in [34–36]. In this work, we use Bomin = 1,
as previously used in similar studies in terms of experimental setup and materials [33,37]. Therefore,
the onset of biofilm formation according to the interfacial data is quantified as the time after which
Bo > 1, and the interfacial data reported in the following analysis follow this criterion.
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assembly); (right) top view of the setup at the end of a test showing a fully formed biofilm. The 2-half 
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biofilm formation and interfacial moduli dynamics. A significant increase in both the superficial layer 
and on the container walls was observed after 8 ± 1 h, consistent with the steady increase in the 

Figure 1. (a) Schematic overview of the bicone interfacial rheological system (IRS) and visualization
setup. (left) A bicone measurement geometry of radius R is placed at the interface between the liquid
(lysogeny broth, LB)–gas (air) phases of viscosities η1,2 in a container assembly of radius R1. (right)
By oscillating the bicone measurement geometry with angular frequency ω and strain amplitude γ0,
the storage and loss moduli, G′, G′′ , of the B. subtilis biofilm formed at the LB–air interface in the
measurement gap R–R1 are determined based on the torque acting on the bicone, M. A digital camera
positioned at a visualization window monitors the biofilm formation. (b) Photographs of the interfacial
rheological setup: (left) side-view of the setup in the retracted position (out of the container assembly);
(right) top view of the setup at the end of a test showing a fully formed biofilm. The 2-half top cap in
(b) was not included in the photos.

We distinguish four distinct biofilm growth dynamics regions based on the wild type B. subtilis
(control), Figure 2. The primary growth phase, region I, comprised a monotonic increase (see (dG′/dt)I
in Figure 2a) in the interfacial storage modulus and corresponds to the creation of the superficial
biofilm layer spanning the interfacial gap. The increase in the interfacial elastic modulus G′ in this
region is generally consistent with typical adsorption curves [30]. For wild type B. subtilis (control),
macroscopically visible bacterial aggregation towards the LB medium–air (liquid–air) interface within
the visualization window could be observed after 5± 1 h; see highlights at 5 h in Figure 2b. After 6 ± 1 h,
a complete linage of B. subtilis biofilm pellicle spanning the visualization window was apparent,
including evidence of side growth on the container wall; see highlights at 6 h in Figure 2b. We note
that Bo > 1 occurred after 7.8 ± 0.5 h. Discrepancies between the visual observations and interfacial
rheological measurements at the onset of biofilm formation can be owing to the limitations in the
optical visualization setup and/or measurement sensitivity, as expressed by Bo. Owing to the camera
field-of-view limited by the visualization window, the full angular and radial span of the superficial
biofilm layer cannot be entirely assessed, that is, whether the biofilm has a full circumferential coverage
of the measuring gap. In addition, owing to optical distortions caused by the LB contact angle at the
container surface, a precise visual estimation for the formation of a complete lineage of B. subtilis biofilm
is difficult to make. Incomplete and/or weak superficial biofilms could also lead to weak interfacial
contributions to the total torque exerted on the bicone disk. Despite these limitations, we found
a reasonable agreement between the optical evidence of biofilm formation and interfacial moduli
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dynamics. A significant increase in both the superficial layer and on the container walls was observed
after 8 ± 1 h, consistent with the steady increase in the interfacial dynamic moduli. After 9 ± 1 h,
the entire visualization window was covered by the biofilm grown on the container walls; see 13 and
18 h in Figure 2b.
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Figure 2. (a) Interfacial storage modulus (G′) dynamics corresponding to wild type B. subtilis (control)
biofilm formation. Data are presented as mean ± standard deviation from two independent biological
replicates. The onset of measurable biofilm formation as evidenced by the dynamic moduli (Bo > 1)
was estimated at 7.8 ± 0.5 h. (b) Representative photographs of different stages of biofilm formation
through the visualization window. A compilation of the photographs can be found in Supplementary
Information Movie 1.

In region II, a non-monotonic dynamic response was recorded (see (∆G′)II =
(
G′min −G′max

)
II

in Figure 2a), whereby the initial G′ growth (region I) reaches a local maximum (G′max)II after
approximately 3 h, decreases to a minimum (G′min)II, and then increases again. This local decrease in
G′ has previously been associated to parts of the biofilm being recycled for nutrients as bacteria already
embedded within the formed biofilm have limited access to nutrients within the LB medium [30].
The optical visualizations indicate biofilm development to a reduced extent on both the superficial
layer as well as in the container walls within the region.

In region III, a new monotonic growth in the dynamic moduli was observed—see (dG′/dt)III in
Figure 2b—as overall biofilm growth becomes once again the dominant dynamic process. The optical
visualizations for the region showed significant three-dimensional growth towards both the LB–air
interface and container walls; see 13 h in Figure 2b.

Following the monotonic growth in region III, a limiting value in interfacial shear storage modulus,
G′, was reached (see (G′)IV in Figure 2b), defining region IV. This can be considered as a limiting value
of the measurable interfacial dynamic moduli for matured biofilms owing to the lowering of the biofilm
position due to LB mass loss with respect to the bicone tip. In this region, the behavior in dynamic
moduli varied strongly between tests, ranging from plateau-like values to a significant decrease in the
dynamic moduli. Such behavior was not take into consideration in calculating the mean and standard
deviations of G′ (same for the following sections). We note that the lowering of the free surface can be
attributed to bacteria accumulating at the interface and consuming nutrients from the LB medium,
as there are on volatile components in LB. The container was not refilled during tests because of the
difficulties in assessing accurately the decrease in surface level and to avoid any disruptions of the
surface pellicle. For the control tests, a mature biofilm could be visually observed after 18 ± 1 h growth
time, Figure 2b, characterized by an irregular surface texture; see also Figure 1b (right image).



Int. J. Mol. Sci. 2020, 21, 6755 6 of 17

2.2. Depletion of the EPS Component of the Matrix Reduces Viscoelasticity of B. subtilis Biofilms

Vitamin C, in concentrations above 40 mM, is known to drastically reduce EPS production by
B. subtilis [32]. Hence, we added different concentrations of vitamin C to our experimental setup in
order to examine the contribution of EPS to the viscoelastic nature of biofilm growth. The presence of
vitamin C in the LB medium significantly affected the dynamics and interfacial properties of biofilms
at the LB medium–air interface. It was apparent that, while evidence of surface bacterial aggregates
could be spotted early in the optical visualizations, see highlights at 3 h for 20 mM (Figure 3b) and 2 h
for 40 mM (Figure 3d), the system does not have the ability to effectively create a continuous surface
pellicle. In the presence of increasing concentrations of vitamin C, the initial formation of biofilm on
the medium–air interface was delayed. This can be evidenced by both G′—see Figure 4—and the
visual observations.
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The characteristic parameters of growth regions I–IV are compiled in Figure 5. Compared with 
the control experiments, the presence of vitamin C decreased the growth rates in region I ( / )  
and/or region III ( / )  , Figure 5a. Low region I growth rates (20 and 40 mM) corresponded to 
a significant reduction in (Δ ) , with no decrease in elasticity recorded for 40 mM in region II 
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Figure 3. Interfacial storage modulus (G′) and representative photographs as a function of biofilm
growth time for B. subtilis biofilms grown in the presence of various concentrations of vitamin C (vitC):
(a,b) 20 mM, (c,d) 40 mM, and (e,f) 60 mM. The images were chosen based on the time point of visible
biofilm formation, surface coverage, and maturation. Data are presented as mean ± standard deviation
from two independent biological replicates. The onset of measurable biofilm formation as evidenced
by the dynamic moduli (Bo > 1) was estimated at (a) 9.6 ± 1.3 h, (c) 9.5 ± 0.6 h, and (e) 10.4 ± 1.5 h.
A compilation of the photographs can be found in Supplementary Information Movies 2, 3, and 4.
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Figure 4. Onset of a continuous surface biofilm as identified through the interfacial rheological
measurements (Bo > 1). The error bars represent the standard error of the mean. Control refers to the
wild type B. Subtilis strain (without vitamin C) and ∆eps to the eps mutant strain (discussed in the
following section).

While the formation of macroscopically observable pellicle occurred at about 6 ± 1 h without
vitamin C, this stage was reached after 9 ± 1 h in the presence of 20 mM, after 10 ± 1 h with 40 mM,
and after 12 ± 2 h with 60 mM vitamin C added (Figure 3b,d,f).

The characteristic parameters of growth regions I–IV are compiled in Figure 5. Compared with
the control experiments, the presence of vitamin C decreased the growth rates in region I (dG′/dt)I
and/or region III (dG′/dt)III, Figure 5a. Low region I growth rates (20 and 40 mM) corresponded
to a significant reduction in (∆G′)II, with no decrease in elasticity recorded for 40 mM in region II
((∆G′)II > 0), Figure 5b. Conversely, for high region II growth rates (60 mM), a decrease in elasticity
was recorded ((∆G′)II < 0), similar to the control experiments, Figure 5b. Most significantly, however,
for 60 mM vitamin C, the growth rate in region III ((dG′/dt)III) was drastically reduced, Figure 5a,
leading to a significant decrease in the interfacial elastic shear modulus (G′)IV of the matured biofilms.
This corresponds to an overall visual decrease in the thickness and complexity of biofilm of the mature
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surface biofilm layers. For 40 mM and 60 mM of vitamin C, very thin and fragile biofilms were
observed owing to the significant reduction in the synthesis of the EPS matrix.
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for region II for
all compositions studied. The error bars represent the standard error of the mean. Control refers to
the wild type B. Subtilis strain (without vitamin C) and ∆eps to the eps mutant strain (discussed in the
following section).

2.3. No EPS Production Disrupts the Dynamics of Viscoelastic Properties during Biofilm Growth

Vitamin C leads only to a partial depletion of the EPS component of the B. subtilis biofilm matrix,
so we asked next what would be the consequence of completely removing EPS. To answer this question,
a ∆eps mutant of B. subtilis NCIB 3610 strain was constructed by disrupting the promoter region of the
eps operon. Without the expression of eps genes, B. subtilis is unable to synthesize and export the EPS
that normally contribute to the biofilm matrix. Thus, the formation of visible biofilms was significantly
altered by the ∆eps strain and the dynamic interfacial behavior showed some similarities with the
biofilms grown in the presence of vitamin C, Figure 6. The onset of a complete surface biofilm was
detected (Bo > 1) after 14.2 ± 1.3 h in the dynamic measurements (Figure 4) and 13 ± 1.5 h in the
optical visualizations (Figure 6b), significantly retarded compared with the wild type. The growth
rates in both regions I and III ((dG′/dt)I,III) were comparable or lower than the corresponding tests
in the presence of vitamin C, with the note that, in contrast to the vitamin C biofilms, both growth
rates were significantly reduced when compared with the control results. In addition, no decrease in
elasticity was recorded in region II (∆G′ > 0). A limiting interfacial shear elastic modulus (G′)IV could
not be identified within the experimental time. This is consistent with the resulting ∆eps biofilm being
very thin, fragile, and smooth, as previously described in the literature [11].
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Figure 6. (a) The interfacial storage modulus (G′) of biofilm formation by B. subtilis ∆eps mutant as a
function of time. Data are presented as mean ± standard deviation from two independent biological
replicates. The onset of measurable biofilm formation as evidenced by the dynamic moduli (Bo > 1)
was estimated at 14.2 ± 1.3 h. (b) Representative photographs of different stages of biofilm formation.
A compilation of the photographs can be found in Supplementary Information Movie 5.

2.4. Vitamin C Treatment and ∆eps Mutation Reduced the Overall Biomass, but Did Not Significantly Affect
Cell Counts Per Volume Unit of Biofilm

As the thickness, roughness, and overall architecture of the biofilms were altered by vitamin C
treatment and the ∆eps mutation, we asked whether the depletion of the EPS from the biofilm matrix
also affected the number of bacterial cells per volume unit of the biofilm. The total biomass of the films
(mass of cells and matrix together) was significantly reduced by vitamin C treatment and ∆eps mutation
(Figure 7), consistent with our macroscopic observations (Figures 2, 3 and 6). However, the number of
bacterial cells, counted as colony forming units (CFUs) per volume unit of biofilm, was found to be
comparable in all samples. This control suggests that the measured changes in viscoelasticity are most
probably not related to changes in the cell component of the biofilm, but rather directly attributable to
the EPS component.
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Figure 7. (a) Biomass and (b) population of bacterial cells in biofilms grown in the presence of vitamin
C and biofilm of eps mutant. Data represent mean ± standard deviation from three independent
biological replicates. * p < 0.05, ** p < 0.01.

2.5. B. subtilis Biofilm Was Fragile without the EPS Component of the Matrix

To further asses the viscoelastic properties of B. subtilis biofilms and their stability, the mature
biofilms were subjected to oscillatory shear strain sweep measurements using the same configuration
on matured biofilms obtained at the end of the experimental time, Figure 8. While the contact between
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the geometry and biofilms was firm, there were variations in the distance between the bicone tip
and LB level. Furthermore, we note that the data in Figures 2, 3 and 6 are mean values of different
experiments and that, as previously noted, the behavior in region IV has been particularly prone to
large variations in dynamic moduli between tests. Meanwhile, for the least developed biofilms, that is,
60 mM vitamin C and ∆eps, there is a reasonable agreement between the dynamic moduli at the end of
the 24 h growth time and, at the beginning of the strain sweep tests, there are marked differences for the
control (wild type B. subtilis) tests. These differences are likely owing to the comparatively significant
loss of free surface level resulting in large variations of the dynamic moduli in region IV. For reference,
the dynamic moduli recorded during the growth of the control biofilm for the strain sweep tests
in Figure 8 can be found in Figure S1 (Supplementary Information), showing good agreement with
the data in Figure 8. To conclude, overall, the magnitude of the interfacial dynamic moduli cannot
be considered for discussion. However, the onset of the nonlinear viscoelastic response (the strain
amplitude after which the dynamic moduli are dependent on the strain amplitude) decreased with
the addition of vitamin C, and even more for the ∆eps strain. This would signify a more ‘brittle’
aggregation of bacteria in the biofilms grown in the presence of vitamin C and ∆eps strain, as the
increased deformation amplitude easily alters the structure of the biofilm. This is consistent with visual
observations, whereby the control biofilm was weakly distorted by the increasing values of strain
amplitude. Biofilms grown in the presence of 20 mM vitamin C appeared slightly more distorted,
an effect that was more pronounced for 60 mM. The ∆eps biofilm was the most unstable. A loss of
adhesion between the biofilm and bicone tip/container walls could be observed approximately at the
crossover between the dynamic moduli; see the star symbols in Figure 8. This occurred for increasingly
lower strain amplitudes for the vitamin C biofilms and even further for the ∆eps biofilm. The decrease
in strain amplitude for both the onset of nonlinear viscoelastic regime and the loss of adhesion with
the walls with increasingly disrupted EPS matrix was expected, as the (high molar mass) EPS matrix
confers a certain structural tenacity to biofilms.
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Figure 8. The interfacial shear storage (G′) and loss moduli (G′′ ) of biofilms as a function of shear
strain amplitude from oscillatory shear strain sweep tests. The biofilms were tested at the end of the
24 h growth time. The star symbols indicate the approximate location of the crossing between the
moduli (G′′/G′ ≈ 1). The dynamic moduli corresponding to the control biofilms grown for the strain
sweep test can be found in Figure S1 (Supplementary Information), as it is an outlier for region IV in
the data presented in Figure 2.
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3. Discussion

As discussed in the introduction, biofilm matrix contains EPS, proteins, and extracellular nucleic
acids (mostly DNA) [11,12,37]. The biofilm composition, cells to matrix ratio and ratio of matrix
components, changes over time during biofilm development [2,19,38–40]. Traditionally, confocal
laser microscopy has been used for quantifying the composition and visualizing the 3D architecture
and thickness of bacterial biofilms [13,41]. More recently, there has been a focus on understanding
the mechanical properties and stability of biofilms by evaluating their rheological properties [42–44].
The majority of previous studies focused on assessing the mechanical stability of pre-formed biofilms
and pre-formed biofilms that were treated with various disruptive agents [13,45–48]. Moreover,
biofilms of microbial cells with various genes inactivated were evaluated, in order to assess the
contribution of those genes to the physical stability of the biofilm [45,46,49]. However, only few studies
have examined real-time changes in interfacial rheological properties of bacterial biofilms [30,31].
Interfacial properties are key to biofilm development, interaction with the environment, and ultimately
survival [50]. The biofilm surface is known to be crucial for host–bacteria interactions. Stable and
impenetrable biofilm surfaces protect the bacteria from the host immune response [50]. This prevents
complete eradication of biofilms and promotes antimicrobial resistance in persistent infections. Hence,
it is very important to understand the dynamic interfacial rheological properties of these biomatrices
during biofilm formation.

Here, we used interfacial rheology via the bicone method in rotational rheometry to study the
interfacial shear dynamic moduli of B. subtilis NCIB 3610 biofilm surfaces. The dynamics of biofilm
formation as characterized by the interfacial elastic shear moduli had previously been shown as
a potential ‘fingerprint’ of bacterial type and other environmental factors [30]. We thus identified
several growth dynamics regions in the control, wild type B. subtilis, biofilms corresponding to the
primary growth stage (region I), a non-monotonic region where the biofilm experiences a decrease
in elasticity signaling; the depletion of nutrients for bacteria embedded in the biofilm (region II);
the secondary growth stage as overall biofilm growth resumes until biofilm maturation (region III);
and a final region where the loss in LB mass reduced the level positioning, affecting the measurement
magnitude (region IV). We hypothesized that the EPS component of the biofilm matrix might have
a major contribution to the biofilm viscoelastic properties owing to their polymeric nature. Hence,
we depleted the EPS by adding vitamin C [32] and ultimately removed it completely by inactivating
the eps biosynthetic operon [49]. The disruptions of EPS production had a significant impact on the
onset, growth dynamics, and final viscoelastic properties of the biofilms. The formation of a complete
biofilm covering the entire interfacial area was delayed by up to 37% (approximately 3 h) for 60 mM
vitamin C (Figure 4). This highlights the importance of the EPS matrix as a binding agent of bacteria
at the surface. Evidence of biofilm patches was spotted earlier in the growth time, but the system
was unable to form a complete pellicle quickly. Vitamin C has shown the ability to selectively disrupt
biofilm dynamics in two or more growth regions (Figure 5). The alterations in biofilm formation and
growth dynamics ultimately affected the final viscoelastic properties of matured films, as evidenced
by their interfacial shear elastic modulus in region IV ((G′)IV; Figure 5) and their linear–nonlinear
transition in strain sweep tests (Figure 8). As noted in the previous sections, with the consumption
of nutrients and accumulation of bacteria at the interface, the free surface is progressively lowered
compared with the bicone tip. As the bacteria loses the ability to produce EPS and the biofilm growth
is disrupted, the loss of free surface level is expected to become progressively diminished as the EPS
secretion is lowered. This can be confirmed by comparing the evolution of the approximate free surface
in the optical visualizations between Figure 2b, Figure 3b,d,e and Figure 6b. Therefore, the changes
in growth dynamics are likely to be even more pronounced than the values reported in Figure 5.
The fact that the development of the interfacial shear elastic modulus did not affect all films in the
same growth stages could signify that the EPS molecular properties, for example, molecular weight,
entanglement, and chain conformation, play an important role in biofilm formation mechanisms and
need to be further explored. The role and influence of the EPS matrix were confirmed by the results for
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the eps mutant strain showing a similar behavior to the higher vitamin C concentration investigated.
The outcomes were specifically owing to the depletion of EPS from the biofilm matrix, and not to a loss
of cell density per unit of biofilm volume (Figure 7). This result is consistent with a previous study
demonstrating loss of elastic behavior of pre-formed eps mutant biofilms [45].

Overall, the present study thus further confirms the viability of vitamin C to inhibit growth and
degrade the mechanical properties of bacterial biofilms, and we demonstrate that the EPS component
of the matrix is crucial for the viscoelastic properties of the biofilm surface. There appear to be
structure–property relationships during biofilm formation that could be significant from a mechanical
point of view, an important aspect for maintaining mature biofilms films with detrimental mechanical
stress. Therefore, our study strengthens already available evidence that the EPS synthesis should be
considered as one of the major targets to eradicate persistent biofilm-based bacterial infections [51,52].

4. Materials and Methods

4.1. Bacterial Strains and Culture Medium

B. subtilis NCIB 3610 (Bacillus Genetic Stock Center; Columbus, USA) was used in this study to
monitor mechanical properties and stability of biofilms. Cell cultivation was performed in liquid LB
medium (10 g of tryptone, 5 g of yeast extract, 5 g of NaCl per liter of broth) or solid LB medium
supplemented with 1.5% of agar. The eps mutant was constructed using pMUTIN 2 vector to disrupt
the promoter region of the eps operon and the first two genes, epsA and epsB. As a result, the entire
eps operon is inactivated and the insertion of the vector into the chromosome confers erythromycin
resistance. The mutant strain was grown in the LB medium containing erythromycin (1 µg/mL).
Sodium ascorbate (vitamin C) was purchased from Sigma–Aldrich (St. Louis, MI, USA)

4.2. Biofilm Formation and Interfacial Rheology

Interfacial rheology measurements were carried out using Anton Paar MCR702 TwinDrive
rheometer (Graz, Austria) in single drive mode equipped with an interfacial rheology system (IRS).
B. subtilis biofilms were formed in an IRS container using liquid LB media with or without the presence
of vitamin C (final volume was 104 mL). Then, 2–5 × 106 CFU/mL of overnight grown bacterial culture
was used to inoculate fresh LB medium in the rheometer container. The control biofilms of B. subtilis
were grown in LB media without vitamin C. The temperature was set to 37 ◦C to favor the bacterial
growth and a bicone geometry (bicone diameter: 68.214 mm, cup diameter: 80.000 mm, cone angle:
5.012◦, penetration depth: 2.201 mm) was used. We note that the temperature is set and measured on
the bottom plate of the setup; see the Peltier temperature control system in Figure 1a. Therefore, in the
absence of a temperature probe in the container, there may be temperature differences between the
bottom plate and the interface. To ensure a uniform temperature inside the container, the container
assembly includes a thermal insulating sleeve (dark cover in Figure 1b) and a 2-half top cap to seal off

the container environment. The tip of the bicone was set within the media–air interface as shown in
Figure 1 using a custom procedure for the precise determination for the free surface using the normal
force (FN in Figure 1) detected by the instrument. A Canon 60D DSLR camera (Tokyo, Japan) equipped
with a Cannon L-Series 100 mm macro lens was positioned at one of the visualization windows
(Figure 1). Pictures were taken at 1 h intervals using a remote data acquisition setup. The biofilm
formation was monitored through the real-time changes in viscoelastic properties (described below)
and visual observations for 24 h.

In strain-controlled steady shear rotational (bulk) rheometry [53,54], a shear rate,
.
γ, is imposed

based on analytical solutions of the equations of motion, the angular velocity Ω, and the dimensions
of the measurement geometry. The measured variable is the torque exerted on the measurement
geometry, M, and is converted into stress, which, together with the imposed shear rate, forms the basis
for the calculation of rheological properties. A similar analysis is performed in dynamic tests, where
the imposed variables are time-dependent and are characterized by an angular frequency, ω, and strain,
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γ. Owing to the complexity of the governing equations, in the particular case of the interfacial rheology
bicone system, the data acquisition and the determination of the interfacial rheological properties
are done separately [33]. Here, we present a summary of the governing equations as a procedure
to obtain the measured quantities elaborated in the present work. For the measurement geometry
notations, see Figure 1. A more detailed description can be found elsewhere [33,55–57]. The interfacial
velocity distribution, v(σ)

θ
, is determined based on the following integral equation of the first kind in

dimensionless form [33,58]:

rv(σ)
θ

(r) = R
2 1− r2

1−R
2 +

1
Bo

∫ 1

0
K(x, r)v(σ)

θ
(x)dx, (2)

where v(σ)
θ

= v(σ)
θ

Ω/R− r is the dimensionless interfacial velocity distribution (azimuthal component),
r = r/R1 is the dimensionless radial coordinate, R = R/R1 is the dimensionless bicone radius, Bo is
the Boussinesq number (Equation (1)), and the Kernel function:

K(x, r) =
1− r2

1−R
2
1

G
(
x, R

)
−G(x, r) (3)

with

G(x, y) = 2xy
∞∑

i=1

Ci J1(ξix)J1(ξiy)
ξi J0(ξi)

(4)

where J0,1 are the Bessel functions of the first kind of orders zero and one, ξi are their zeros, and the
coefficients Ci are defined as

Ci =
Y

1 + Y
coth

(
ξiH1

)
+

1
1 + Y

coth
(
ξi

[
H2 −H1

])
(5)

where Y = η(1)/η(2) is the bulk viscosity ratio and H1 = H1/R1, H2 = H2/R1 are the dimensionless
depths of the two phases. We note that Bo in Equation (2) contains the interfacial viscosity and the
viscosities of phases 1 and 2. In the limit cases, (i) Bo � 1, the interfacial flow is dominated by the
two bulk phases; and (ii) Bo � 1, the interfacial flow is decoupled from the bulk phases 1 and 2 and
they can be neglected. Intermediate Bo numbers pertain to the contribution of both interface and bulk
phases to the interfacial flow.

The corresponding dimensionless total torque can be then computed as [34]

M =
2Bo

1−R
2

[
R

2
+

1
Bo

∫ 1

0
G
(
x, R

)
v(σ)
θ

(x)dx
]

(6)

The (imposed) angular velocity and torque are converted into interfacial shear rate,
.
γ; interfacial

shear stress, σ; and the resulting interfacial shear viscosity, η, based on solving Equations (1)–(5).
For dynamic oscillatory measurements, the angular velocity is varied sinusoidally, resulting in a
sinusoidal torque output shifted by a phase angle. Consequently, the interfacial shear strain and
stress are in complex notation γ∗ = γ0eiωt and σ∗ = σ0e(iωt+δ), where i =

√
−1, γ0, σ0 are the interfacial

shear strain and shear stress amplitudes, ω is the angular frequency, and δ is the phase shift angle.
The complex interfacial shear modulus can thus be defined as

G∗ ≡
σ∗
γ∗

=
σ0

γ0
eiδ = G′ + iG′′ (7)

where G′ ≡ σ0/γ0 cos δ and G′′ ≡ σ0/γ0 sin δ define the interfacial shear storage and loss moduli used
to characterize the biofilms in this publication.
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The interfacial rheological data in Equations (1)–(7) were computed using the analysis routine
implemented into the Anton Paar RheoCompass software with the following measurement and analysis
input parameters: strain amplitude γ0 = 0.1%; angular frequency ω/2π = 1 Hz ([30]); phase (1)
(air) complex viscosity

∣∣∣η(1)∣∣∣ = 1.8·10−5 Pa·s; and phase (2) (LB) complex viscosity
∣∣∣η(1)∣∣∣ = 0.062 Pa·s

(determined from trial tests). The heights of the respective phases were determined on the basis of the
bicone tip position after completing the automated free surface detection using the normal force sensor
of the rheometer prior to each test.

4.3. Biofilm Disruption Analysis with External Stress

To further analyze the shear dynamic behavior of bacterial biofilms, B. subtilis biofilms were grown
in LB media, in the presence and absence of vitamin C and for the ∆eps strain. The biofilms were grown
in the same conditions as described in Section 4.2 and the strain sweep tests were performed on the
matured biofilms at the end of the 24 h growth time. The imposed angular frequency, ω, was 2 rad/s
and the shear strain amplitude, γ0, varied between 0.1 and 200%. The disruption in biofilms was
examined by monitoring the changes in elastic and loss modulus.

4.4. Viability of Bacteria and Biofilms’ Biomass

Viability of bacteria in biofilms was evaluated by the CFU counting method. Briefly, B. subtilis
biofilms were collected in 10 mL of 0.89% of sterile NaCl from the rheometer container after the 24 h of
interfacial rheology measurement and sonicated at 10 W for 30 s to homogenize the biofilm. Then,
100 µL of homogenized suspensions was serially diluted and plated on LB agar plates to count the
colonies. The counted numbers of colonies were normalized with the volume of respective biofilms.
Remaining homogenized suspension was washed three times (5000 g for 20 min) with sterile water,
lyophilized, and weighed to determine the total biomass of biofilms.

Supplementary Materials: The supplementary materials are available online at http://www.mdpi.com/1422-0067/
21/18/6755/s1.

Author Contributions: Conceptualization, S.P. and K.G.; methodology and data analysis, S.P., M.F., K.G., A.D.,
and R.K.; writing—original draft preparation, S.P. and M.F.; review and editing, K.G., A.D., R.K., and I.M.;
supervision, R.K., I.M., and T.N. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by grants from SIO-Grafen (grant no. 2017-016774), a joint investment of
VINNOVA, Formas, and Energimyndigheten to R.K. and I.M.; Formas and ÅForsk to I.M.; and Chalmers Area of
Advance Materials Science to R.K. and T.N.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to
publish the results.

Abbreviations

EPS Extracellular polymeric substances
CFU Colony forming unit
eDNA Extracellular deoxyribonucleic acid
LB Lysogeny broth

References

1. Branda, S.S.; Vik, Å.; Friedman, L.; Kolter, R. Biofilms: The matrix revisited. Trends Microbiol. 2005, 13, 20–26.
[CrossRef] [PubMed]

2. Flemming, H.C.; Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 2010, 8, 623–633. [CrossRef]
3. Koo, H.; Falsetta, M.; Klein, M.I. The exopolysaccharide matrix. J. Dent. Res. 2013, 92, 1065–1073. [CrossRef]

[PubMed]
4. Jakubovics, N.; Shields, R.C.; Rajarajan, N.; Burgess, J. Life after death: The critical role of extracellular DNA

in microbial biofilms. Lett. Appl. Microbiol. 2013, 57, 467–475. [CrossRef] [PubMed]

http://www.mdpi.com/1422-0067/21/18/6755/s1
http://www.mdpi.com/1422-0067/21/18/6755/s1
http://dx.doi.org/10.1016/j.tim.2004.11.006
http://www.ncbi.nlm.nih.gov/pubmed/15639628
http://dx.doi.org/10.1038/nrmicro2415
http://dx.doi.org/10.1177/0022034513504218
http://www.ncbi.nlm.nih.gov/pubmed/24045647
http://dx.doi.org/10.1111/lam.12134
http://www.ncbi.nlm.nih.gov/pubmed/23848166


Int. J. Mol. Sci. 2020, 21, 6755 15 of 17

5. Pandit, S.; Kim, H.J.; Song, K.Y.; Jeon, J.G. Relationship between fluoride concentration and activity against
virulence factors and viability of a cariogenic biofilm: In vitro study. Caries Res. 2013, 47, 539–547. [CrossRef]
[PubMed]

6. Arnaouteli, S.; Ferreira, A.S.; Schor, M.; Morris, R.J.; Bromley, K.M.; Jo, J.; Cortez, K.L.; Sukhodub, T.;
Prescott, A.R.; Dietrich, L.E.P.; et al. Bifunctionality of a biofilm matrix protein controlled by redox state.
Proc. Natl. Acad. Sci. USA 2017, 114, E6184–E6191. [CrossRef] [PubMed]

7. Duanis-Assaf, D.; Duanis-Assaf, T.; Zeng, G.; Meyer, R.L.; Reches, M.; Steinberg, D.; Shemesh, M. Cell wall
associated protein TasA provides an initial binding component to extracellular polysaccharides in dual-species
biofilm. Sci. Rep. 2018, 8, 9350. [CrossRef]

8. Bendori, S.O.; Pollak, S.; Hizi, D.; Eldar, A. The RapP-PhrP quorum-sensing system of bacillus subtilis strain
NCIB3610 affects biofilm formation through multiple targets, due to an atypical signal-insensitive allele of
rapP. J. Bacteriol. 2015, 197, 592–602. [CrossRef]

9. Renner, L.D.; Weibel, D.B. Physicochemical regulation of biofilm formation. MRS Bull. 2011, 36, 347–355.
[CrossRef]

10. Kearns, D.B.; Chu, F.; Branda, S.S.; Kolter, R.; Losick, R. A master regulator for biofilm formation by Bacillus
subtilis. Mol. Microbiol. 2005, 55, 739–749. [CrossRef]

11. Branda, S.S.; Chu, F.; Kearns, D.B.; Losick, R.; Kolter, R. A major protein component of the Bacillus subtilis
biofilm matrix. Mol. Microbiol. 2006, 59, 1229–1238. [CrossRef] [PubMed]

12. Romero, D.; Aguilar, C.; Losick, R.; Kolter, R. Amyloid fibers provide structural integrity to Bacillus subtilis
biofilms. Proc. Natl. Acad. Sci. USA 2010, 107, 2230–2234. [CrossRef] [PubMed]

13. Hobley, L.; Ostrowski, A.; Rao, F.V.; Bromley, K.M.; Porter, M.; Prescott, A.R.; Macphee, C.E.;
Van Aalten, D.M.F.; Stanley-Wall, N.R. BslA is a self-assembling bacterial hydrophobin that coats the
Bacillus subtilis biofilm. Proc. Natl. Acad. Sci. USA 2013, 110, 13600–13605. [CrossRef] [PubMed]

14. Peng, N.; Cai, P.; Mortimer, M.; Wu, Y.; Gao, C.; Huang, Q. The exopolysaccharide–eDNA interaction
modulates 3D architecture of Bacillus subtilis biofilm. BMC Microbiol. 2020, 20, 115. [CrossRef] [PubMed]

15. Peterson, B.W.; He, Y.; Ren, Y.; Zerdoum, A.; Libera, M.R.; Sharma, P.K.; Van Winkelhoff, A.J.; Neut, D.;
Stoodley, P.; Van Der Mei, H.C.; et al. Viscoelasticity of biofilms and their recalcitrance to mechanical and
chemical challenges. FEMS Microbiol. Rev. 2015, 39, 234–245. [CrossRef]

16. Kaplan, J.B. Biofilm dispersal: Mechanisms, clinical implications, and potential therapeutic uses. J. Dent. Res.
2010, 89, 205–218. [CrossRef]

17. Holt, J.E.; Houston, A.; Adams, C.; Edwards, S.; Kjellerup, B.V. Role of extracellular polymeric substances
in polymicrobial biofilm infections of Staphylococcus epidermidis and Candida albicans modelled in the
nematode Caenorhabditis elegans. Pathog. Dis. 2017, 75, ftx052. [CrossRef]

18. Yin, W.; Wang, Y.; Liu, L.; He, J. Biofilms: The microbial “protective clothing” in extreme environments.
Int. J. Mol. Sci. 2019, 20, 3423. [CrossRef]

19. Hall-Stoodley, L.; Costerton, J.W.; Stoodley, P. Bacterial biofilms: From the Natural environment to infectious
diseases. Nat. Rev. Microbiol. 2004, 2, 95–108. [CrossRef]

20. Boudarel, H.; Mathias, J.D.; Blaysat, B.; Grédiac, M. Towards standardized mechanical characterization of
microbial biofilms: Analysis and critical review. NPJ Biofilms Microbiomes 2018, 4, 17. [CrossRef]

21. Stewart, P.S. Biophysics of biofilm infection. Pathog. Dis. 2014, 70, 212–218. [CrossRef] [PubMed]
22. Charlton, S.G.V.; White, M.A.; Jana, S.; Eland, L.E.; Jayathilake, P.G.; Burgess, J.G.; Chen, J.; Wipat, A.;

Curtis, T.P. Regulating, measuring, and modeling the viscoelasticity of bacterial biofilms. J. Bacteriol. 2019,
201, e00101-19. [CrossRef] [PubMed]

23. Barnes, H.A.; Hutton, J.F.; Walters, K. An Introduction to Rheology; Elsevier Science B.V: Amsterdam,
The Netherlands, 1999.

24. Capurro, M.; Barberis, F. Evaluating the mechanical proprieties of biomaterials. In Biomaterials for Bone
Regeneration—Novel Techniques and Applications; Dubruel, P., Vlierberghe, S.V., Eds.; Elsevier Ltd.: Amsterdam,
The Netherlands, 2014; pp. 270–323.

25. Larsson, R. The Structure and Rheology of Complex Fluids; Oxford University Press: Oxford, UK, 1999.
26. Chu, E.K.; Kilic, O.; Cho, H.; Groisman, A.; Levchenko, A. Self-induced mechanical stress can trigger biofilm

formation in uropathogenic Escherichia coli. Nat. Commun. 2018, 9, 4087. [CrossRef]

http://dx.doi.org/10.1159/000348519
http://www.ncbi.nlm.nih.gov/pubmed/23774608
http://dx.doi.org/10.1073/pnas.1707687114
http://www.ncbi.nlm.nih.gov/pubmed/28698374
http://dx.doi.org/10.1038/s41598-018-27548-1
http://dx.doi.org/10.1128/JB.02382-14
http://dx.doi.org/10.1557/mrs.2011.65
http://dx.doi.org/10.1111/j.1365-2958.2004.04440.x
http://dx.doi.org/10.1111/j.1365-2958.2005.05020.x
http://www.ncbi.nlm.nih.gov/pubmed/16430696
http://dx.doi.org/10.1073/pnas.0910560107
http://www.ncbi.nlm.nih.gov/pubmed/20080671
http://dx.doi.org/10.1073/pnas.1306390110
http://www.ncbi.nlm.nih.gov/pubmed/23904481
http://dx.doi.org/10.1186/s12866-020-01789-5
http://www.ncbi.nlm.nih.gov/pubmed/32410574
http://dx.doi.org/10.1093/femsre/fuu008
http://dx.doi.org/10.1177/0022034509359403
http://dx.doi.org/10.1093/femspd/ftx052
http://dx.doi.org/10.3390/ijms20143423
http://dx.doi.org/10.1038/nrmicro821
http://dx.doi.org/10.1038/s41522-018-0062-5
http://dx.doi.org/10.1111/2049-632X.12118
http://www.ncbi.nlm.nih.gov/pubmed/24376149
http://dx.doi.org/10.1128/JB.00101-19
http://www.ncbi.nlm.nih.gov/pubmed/31182499
http://dx.doi.org/10.1038/s41467-018-06552-z


Int. J. Mol. Sci. 2020, 21, 6755 16 of 17

27. Pen, Y.; Zhang, Z.J.; Morales-García, A.L.; Mears, M.; Tarmey, E.S.; Edyvean, R.G.; Banwart, S.A.;
Geoghegan, M. Effect of extracellular polymeric substances on the mechanical properties of Rhodococcus.
Biochim. Biophys. Acta 2015, 1848, 518–526. [CrossRef]

28. Lemon, K.P.; Earl, A.M.; Vlamakis, H.C.; Aguilar, C.; Kolter, R. Biofilm Development with an Emphasis on
Bacillus subtilis. Curr. Top. Microbiol. Immunol. 2008, 322, 1–16. [CrossRef]

29. Marvasi, M.; Visscher, P.T.; Martinez, L.C. Exopolymeric substances (EPS) from Bacillus subtilis: Polymers
and genes encoding their synthesis. FEMS Microbiol. Lett. 2010, 313, 1–9. [CrossRef]

30. Rühs, P.A.; Böni, L.; Fuller, G.G.; Inglis, R.F.; Fischer, P. In-situ quantification of the interfacial rheological
response of bacterial biofilms to environmental stimuli. PLoS ONE 2013, 8, e78524. [CrossRef]

31. Rühs, P.; Böcker, L.; Inglis, R.; Fischer, P. Studying bacterial hydrophobicity and biofilm formation at
liquid–liquid interfaces through interfacial rheology and pendant drop tensiometry. Colloids Surfaces B
Biointerfaces 2014, 117, 174–184. [CrossRef]

32. Pandit, S.; Ravikumar, V.; Abdel-Haleem, A.M.; Derouiche, A.; Mokkapati, V.R.S.S.; Sihlbom, C.; Mineta, K.;
Gojobori, T.; Gao, X.; Westerlund, F.; et al. Low Concentrations of vitamin C reduce the synthesis of
extracellular polymers and destabilize bacterial biofilms. Front. Microbiol. 2017, 8, 2599. [CrossRef]

33. Erni, P.; Fischer, P.; Windhab, E.J.; Kusnezov, V.; Stettin, H.; Läuger, J. Stress- and strain-controlled
measurements of interfacial shear viscosity and viscoelasticity at liquid/liquid and gas/liquid interfaces.
Rev. Sci. Instrum. 2003, 74, 4916–4924. [CrossRef]

34. Maestro, A.; Bonales, L.J.; Ritacco, H.; Fischer, T.M.; Rubio, R.G.; Ortega, F. Surface rheology: Macro- and
microrheology of poly(tert-butyl acrylate) monolayers. Soft Matter 2011, 7, 7761–7771. [CrossRef]

35. Guzmán, E.; Tajuelo, J.; Pastor, J.M.; Rubio, M.A.; Ortega, F.; Rubio, R.G. Shear rheology of fluid interfaces:
Closing the gap between macro- and micro-rheology. Curr. Opin. Colloid Interface Sci. 2018, 37, 33–48.
[CrossRef]

36. Renggli, D.; Alicke, A.; Ewoldt, R.H.; Vermant, J. Operating windows for oscillatory interfacial shear rheology.
J. Rheol. 2020, 64, 141–160. [CrossRef]

37. Kobayashi, K.; Iwano, M. BslA(YuaB) forms a hydrophobic layer on the surface of Bacillus subtilis biofilms.
Mol. Microbiol. 2012, 85, 51–66. [CrossRef] [PubMed]

38. Stewart, P.S.; Franklin, M.J. Physiological heterogeneity in biofilms. Nat. Rev. Microbiol. 2008, 6, 199–210.
[CrossRef] [PubMed]

39. Monds, R.D.; O’Toole, G.A. The developmental model of microbial biofilms: Ten years of a paradigm up for
review. Trends Microbiol. 2009, 17, 73–87. [CrossRef] [PubMed]

40. Mann, E.E.; Wozniak, D.J. Pseudomonas biofilm matrix composition and niche biology. FEMS Microbiol. Rev.
2012, 36, 893–916. [CrossRef]

41. Pandit, S.; Cai, J.N.; Jung, J.E.; Jeon, J.G. Effect of 1-minute fluoride treatment on potential virulence and
viability of a cariogenic biofilm. Caries Res. 2015, 49, 449–457. [CrossRef]

42. Cao, H.; Habimana, O.; Safari, A.; Heffernan, R.; Dai, Y.; Casey, E. Revealing region-specific biofilm viscoelastic
properties by means of a micro-rheological approach. NPJ Biofilms Microbiomes 2016, 2, 5. [CrossRef]

43. Yannarell, S.M.; Grandchamp, G.M.; Chen, S.Y.; Daniels, K.E.; Shank, E.A. A dual-species biofilm with
emergent mechanical and protective properties. J. Bacteriol. 2019, 201, e00670-18. [CrossRef]

44. Abriat, C.; Enriquez, K.; Virgilio, N.; Cegelski, L.; Fuller, G.G.; Daigle, F.; Heuzey, M.-C. Mechanical and
microstructural insights of Vibrio cholerae and Escherichia coli dual-species biofilm at the air-liquid interface.
Colloids Surfaces B Biointerfaces 2020, 188, 110786. [CrossRef] [PubMed]

45. Trejo, M.; Douarche, C.; Bailleux, V.; Poulard, C.; Mariot, S.; Regeard, C.; Raspaud, E. Elasticity and wrinkled
morphology of Bacillus subtilis pellicles. Proc. Natl. Acad. Sci. USA 2013, 110, 2011–2016. [CrossRef]

46. Zhang, W.; Dai, W.; Tsai, S.M.; Zehnder, S.M.; Sarntinoranont, M.; Angelini, T.E. Surface indentation and
fluid intake generated by the polymer matrix of Bacillus subtilis biofilms. Soft Matter 2015, 11, 3612–3617.
[CrossRef] [PubMed]

47. Klein, M.I.; Hwang, G.; Santos, P.S.; Campanella, O.H.; Koo, H. Streptococcus mutans-derived extracellular
matrix in cariogenic oral biofilms. Front. Microbiol. 2015, 5, 10. [CrossRef] [PubMed]

48. Jana, S.; Charlton, S.G.V.; Eland, L.E.; Burgess, J.G.; Wipat, A.; Curtis, T.P.; Chen, J. Nonlinear rheological
characteristics of single species bacterial biofilms. NPJ Biofilms Microbiomes 2020, 6, 19. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.bbamem.2014.11.007
http://dx.doi.org/10.1007/978-3-540-75418-3_1
http://dx.doi.org/10.1111/j.1574-6968.2010.02085.x
http://dx.doi.org/10.1371/journal.pone.0078524
http://dx.doi.org/10.1016/j.colsurfb.2014.02.023
http://dx.doi.org/10.3389/fmicb.2017.02599
http://dx.doi.org/10.1063/1.1614433
http://dx.doi.org/10.1039/c1sm05225j
http://dx.doi.org/10.1016/j.cocis.2018.05.004
http://dx.doi.org/10.1122/1.5130620
http://dx.doi.org/10.1111/j.1365-2958.2012.08094.x
http://www.ncbi.nlm.nih.gov/pubmed/22571672
http://dx.doi.org/10.1038/nrmicro1838
http://www.ncbi.nlm.nih.gov/pubmed/18264116
http://dx.doi.org/10.1016/j.tim.2008.11.001
http://www.ncbi.nlm.nih.gov/pubmed/19162483
http://dx.doi.org/10.1111/j.1574-6976.2011.00322.x
http://dx.doi.org/10.1159/000434731
http://dx.doi.org/10.1038/s41522-016-0005-y
http://dx.doi.org/10.1128/JB.00670-18
http://dx.doi.org/10.1016/j.colsurfb.2020.110786
http://www.ncbi.nlm.nih.gov/pubmed/31954270
http://dx.doi.org/10.1073/pnas.1217178110
http://dx.doi.org/10.1039/C5SM00148J
http://www.ncbi.nlm.nih.gov/pubmed/25797701
http://dx.doi.org/10.3389/fcimb.2015.00010
http://www.ncbi.nlm.nih.gov/pubmed/25763359
http://dx.doi.org/10.1038/s41522-020-0126-1
http://www.ncbi.nlm.nih.gov/pubmed/32286319


Int. J. Mol. Sci. 2020, 21, 6755 17 of 17

49. Kesel, S.; Grumbein, S.; Gümperlein, I.; Tallawi, M.; Marel, A.K.; Lieleg, O.; Opitz, M. Direct comparison
of physical properties of bacillus subtilis NCIB 3610 and B-1 biofilms. Appl. Environ. Microbiol. 2016, 82,
2424–2432. [CrossRef]

50. Kundukad, B.; Seviour, T.W.; Liang, Y.; Rice, S.A.; Kjelleberg, S.; Doyle, P.S.; Yang, L.; Kjelleberg, S. Mechanical
properties of the superficial biofilm layer determine the architecture of biofilms. Soft Matter 2016, 12,
5718–5726. [CrossRef]

51. Gunn, J.S.; Bakaletz, L.O.; Wozniak, D.J. What’s on the outside matters: The role of the extracellular polymeric
substance of gram-negative biofilms in evading host immunity and as a target for therapeutic intervention.
J. Biol. Chem. 2016, 291, 12538–12546. [CrossRef]

52. Koo, H.; Allan, R.N.; Howlin, R.P.; Stoodley, P.; Hall-Stoodley, L. Targeting microbial biofilms: Current and
prospective therapeutic strategies. Nat. Rev. Microbiol. 2017, 15, 740–755. [CrossRef]

53. Walters, K. Rheometry; Springer: New York, NY, USA, 1975.
54. Makosco, C.W. Rheology: Principles, Measurements, and Applications; Wiley: Weinheim, Germany, 1999.
55. Ray, Y.C.; Lee, H.O.; Jiang, T.L.; Jiang, T.S. Oscillatory torsional interfacial viscometer. J. Colloid Interface Sci.

1987, 119, 81–99. [CrossRef]
56. Lee, H.O.; Jiang, T.S.; Avramidis, K.S. Measurements of interfacial shear viscoelasticity with an oscillatory

torsional viscometer. J. Colloid Interface Sci. 1991, 146, 90–122. [CrossRef]
57. Nagarajan, R.; Wasan, D.T. Oscillatory deep channel interfacial rheometer. Rev. Sci. Instrum. 1994, 65,

2675–2679. [CrossRef]
58. Soo-Gun, O.; Slattery, J.C. Disk and biconical interfacial viscometers. J. Colloid Interface Sci. 1978, 67, 516–525.

[CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1128/AEM.03957-15
http://dx.doi.org/10.1039/C6SM00687F
http://dx.doi.org/10.1074/jbc.R115.707547
http://dx.doi.org/10.1038/nrmicro.2017.99
http://dx.doi.org/10.1016/0021-9797(87)90247-5
http://dx.doi.org/10.1016/0021-9797(91)90009-W
http://dx.doi.org/10.1063/1.1144669
http://dx.doi.org/10.1016/0021-9797(78)90242-4
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Viscoelastic Properties Changes over Time during B. subtilis Biofilm Formation 
	Depletion of the EPS Component of the Matrix Reduces Viscoelasticity of B. subtilis Biofilms 
	No EPS Production Disrupts the Dynamics of Viscoelastic Properties during Biofilm Growth 
	Vitamin C Treatment and eps Mutation Reduced the Overall Biomass, but Did Not Significantly Affect Cell Counts Per Volume Unit of Biofilm 
	B. subtilis Biofilm Was Fragile without the EPS Component of the Matrix 

	Discussion 
	Materials and Methods 
	Bacterial Strains and Culture Medium 
	Biofilm Formation and Interfacial Rheology 
	Biofilm Disruption Analysis with External Stress 
	Viability of Bacteria and Biofilmsˇ Biomass 

	References

