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Abstract A mixed integer linear programming model for the problem of sched-

uling tamping operations on ballasted tracks is presented and analyzed. The model

improves a previously proposed one by introducing disaggregated constraints

yielding in a model with stronger lower bound from the continuous relaxation of the

binary variables. A more general cost structure is proposed; a structure having the

possibility of including setup costs for the tamping operations. The problem con-

sidered is shown to be NP-hard. A numerical study is performed to evaluate the

performance of the model compared to two simple policies for constructing

maintenance schedules. The computational results show that the maintenance costs

can be reduced by up to 10 % as compared with the best policy investigated.

Keywords Preventive maintenance � Maintenance scheduling � Railway

maintenance � Mixed integer linear optimization � Rail tamping

Mathematics Subject Classification 90C10 � 90B06 � 90B25 � 90B35

1 Introduction

Preserving acceptable conditions of the components in production and infrastructure

systems requires that the correct maintenance is performed at the right time.

Maintenance is here defined as a set of activities aimed at improving the overall

reliability and availability of a system—often categorized into preventive
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maintenance (PM) and corrective maintenance (CM) activities. PM activities

consist of scheduled maintenance tasks performed to ensure the safety and to

prevent unexpected system breakdowns, while CM activities are performed after

failures or breakdowns of the system have occurred and to restore the system to an

operational state. Systems with several components differ from single-component

systems since dependencies between the components imply that maintenance

schedules which are optimal for individual components might be suboptimal or even

infeasible for the multi-component system as a whole Dekker et al. (1997). This

paper considers a multi-component system in which economic dependencies exist

between the components in the form of a setup cost that has to be paid each time at

least one of its components is maintained. Although the problem considered is based

on a specific application, the mathematical models developed and analyzed can be

utilized for general applications of PM scheduling.

An important notion to consider when scheduling PM is what is denoted in the

literature as opportunistic maintenance (OM). OM is a strategy in which a

mathematical model is utilized to decide whether, at a maintenance occasion, more

than the necessary maintenance activities should be performed; this is referred to as

PM activities at an opportunity. According to Dickman et al. (1991), Jorgenson and

Radner (1960) introduced the opportunistic replacement problem (ORP), in which

the objective is to optimally schedule the replacement of components in a system

over a finite, discrete time horizon. Each time any maintenance is performed a setup

cost is paid, which in turn gives rise to opportunities for PM. Further development

and a theoretical analysis of an integer linear programming (ILP) model for the ORP

was performed by Almgren et al. (2012). The ORP and the mathematical model

described by the authors are generalized by Gustavsson et al. (2014) to the

preventive maintenance scheduling problem with interval costs (PMSPIC). The

PMSPIC aims at scheduling maintenance activities over a finite time horizon such

that the costs for all maintenance intervals are minimized. The interval costs are

composed by costs for performing maintenance and costs representing the

degradation of the components. In the model presented in this paper, OM is

utilized implicitly when scheduling the PM. One assumption of the cost structure of

the tamping operations is that whenever any tamping is being performed on the rail

a fixed setup cost has to be paid. This cost is generated because the tamping

operations limits the traffic on the rail. The setup cost gives rise to opportunities for

more than the necessary tamping to be performed, i.e., OM can be utilized.

This paper considers the problem of scheduling PM on a railway system, in

particular the scheduling of tamping operations on ballasted tracks [e.g., Esveld

(1989)]. The reason for only scheduling PM is that CM is only performed when

unexpected breakdowns occur, i.e., when unforeseen events cause the components

to break. CM can therefore not be scheduled; it is a forced reaction to the

breakdowns that may occur. The system components to be maintained are the track

segments, and tamping is the maintenance activity adopted to correct the

longitudinal profile, the cross level, and the alignment of ballasted tracks.

According to Famurewa et al. (2013), tamping is considered to have a large impact

on the effective capacity of a railway network and is therefore an important

maintenance activity to schedule optimally; it is also stated that the current decision
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support tools for scheduling tamping activities do not support the increasing demand

for capacity, safety, and cost-effectiveness in the railway industry. Also in Ekberg

and Paulsson (2010) the importance of the track geometry as a cost-driving effect

for the maintenance cost is stated: one of the highest track maintenance costs for

infrastructure managers planning the maintenance of the track is the rectification of

a poor track geometry. The model presented here can easily be extended to include

more PM activities that are used to mitigate rail geometry deterioration. The reason

for limiting the scope of this paper to tamping operations is that the main measure

used to correct the rail geometry is rail tamping.

Under the influence of dynamic track loads the track geometry deteriorates. This

deterioration is typically quantified as track irregularities of the longitudinal track

profile. According to Esveld (1989), tamping can only correct irregularities with

wavelengths between 3 and 25 m. Therefore, the condition of a track segment with

respect to the track geometry is measured as the standard deviation of the

longitudinal profile over wavelengths from 3 to 25 m. To forecast the condition of

track segments, a deterioration and restoration model for the track irregularities

needs to be employed. The models available can be classified into two types:

(a) deterministic and (b) stochastic. The deterministic models found in the literature

are based on linear (Vale et al. 2012), polynomial (Jovanovic 2004), exponential

(Veit 2007; UIC 2008), or multi-stage linear (Chang et al. 2010) approximations of

the rate of the deterioration of the track irregularities. For an example of a model in

which the deterioration of the track geometry is modelled as a stochastic process,

see Lyngby et al. (2008), and for a model based on a Gamma process, see Meier-

Hirmer et al. (2006) and Meier-Hirmer et al. (2009). Quiroga and Schnieder (2012)

analyze thoroughly several models, both deterministic and stochastic. In this paper,

a deterministic model which is described in detail in Sect. 3 is utilized.

The aim of this paper is to present an extension of the mathematical optimization

model developed in Vale et al. (2012). The authors are the first to present an integer

linear programming model for the problem of scheduling tamping operations on

ballasted tracks. The model is, however, not thoroughly analyzed from a

mathematical point of view. Some of the constraints in the proposed model can

be strengthened to reduce the computation time for solving the model. The model

proposed in this paper includes economic dependencies between the components

(i.e., the track segments) of the railway system, as well as generalizes the objective

function to be minimized in the model. The model is validated through a numerical

study comparing the performance of the model with that of simple policies for

constructing maintenance schedules.

The remainder of this paper is organized as follows. In Sect. 2, a literature review

of maintenance scheduling for railway systems is presented. Section 3 introduces

and analyzes a mathematical model for the problem of scheduling tamping

operations on a railway system. In Sect. 4, two simple policies are presented for

constructing tamping schedules, and in Sect. 5 a numerical study of the model is

performed. The paper is concluded in Sect. 6 where some notes regarding possible

further developments of the model are expressed.
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2 Literature review

The problem of scheduling maintenance activities for mitigating the railway track

irregularities has been studied in the past. Miwa (2002), and later Oyama and Miwa

(2006) develop an integer linear programming (ILP) model in which the degradation

of the surface irregularities of the track is taken into account. A restoration model

explaining the effects of the maintenance activities on the track irregularities is also

developed and incorporated into the ILP model. The objective of the model is to

maximize the total expected improvement obtained from the track maintenance

scheduled. Another study concerning scheduling maintenance to improve track

irregularities is performed by Vale et al. (2012). The authors consider the objective

to minimize the total number of tamping operations performed on the system over a

finite time horizon. An ILP model of the scheduling problem is developed and

solved using optimization software. One of the latest contributions to the area is by

Famurewa et al. (2013) where the authors develop a model and present a case study

for the scheduling of tamping activities on a line section in the network of the

Swedish Transport Administration. The model utilizes an exponential degradation

model which is calibrated to fit historic measurements on the line section studied.

Another paper considering the scheduling of tamping activities is Zhang et al.

(2012) where the authors develop a mathematical optimization model to solve a

condition-based scheduling problem using a genetic algorithm.

Ferreira and Murray (1997) and Soh et al. (2012) present two surveys within the

area of railway maintenance scheduling. For a more technical analysis of the

possible defects of the components in the rail industry and how the components can

be maintained, see Cannon et al. (2003). For thorough surveys within the area of

maintenance scheduling for general systems, see Nicolai and Dekker (2008),

Pintelon and Gelders (1992), Sharma et al. (2011) and Wang (2002). For the special

case of maintenance of production systems, the survey by Budai et al. (2008)

analyzes the relation between the maintenance costs and the production benefits of

the system.

3 Mathematical model

In this section, a mathematical optimization model for the problem of scheduling

tamping activities on a railway system is proposed. The model extends the one

presented by Vale et al. (2012); the similarities and differences between the two

models will be clarified.

3.1 System and component degradation

Consider a rail network consisting of a set N ¼ f1; 2; . . .;Ng of track segments and

a set T ¼ f0; . . .; Tg of time steps at which tamping can be performed. The

condition of a track segment is measured as the standard deviation of the

longitudinal profile over wavelengths from 3 to 25 m. With this notion, a high (low)
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value of the standard deviation represents a bad (good) track condition, and the

lower bound of a track segment’s standard deviation is zero.

One assumption in this paper is that the condition of a segment at the beginning

of a time step depends only on its condition in the previous time step and on whether

or not tamping was performed on the segment in the previous time step. This

assumption is supported in UIC (2008) where the authors provide a degradation

model only depending on the track quality after the last tamping operation. Letting

the continuous variable sit denote the standard deviation of track segment i 2 N at

the beginning of time step t 2 T , the standard deviation of the segment will evolve

according to

si;tþ1 ¼
ð1þ aiÞðsit � ritÞ þ hi; iftampingwasperformedon

tracksegmentiattimestept;

ð1þ aiÞsit þ hi; otherwise;

8
><

>:
t 2 T n fTg;

ð1Þ

where the parameter hi� 0 denotes a constant increase of the standard deviation of

track segment i 2 N between two consecutive time steps, the parameter ai� 0

describes the increase of the degradation rate of track segment i 2 N when the

condition deteriorates, and the parameter rit � 0 denotes the recovery of the con-

dition obtained by performing tamping on track segment i 2 N at time step t 2 T .

In Vale et al. (2012), the degradation rate does not increase with the deterioration

of the track condition (i.e., linear degradation). The parameters ai� 0, i 2 N are

here introduced because they allow us to utilize a combination of a linear and an

exponential degradation model for the track irregularities; the usefulness of an

exponential model is justified in Quiroga and Schnieder (2010) through a numerical

study. The recovery of the track condition is assumed to depend linearly on the

value of the condition at the time of tamping, i.e.,

rit ¼ cisit þ bi; i 2 N ; t 2 T ; ð2Þ

where ci 2 ½0; 1� and bi 2 R are called the recovery parameters for track segment

i 2 N . This assumption is validated in Office for Research and Experiments (1988),

which states that the recovery effectiveness of the longitudinal level depends on the

quality of the track at the time of maintenance. For a set of track segments on the

Portuguese Railway Northern Line, Vale et al. (2012) employed the values ci ¼
0:4257 and bi ¼ �0:153, i 2 N ; Famurewa et al. (2013) employed ci ¼ 0:5445 and

bi ¼ �0:889, i 2 N , for a set of track segments on a line section in the network of

the Swedish Transport Administration. In Fig. 1, the condition of a track section

between time steps t ¼ 0 and t ¼ 50 is illustrated for a constant degradation rate,

i.e., ai ¼ 0. In Fig. 2, the degradation rate is assumed to increase with deteriorating

condition, i.e., ai [ 0. In both figures, tamping is performed at time steps t ¼ 18 and

t ¼ 42, and the recovery parameters are set to ci ¼ 0:8 and bi ¼ 0.
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3.2 The model

To formulate the mathematical model for optimally scheduling the tamping

activities, the following binary decision variables are introduced:

xit ¼
1; iftampingisperformedon

tracksegmentiattimestept;

0; otherwise;

8
><

>:
i 2 N ; t 2 T ; ð3Þ

zt ¼
1; iftampingisperformedonatleast

onetracksegmentattimestep t;

0; otherwise;

8
><

>:
t 2 T : ð4Þ

The variables xit denote whether or not tamping is performed on track segment

i 2 N at time step t 2 T , while the variables zt denote whether any tamping is

performed at time step t. A time step t 2 T such that zt ¼ 1 is denoted a mainte-

nance occasion.

Fig. 1 The condition of a track
segment assuming linear
degradation (ai ¼ 0) and
tamping performed at time steps
t ¼ 18 and t ¼ 42

Fig. 2 The condition of a track
segment assuming increasing
degradation (ai [ 0) and
tamping performed at time steps
t ¼ 18 and t ¼ 42
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The modeling of the evolution of the track condition defined in (1) using the track

condition variables sit and the binary variables introduced in (3) can be made

through the intuitive equations

si;tþ1 ¼ xit ð1þ aiÞðsit � ritÞ þ hið Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

tamping

þð1� xitÞ ð1þ aiÞsit þ hið Þ
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

notamping

; i 2 N ; t 2 T n fTg:

These equations are, however, nonlinear and would therefore lead to a computa-

tionally intractable model. Since the aim of the paper is to formulate a more trac-

table ILP model, the following constraints will instead be utilized:

si;tþ1�ð1þ aiÞsit þ hi � xits
max
i ; i 2 N ; t 2 T n fTg; ð5Þ

si;tþ1�ð1þ aiÞðsit � ritÞ þ hi � ð1� xitÞsmax
i ; i 2 N ; t 2 T n fTg; ð6Þ

where the constants smax
i � 0, i 2 N , are large enough (to be defined below). Pro-

vided that the objective function strives to minimize the value of sit for all i 2 N ,

t 2 T , the constraints (6) will be the bounding constraint on si;tþ1 if tamping is

performed on component i 2 N at time step t 2 T (i.e., if xit ¼ 1). If there is no

tamping on component i 2 N at time step t 2 T , (i.e., if xit ¼ 0) then the constraints

(5) will be bounding. Note that the reason for the constraints being bounding is that

the objective is to minimize the cost for maintenance, meaning that a lower track

condition is always favorable over a higher one. This implies that the condition

variables sit will always be set to the smallest feasible values, given the values of xit.

Another important note is that the term ð1� xitÞsmax
i can be removed from the

constraints (6), since the value of the right-hand side of (6) is always lower than that

of the value of the right-hand side in (5) when xit ¼ 0.

The reason for performing any tamping on the system is the fact that the track

condition of track segment i 2 N shall not exceed its predefined limit smax
i . These

conditions are based on riding quality and safety assessments and are formulated by

the constraints

sit� smax
i ; i 2 N ; t 2 T : ð7Þ

The track conditions at time zero are defined by the constraints

si0 ¼ sinit
i ; i 2 N ; ð8Þ

where sinit
i denotes the initial condition of track segment i. I assume that the track

conditions are non-negative scalars, which is represented by the constraints sit � 0,

i 2 N , t 2 T . These constraints will in most practical applications be redundant

because ci� 1 and bi� hi in a realistic deterioration model.

Vale et al. (2012) assume that tamping operations have to begin and end on

straight alignment segments (UIC 2008); this assumption is modelled by the

constraints
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X

i2I k

xit � jI kjxkt; k 2 N ; t 2 T ; ð9Þ

where I k denotes the smallest set of consecutive track segments such that k 2 I k

and the first and last segment in I k are straight alignment segments, and jI kj denotes

the number of elements in the set I k. For an illustration of the sets I k, k 2 N , for a

railway network consisting of seven track segments, see Fig. 3. A stronger for-

mulation of the constraints (9), in the sense of the strength of the continuous linear

relaxation (Nemhauser and Wolsey 1988), is given by

xit � xkt; i 2 I k; k 2 N ; t 2 T ; ð10Þ

since the constraints (9) constitute an aggregation of the constraints (10). In this

paper, the disaggregated constraints (10) will be employed since they yield a model

with a stronger lower bound from the continuous relaxation of the binary variables

than with the use of the constraints (9). A stronger lower bound means that when

applying a branch-and-bound algorithm for solving the proposed problem, the lower

bounds obtained in the branching nodes will be of higher quality. Hence, using the

constraints (10) instead of (9), the efficiency of the branch-and-bound algorithm can

be improved. For a numerical comparison between the two formulations, see Sect.

5.3.

To clarify further why the formulation (10) constitute a tighter description of the

convex hull of feasible solutions, consider the example in Fig. 3. First, assume that

the integrality requirements on the variables xit are relaxed and that the formulation

(9) is used for k ¼ 6 and t ¼ 1. Then the variable values x5;1 ¼ 0, x6;1 ¼ 0:5, and

x7;1 ¼ 1 are feasible with respect to that constraint. If the tighter formulation (10) is

utilized, this solution would not be feasible since x5;1\x6;1, which violates

constraint (10) for i ¼ 5, k ¼ 6, and t ¼ 1. In general, any feasible solution with

respect to the constraints (10) is also a feasible solution with respect to the

constraints (9). The reverse, however, does not hold in general as the numerical

example just presented illustrates. So, when utilizing branch-and-bound techniques

for solving the optimization model presented, the formulation (10) always provides

a linear relaxation which is tighter than the one obtained using the formulation (9).

As in the opportunistic replacement problem (ORP) described in Almgren et al.

(2012) the binary variables, zt, t 2 T , are included denoting whether or not any

maintenance shall be performed in time step t. To connect these variables with the

variables, xit, i 2 N , t 2 T , the following constraints are introduced:

Fig. 3 A railway system consisting of seven track segments. For this example, I1 ¼ f1g, I 2 ¼ f2g,
I 3 ¼ I4 ¼ f2; 3; 4; 5g, I5 ¼ f5g, I 6 ¼ f5; 6; 7g, and I7 ¼ f7g
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xit � zt; i 2 N ; t 2 T : ð11Þ

Note that also for these constraints the aggregated formulation
P

i2N xit � jN jzt,

t 2 T (Dickman et al. 1991) yields a model with a weaker linear relaxation than the

one presented in this paper.

To formulate a general optimization model, the function that is to be minimized

is given by
X

i2N

X

t2T
citxit þ

X

t2T
dtzt;

where cit � 0 is the cost of performing tamping on track segment i 2 N at time step

t 2 T , and dt� 0 is the cost associated with a maintenance occasion at time step

t 2 T . The special case presented in Vale et al. (2012), in which the objective is to

minimize the number of tamping operations, is obtained by letting cit ¼ 1, i 2 N ,

t 2 T , and dt ¼ 0, t 2 T . The complete optimization model can then be formulated

as the problem to

The objective (12a) is to minimize the total maintenance cost over the time period

defined by the time steps T . As discussed above, the constraints (12b) and (12c)

ensure a correct modeling of the conditions of the track segments with respect to the

timing of the tamping activities. The restoration model described in (2) is modelled

by the constraints (12d). The track conditions are bounded from above through the

constraints (12e), and the conditions at time zero are initialized through the con-

straints (12f). The constraints (12g) ensure that a tamping operation begins and ends

at a straight alignment track, and the constraints (12h) ensure that the cost of a

maintenance occasion is paid every time step in which any tamping is being per-

formed. Finally, the constraints (12i) ensure that the maintenance decision variables

are binary.

Note that the values of the standard deviation variables sit and rit are fully

determined by the values of the decision variables xit and zt, since the conditions of
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the components can always be computed as long as the tamping occasions are

known.

3.3 Special cases and computational complexity

For the special case when cit ¼ 1, i 2 N , t 2 T , dt ¼ 0, t 2 T , and ai ¼ 0, i 2 N ,

the model (12) is equivalent to that presented by Vale et al. (2012), except that the

constraints (9), which are presented in Vale et al. (2012), are here replaced by the

stronger formulation (12g).

A problem which also arises as a special case of the model (12) is the ORP

analyzed in Almgren et al. (2012), which models the maintenance planning for a

multi-component system with the objective function (12a). For each component

i 2 N a maximum interval Ti between any two consecutive replacements is given,

and the problem is to find a minimum cost schedule for the system such that, for

each component i 2 N , no period without maintenance is longer than Ti. Consider

an instance of the model (12) with ai ¼ 0, hi ¼ 1, smax
i ¼ Ti, sinit

i ¼ 0, bi ¼ 0,

I i ¼ ;, and ci ¼ 1, i 2 N . Any feasible schedule for the model (12) will then only

include maintenance intervals of length � Ti, i 2 N . The optimal solution to the

model (12) is thus also an optimal solution to the ORP. As was shown in Almgren

et al. (2012), the ORP is NP-hard [see, e.g., Garey and Johnson (1979) and

Papadimitriou (2003)], which implies that also the scheduling problem considered

in this paper is NP-hard.

4 Policies

As mentioned above the condition variables, sit, are fully determined by the values

of the decision variables, xit and zt. A tamping schedule can therefore be defined by

a set of binary values xit, i 2 N , t 2 T , and zt, t 2 T . A policy is defined as a rule or

an algorithm that constructs a tamping schedule given the input parameters of the

specific problem instance.

The reason for introducing the following two policies is to evaluate the

maintenance costs generated by the PM schedules obtained when solving the model

(12) compared to the costs generated by schedules obtained from simpler policies.

The first policy is a simple greedy rule for constructing tamping schedules. One

version of the simple policy is described in (Almgren et al. (2012), Definition 2) and

is there denoted the non-opportunistic maintenance policy. The algorithm starts at

time zero and then steps forward in time and schedules only the necessary tamping

in each time step.

4.1 Greedy policy

– Step 0: initialize the schedule and the component conditions: Let xit :¼ 0,

i 2 N , t 2 T , and zt :¼ 0, t 2 T . Let si0 :¼ sinit
i , i 2 N , and t :¼ 0.
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– Step 1: perform tamping on any component that will reach its maximum

standard deviation in the next time step: For all i 2 N such that

ð1þ aiÞsit þ hi [ smax
i , let xit :¼ 1 and xkt :¼ 1, k 2 I i.

– Step 2: check whether a maintenance occasion has occurred: If xit :¼ 1 for any

i 2 N , let zt :¼ 1.

– Step 3: update the standard deviation of the track segments according to (1):

– Step 4: check termination criteria: If t� T , terminate. Otherwise, let t :¼ t þ 1

and go to Step 1.

One drawback of the greedy policy is that it does not take into account the

opportunities generated at the time steps at which tamping is performed. Regardless

of the cost for a maintenance occasion, the policy will produce the same tamping

schedule. This is also the reason for including the policy in the evaluation in this

paper. Because no OM is utilized, the effect of OM can easily be evaluated when

comparing the schedules created by the greedy policy and the ones created by

solving the model (12).

In the maintenance literature [e.g., (Barlow and Proschan (1965), Chapter 3)] age

replacement policies are common. For a thorough review of age replacement

policies, see Wang (2002). One such policy (introduced in Crocker and Kumar

(2000) where the application was maintenance of aero-engines, and utilized in

Almgren et al. (2012) and Gustavsson et al. (2014) is the age policy, in which at

each time step when any maintenance is being performed, one also maintains all

components with a remaining life (number of time steps until the next necessary

maintenance occasion) below a threshold g [ 0. The remaining life, TiðsitÞ, for

component i given a condition sit is defined as the number of steps of the iteration

formula si;tþ1 ¼ ð1þ aiÞsit þ hi required until it reaches a state sit � smax
i .

4.2 Age policy

– Step 0: initialize the schedule and the component conditions: Let xit :¼ 0,

i 2 N , t 2 T , and zt :¼ 0, t 2 T . Let si0 :¼ sinit
i , i 2 N and t :¼ 0.

– Step 1: perform tamping on any component that will reach its maximum

condition in the next time step: For all i 2 N such that ð1þ aiÞsit þ hi [ smax
i ,

let xit :¼ 1 and xkt :¼ 1, k 2 I i,

– Step 2: check whether a maintenance occasion has occurred: If xit ¼ 1 for any

i 2 N , let zt :¼ 1, and also let xkt :¼ 1 and xjt :¼ 1, j 2 I k, for all k 2 N such

that TkðsktÞ\g.

– Step 3: update the standard deviation of the track segments according to (1):

– Step 4: check termination criteria: If t� T , terminate. Otherwise, let t :¼ t þ 1

and go to Step 1.

In the numerical study below the threshold g is varied for each problem instance and

the threshold yielding the lowest maintenance cost for each specific problem

instance is chosen.
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5 Numerical study

The following numerical study shows the usefulness of the model (12) for

computing schedules for tamping activities on a rail system.

5.1 Problem instances and implementation

The planning horizon for the instances generated is 2 years and the discrete time

steps represent two weeks, meaning that the number of time steps is T ¼ 52. To

analyze the usefulness of the model and the performance of the policies presented in

Sect. 4, ten problem instances are generated each with n ¼ 10; 15, and 20 track

segments, respectively. For each problem instance the setup cost is varied as

dt ¼ 0; 1, and 10, t 2 T , to evaluate the performance of the heuristics depending on

the setup costs. In all instances cit ¼ 1, i 2 N , t 2 T , and the limit smax
i ¼ 2:4 mm,

i 2 N , for the standard deviation of the longitudinal level (Vale et al. 2012).

The random instances are then generated as follows. The initial standard

deviation of the track segments are uniformly distributed random variables in the

range 0.5–2.4 mm, i.e., sinit
i �Uð0:5; 2:4Þ mm. In Vale et al. (2012), the constant

degradation rate of the standard deviation is for their example mostly distributed

between 0.0005 and 0.0025 mm per day. Since each time step in my model consists

of 14 days, the constant degradation rate is distributed as

hi� 14� Uð0:0005; 0:0025Þ mm per time step. To evaluate the effect of an

exponential degradation of condition of the track segments, two cases for each

problem instance are considered: (i) constant degradation (ai ¼ 0, i 2 N ), and (ii)

increasing degradation (ai ¼ 0:01, i 2 N ).

The mathematical model (12) is implemented in AMPL (version 12.1) and solved

using CPLEX (version 12.1). The policies described in Sect. 4 are implemented in

MATLAB (version R2010b). The age policy is applied for each of the values of

g 2 f1; . . .; Tg; for each problem instance the value yielding the lowest objective

value is chosen.

5.2 Computational results

In Table 1, the average total maintenance costs resulting from the three maintenance

principles [greedy policy, age policy, and optimal solution to the model (12)] are

presented for the two cases of constant degradation (ai ¼ 0) and increasing

degradation (ai ¼ 0:01), respectively. As expected, the age police clearly produces

maintenance schedules with lower maintenance costs than the schedules generated

by the greedy policy. Since the greedy policy does not take into account the

opportunities generated at time steps at which maintenance is being performed, the

performance of the policy gets worse when the setup costs, dt, increases. This

behavior can be seen for both when the degradation is constant and when it is

increasing. When employing a high setup cost (dt ¼ 10), the greedy policy

produces, on average, schedules with maintenance costs almost three times the costs

of the schedules obtained by solving the model (12).
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The schedules generated by the age policy have on average maintenance costs

which are a few percent higher than the schedules obtained by solving the model

(12). For the worst cases, when there is no setup costs and the degradation is

increasing, the schedules produced by the age policy are on average ten percent

more expensive than the optimal schedules. There is no clear difference in the

performance of the age policy between the constant and the increasing degradation

case, and neither any difference when varying the setup costs.

The benefit of the model (12) compared to both the greedy policy and the age

policy is apparent. Even though the cost reduction obtained using the model

compared to the age policy is only a few percent on average, it is still quite a large

improvement considering the huge costs involved in tamping operations. The

average computation time for solving the model to optimality was approximately

20 s. Some problem instances, however, took up to 10 min to solve; the majority of

the time being spent on verifying optimality of the solutions found.

5.3 Comparison of computation times

As stated in Sect. 3.2, one of the main differences between the model proposed in

this paper and the one presented by Vale et al. (2012) is the formulation of the

constraints ensuring that tamping operations begin and end on straight alignment

track segments. In this paper, the stronger formulation (10) is utilized instead of (9)

which was proposed by Vale et al. (2012). Since the formulation (10) is stronger in

the sense that the lower bounds obtained in the branching nodes in a branch-and-

bound framework is higher, the efficiency of the branch–and–bound algorithm is

expected to be higher.

To evaluate the difference in computation times between the formulations, the

two models are solved for 10 random instances for each of N ¼ 3; 4; . . .; 10. The

average computation times for the two models are illustrated in Fig. 4. As one can

clearly see in the figure, the computation time for the model using the stronger

formulation (10) is shorter than when using the formulation (9). When N ¼ 10, the

average computation time for the model using (9) is more than 50 % longer (95.2

vs. 62.7 s) than when using (10). One reason for this large difference between the

computation times is that most of the computation time when solving the problems

with CPLEX is dedicated to proving optimality of the solutions found. Hence, a

model that can provide a better lower bound in the branching nodes will be superior.

6 Conclusions and future research

A mathematical optimization model for the problem of scheduling tamping

operations on ballasted tracks is proposed. The model previously developed in Vale

et al. (2012) is improved by introducing disaggregated constraints yielding in a

model with stronger lower bound from the continuous relaxation of the binary

variables. The model in Vale et al. (2012) is also extended to include a more general

cost structure yielding in a model having the possibility of including setup costs for

the tamping operations. The problem considered is shown to be NP-hard.
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The model (12) is evaluated through a numerical study where the costs of the

maintenance schedules obtained from solving the model with schedules obtained

using simple policies are compared. Using the model (12) reduces the maintenance

costs by up to 10 % as compared with the best policy investigated.

Future research include trying to include the cost structure utilized in the

PMSPIC [see Gustavsson et al. (2014)] where the cost for a maintenance operation

on a component depends on the time since the last maintenance operation. My

intention is to evaluate the usefulness of the model (12) by performing a case study

where I compare the schedules generated with the ones utilized in practice. I also

Table 1 The average total maintenance costs of the different schedules over ten random test instances

for both a constant degradation (a ¼ 0) and an increasing degradation (a ¼ 0:01)

Greedy policy Age policy Optimal cost

Cost % From opt. Cost % From opt.

a ¼ 0

No setup cost (dt ¼ 0)

n ¼ 10 17.0 16.4 15.2 4.1 14.6

n ¼ 15 21.0 9.4 19.6 2.1 19.2

n ¼ 20 29.0 16.0 26.4 5.6 25.0

Medium setup cost (dt ¼ 1)

n ¼ 10 23.2 38.1 17.2 2.4 16.8

n ¼ 15 29.0 35.5 22.6 5.6 21.4

n ¼ 20 40.6 50.4 29.0 7.4 27.0

High setup cost (dt ¼ 10)

n ¼ 10 79.0 127.0 35.2 1.2 34.8

n ¼ 15 101.0 157.6 41.4 5.6 39.2

n ¼ 20 145.0 222.2 47.4 5.3 45.0

a ¼ 0:01

No setup cost (dt ¼ 0)

n ¼ 10 28.0 4.5 27.0 0.8 26.8

n ¼ 15 42.2 14.7 40.6 10.3 36.8

n ¼ 20 51.8 13.1 46.8 2.2 45.8

Medium setup cost (dt ¼ 1)

n ¼ 10 37.0 23.3 30.6 2.0 30.0

n ¼ 15 59.6 46.1 44.4 8.8 40.8

n ¼ 20 69.4 41.6 50.0 2.0 49.0

High setup cost (dt ¼ 10)

n ¼ 10 118.0 108.5 60.8 7.4 56.6

n ¼ 15 216.0 219.8 73.2 8.3 67.6

n ¼ 20 227.8 200.5 77.0 1.6 75.8

The optimal cost is the maintenance cost for the schedule obtained by solving the model (12)
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intend to include deterioration and restoration models which can vary over time

[e.g., Quiroga and Schnieder (2012)].
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