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The dynamical Casimir effect is an intrigu-
ing phenomenon in which photons are generated
from vacuum due to a non-adiabatic change in
some boundary conditions. In particular, it con-
nects the motion of an accelerated mechanical
mirror to the generation of photons. While pi-
oneering experiments demonstrating this effect
exist, a conclusive measurement involving a me-
chanical generation is still missing. We show
that a hybrid system consisting of a piezoelec-
tric mechanical resonator coupled to a supercon-
ducting cavity may allow to electro-mechanically
generate measurable photons from vacuum, in-
trinsically associated to the dynamical Casimir
effect. Such an experiment may be achieved
with current technology, based on film bulk
acoustic resonators directly coupled to a super-
conducting cavity. Our results predict a measur-
able photon generation rate, which can be fur-
ther increased through additional improvements
such as using superconducting metamaterials.

1 Introduction
Quantum mechanics predicts that virtual particles can
emerge from vacuum. This phenomenon, known as
quantum fluctuations, is a cornerstone to explaining key
effects in nature, ranging from the anomalous magnetic
moment of the electron [1], to the enhancement in quan-
tum transport phenomena [2], and the Lamb shift of
atomic spectra [3]. Another paramount example is the
Casimir effect, which results from a force between two
separated conducting plates [4–7]. G. T. Moore [8]
suggested the existence of a kinetic analogue to this
phenomenon, known as the dynamical Casimir effect
(DCE). This effect, based on the fact that a moving
mirror modifies the mode structure of the electromag-
netic vacuum dynamically, is the result of a mismatch
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of vacuum modes in time. Indeed, if the velocity of
a mirror is much smaller than the speed of light, no
excitations emerge out of the vacuum, since the elec-
tromagnetic modes adiabatically adapt to the changes.
However, if the mirror experiences relativistic motion,
these changes occur non-adiabatically. Hence, the vac-
uum state of the electromagnetic field can be excited by
taking energy from the moving mirror, resulting in the
generation of real photons. It has been suggested that,
due to the large stress generated on any macroscopic
material moving with relativistic speed, the observa-
tion of the DCE might actually be unrealistic [9, 10].
This challenge inspired various alternative proposals to
observe the DCE [10–22], e.g., by employing nanome-
chanical resonators, modulating two-level systems in-
side a cavity or modulating the electric boundary con-
ditions of a superconducting cavity; for an overview see,
e.g., [9, 23, 24].

Only recently, DCE radiation has been experimen-
tally observed [25] in superconducting circuits by mov-
ing the electric boundary condition of a superconduct-
ing cavity [20, 21] instead of the center of mass of a
mirror. In a similar experiment, DCE photons were
created by modulating the effective speed of light [26]
making use of a superconducting metamaterial. Ad-
ditionally, relevant applications of these experiments,
such as a robust generation of multi-partite quantum
correlations [20, 21, 27–30], were proposed, and recently
observed [31], thus, highlighting the potential of this ef-
fect beyond its fundamental interest. However, no ex-
periment to date has succeeded in generating photons
out of vacuum using a moving mechanical object in the
spirit of the original DCE proposal.

In this letter, we propose an experiment consisting
of a nanomechanical resonator that is directly cou-
pled to a high impedance superconducting cavity (see
Fig. 1) in order to create a measurable rate of electro-
mechanically generated DCE photons. Our proposal de-
velops the idea to employ film bulk acoustic resonators
(FBAR) for DCE photon creation from Ref. [17] further
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by combining it with the technology of superconduct-
ing circuits [20, 21, 25, 32]. Our calculations make use
of recent advances in mechanical oscillators based on
FBAR technology using thin films of Al-AlN-Al [32].
The presence of a superconducting cavity allows for a
resonant enhancement of the photon rate which sur-
passes the radiation from a single mirror by several or-
ders of magnitude [12–14]. We study the minimally
required conditions to observe a stable flux of photons
resulting from the electro-mechanically amplified quan-
tum vacuum, concluding that such a measurement is
feasible with current technology. Finally, we propose
technical improvements to further enhance the mechan-
ical photon production. Our work also paves the way
to experimentally test other fundamental relativistic ef-
fects with mechanical resonators, such as the Unruh ef-
fect or the Hawking radiation [24]
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Figure 1: Scheme of the coupling between an FBAR and a su-
perconducting cavity. (a) Artistic view representing an FBAR
(top left), i.e., a resonator composed of two superconducting
layers sandwiching a piezoelectric material. The FBAR ter-
minates one side of a superconducting cavity that is capaci-
tively coupled to a semi-infinite transmission line (lower right).
(b) Equivalent circuit of the proposed implementation, which
is composed of the mechanical resonator (time-dependent ca-
pacitance C(t) and voltage drive V (t)) and the supercon-
ducting cavity (with C and L capacitance and inductance per
unit length ∆x). We have employed the modified van Dyke-
Butterworth model to provide the equivalent lumped-element
circuit representation of the FBAR and model the cavity as an
infinite set of LC circuits which will be afterwards capacitively
coupled via Cc to a semi-infinite waveguide.

2 Proposed implementation
The proposed setup consists of a piezoelectric FBAR
resonator with resonance frequency Ω/2π = 4.20 GHz
(e.g. made from Al-AlN-Al) and a superconducting cav-

ity (e.g. made from Al) with length d = 33 mm, which
is capacitively coupled to a semi-infinite transmission
line for the read-out, as shown in Fig. 1, all assumed
to be operating at a temperature of 10 mK. To match
the resonance condition in an actual experimental im-
plementation, we note that the superconducting cav-
ity can be made tunable in frequency by incorporating
a flux-biased SQUID [25, 33]. We have chosen values
that closely follow the parameters from Ref. [32], for
details see Appendix B.4. An AC voltage is applied to
the superconducting plates of the mechanical resonator.
This voltage drive has two effects: (i) the piezoelectric
material of the FBAR converts the AC voltage into me-
chanical contraction and expansion, which essentially
leads to a change of the length of the superconducting
cavity; (ii) the voltage drive changes the potential of the
cavity’s boundary. Both effects result in the production
of DCE photons.

2.1 FBAR modeling
We make use of the modified van Dyke-Butterworth
model to construct the equivalent lumped-element cir-
cuit representation of the FBAR [34, 35] (for details
see Appendix B). This circuit contains two parallel
branches. The first one consists of a mechanical ca-
pacitance Cm, mechanical inductance Lm and a resis-
tor Rm modeling the mechanical dissipation connected
in series, while the second one contains a resistor R0
taking into account the dielectric loss and, crucially, a
geometrical capacitance C(t), which slightly changes in
time when an AC voltage is applied to the plates of the
FBAR. Composing the impedances for both branches,
Zm and Z0, it is straightforward to prove that the total
impedance Z ≈ Z0, which, to first order, can be reduced
to C(t) (see Appendix B).

Let us estimate the change in the capacitance C(t)
when an AC voltage V (t) = Vpp cos(ωt + φ) is applied
to the electrodes. An AC voltage with an amplitude Vpp
at the resonance frequency of the mechanical resonator
ω = Ω results in a change of the inter-plate distance
∆x(Vpp) ≈ 1.7 · Vpp nm/V (see Appendix A). Crucial
here is that the piezoelectric effect is enhanced by the
mechanical quality factor of the FBAR, assumed to be
Q = 300 [32]. Applying a voltage of Vpp = 500µV thus
results in ∆x = 8.5 · 10−13m, which is more than five
orders of magnitude smaller than the thickness tAlN =
3.5 · 10−7m of the piezoelectric layer. Thus, we model
the resulting mechanical contraction and expansion as
harmonic. The time-varying capacitance is then given
as C(t) = εAlNA/[tAlN + ∆x cos(Ωt)], with A as area of
the FBAR and εAlN as dielectric constant of AlN. We
expand C(t) for ∆x� tAlN and finally obtain

C(t) ≈ C0 + ∆C cos(Ωt) (1)
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with C0 = εAlNA/tAlN and ∆C ≈ C0∆x/tAlN.

2.2 Lumped-element circuit model
The Lagrangian describing the circuit of the FBAR con-
nected to an open transmission line (without the cou-
pling capacitor Cc shown in Fig. 1) can be written as

L =
∞∑
i=0

[
δxC

2 Φ̇2
i+1 −

1
2δxL (Φi+1 − Φi)2

]
+ 1

2C(t)(Φ̇0 − Φ̇v)2 + 1
2CgΦ̇

2
0. (2)

Here, C and L are the densities of capacitance and in-
ductance of a transmission line per unit length δx, re-
spectively, Cg is the capacitive coupling of the FBAR
to ground, which we will discard in our analysis as it
is much smaller than any other quantity involved, Φi is
the i-th node flux and Φ̇v = V is the voltage of the AC
source. In the continuous limit, the equation of motion
corresponding to i = 0 is given by

C(t)Φ̈(0, t) + Ċ(t)Φ̇(0, t)− 1
L
∂Φ(x, t)
∂x

∣∣∣
x=0

= F (t), (3)

with F (t) = d
dt (θ(t)C(t)V (t)) being the electro-

mechanical source term, and θ(t) is the Heaviside step
function. In order to solve it, we follow a similar ap-
proach to Ref. [20, 21] and expand the field in the
Fourier components

Φ(x, t) =
√

~Z0

4π

∫ ∞
0

dω
1√
ω

[
ain(ω)e−i(ωt−kωx)

+aout(ω)e−i(ωt+kωx) +H.c.
]
,

with Z0 ≈ 55 Ω. Equation (3) can now be written as

∫ ∞
0

dω

√
~Z0

4π|ω|

[

+
(
−ω2C(t)− iωĊ(t)− ikω

L

)
ain(ω)e−iωt

+
(
−ω2C(t)− iωĊ(t) + ikω

L

)
aout(ω)e−iωt

+H.c.

]
= F (t).

By integrating over
∫∞
−∞ dt

√
|ω′|eiω′t, we can see that

in the case of a static capacitor (i.e. C(t) = C0), it

behaves as a mirror placed at x = −Leff ≈ C0
C , such

that the effective length of the resonator shown in Fig. 1,
which will be introduced below, is deff = d+ Leff.

Resonances emerge due to the inelastic interaction
of the photons with the oscillating mirror, and the in-
coming modes ain(ω) with frequency ω are scattered
elastically as aout(ω) and inelastically as aout(ω + Ω),
aout(ω + 2Ω), ... . Keeping only the first inelastic reso-
nances, as higher resonances have higher orders in ∆C,
and assuming that 0 < ω ≤ Ω, which is natural since
the condition for the rotating wave approximation holds
around Ω ≈ 2ω′, the output mode is given by

aout(ω,Leff) = h(ω,Ω) + ain(ω,Leff)
+ S(ω,Ω + ω)ain(Ω + ω,Leff)

+ S(ω,Ω− ω)a†in(Ω− ω,Leff). (4)

Here, the operators ain and aout are defined in the
displaced position x = Leff, h(ω,Ω) is the identity in
operator space, as we have treated the source classically,
and

S(ω′, ω′′) = −i∆CZ0
√
|ω′||ω′′|θ(ω′)θ(ω′′), (5)

h(ω,Ω) = −i
√

4πZ0

~ω
F(ω,Ω), (6)

where F(ω,Ω) = (2π)−1/2 ∫∞
−∞ dtF (t)eiωt is the Fourier

transform of F (t).
The aforementioned result describes an oscillatory

mirror coupled to a one-dimensional open transmission
line. The photon production due to the change in the
boundary conditions can be dramatically increased by
introducing a cavity with a well chosen resonance con-
dition, as shown for example in Ref. [12–14]. In order to
realize this, we will introduce a capacitor at a distance
d of the FBAR, as depicted in Fig. 1. We redefine the
origin of the coordinates in the coupling capacitance be-
tween the cavity and the line and hence the harmonic
mirror is placed at x = deff = d+Leff, with d the length
of the cavity for a static mirror. Therefore, the natu-
ral frequency of the resonator is ω0/2π = v/deff with
v the speed of light in the superconducting material.
The input-output relations connecting the fields inside
the cavity {ain, aout} to fields in the transmission line
{bin, bout} are given by

(
ain(ω, 0)
aout(ω, 0)

)
=
(
ᾱω βω
β̄ω αω

) (
bin(ω, 0)
bout(ω, 0)

)
, (7)

with αω = 1 + iωc/2ω, βω = iωc/2ω and the coupling
rate ωc = 1/CcZ0. Notice that ωc is a measure of how
large the coupling of the resonator to the line is. Indeed,
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for ωc � ω it is completely decoupled, while ωc = 0
means that there is no cavity. Equation (7) holds for
x = 0 [20, 21], but as we want to connect the fields
in the line with the reflected fields on the oscillating
mirror, we must displace the cavity fields to x = deff

by using the matrix diag(eikωdeff , e−ikωdeff). In order to
compute the reflection coefficient Rres(ω) of the cavity,
we can consider that the inelastic scattering process is
absent and that only the reflection-transmission process
remains, so ain(ω, deff) = aout(ω, deff). Under this con-
dition, we get

Rres(ω) =
1 + (1 + 2iω

ωc
)e2ikωdeff

(1− 2iω
ωc

) + e2ikωdeff
. (8)

Similarly, we also want to study the mode structure
of the resonator. This information is encoded in the
function Ares, defined as aout(ω, deff) = Ares(ω)bin(ω, 0),
as it contains the response of the resonator to any input
signal coming from the line,

Ares(ω) =
( 2iω
ωc

)eikωdeff

(1− 2iω
ωc

) + e−2ikωdeff
. (9)

The resonance frequencies can be deduced from the
denominator of Eq. (9) and, as shown in Ref. [21], they
are approximately the solutions of the transcendental
equation tan(2πω/ω0) = ωc/ω. The outgoing mode in
the open transmission line in the presence of a driven
FBAR, keeping only the first order of S(ω′, ω′′), reads

bout(ω) = hres(ω,Ω) +Rres(ω)bin(ω)
+ Sres

1 (ω,Ω + ω)bin(Ω + ω)

+ S̄res
2 (ω,Ω− ω)b†in(Ω− ω), (10)

with

hres(ω,Ω) = h(ω,Ω)
[
(1− 2iω

ωc
) + e−2ikωdeff

]−1

Sres
1 (ω′, ω′′) = S(ω′, ω′′)Ares(|ω′|)Ares(|ω′′|)
Sres

2 (ω′, ω′′) = S(ω′, ω′′)Āres(|ω′|)Ares(|ω′′|).

3 Electro-mechanical DCE photon rate
For an initial thermal state, the mean photon number
nout(ω) = 〈b†out(ω)bout(ω)〉T is given by

nout(ω) = |Rres(ω)|2 nin(ω)
+ |Sres

1 (ω,Ω + ω)|2 nin(Ω + ω)
+ |Sres

2 (ω,Ω− ω)|2 [1 + nin(Ω− ω)]
+ |hres(ω,Ω)|2, (11)
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Figure 2: Electro-mechanical DCE photon production. We con-
sider the generated photons nout(ω) in Hz per unit bandwidth
versus observation frequency ω in units of the mechanical fre-
quency Ω. Main panel (using Vpp = 500µV, Q = 300): The
orange (light gray) line depicts the total number of photons in
the open transmission line that originate from the DCE effect
and thermal radiation. The green (dark gray) line shows the
photons only generated via the electro-mechanical DCE effect,
whereas the purple (dotted) line shows the thermal contribu-
tion. The vertical gray lines depict the resonances of the su-
perconducting cavity. The inset shows an enhanced mechanical
DCE photon production assuming an FBAR with a higher me-
chanical quality factor ( Q = 3 ·106 and using a driving voltage
of Vpp = 5µV). The additional blue (dashed) line shows the
DCE photons only created through the mechanical motion of
the FBAR.

where nin(ω) = [exp(~ω/kBT )− 1]−1
is the thermal

photon occupation at temperature T . The photon pro-
duction of electro-mechanical Casimir origin is given by
the term |Sres

2 (ω,Ω − ω)|2 + |hres(ω,Ω)|2. The total
mean photon number nout(ω) is plotted in Fig. 2. For
ω/Ω = 1/2 we see that the Casimir photon production
is of the order of 10−2 photons/s/unit bandwidth for a
driving voltage of Vpp = 500 µV. This is comparable to
the photon production predicted by [20, 21] and should
be easily measurable with current technology [36, 37].
The DCE part of the total photon number is well above
the thermal photon noise floor.

The non-adiabatic change in the boundary conditions
is of electro-mechanical nature, as the voltage driving
the FBAR also produces a change in the potential of
the boundary, in addition to the mechanical movement
of the plate. Even though it can not be measured, one
may wonder about the ratio of the photon production
which is purely due to the mechanical movement. In or-
der to calculate electrically generated photons, we con-
sider the situation in which the piezoelectric material is
removed, i.e., ∆C = 0, while the voltage source is still
connected. By subtracting this from the total number of
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generated photons with the same parameters as before,
we estimate the purely mechanical photon production
to be 5 × 10−9 photons/s/unit bandwidth. Therefore,
only about one in every million generated photons can
be ascribed to mechanical motion alone. However, in
our situation it is not possible to experimentally dis-
tinguish the photons generated by changes in the elec-
trical boundary conditions from the ones generated by
changes in the mechanical boundary conditions. Con-
sequently, we can only talk about electro-mechanically
produced photons.

Improving the quality factor of the FBAR will dras-
tically change the picture. Assuming a quality factor of
3·106, i.e. 4 orders of magnitude larger than in Ref. [32],
and a smaller driving voltage of Vpp = 5µV results in
∆x = 8.5 · 10−11 m. This high-Q regime is in principle
already experimentally accessible with other materials,
for example with GHz mechanical oscillators made of
silicon [38]. The higher mechanical quality factor and
the lower driving voltage benefit the ratio of DCE pho-
tons generated via mechanical compared to electrical
origin, such that both can be of equal magnitude, see
inset of Fig. 2.

4 Discussion and Conclusion
Further improvements could be obtained by using a ma-
terial with higher piezoelectric coefficient, higher me-
chanical quality factor and larger dielectric constant for
the FBAR. The most promising approach is the use
of SQUID-based metamaterials for the resonator. In-
deed, recent experiments with metamaterials based on
long arrays of Josephson junctions have demonstrated
[39, 40] an increase in the effective impedance Z0 by
two orders of magnitude to Z0 ≈ 104 Ohm. This was
achieved while keeping the total capacitance of the res-
onator approximately constant, which means that the
speed of light in the metamaterial v = (CZ0)−1 is re-
duced by two orders of magnitude. Such a device would
lead to an enhancement in photon production by four
orders of magnitude, from which we can again roughly
estimate the ratio of the mechanically produced photons
with respect to the electrically generated ones, which
would improve by two orders of magnitude. This results
from the former scaling with Z0, as shown in Eq. (5),
while the latter scaling as Z

1/2
0 , as shown in Eq. (6).

However, using superconducting metamaterials could
lead to other unwanted effects such as the emergence
of a finite-size lattice structure or the impedance mis-
match between the resonator and the transmission line.
Incorporating these properly into our proposal would
require more detailed studies, which we leave as a fu-
ture direction.

Finally, we would like to highlight that there are other
traces of the Casimir effect related to quantum correla-
tion functions. For instance, techniques developed in re-
cent accurate experiments to measure two-time correla-
tion functions in propagating quantum microwaves [41–
43] can be used to measure g(2)(τ). Indeed, the photons
which leak out of the cavity will show a decaying be-
havior of these auto-correlations, however the formalism
developed in this letter is not suitable to calculate such
effects, as we treat both the capacitor and the voltage
source as classical elements.

In summary, we have proposed an experiment consist-
ing of a mechanical resonator based on a FBAR directly
coupled to a superconducting cavity, which generates
a resonance enhancement of the electro-mechanically
generated dynamical Casimir radiation. We calculate
the stable flux of photons proceeding from an electro-
mechanically amplified quantum vacuum, demonstrat-
ing that measuring an effect is within reach of cur-
rent technology. We also propose a heuristic method
to estimate the fraction which can be ascribed to the
non-adiabatic change in the mechanical boundary con-
ditions. Further improvements can either be realized
by using Josephson metamaterials or a larger mechan-
ical quality factor to enhance both the photon produc-
tion and the ratio of the purely mechanically generated
photons. Our work also paves the way towards experi-
mentally tests of other fundamental relativistic effects,
such as the Unruh effect or the Hawking radiation, by
properly modifying the proposals in Ref. [24] employing
mechanical resonators.
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A Piezo-electromechanical coupling
We base our proposal on an FBAR device of thickness
t and square surface area A = b2 with volume V = A · t
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and define the z-direction (subscript 3) along the thick-
ness of the FBAR. A voltage is applied to the plates
of the FBAR, resulting in an electric field along the z-
direction that is assumed to be homogeneous. Due to
piezoelectric coupling this voltage results in mechanical
strain ε:

ε3j = −d3jE3 = −d3j
V3

t
, (12)

where dij is the piezoelectric coupling coefficient. This
mechanical strain has a geometric and stress-related ef-
fect, which are discussed in the following.

A.1 Geometric effect
Strain leads to contraction and expansion of the me-
chanical device and, thus, its dimensions change. For
the z direction, one obtains:

∆z = ε33 · t = −d33V3. (13)

This dimensional change shifts the resonance frequency
of the FBAR device. Using Ω = 2πv/2t (v velocity of
sound) as approximate formula for the resonance fre-
quency of an FBAR, one gets ∆Ω/Ω0 = −∆t/t ≈ −ε33.
Using (12), one arrives at

∆Ω
Ω0

= d33
V3

t
. (14)

A.2 Stress-related effect
Mechanical strain ε results in mechanical stress σ via the
relation σ = Eε (E is Young’s modulus). Mechanical
stress over an area A results in a force F acting on the
crystal surface F =

∫
A
σdA.

This force can change the resonance frequency of the
device, if the crystal structure could not relax along
that direction. For example, this would be the case
for a doubly-clamped mechanical beam. However, the
FBAR has no fixed/clamped boundaries along the z-
direction and, thus, can relax. Hence, we neglect any
shift in resonance frequency of the FBAR.

The force F can nevertheless result in driving the me-
chanical amplitude of the resonator as it acts as an ad-
ditional source term in the dynamic equation. The solu-
tion of a driven, damped harmonic oscillator in Fourier
space is

x̃(ω) = χ(ω) · F̃ (ω)/m, (15)
with the mechanical susceptibility χ(ω) = (Ω2 − ω2 −
iγω)−1 and the mass m of the resonator. A sinusoidal
driving voltage V3(t) = Vpp cos (ωt+ φ) results in a
force

F3(t) =
∫
A

σ3(t)dA = Ed33
V3(t)
t

∫
A

dA

= Ed33
V

t2
V3(t). (16)

Evaluating the mechanical response x̃(ω) on resonance
ω = Ω yields

|x̃(Ω)| = Q

Ω2
E

ρt
d33

Vpp

t
. (17)

This formula can be rewritten by using the FBARs res-
onance frequency Ω = 2πv/2t (with velocity of sound
v =

√
K/ρ, bulk modulus K = E/(3(1−2ν)), Poisson’s

ratio ν, density ρ) to

|x̃(Ω)| = Q

π2 (3(1− 2ν)) d33Vpp

= Q

π2 (3(1− 2ν)) ∆z. (18)

This means that the driven response is by a factor of
∼ Q/π2 larger than the geometric response ∆z alone.

B Proposed implementation and model-
ing

B.1 FBAR
We base our proposal on existing technology and em-
ploy experimental parameters closely following Ref. [32].
The mechanical resonator is a piezoelectric FBAR,
made up of a heterostructure from Al-AlN-Al, whereby
the Al is used to contact the piezoelectric AlN. A spe-
cific device could have a total thickness of approxi-
mately 1000 nm, consisting of a 300 nm SiO2 layer, two
150 nm Al electrodes surrounding a 350 nm AlN film,
with an average speed of sound of vs = 9100 m/s. The
device could be fabricated on a high-resistivity silicon-
on-insulator wafer. We drive the FBAR with an AC
voltage source V (t) = Vpp cos(ωt+ φ) with ω = Ω, i.e.,
a driving frequency equal to the fundamental mechani-
cal frequency Ω, and a phase difference φ = π

2 .

B.2 Modified Butterworth-Van Dyke circuit
The Modified Butterworth-Van Dyke circuit (MBVD)
[34] enables to extract the necessary parameters for
modeling a mechanical resonator as an equivalent elec-
trical circuit. This has been, e.g., used in Ref. [32]
for calculating the response of the FBAR made from
Al/AlN/Al. Note that the MBVD is an approximation
of the Generalized Butterworth-Van Dyke circuit [44]
for low electro-mechanical coupling k2

t .

The simplest model for a FBAR is derived from ap-
proximating the 3-port Mason model to a 4 element
circuit consisting of a plate capacitance C0 in parallel
with a series Rm − Lm − Cm circuit. In our case, the
capacitance C0 ≡ C(t) actually changes in time when
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an AC driving is applied, due to the change in the ge-
ometric structure. Indeed, mechanical resonators con-
sisting of a piezoelectric material sandwiched between
superconducting layers suffer from a geometrical change
in their structure due to the piezoelectric effect when a
voltage is applied. Therefore, the value of the electric el-
ements describing the electric response of the resonator
depends on the applied voltage (note that our voltage
source is a function of time). For the usual applica-
tions of FBARs and other mechanical oscillators, this
dependence is negligible, since it is a tiny correction of
the mean value. However, this dependence has already
been studied, for instance, in Ref. [45], and references
thereof. The aforementioned 4-element circuit has a se-
ries resonance ωs (given by Lm, Cm as ωs = 1/

√
LmCm)

and a parallel resonance ωp (set by C0 in series with
Lm, Cm as (ωp/ωs)2 = 1 + 1/r). The capacitance ra-
tio r is defined as r = C0/Cm. The electro-acoustic
coupling constant k2

t can be derived to be

(kt)2 = π2

4
ωs
ωp

ωp − ωs
ωp

= π2

8
1
r

(
1− 1

r

)
(19)

⇡
Cm

V (t) Lm

Rm

C(t)

R0
V (t)

C(t)

Figure 3: Equivalent circuit for the FBAR. We have employed
the modified van Dyke-Butterworth model to provide the equiv-
alent lumped-element circuit representation of the FBAR.

Adding a series resistor Rs at the input to this model
allows to account for the electrode electrical loss. This is
the so-called Butterworth-Van Dyke circuit, which has
5 parameters: C0, Rs, Rm, Lm, Cm. One can add a sixth
parameter, a resistor R0 in series with C0, accounting
for material loss. In Ref. [34], it is derived a set of
equations to obtain the 6 parameters from measurable
quantities: series and shunt resonant frequencies, the
effective quality factors Qs0, Qp0, and the capacitance
and resistance far away from the resonances.

To model the FBAR we use experimental parame-
ters closely following Ref. [32]: Cm = 0.655 fF, Lm =
1.043 µH and Rm = 146 Ohm for the mechanical
part, and C0 = 0.4 pF (average value in time) and
R0 = 8 Ohm for the geometric part. We would like to

note that a similar FBAR was recently demonstrated
with C0 = 1.00 pF [46]. This higher coupling capac-
itance would allow increasing the DCE photon rate
further. Taking into account that the permittivity of
AlN is εAlN ≈ 9.2ε0 = 81 pF/m and that the dis-
tance between the plates is tAlN = 350 nm, we can
model a parallel plate capacitor and estimate its area
A = tAlNC0/ε ≈ 7.7 · 10−10 m2.

In this work, we are primarily interested in calculat-
ing the DCE photon production. Therefore, we sim-
plify the full model to the elements containing the
most relevant information, as shown in Fig. 3. Tak-
ing the parameters considered in Appendix B.4, then
Zm = Rm+j(ΩLm− 1

ΩCm
) ≈ 146+j2.8·104 Ohm, while

Z0 = R0 − j 1
ΩC0
≈ 8− j189 Ohm. As Zeq = Z0Zm

Z0+Zm
≈

Z0, since |Z0| � |Zm| and the resistor is much smaller
than the capacitor, then our approximation follows.

In order to understand the connection between the
mechanical properties described in the Appendix A and
the modified Butterworth-Van Dyke model, let us ex-
plain how the mechanical Q-factor which appears in
Eq. (17) is described in terms of the electric elements
of the circuit. This connection is deeply related, as one
may expect, to the resistances in the circuit and the
coupling of the losses of the circuit when coupled to
other circuits. A detailed theoretical and experimental
analysis of this dependence may be found in Ref. [34].
In this reference, it is proven that

1
Q
≈
(

1
Qs

+ 1
Qe

)
(20)

with (Qs)−1 = ωRmCm, (Qe)−1 = ωR0Cm, and ω the
resonance frequency of the circuit. Hence, the quality
factor is indeed determined by the electric elements of
the circuit.

B.3 Superconducting cavity
The superconducting cavity has a length of
d = 3.3 · 10−2 m, with a fundamental frequency
of ωc,0 = 2π · v/d = 2π · 3.03 GHz with the speed of
light in the superconducting material of v = 108 m/s.
It is capacitively coupled to a semi-infinite transmission
line with impedance Z0 ≈ 55 Ohm. The capacitor
coupling the resonator to the transmission line has a
frequency ωc/2π = (2πZ0Cc)−1 ≈ 2π · 29.1 GHz.

B.4 Parameters for the proposed implementa-
tion
The following table summarizes the experimental pa-
rameters used in this proposal.
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Parameter Symbol Value
Material properties AlN
Youngs modulus E 308 GPa
density ρ 3230 kg/m3

piezoelectric coupling [47, 48] d33 5.1 · 10−12 m/V
Poissons ratio along {0001} ν 0.287
average velocity of sound v 9100 m/s [32]
permittivity εAlN 9.2ε0

FBAR parameters
quality factor Q 300
resonance frequency Ω 2π · 4.2 GHz
thickness AlN layer tAlN 350 nm
drive voltage Vpp 0.5 mV
driven motional amplitude ∆x(Vpp) 1.7 · Vpp nm/V

Superconducting cavity parameters
length d 3.3 · 10−2 m
cavity frequency ωc,0 2π · 3.03 GHz
impedance Z0 55 Ohm
DCE capacitance C0 0.4 · 10−12 F
transmission line coupling rate ωc 2π · 29.1 GHz

Further parameters
Temperature T 10 mK

C DCE miscellanea
C.1 DCE photon rate and its relation to v/c

In the following, we will relate the photon rate from
Eq. (11) to the commonly used speed ratio v/c in the
DCE, where v is the velocity of the mirror (in our case
the velocity of the vibrational motion of the FBAR)
and c is the speed of light (in our case the speed in the
superconducting material).

The mechanical photon production rate from
Eq. (11) depends essentially on the term 〈nout(ω)〉 =
|Sres

2 (ω,Ω − ω)|2, which is a function of S(ω′, ω′′) =
−i∆CZ0

√
|ω′||ω′′|θ(ω′)θ(ω′′). Therefore, 〈nout(ω)〉 ∝

∆C2Z2
0ω(Ω − ω), which in resonance ω = Ω/2 gives

〈nout(Ω/2)〉 ∝ ∆C2Z2
0Ω2/4. Taking into account that

∆C ≈ C0∆x/tAlN and that the maximal speed of the
FBAR is given by v = ∆x · Ω, then 〈nout(Ω/2)〉 ∝
C2

0Z
2
0v

2/(4t2AlN). Finally, the speed of light in the ma-
terial is given by c = (CZ0)−1, with C the density of
capacitance of the superconducting cavity, so

〈nout(Ω/2)〉 ∝ C2
0C2Z2

0v
2/(4C2t2AlN) = Qv2/c2, (21)

with Q = C2
0/(4C2t2AlN) is related with the impedance

mismatch between the FBAR and the superconducting
cavity and, consequently, with the quality factor of the
resonator. This expression coincides with Eq. (15) of
Ref. [12] and Eq. (3) of Ref. [21] for photon production
in the presence of a cavity, and shows that, effectively,

in the context of the FBAR scheme, the v/c ratio in
photon production still holds.

For the sake of completeness, let us estimate the ra-
tio of v/c as follows. The maximal velocity of the me-
chanical resonator on resonance is given as v = ∆x · Ω.
The speed of light in the superconducting cavity is c =
(CZ0)−1 = 1 ·108 m/s. We obtain with Ω = 2π ·4.2GHz
a ratio v/c of ∼ 2 · 10−10 and ∼ 2 · 10−8 for ∆x =
8.5 ·10−13 m (low mechanical Q) and ∆x = 8.5 ·10−11 m
(high mechanical Q), respectively.

C.2 DCE as a parametric effect

In the following, we show by using a simplified model
how the parametric effect of the DCE emerges from a
change in boundary conditions. To this end, we use the
Hamiltonian of a cavity ended by an oscillating mirror,
with CT = C + C0, the sum of the total capacitance of
the cavity and the capacitor. Therefore,

H = 1
2CT

q2 + 1
2LΨ2, (22)

which is the Hamiltonian corresponding to an LC cir-
cuit. Let us assume that the face of the resonator vi-
brates due to the phonons as a classical harmonic os-
cillator of frequency Ω and amplitude ∆x, so d(t) =
d0 + ∆x cos(Ωt) and the capacitance, that we assume
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given by a coplanar capacitor, varies as

1
CT (t) = 1

C + C0(t) = 1
C + εA

d(t)

= 1
C + C0(1− ∆x

d0
cos(Ωt))

= 1
CT

+ C0∆x
C2
T d0

cos(Ωt) (23)

We can consider the term on the right hand side a
perturbation, so the Hamiltonian can be expressed by
means of the same creation and annihilation operators
as

H = ~ω
(
a†a+ 1

2

)
− C0∆x

2C2
T d0

~ωCT
2 cos(Ωt)

(
a† − a

)2
where we made use of the standard definition of cre-
ation and annihilation operators for an LC circuit

q = i
√

~ωCT

2 (a† − a) and Ψ =
√

~
2ωCT

(a† + a), and

ω =
√

1
LCT

is the frequency of the superconducting

circuit. By removing constants and using the rotating
wave approximation with Ω = 2ω, one can rewrite the
Hamiltonian in the interaction picture as

H = ~ω
8
C0∆x
CT d0

[
(a†)2 + a2] , (24)

which is a squeezing Hamiltonian.
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[40] T. Weissl, B. Küng, E. Dumur, A. K. Feofanov,
I. Matei, C. Naud, O. Buisson, F. W. J. Hekking,
and W. Guichard, Kerr coefficients of plasma res-
onances in Josephson junction chains, Phys. Rev.
B 92, 104508 (2015).

[41] R. Di Candia et al., Quantum teleportation of prop-
agating quantum microwaves, EPJ Quantum Tech-
nology 2, 25 (2015).

[42] K. G. Fedorov et al., Displacement of propagating
squeezed microwave states, Phys. Rev. Lett. 117,
020502 (2016).

[43] K. G. Fedorov et al., Finite-time quantum entan-
glement in propagating squeezed microwaves, Sci.
Rep. 8, 6416 (2018).

[44] H. Jin, S. R. Dong, J. K. Luo, and W. I. Milne,
Generalised Butterworth–Van Dyke equivalent cir-
cuit for thin-film bulk acoustic resonator, Elec-
tronic Letters 47, 424 (2011).

[45] S. Lee, Design and Modeling of Ferroelectric BST
FBARs for Switchable RF Bulk Acoustic Wave Fil-
ters (PhD Dissertation, University of Michigan,
2016).

[46] P. R. Reddy and B. C. Mohan, Design and Analysis
of Film Bulk Acoustic Resonator(FBAR) Filter for
RF Applications, Int. J. Eng. Bus. Manag. 4, 29
(2012).

[47] C. M. Lueng, H. L. W. Chan, C. Surya, and C.
L. Choy, Piezoelectric coefficient of aluminum ni-
tride and gallium nitride, J. Appl. Phys. 88, 5360
(2000).

[48] M.-A. Dubois and P. Muralt, Properties of alu-
minum nitride thin films for piezoelectric transduc-
ers and microwave filter applications, Appl. Phys.
Lett. 74, 3032 (1999).

Accepted in Quantum 2018-08-28, click title to verify 10

https://doi.org/10.1007/978-3-642-20288-9_13
https://doi.org/10.1007/978-3-642-20288-9_13
https://doi.org/10.1007/978-3-642-20288-9_13
https://doi.org/10.1103/RevModPhys.84.1
https://doi.org/10.1038/nature10561
https://doi.org/10.1038/nature10561
https://doi.org/10.1073/pnas.1212705110
https://doi.org/10.1073/pnas.1212705110
https://doi.org/10.1103/PhysRevLett.105.180501
https://doi.org/10.1103/PhysRevLett.105.180501
https://doi.org/10.1103/PhysRevA.87.043804
https://doi.org/10.1103/PhysRevA.87.043804
https://doi.org/10.1103/PhysRevLett.113.093602
https://doi.org/10.1103/PhysRevLett.113.093602
https://doi.org/10.1103/PhysRevB.93.094514
https://arxiv.org/abs/1802.05529
https://doi.org/10.1038/nature08967
https://doi.org/10.1088/0031-8949/2009/T137/014018
https://doi.org/10.1109/ULTSYM.2000.922679
https://doi.org/10.1109/ULTSYM.2000.922679
https://doi.org/10.1103/PhysRevLett.105.100401
https://doi.org/10.1103/PhysRevLett.105.100401
https://doi.org/10.1088/1367-2630/16/1/015001
https://doi.org/10.1088/1367-2630/16/1/015001
https://doi.org/10.1103/PhysRevA.90.011803
https://doi.org/10.1103/PhysRevA.90.011803
https://doi.org/10.1103/PhysRevLett.109.137002
https://doi.org/10.1103/PhysRevLett.109.137002
https://doi.org/10.1103/PhysRevB.92.104508
https://doi.org/10.1103/PhysRevB.92.104508
https://doi.org/10.1140/epjqt/s40507-015-0038-9
https://doi.org/10.1140/epjqt/s40507-015-0038-9
https://doi.org/10.1103/PhysRevLett.117.020502
https://doi.org/10.1103/PhysRevLett.117.020502
https://doi.org/10.1038/s41598-018-24742-z
https://doi.org/10.1038/s41598-018-24742-z
https://doi.org/10.1049/el.2011.0343
https://doi.org/10.1049/el.2011.0343
https://doi.org/10.5772%2F54921
https://doi.org/10.5772%2F54921
https://doi.org/10.1063/1.1317244
https://doi.org/10.1063/1.1317244
https://doi.org/10.1063/1.124055
https://doi.org/10.1063/1.124055

	1 Introduction
	2 Proposed implementation
	2.1 FBAR modeling
	2.2 Lumped-element circuit model

	3 Electro-mechanical DCE photon rate
	4 Discussion and Conclusion
	 Acknowledgments
	A Piezo-electromechanical coupling
	A.1 Geometric effect
	A.2 Stress-related effect

	B Proposed implementation and modeling
	B.1 FBAR
	B.2 Modified Butterworth-Van Dyke circuit
	B.3 Superconducting cavity
	B.4 Parameters for the proposed implementation

	C DCE miscellanea
	C.1 DCE photon rate and its relation to v/c
	C.2 DCE as a parametric effect

	 References

